
31

Progress in Autonomous Fault Recovery
of Field Programmable Gate Arrays

MATTHEW G. PARRIS, NASA Kennedy Space Center
CARTHIK A. SHARMA and RONALD F. DEMARA, University of Central Florida

The capabilities of current fault-handling techniques for Field Programmable Gate Arrays (FPGAs) develop a
descriptive classification ranging from simple passive techniques to robust dynamic methods. Fault-handling
methods not requiring modification of the FPGA device architecture or user intervention to recover from
faults are examined and evaluated against overhead-based and sustainability-based performance metrics
such as additional resource requirements, throughput reduction, fault capacity, and fault coverage. This
classification alongside these performance metrics forms a standard for confident comparisons.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: Reliability, Testing, and Fault
Tolerance; B.7.0 [Integrated Circuits]: General; I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; A.1 [General Literature]: Introductory and Survey

General Terms: Design, Performance, Reliability

Additional Key Words and Phrases: FPGA, evolvable hardware, autonomous systems, self-test, reconfig-
urable architectures

ACM Reference Format:
Parris, M. G., Sharma, C. A., and Demara, R. F. 2011. Progress in autonomous fault recovery of field
programmable gate arrays. ACM Comput. Surv. 43, 4, Article 31 (October 2011), 30 pages.
DOI = 10.1145/1978802.1978810 http://doi.acm.org/10.1145/1978802.1978810

1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have found use among various applications
in domains such as data processing, networks, automotive and other industrial fields.
The reconfigurability of FPGAs decreases the time-to-market of applications that would
otherwise require their functionality to be hard-wired by a manufacturer. Additionally,
the ability to reconfigure their functionality in the field mitigates unforeseen design
errors. Both of these characteristics make FPGAs an ideal target for spacecraft appli-
cations such as ground support equipment, reusable launch vehicles, sensor networks,
planetary rovers, and deep space probes [Katz and Some 2003; Kizhner et al. 2007;
Ratter 2004; Wells and Loo 2001]. In-flight devices encounter harsh environments of
mechanical/acoustical stress during launch and high ionizing radiation and thermal
stress while outside Earth’s atmosphere. FPGAs must operate reliably for long mission
durations with limited or no capabilities for diagnosis/replacement and little onboard
capacity for spares. Mission sustainability realized by autonomous recovery of these

This research was supported in part by NASA Intelligent Systems NRA Contract NNA04CL07A.
Authors’ addresses: M. G. Parris, NE-A3, Kennedy Space Center, FL 32899-0001; email: matthew.g.parris
@nasa.gov; C. A. Sharma and R. F. Demara, School of Electrical Engineering and Computer Science, Uni-
versity of Central Florida, Box 162362, Orlando, FL 32816-2362.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0360-0300/2011/10-ART31 $10.00

DOI 10.1145/1978802.1978810 http://doi.acm.org/10.1145/1978802.1978810

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:2 M. G. Parris et al.

Fig. 1. Generic SRAM FPGA architecture.

reconfigurable devices is of particular interest to both in-flight applications and ground
support equipment for space missions at NASA [Yui et al. 2003].

1.1. FPGA Architecture Overview

As indicated by its name, programmability is the primary benefit of FPGAs. Depending
on the design of the device, a user programs anti-fuse cells or Static Random Access
Memory (SRAM) cells within the FPGA. The anti-fuse cells store the application per-
manently, whereas the SRAM cells store the application temporarily, allowing repro-
grammability. Since reprogrammability allows many more fault-handling techniques,
this article focuses solely on SRAM FPGAs.

As shown in Figure 1, SRAM FPGA architectures are regular arrays of Pro-
grammable Logic Blocks (PLBs) among interconnect resources such as wire segments,
connection boxes, and switch boxes [Trimberger 1993]. FPGA interconnect provides the
means for multiple PLBs to realize complex logic functions. Connection boxes connect
PLBs to wire segments, which in turn are connected to one another by switch boxes
that allow various combinations of connections. The FPGA interconnect also joins PLBs
to Input/Output Blocks (IOBs), which regulate the connections between the FPGA and
external components.

The logic functionality of an application is realized by a combination of PLBs, each
containing multiple Basic Logic Elements (BLEs). The BLE consists of: (1) a 2nx1
SRAM to store logic functions, where n is the number of inputs to the SRAM, (2) a flip-
flop to store logic values, and (3) a multiplexer to select between the stored logic value
or the SRAM. The most common SRAM size for logic functions is a 16 × 1 memory
containing 4 inputs. In this configuration, the 16 × 1 SRAM behaves as a 4-input

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:3

function generator or a 4-input Look-Up Table (LUT), where the time to look up the
result of the logic function is equal for all permutations of inputs.

1.2. Radiation-Induced Faults and Handling Techniques

When in the deep space environment, FPGAs are subject to cosmic rays and high-
energy protons, which can cause malfunctions to occur in systems located on FPGAs.
These radiation effects can be broadly classified into Total-Dose Effects and Single-
Event Effects (SEEs). Total-Dose Effects describe cumulative long-term damage due to
incident protons and electrons, and are described in detail by Dong-Mei et al. [2007].
SEEs are caused by the incidence of a single high-energy particle or photon. SEEs can
be destructive, such as Single-Event Latchups (SELs), or nondestructive, as in the case
of transient faults. Transient faults include Single-Event Upsets (SEUs) [Wirthlin et al.
2003], Multiple-Bit Upsets (MBUs), Single-Event Functional Interrupts (SEFIs), and
Single-Event Transients (SETs). Adell and Allen [2008] provide a survey of technologies
used for mitigating SEEs in FPGAs. Additionally, Bridgford et al. [2008] provide a
glossary of terms and an overview of SEE mitigation technology for Xilinx FPGAs.
This article discusses techniques to address the effects of nondestructive SEEs in
SRAM-based FPGAs.

Radiation-hard describes resilience to either total-dose effects or SEEs at the device
level. The configurations of anti-fuse FPGAs, for example, are radiation-hard since anti-
fuse FPGAs do not depend upon SRAM cells to store their configurations. Radiation-
tolerant, on the other hand, describes guaranteed performance up to a certain Total
Ionizing Dose (TID) level or Linear Energy Transfer (LET) threshold. A TID of 300 krad
(Si) and a Single-Event Upset (SEU) LET of 37 MeV-cm2/mg are sufficient for the ma-
jority of space applications [Roosta 2004]. Consequently, FPGAs resistant to a TID of
at least 300 krad (Si) have been labeled rad-hard [Actel 2005; Atmel 2007]. This label,
however, can be misleading as memory cells and registers still remain vulnerable to
SEUs and therefore must depend upon SEU mitigation techniques at the application
level [Altera 2009; Baldacci et al. 2003; Bridgford et al. 2008]. Before the availability
of radiation-tolerant SRAM FPGAs providing SEL immunity and performance char-
acterization within heavy-ion environments [Xilinx 2008], designers of satellites and
rovers had no serious alternative to the one-time programmable anti-fuse FPGA. If
the inherent fault tolerance capability of anti-fuse FPGAs was insufficient, designers
were restricted to employing passive fault-handling methods such as Triple Modular
Redundancy (TMR) [Lyons and Vanderkulk 1962]. Due to the reconfigurable nature
of SRAM FPGAs, radiation-tolerant SRAM FPGAs have enabled designers to consider
other fault-handling methods such as the active fault-handling methods described by
Sections 3 and 4 herein.

Fault avoidance strives to prevent malfunctions from occurring. This approach in-
creases the probability that the system continues to function correctly throughout
its operational life, thereby increasing the system’s reliability. Implementing fault-
avoidance tactics such as increasing radiation shielding can protect a system from
single-event effects at the expense of additional weight. If those methods fail, however,
fault-handling methodologies can respond to recover lost functionality. Whereas some
fault-handling schemes maintain system operation while handling a fault, some fault-
handling schemes require placing the system offline to recover from a fault, thereby
decreasing the system’s availability. This limited decrease in availability, however, can
increase overall reliability.

1.3. Focus of this Survey Article

This survey focuses on fault-handling methods that modify an FPGA’s configuration
during runtime to address transient and permanent faults. Whereas some methods

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:4 M. G. Parris et al.

Table I. Fault-Handling Characteristics and Considerations

Metric Description

Overhead

Physical Resources additional amount of resources required due to
fault-handling strategy

Throughput Reduction reduced rate of computations due to fault recovery
Detection Latency amount of time required detect and/or locate a single fault
Recovery Time amount of time system is offline to completely recover from

a single fault

Sustainability

Fault Exploitation ability to utilize defective resources
Recovery Granularity smallest component in which a fault may be handled
Fault Capacity number of fault-free resource units required for system

functionality with a single additional fault
Fault Coverage handling of faults in various FPGA components
Critical Components external fault-handling components relied upon as fault free

incorporate fault detection and isolation techniques, these capabilities are not required
for consideration by this survey. Since SRAM FPGAs can be: (1) radiation-tolerant,
(2) reconfigured, and (3) partially reconfigured with the remaining portion remaining
operational, research has also begun to focus on exploiting these capabilities for use in
environments where human intervention is either undesirable or impossible. Section
2 classifies such fault-handling methods, which are described by Sections 3, 4, and 5.
Table I lists various considerations addressed in detail by Section 5.

As listed in Table I, FPGA autonomous fault recovery strategies are described in this
survey in terms of several fundamental processing overhead and mission sustainabil-
ity characteristics. With respect to processing overhead, both the space complexity and
time complexity of the existing recovery strategies can vary significantly. The principal
space complexity metric are the additional physical resources which must either be
reserved as spares or are otherwise utilized actively to support the underlying fault-
handling mechanism. On the other hand, measures of time complexity incurred are the
amount of throughput reduction as a side-effect of fault recovery, the detection latency
measured as the time required to isolate the fault to the level of granularity which
is covered by the fault-handling mechanism, and the recovery time which accounts for
the cumulative unavailability of throughput during the recovery process. Meanwhile,
the sustainability metrics will be used to assess the quality of the recovery which is
achieved. Some FPGA fault-handling techniques attempt to increase long-term mission
sustainability through fault exploitation strategies which effectively recycle the par-
tially disabled resources as floating partial spares. Depending on the particular strat-
egy used, the granularity of recovery can vary widely from a fixed number of columns
or fixed-sized rectangular regions, down to individual logic elements without restric-
tion. The fault capacity and coverage provided refer to measures of redundancy and
logic/interconnect resource coverage, respectively. Some strategies provide explicit cov-
erage for the latter type of resources while others provide only logic resource coverage,
or implicit coverage for some interconnect resources. Finally, all strategies reviewed in
this survey rely on one or more critical components, sometimes referred to as golden
elements [Garvie and Thompson 2004], that are required to be operational in order for
the recovery strategy to operate effectively. As discussed in subsequent sections, many
strategies that tend to excel with respect to sustainability characteristics often do so
at the expense of increased overhead characteristics.

2. CLASSIFICATION OF FAULT-HANDLING METHODS

Fault-handling methods can be broadly classified based on the provider of the method
into manufacturer-provided methods and user-provided methods [Cheatham et al.
2006]. Furthermore, these methods can be classified based on whether the technique
relies on active or passive fault-handling strategies. Of particular interest to this work

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:5

Fig. 2. Classification of FPGA fault-handling methods.

are the user-provided active fault-handling strategies. These can be classified based
on the allocation, type, and level of redundant resources. In particular, a subset of
the active fault-handling methods relies on a priori allocation of resources, both spare
computational resources and spare designs. Lastly, the dynamic family of techniques
is surveyed, and these techniques can be classified based on whether the technique
requires the device to be taken offline for the recovery to be completed.

As suggested by Cheatham et al. [2006], Figure 2 divides fault-handling approaches
into two categories based on the provider of the method. Manufacturer-provided fault
recovery techniques [Cheatham et al. 2006; Doumar and Ito 2003] address faults at
the level of the device, allowing manufacturers to increase the production yield of their
FPGAs. These techniques typically require modifications to the current FPGA architec-
tures that end-users cannot perform. Once the manufacturer modifies the architecture
for the consumer, the device can tolerate faults from the manufacturing process or
faults occurring during the life of the device.

User-provided methods, however, depend upon the end-user for implementation.
These higher-level approaches use the configuration bitstream of the FPGA to inte-
grate redundancy within a user’s application. By viewing the FPGA as an array of
abstract resources, these techniques may select certain resources for the implementa-
tion of desired functionality, such as resources exhibiting fault-free behavior. Whereas
manufacturer-provided methods typically attempt to address all faults, user-provided
techniques may consider the functionality of the circuit to discern between dormant
faults and those manifested in the output. This higher-level approach can determine
whether fault recovery should occur immediately or at a more convenient time.

The classification presented herein further separates user-provided fault-handling
methods into two categories based on whether an FPGA’s configuration will change at
runtime [Parris 2008]. Passive methods embed processes into the user’s application that
mask faults from the system output. Techniques such as TMR are quick to respond and
recover from faults due to the explicit redundancy inherent to the processes. Speed,
however, does come at the cost of increased resource usage and power. Even when
a system operates without any faults, the overhead for redundancy is continuously
present. In addition to this constant overhead, these methods are not able to change
the configuration of the FPGA. A fixed configuration limits the reliability of a system
throughout its operational life. For example, a passive method may tolerate one fault
and not return to its original redundancy level. This reduced reliability increases the
chance of a second fault causing a system malfunction.

Active methods strive to increase reliability and sustainability by modifying the
configuration of the FPGA to adapt to faults. As such, these methods cannot be realized
on anti-fuse FPGAs. Reconfiguring the device allows a system to remove accumulated

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:6 M. G. Parris et al.

Fig. 3. Overview of active fault-handling methods.

SEUs and avoid the utilization of permanently faulty resources. External processors,
which cost additional space, typically determine how to recover from the fault. These
methods also require additional time either to reconfigure the FPGA or to generate the
new configuration. Figure 3 illustrates two classes—a priori allocations and dynamic
processes—described by Sections 3 and 4, respectively.

3. A PRIORI RESOURCE ALLOCATIONS

A priori allocations assign spare resources during design-time, independent of fault
locations detected during runtime. These methods take advantage of the regularity of
the FPGA’s architecture by implementing redundancy structures. Since typical FPGA
applications do not utilize 100% of the resources, the size of standby spares is reduced
from entire FPGAs to unused resources within the FPGA. These techniques may re-
cover from a fault by utilizing design-time compiled spare configurations, or remapping
and rerouting techniques utilizing spare resources. Spare configuration-based methods
must provide sufficient configurations whereas spare resource-based methods must
allocate sufficient resources to facilitate a recovery without incurring unreasonable
overheads. These two types of a priori allocations are addressed in Sections 3.1 and
3.2, respectively.

3.1. Spare Configuration Methods

Methods that utilize spare configurations require the user to generate alternative
FPGA configurations during design-time to account for faults that may occur. Account-
ing for every possible fault at the lowest levels of the device, and therefore generating
a configuration to account for each permutation of faults, is not practical. Instead,
methods may consider a group of low-level resources as a logical partition of the FPGA.
Then, FPGA configurations may be generated to account for faults occurring within
each of these partitions. The methods outlined next select various granularities for
partitioning the FPGA.

3.1.1. Fine-Grained Partitioning. Lach et al. [1998] implement a fine-grained partitioning
technique where tiles—groups of logic and local interconnect resources—are formed.
The goal of the tiling technique is to partition FPGA resources in such a way that at
least one spare PLB is included within each tile to form Atomic Fault-Tolerant Blocks

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:7

Fig. 4. Alternate configurations for a faulty 3 × 3 partition located in bottom right-hand corner region.

(AFTBs). Since each AFTB contains at least one spare PLB, each tile is able to tolerate
at least one PLB fault.

Alternate fine-grained configurations generated during design-time and stored in
external memory provide the ability to tolerate faults at runtime. In order to realize a
significant reduction in storage space, each configuration is implemented as a partial
configuration as opposed to a full configuration. The Xilinx Virtex-4 architecture, for
example, allows two-dimensional partial configurations with a minimum height of 16
Configurable Logic Blocks (CLBs) [Lysaght et al. 2006].

During design-time, tiling implements multiple arrangements of logic resources
within a tile as separate configurations such that each PLB within a tile is repre-
sented as a spare in at least one configuration. As seen in Figure 4, the bottom-right
tile in the FPGA produces eight alternate configurations. To tolerate a fault during
runtime, the system implements the configuration of the faulty tile that renders the
faulty PLB as a spare, effectively bypassing the fault. Figure 4 depicts configuration
4 as one such alternate to bypass the fault which is located in the bottom right-hand
corner region of the FPGA. Fixed inter-tile interfaces between alternate configurations
render the arrangement of each tile logically independent.

Lach et al. [1998] report that this technique requires 2–10% additional logic resources
when implemented on nine Microelectronics Center of North Carolina (MCNC) bench-
mark circuits. Additionally, this technique resulted in a throughput reduction between
14% and 45% of original performance. Given the granularity of resources used by
this method, fine-grained configurations only consider interconnect resources that are
local to the partition. In some cases, however, a nonlocal interconnect fault may be
interpreted as a unique PLB fault and an appropriate configuration may bypass the
interconnect fault.

3.1.2. Functional-Unit Partitioning. Since Triple Modular Redundancy (TMR) performs a
majority vote of three modules, the voted output remains correct even if a single module
is defective. Thus, TMR is a passive fault-handling technique widely used to mitigate
permanent and transient faults. Whereas TMR can tolerate one faulty module, a fault
occurring in a second module may produce a faulty functional output. Thus, TMR is
limited in its fault capacity.

To increase system reliability, Zhang et al. [2006] combine TMR with Standby
(TMRSB) to create a functional-unit spare configuration method. Shown by Figure 5,

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:8 M. G. Parris et al.

Fig. 5. Triple modular redundancy with standby configurations [Zhang et al. 2006].

each module of the TMR arrangement contains standby configurations that are avail-
able at runtime. At design-time, each of these configurations is created to utilize varying
FPGA resources. Upon detecting a fault within one of the modules, a standby configu-
ration not utilizing a faulty resource is selected and implemented to bypass the fault.
TMRSB exploits the ability of TMR to remain online with two functional modules while
the defective module undergoes a functional recovery. Such runtime recovery of mod-
ules increases the reliability of TMR by allowing another fault to occur in a second
module while maintaining a correct functional output. The process repeats until all
standby configurations are exhausted.

While this method does require 200% additional logic and interconnect resources,
the detection latency is negligible since a fault occurring within one of the three mod-
ules is detected immediately. When generating alternating configurations, a user may
control any throughput reduction to satisfy application requirements. At a minimum,
this method can provide fault coverage for the triplicate logic and interconnect re-
sources utilized by the method. The reliability is further increased when alternative
configurations can bypass faulty logic and interconnect resources.

3.1.3. Coarse-Grained Partitioning. Mitra et al. [2004] present a coarse-grained fault-
handling technique that reserves one or more columns of unused PLBs to tolerate
faults. At design-time, multiple configurations are generated, each of which reserves
spare columns in a distinct area of the FPGA. Once a fault occurs and is located, the
system implements a configuration that covers the fault(s) with its spare columns. If
the fault location is not available, then all configurations may be implemented and
tested one at a time until a configuration provides a functional application.

Designers may partition the FPGA in one of two ways. If the application is small
with respect to the FPGA device, then a nonoverlapping method can be considered. The
nonoverlapping scheme separates the FPGA into columns, where one column contains
the entire application. The remaining columns are not used by the application and
are reserved as spares. As seen in Figure 6(a), this method generates three distinct
configurations, each of which utilizes nonoverlapping FPGA resources. More generally,
the number of generated configurations is m+ 1, where the number of tolerable faulty
columns equals m.

For larger applications, Figure 6(b) displays a configuration that separates the FPGA
application into columns while reserving at least one column as spare. Alternate

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:9

Fig. 6. Coarse-grained partitioning schemes for an FPGA.

configurations are generated during design-time so that within each configuration,
a different column becomes the spare column. In the case of one spare column
and four columns containing the application, five distinct configurations are gener-
ated. More generally, the number of generated configurations is (k+m)!

k!m! , where k is
the number of columns containing the application. This scheme is overlapping since
the various generated configurations utilize overlapping FPGA resources. Unlike the
nonoverlapping scheme, some configurations, such as Figure 6(b), may require hor-
izontal routing resources within the spare column to connect the separated logic
resources.

Since the technique is coarse-grained, its fault coverage in both logic and intercon-
nection resources is implicit. Whereas logic resources are unused in a spare column
in the overlapping scheme, interconnection resources are utilized in the spare column
to link the two disjointed functional areas. As such, multiple alternate configurations
of the same spare column must be generated to enable the technique to bypass faulty
interconnect resources located within the spare column. Depending on the size and
type of application, a user can choose the number of logic and interconnect resources
to reserve as spares, in addition to selecting between nonoverlapping and overlapping
methods. When implementing the coarse-grained method on four MCNC benchmark
circuits, the critical path was extended, resulting in a throughput reduction between
11% and 18% of the original circuit.

3.2. Spare Resource Methods

Spare resource methods strategically implement spare resources into the design of the
application to tolerate faults. Spare configurations only account for a small subset of all
possible means of utilizing spares, which is determined during the design phase prior to
any faults occurring. Spare resource methods, however, delay this determination until
after a fault is located at runtime. Whereas this strategy may enable an FPGA to handle
more fault patterns, determining how to best utilize the spare resources at runtime is an
overhead. To mitigate this overhead, spare resource methods incorporate redundancy
structures to minimize the time required to generate a useful configuration.

3.2.1. Sub-PLB Spares. Typical FPGA architectures implement logic functions with
Look-Up Tables (LUTs). As shown in Figure 7, Basic Logic Elements (BLEs) combine
each LUT with a flip-flop and output multiplexer to enable sequential logic implemen-
tation. PLBs, in turn, contain multiple BLEs as in the Virtex-4 architecture, which
contains eight BLEs per PLB.

By implementing ten benchmark circuits from the MCNC suite [Yang 1991], the
RAW benchmark suite [Babb et al. 1997] and a benchmark circuit generator [Hutton
et al. 1997], Lakamraju and Tessier [2000] found that, on average, 40% of the utilized

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:10 M. G. Parris et al.

Fig. 7. PLB recovery strategies using sub-PLB spares.

4-input LUTs contained one or more spare input. This suggests that an FPGA applica-
tion contains inherent spares at a finer granularity than the PLB level as previously
discussed. This PLB recovery strategy reserves spare BLEs and implements a hierar-
chy of fault-handling strategies to take advantage of these spare resources, beginning
with the finest granularity: LUT input swap, BLE swap, PLB I/O swap, incremental
reroute, and complete reroute.

Given the identification of a faulty LUT input by a fault detection technique, the
sub-PLB fault-handling method first attempts to swap the faulty resource with a spare
input of the same LUT. Figure 7 shows input I2 of BLE1 as a faulty LUT input that
may be swapped with a spare LUT input such as input I3 to avoid the fault. After
swapping the LUT inputs, the contents of the LUT are modified to compensate for
the input change. Whereas Figure 7 depicts a full PLB input routing matrix, some
FPGA architectures contain only a partial routing matrix, restricting the number of
PLB inputs to which a given LUT input may connect. For these architectures, the LUT
input swapping method must consider whether the spare LUT input has access to the
same PLB inputs as the faulty LUT input, to prevent rerouting. If spare LUT inputs
with similar connections are available, this method is ideal as it does not require logical
or connection changes outside of the BLE. If a spare LUT input is not available, then
the entire BLE is considered faulty.

When a BLE is considered faulty, as is the case with BLE 3 in Figure 7, it is swapped
with the reserved spare shown as BLE 4. In the case of partial routing matrices, the
BLE swapping method needs to ensure the spare BLE has access to the same PLB in-
puts as the faulty BLE to prevent rerouting. Figure 7 shows that BLE 3 can swap with
BLE 4 because of the similarity in connectivity, thus the change only affects the PLB
and not the remainder of the circuit. If a spare BLE is not available, then the entire
PLB is considered faulty and incremental rerouting is required. Incremental rerouting
is discussed further in Section 4.1.1. Similar to the LUT input swap, faulty PLB in-
put/output wires may be swapped with spare wires that contain similar connections. If
a spare PLB input/output wire is not available, then incremental rerouting is required.

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:11

Fig. 8. Fault scenarios with spare PLBs [Hanchek and Dutt 1998].

Lakamraju and Tessier [2000] report that 24% of the fault scenarios requiring incre-
mental reroute could be handled using the BLE swap by reserving at least one BLE as
spare per PLB. Whereas BLE swap is quicker than incremental rerouting, reserving
BLEs requires an additional 8% of logic resources when using 8 BLEs per PLB and 21%
of logic resources using 4 BLEs per PLB. In addition to requiring a detection method
that can isolate a fault to a BLE, sub-PLB spares require a custom place-and-route
application to perform the BLE swap to bypass faults.

3.2.2. PLB Spares. To tolerate logic faults within a PLB, Hanchek and Dutt [1998]
allocate the rightmost PLB of each row as spare. In the case of a fault, a string of
PLBs beginning with the faulty PLB is shifted one PLB to the right. More formally,
this technique is node-covering, which allocates a cover PLB to each PLB. In the case
of a fault occurring in a PLB, its cover replaces the functionality of the faulty PLB to
avoid the fault. This covering continues within a row in a cascading fashion until the
spare PLB at the end of the row is reached. For a PLB to become a cover, it must dupli-
cate the: (1) logic functionality and (2) connectivity of the original PLB to other PLBs.
Hanchek and Dutt [1998] ensure that cover cells duplicate connectivity by incorporat-
ing reserved wire segments during the design process. Whereas end-users may choose
to implement the node-covering strategy for tolerating logic faults, the authors spec-
ify that handling interconnect faults requires modification to the FPGA architecture,
and thus is intended for manufacturer yield enhancement. Such modifications are
outside the scope of this survey.

In Figure 8, some wire segments are utilized by the initial configuration whereas
other wire segments are reserved, such as the one above location 3. As is the case with
Fault Scenario A, this reserved segment becomes utilized by PLB B by shifting into
location 3. Likewise, the two segments above and to the right of location 4 become
utilized by the PLBs to the left. Additionally, a design may contain inherent reserved
segments where some utilized wire segments of the initial configuration also serve as
reserved wire segments in a fault scenario. This is seen in Fault Scenario A where
PLB B allows its utilized wire segment above location 2 to be used by PLB A. During
design-time, a custom tool determines the necessary reserved routing segments to
enable the FPGA to tolerate one faulty PLB per row. Two heuristics that increase the
efficiency of routing include segment reuse and preferred routing direction. Segment
reuse allows a utilized net and a reserved net to map to the same wire segment if the
utilized net will move off of the wire segment with the shifting the PLBs, therefore

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:12 M. G. Parris et al.

freeing up a wire segment for the reserved net. For nets that cross the FPGA, preferred
routing direction encourages the router to extend such nets to the right, horizontally,
as far as possible before extending the net in either vertical direction. Providing longer
continuous horizontal segments allows greater opportunities for a design to contain
inherent reserved segments, as discussed earlier.

Since the design process has ensured that the cover cells can duplicate functionality
and connectivity, the routing phase of the place-and-route process is finalized during
design-time. To avoid a faulty PLB within a row, an end-user only needs to replace
the PLBs by shifting a row of PLBs into a fault-free configuration, which requires a
custom placer application. The time to modify an existing configuration by replacing a
row of PLBs is, however, significantly less than the time required either to generate a
new configuration from scratch or to incrementally reroute an existing configuration.
Depending on the size of the target FPGA, logic resource overhead can range from
1–41% of the FPGA, as explained by Section 5.1.1. Based on 18 benchmark circuits
provided by MCNC and other sources, Hanchek and Dutt [1998] report that an addi-
tional 9% to 50% of resource utilization is required to reserve interconnect resources.
Implementing the fault-handling method for a single fault can extend the length of
the critical path, causing a throughput reduction between 0% and 14% of the original
application.

4. DYNAMIC RECOVERY PROCESSES

Methods using dynamic processes aim to allocate spare resources or otherwise modify
the configuration during runtime, after detecting a fault. Whereas these approaches
offer the flexibility of adapting to specific fault scenarios, additional time is necessary
to generate appropriate configurations to recover from the specific faults. Offline re-
covery methods require the FPGA’s removal from operational status to complete the
refurbishment. Online recovery methods endeavor to maintain some degree of data
throughput during the fault recovery operation, increasing the system’s availability.
Sections 4.1 and 4.2, respectively, address these two types of active runtime dynamic
methods.

4.1. Offline Recovery Methods

4.1.1. Incremental Rerouting Algorithms. The node-covering technique discussed in Sec-
tion 3.2.2 avoids a fault by replacing a circuit into design-time allocated spares using
design-time reserved wire segments. Dutt et al. [1999] expand this method by dy-
namically allocating reserved wire segments during runtime instead of design-time.
Runtime reserved wire segments allow the method to utilize unused resources in ad-
dition to the spares allocated during design-time.

Emmert and Bhatia [2000] present a similar incremental rerouting approach that
does not require design-time allocated spare resources. The fault recovery method
assumes an FPGA to contain PLBs not utilized by the application, thus exploiting
unused fault-free resources to replace faulty resources. When a logic or interconnection
fault is detected by some external method, incremental rerouting calculates the new
logic netlist to avoid the faulty resource. The method reads the configuration memory to
determine the current netlist and implements the incremental changes through partial
reconfiguration.

A string of PLBs is created, starting with the faulty PLB and ending with the PLB
adjacent to the spare resource. Figure 9 shows one such string, starting with PLB 25,
including PLB 20, and ending with PLB 15. To avoid the fault, the string of PLBs
shifts away from the faulty resource and towards the spare resource. In the case of
node-covering, every row has a spare resource so the string of PLBs within the row

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:13

Fig. 9. One possible minimax fault-handling strategy for a 5 × 5 array.

simply shifts to the right, leaving the faulty resource unused. Since this method does
not allocate a spare resource for every row, the string of PLBs may extend into multiple
rows to reach a spare PLB, as shown in Figure 9.

This approach uses minimax Grid Matching (MGM) to determine the optimum re-
placement of faulty PLBs. Minimax is an algorithm that minimizes the maximum
Manhattan distance, L, between the faulty PLB and an unused, fault-free PLB. Begin-
ning with L = 1, Figure 9 shows that the faulty cell 23 is adjacent to the spare cell 18
and thus a match, but faulty cells 8 and 25 do not have adjacent spares and thus no
matches. Incrementing L to two, faulty cell 23 matches cell 17 while maintaining its
match to cell 18. Additionally, faulty cell 8 matches cell 18 and cell 10, whereas faulty
cell 25 still has no matching spare. Incrementing L to three, faulty cell 23 acquires no
new matches, faulty cell 8 acquires cell 17 as a match, and faulty cell 25 matches cell
10 and cell 18. Since all cells have a match at Manhattan distance L = 3, one match
is then chosen for each faulty cell. Figure 9 depicts one such possibility for the three
faulty PLBs, where, for example, the logic in cell 23 shifts to cell 22 and the logic in cell
22 shifts to the spare cell 17.

Replacing PLBs requires the wire segments of the moving PLBs to be rerouted. The
configuration memory of the FPGA is read to determine which nets are affected by the
replaced PLBs. All faulty nets and those that solely connect the moved PLBs are ripped-
up [Emmert and Bhatia 2000] while those that connect other unmoved PLBs remain
unchanged. A greedy algorithm then incrementally reroutes each of the dual-terminal
nets to reestablish the application’s original functionality. Initially, the algorithm only
uses spare interconnection resources within the direct routing path, but may enlarge its
scope to encompass wider routing paths for unroutable nets. Lakamraju and Tessier
[2000] expand this work by utilizing historical node-cost information from previous
routing attempts to increase the probability of routing success.

Whereas this method does not require reserved spare resources, strategically placing
spares throughout the design will improve the probability of successfully handling a
fault. By incrementally rerouting various circuits, Emmert and Bhatia [2000] observe
a throughput reduction between 2% and 35% of the original performance prior to a
fault. Utilizing the test circuits, up to 32 PLBs on average could be replaced before
the algorithm encounters an unroutable net. While observed as a diminishing return,
enlarging the scope of possible routing paths can increase the number of PLBs that
may be moved prior to encountering an unroutable net by as much as 25%.

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:14 M. G. Parris et al.

4.1.2. Genetic Algorithm Recovery. Genetic Algorithms (GAs) are inspired by evolution-
ary behavior of biological systems to produce solutions to computational problems
[Mitchell 1996]. Suitable for complex search spaces, GAs have proven valuable in a
wide range of multimodal or discontinuous optimization problems. Previous research
has investigated the capability of GAs to design digital circuits [Miller et al. 1997]
and recover from runtime faults [Keymeulen et al. 2000]. Vigander [2001] proposes
the use of GAs to recover faulty FPGA circuits. As a proof of concept, Vigander [2001]
implements extrinsic evolution, utilizing a simulated feed-forward model of the FPGA
device. Lohn et al. [2003], however, propose intrinsic evolution where the FPGA hard-
ware is included in the evolutionary loop. In the experiments, the logic and interconnect
configurations are represented as genetic chromosomes.

The evolution process begins with initializing a population of candidate solutions.
These initial solutions contain different physical implementations of the same
functional circuit. The optimal size of the population is determined through exper-
iments to ensure that there is sufficient diversity in the representations. In order
for evolutionary recovery to be effective, the chromosomes should provide adequate
resource coverage. However, the overhead involved in storing the configurations and
the initial effort required by some methods to create the alternate configurations
are some of the limiting factors determining the population size. As examples of
population sizes, the FPTA experiment [Keymeulen et al. 2000] utilizes a population
size between 128 and 200 for the experiments. For evolutionary design, as a result of
experimenting with varying population sizes, Miller et al. [1997] note that evolving
small populations over very large number of generations gives the best results. In the
experiment, they vary the population size from 10 to 240 and note that a population
size between 15 and 60 yields the best performance. Vigander [2001] utilizes a
population size of 50 in the evolutionary repair experiments, and Oreifej et al. [2006]
utilize a population size of 25 designs. DeMara and Zhang [2005] utilize a population of
20 fault-free configurations for the consensus-based evaluation technique. In general,
the optimal population size to be used in evolutionary design and repair experiments
has to be determined via experimentation, subject to a storage and performance
criterion.

Once a fault occurs, the GA evaluates the candidate solutions from the initial pop-
ulation against a set of test vectors to determine the functionality of each. Based on
performance, a fitness function assigns values to each candidate solution, revealing
which are most affected by the fault. If none of the available configurations provides
the desired functionality, then genetic operators create a new population of diverse
candidate solutions from the previous configurations. Configurations having a higher
fitness value are more likely to be selected and combine with other configurations by
application of the crossover genetic operator. Additionally, the mutation genetic opera-
tor injects random variations in the newly created candidate solutions. Vigander [2001]
also makes use of a cell swap operator that allows the functionality and connectivity of
a faulty cell to be interchanged with that of a spare cell. The GA evaluates the newly
created solutions and replaces poorer performers from the old population with better
performers in the current population to create a new generation of candidate solu-
tions. This evolutionary process repeats, terminating either when an optimal solution
is discovered or after a specific number of generations.

Vigander [2001] reported difficulty in recovering full functionality of a faulty 4-bit
multiplier. Experiments included increasing the number of resources available to the
GA and increasing the number of generations. During extrinsic experiments, Lohn
et al. [2003] were successful in recovering full functionality of a faulty quadrature
decoder within 623 generations. Moreover, the newly generated configuration exploited
the induced fault, where removing the stuck-at fault caused the circuit to lose its full

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:15

functionality. Lohn et al. [2003] also report that initial intrinsic experiments reduced
the evolutionary process from hours to minutes.

4.1.3. Augmented Genetic Algorithm Recovery. To decrease the amount of time required to
recover from a fault, Oreifej et al. [2006] augment the genetic algorithm fault-handling
concept with a Combinatorial Group Testing (CGT) fault isolation technique [Sharma
2008]. A group testing algorithm identifies subsets of resources, and schedules a min-
imal number of tests with the goal of identifying the faulty resource. The algorithm
is adaptive, so the suspect resources are rearranged based on the results of preceding
tests.

The functional-equivalent, yet physically distinct configurations form the population
upon which the GA operates. CGT evaluates each configuration for correct function-
ality. If a configuration manifests a faulty output, then the resources used by that
configuration are considered suspect. Various overlapping subsets of resources are
used by the configurations. CGT tests multiple configurations and accumulates the
number of times each resource is considered suspect through a history matrix. Under
CGT-based fault isolation, let R denote the set of all resources ri(x,y) ∈ R under test
as specified by their (x,y) coordinates. A set of functionally-equivalent logic configura-
tions, C, consists of subsets ci, 0 ≤ i ≤ p, where p quantifies the size of a population of
design configurations. Each configuration realizes the combinatorial logic required for
the application. The discrepancy function D(T’, cj) yields a set of all outputs that are
not equal to the correct output, as realized when tests comprising the syndrome, T’ are
applied to configuration cj. Tests T’ ⊂ T on a subset cj are positive if and only if D(T’,cj)
�= {}, and negative otherwise. The history matrix, H, keeps track of the discrepancy
counts of the resources. All elements in the H matrix are initialized to zero. As a stage
of tests proceeds, for each test ti for which D(ti, cj) �= {}, all H matrix entries H(x,y)
are incremented by one where (x,y) are the coordinates of all ri(x,y) ∈ cj. Over time,
the maximal elements in H identify suspect resources by their coordinates. Under a
single-fault assumption, fault isolation is complete when a unique maximum can be
identified in H. The GA, in turn, uses the fault location information to avoid faulty
resources while evolving a configuration for fault recovery. Oreifej et al. [2006] report
that the number of generations needed to isolate a single fault is 0.11% of the total
needed to realize a functionally correct circuit. This additional temporal overhead is
justified, as utilizing fault location information can reduce the number of generations
needed to recover full functionality by up to 38%.

4.2. Online Recovery Methods

4.2.1. TMR with Single-Module Recovery. In Section 3.1.2, faults in TMR arrangements
were handled with a priori, design-time configurations. When these a priori configu-
rations cannot restore required functionality, genetic algorithms may utilize them as
an initial population within the evolutionary process to generate a suitable alternative
[Garvie and Thompson 2004; Ross and Hall 2006; Shanthi et al. 2002; Vigander 2001].
As shown by Figure 10, genetic operators and reconfiguration are invoked when a de-
fective module is detected. At design time, Ross and Hall [2006] produce a population
of diverse configurations for implementation. At runtime, three of these configurations
are implemented and monitored for discrepancies. Agreeing outputs indicate that the
modules are functioning correctly whereas discrepancies indicate that defective re-
sources are utilized by at least one of the configurations. A simple mutation genetic
operator is applied to defective modules and the performance or fitness of the new
individual is evaluated. The process repeats until the fault is occluded.

Similar to the CGT fault isolation technique, Shanthi et al. [2002] utilize a deter-
ministic approach in identifying faulty resources. By monitoring the resources within

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:16 M. G. Parris et al.

Fig. 10. Single-module recovery in TMR arrangement.

each configuration, resources utilized by viable modules gain confidence whereas re-
sources utilized by faulty modules gain suspicion. This information allows for fault
handling by excluding defective resources from configurations. Additionally, differing
configurations can be rotated to reveal dormant faults in unused resources.

Scrubbing is a fault-handling technique commonly used to replace affected FPGA
configuration memory cells with faultless configuration data. Scrubbing depends upon
reading back the configuration memory cells and detecting faults by comparing them
to the original configuration. Upon isolating a fault, the FPGA can recover the correct
bitstream through reconfiguration. The Mars Exploration Rovers successfully imple-
mented this method to mitigate SEUs while in transit to Mars [Ratter 2004]. An
advantage of coupling scrubbing with partial reconfiguration is that the reconfigura-
tion process can occur without interrupting the normal operation of other parts of the
system [Carmichael et al. 2000; Yui et al. 2003].

Instead of selecting from a diverse population, Garvie and Thompson [2004] imple-
ment three identical modules. The commonality between configurations permits a lazy
scrubbing technique to address transient faults. Lazy scrubbing considers the majority
vote of the three configurations as the original configuration when scrubbing a faulty
module. Of course, lazy scrubbing only applies when a genetic algorithm has not mod-
ified the original configurations to tolerate a permanent fault. To address permanent
faults, a (1 + 1) evolutionary strategy [Schwefel and Rudolph 1995] provides a minimal
genetic algorithm, which produces one genetically modified offspring from a parent and
chooses the configuration with the better fitness. To mitigate the possibility of a mis-
evaluated offspring replacing a superior parent, a history window of past mutations
is retained to enable rollback to the superior individual. Normal FPGA operational
inputs provide the test vectors to evaluate the fitness of newly formed individuals. To
determine correct values, an individual’s output is compared to the output of the voter.
An individual’s fitness evaluation is complete when it has received all possible input
combinations.

By implementing a full-adder circuit in a TMR arrangement, Ross and Hall [2006]
successfully handle a fault with an average of 760 cycles. Garvie and Thompson
[2004] utilize the cm42a combinational circuit of the MCNC suite [Yang 1991] and
achieve restoration of full functionality within 800,000 generations, an equivalent of
two minutes of simulated evolution time. Whereas the a priori, design-time config-
urations utilized for the initial population can be created with specific performance

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:17

Fig. 11. Roving STARs within an FPGA.

characteristics, the throughput delay of circuits generated by GAs is indeterminate.
Future genetic algorithms may consider including throughput delay as part of a
circuit’s evaluation to satisfy performance requirements.

4.2.2. Online Built-in Self-Test. Emmert et al. [2007] present an approach that pseudo-
exhaustively tests, diagnoses, and reconfigures resources of the FPGA to restore lost
functionality due to permanent faults. The application logic handles transient faults
through a concurrent error detection technique and by periodically saving and restoring
the system’s state through checkpointing. As shown in Figure 11, this method partitions
the FPGA into a noncontiguous operational area and a Self-Testing ARea (STAR),
consisting of a horizontal STAR and a vertical STAR. Such an organization allows
normal functionality to occur within the operational area while Built-In Self-Tests
(BISTs) and fault diagnosis occur within the STARs. Whereas other BIST methods
may utilize external testing resources assumed fault-free, the resources-under-test
also implement the Test-Pattern Generator (TPG) and the Output Response Analyzer
(ORA).

To provide fault coverage of the entire FPGA, the STARs incrementally rove across
the FPGA, each time exchanging tested resources for the adjacent, untested resources
in the operational area. The H-STAR roves top to bottom then bottom to top while the
V-STAR roves left to right then right to left. Whereas one STAR could test and diagnose
PLBs, two STARs are required to test and diagnose programmable interconnect: the
H-STAR for horizontal routing resources and the V-STAR for vertical routing resources.
Where they intersect, the two STARs may concurrently test both horizontal and vertical
routing resources and the connections between them. Since faults can occur in either
used or unused resources with equal probability, roving STARs provide testing for all
resources. Uncovering dormant faults in unused resources prevents them from being
allocated as spares to replace faulty operational resources.

In addition to facilitating testing, diagnosis, and reconfigurations, a Test and Re-
configuration Controller (TREC) is responsible for roving the STARs across the FPGA.
The TREC is implemented as an embedded or external microprocessor that commu-
nicates to the FPGA through the boundary-scan interface. All possible configurations
of the STARs are processed during design-time and stored by the TREC for partial
reconfiguration during runtime. Relocating the STARs through partial reconfigura-
tion only affects the logic and routing resources within the STAR’s current and new
locations. When a STAR’s next location includes sequential logic, the TREC pauses
the system clock until the logic is completely relocated. On an ORCA 2C15 FPGA—a
20 × 20 PLB array—the authors report that the clock must be stopped for approxi-
mately 250 μ s. Instead of stopping the system clock, Gericota et al. [2008] provide an

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:18 M. G. Parris et al.

active replication method which replicates logic resources without halting the system
clock, thereby increasing the availability of the FPGA. In the first of two phases of
active replication, the internal configuration of the PLB is copied to a spare PLB and
the inputs of both PLBs are placed in parallel. If the PLB makes use of a clock-enable,
then additional logic is temporarily employed so the replication process need not wait
for the clock-enable to be active. When the clock-enable is not active, the additional
logic copies the internal state of synchronous logic from the replicated PLB to the spare.
If the clock-enable becomes active during the replication process, the additional logic
instead allows the spare PLB to update its own synchronous components. Since the
inputs are connected in parallel, the output of the replicated PLB is equal to that of the
spare PLB. The second phase is then implemented where the outputs of the replicated
PLB and the spare PLB are placed in parallel, and after one clock pulse, both the
outputs and inputs are disconnected from the replicated PLB. Without halting system
operations, the replicated PLB then becomes a STAR for testing and allows system
operations to continue.

Roving STARs support a three-level strategy to handling permanent faults. In the
first level, a STAR detects a fault and remains in the same position to cover the fault.
Since a STAR contains only offline logic and routing resources, testing and diagnosing
time is not at a premium; the application continues to operate normally while the
TREC tests and diagnoses the fault. After diagnosing the fault, the TREC determines
if the fault will affect the functionality that will soon occupy the faulty resources upon
moving the STAR. If the fault will not affect the new configuration’s functionality—
such as only affecting resources that will be unused or spare—then the application’s
output will not articulate the fault and no action is required. If the fault will affect the
new configuration’s functionality, then the TREC generates a Fault-Bypassing Roving
Configuration (FABRIC) to incrementally reroute the new configuration so that the
fault will not affect its functionality. Whereas some FABRICs may be compiled during
design-time, most fault scenarios will dictate compiling them online while the STAR
covers the fault. While one STAR covers a fault for testing and diagnosis, the second
STAR may continue roving the FPGA searching for faults. The second-level strategy
then applies the FABRIC that either was compiled during design-time or was generated
during the first-level strategy. Replacing a faulty resource with a spare one through a
FABRIC thus releases the STAR covering the fault to continue roving the FPGA.

If the fault affects functionality and no spare resources are available to bypass the
fault, then the third strategy is invoked. As a last resort, the TREC has an option to
perform STAR stealing, which reallocates resources from a STAR to the operational
area to bypass the fault. Removing resources from a STAR immobilizes it from roving
the FPGA. Whereas the second STAR can test all PLBs in an FPGA with an immobile
STAR, only half of the routing resources can be tested. In some situations, however,
a mobile STAR may intersect and forfeit its resources to an immobile STAR, which
releases the other STAR to rove the FPGA and test the remaining routing resources.

Testing and diagnosis occurs within a STAR by utilizing the resources of the STAR
through partial reconfiguration. The TREC configures a TPG, an ORA, and either
two Blocks Under Test (BUT) for a PLB test or two Wires Under Test (WUT) for
an interconnect test. Since no resource may be assumed to be fault-free, the TPG,
BUTs/WUTs, and ORA are rotated through common resources of the STAR. The TREC
maintains the results for all test configurations so that the common faulty resources
can be identified between the two parallel BUTs or WUTs and the rotation of resources.

Whereas this survey focuses on fault-handling methods rather than detection tech-
niques, another proposal regarding the testing phase of the online BIST method mer-
its mention. While using the same concepts of the roving STAR, Dutt et al. [2008]
provide more accurate BIST strategies that increase the percentage of faults correctly

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:19

Fig. 12. 4 × 2 programmable logic block BIST.

diagnosed. Additionally, their method can decrease detection latency by switching from
pseudo-exhaustive BISTs to functional-based BISTs (Figure 12).

By inserting a STAR in the working area, Emmert et al. [2007] observe a worst-case
throughput reduction of 16%. The authors additionally report a detection latency of
1.34s using the maximum boundary scan frequency of 10 MHz on the ORCA OR2C15A
FPGA, which is a 20 × 20 PLB array with four LUTs per PLB. To scale the fault
detection roving time to larger FPGA architectures, this survey calculates the number
of Effective Cycles per PLB (ECPP), which is defined to include the average PLB testing
time plus the average STAR reconfiguration and moving time. Eq. (1) expresses the
roving time as a function of: (1) N/2 positions required for a full sweep of a STAR
[Abramovici et al. 2004], (2) the number of PLBs in a row/column, (3) the ECPP, and
(4) the boundary scan frequency. For the ORCA OR2C15A, these values become 20/2
vertical STAR positions, 20 columns, 10 MHz, 20/2 horizontal STAR positions, 20 rows
and 10 MHz. Solving the following expression for ECCP estimates 33,500 effective
cycles are dedicated to a single PLB during one full sweep.

1.34s =
(

20
2

)(
20 · ECPP

10 MHz

)
+

(
20
2

)(
20 · ECPP

10 MHz

)
(1)

To estimate an upper bound for the detection latency, the largest device in the Xilinx
Virtex-4 family—the XC4VLX200—is used, which is a 116 × 192 PLB array containing
eight LUTs per PLB and allows a boundary scan clock frequency up to 50 MHz. Ac-
counting for increases in array size and configuration frequency, the detection latency
scales to 17s as shown next.

tlatency =
(

116
2

) (
116 · 33,500

50 MHz

)
+

(
192
2

) (
192 · 33,500

50 MHz

)
(2)

This expression, however, does not account for the two-fold increase in LUTs per PLB
that also must be tested and reconfigured. Since the functional-based BIST strate-
gies proposed by Dutt et al. [2008] indicate up to a four-fold decrease in detection
latency from pseudo-exhaustive BIST strategies supplied by Emmert et al. [2007], the
additional time required for a two-fold increase in LUTs per PLB may be completely
offset. Another way to address the long average latencies required to detect errors is
by using a hybrid of CED on a fine-grained scale along with the desired fault location
technique. This combines the benefits of immediate fault detection of CED with effi-
ciency and robustness of other fault location strategies. In the most straightforward

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:20 M. G. Parris et al.

Fig. 13. States of an individual during its lifetime [DeMara and Zhang 2005].

case, combinational logical blocks are considered without memory elements, otherwise
a checkpointing and rollback strategy is needed to recover proper state information
[Huang et al. 2001].

4.2.3. Consensus-Based Evaluation of Competing Configurations. Whereas previous online
Genetic Algorithm (GA) methods utilize an N-MR voting element, the Competitive
Runtime Reconfiguration (CRR) proposed by DeMara and Zhang [2005] handles faults
through a pairwise functional output comparison. Similar to previous GA methods,
each of the two individuals is a unique configuration on the target FPGA exhibiting
the desired functionality. CRR divides the FPGA into two mutually exclusive regions,
allocating the left half configuration to one individual and the right half configuration to
another individual in the population of alternate configurations. This detection method
realizes a traditional Concurrent Error Detection (CED) arrangement that allocates
mutually exclusive resources for each individual. The comparison results in either a
discrepancy or a match between half-configuration outputs, which detects any single
resource fault with certainty. This indicates the presence or absence of a FPGA resource
fault for all inputs that articulate the fault when applied to a combinational logic
module or a pipeline stage consisting of combinational logic.

The left and right individuals of the pairwise comparison are selected from their
respective left and right populations to maintain resource exclusivity. Functionally
identical, yet physically distinct, Pristine individuals developed at design-time com-
pose the initial population. As Figure 13 shows, the left and right individuals remain
Pristine as long as the left and right individuals exhibit matching outputs. Addi-
tionally, the fitness values of both individuals are increased to encourage selection of
individuals exhibiting correct behavior. Upon detecting a discrepant output, however,
the fitness state of both individuals are demoted and labeled as Suspect. Furthermore,
the fitness values of both individuals are decreased to discourage selection of individ-
uals exhibiting discrepant behavior. Over many pairings and evaluations, the fitness
value of individuals utilizing faulty resources, and therefore their probability for selec-
tion, will be decreased regardless of pairing. Moreover, nonfaulty individuals that were
previously paired with faulty individuals will eventually be exonerated.

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:21

Fig. 14. Procedural flow for competing configurations [DeMara and Zhang 2005].

Figure 13 shows that the fitness state of individual i, which has been labeled as
Suspect, is further demoted when its fitness (fi) drops below the repair threshold (fRT).
Genetic operators are applied to the Under Repair individual, until its fitness rises
above the operational threshold (fOT). Selecting an operational threshold greater than
the repair threshold increases confidence that the individual is, in fact, Refurbished.
Further matching pairings with the Refurbished individual can result in either a
partial or complete regeneration of lost functionality. Nonetheless, if the individual
exhibits further discrepant behavior, its fitness state is returned to Under Repair and
genetic operators are reapplied.

Figure 14 shows the CRR processes of selection, detection, fitness adjustment, and
evolution. These processes identify individuals utilizing faulty resources and refurbish
those individuals in the midst of the fault. The selection process determines the two
individuals that will occupy the left and right regions. Typically, one of the halves is
reserved as a “control” configuration where fault-free operational individuals, such as
Pristine, Suspect, and Refurbished in that order, are always preferred. The other half
supersedes these operational individuals with Under Repair individuals at a rate equal
to the reintroduction rate. Genetically modified Under Repair individuals compete by
being reintroduced into the operational throughput. The reintroduction rate can be ad-
justed to achieve a desired recovery goodput during the recovery process. This assumes
that alternative configurations with fault-free behavior over a window of recent inputs
remain available or have already been refurbished within the population.

Applying an input to the left and right individuals invokes the fitness adjustment
process. As previously discussed, matching outputs results in increases to the fitness
values of both individuals. Discrepant outputs decrease the fitness value and, conse-
quently, the probability that either individual is selected again, with a steeper gradient.
This process negatively or positively reinforces certain individuals by decreasing or in-
creasing their fitness appropriately. If an individual’s fitness is less than the repair
threshold, a single application of genetic operators such as crossover and mutation are
performed with a random Pristine individual. The checking logic is embedded in the
individual and is dependent on the other half. Thus, if the checking logic in one of
the halves experiences a fault, it will propagate to the other half, causing the fitness
of the individuals to decrease. Additionally, the genetic operators may recover from
faults in the checking logic. This implements a check-the-checker concept to enhance
its fault tolerance. Variation of the reintroduction rate then allows control over how
frequently the genetically modified offspring are allowed to compete with the rest of
the population.

CRR exploits the normal operational inputs of the FPGA to evaluate the fitness of
individuals. To establish confidence in an individual’s fitness, more than one input is

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:22 M. G. Parris et al.

evaluated for each individual; the more inputs evaluated, the greater the confidence.
Since this method is not an exhaustive evaluation, CRR utilizes an evaluation window
that specifies the number of inputs needed to gain a certain confidence in the indi-
vidual’s fitness. Over many pairings and fitness evaluations, CRR eventually forms a
consensus from a population of individuals for a customized fault-specific recovery. For a
3 × 3 multiplier circuit, a configuration restoring full functionality was realized within
a few thousand evaluations. During the recovery period when possible alternatives
were being introduced to the application, data throughput averaged 87%, requiring
14% of the computations to be redundant. Fault exploitation was supported as ex-
periments demonstrated LUTs exhibiting a single stuck-at-zero input being recycled
as a function of three viable input variables after recovery. The recovery granularity
observed was variable down to the resolution of a single LUT.

5. COMPARISON OF METHODS

This section details the metrics identified by Table I in Section 1.3. The metrics dis-
tinguish the various design philosophies along with their advantages and disadvan-
tages. The metrics are separated into two categories: overhead-related metrics and
sustainability-related metrics. The sections that follow evaluate each fault-handling
method against these metrics and, where needed, clarify how these evaluations are
obtained.

5.1. Overhead-Related Metrics

All fault-handling methods incur various overheads. This may include redundant phys-
ical resources, external storage necessary for configurations generated during design-
time, or additional processing time associated with the fault-handling strategy. In order
to simplify comparisons, estimates for values not explicitly provided by the authors of
the methods are derived for comparison based on the Xilinx Virtex-4 device family as
elaborated next.

5.1.1. Physical Resource Overhead. The physical resource overhead metric describes the
amount of resources that an end-user must reserve to implement the fault-handling
technique, in addition to that required by the original application design. Overheads for
both logic and interconnect resources are listed in Table II. Some fault-handling meth-
ods, such as the coarse-grained method, partition entire areas of the FPGA and thus
do not differentiate between logic and interconnect resource requirements. Resource
overheads reported as a percentage of the application requirements are values supplied
by the respective authors for those methods. Overheads reported as a percentage of
the FPGA resources, however, are estimates based on the fault-handling strategy us-
ing the largest Virtex-4 device—XC4VLX200, 192 × 116 array—as a lower bound and
the smallest Virtex-4 device—XC4VLX15, 64 × 24 array—as an upper bound [Xilinx
2007].

5.1.2. Throughput Reduction. Faults may occur in PLBs that are located along a critical
timing path of the application. Reconfiguring the application to function correctly in
the presence of such a fault may extend the length of the critical path, thereby in-
creasing signal propagation delay. Throughput reduction is the penalty incurred by the
application in the course of recovering from a single fault, expressed as a percentage
of the application’s original clock speed. Table II lists throughput reduction values
that are reported by the respective methods. Methods utilizing a stochastic recovery
process such as genetic algorithms are unable to provide tight bounds for throughput
reduction.

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:23

Table II. Overhead-Related Metrics

Metrics
Physical Resource Throughput Detection Recovery time

Overhead reduction Latency for single fault
Logic Inter-connect

A
pr

io
ri

R
es

ou
rc

e
A

ll
oc

at
io

n
s

S
pa

re
C

on
fi

gu
ra

ti
on

s Fine-grained 2–10% of
application

None 14–45% Not
Addressed

[44μs–64ms]

Functional-
unit

partitioning

200% of application Not Provided Negligible None

Coarse-grained 4–50% of FPGA 0–14% Not
Addressed

64ms

S
pa

re
R

es
ou

rc
es Sub-PLB 8–20% of None Not Provided Not Place&Route +

Spares application Addressed 64ms

PLB Spares 1–41% of FPGA 9–50% of
application

0–15% Not
Addressed

Place + 64ms

D
yn

am
ic

R
ec

ov
er

y
P

ro
ce

ss
es

O
ffl

in
e

R
ec

ov
er

y Incremental Subset of unutilized 2–35% Not [2–12s] + 64ms
Rerouting resources on FPGA Addressed

GA Recovery Subset of unutilized Indeterminate Not Unbounded
resources on FPGA Addressed

Augmented GA Subset of unutilized Indeterminate 12 38% decrease from
Recovery resources on FPGA generations GA Recovery

O
n

li
n

e
R

ec
ov

er
y TMR w/ Single

Module
Recovery

200% of application Indeterminate Negligible None

Online BIST 4–11% of FPGA 0–16% 0–17s None

Competing
Config. 100% of application Indeterminate Negligible

[popSize∗44 μs
–popSize∗26ms] or

Unbounded

5.1.3. Detection Latency. Some of the surveyed methods incorporate fault detection and
location techniques towards providing an integrated fault-handling solution. Others,
such as the sub-PLB spare technique, however, rely on external fault detection mecha-
nisms. For techniques that provide fault detection strategies, detection latency specifies
the amount of time required for the fault-handling method to detect and/or locate the
fault.

5.1.4. Recovery Time. The recovery time of a fault-handling method is the time required
to restore complete functionality to the application implemented on the FPGA, as
measured starting from the time the fault is detected and/or located. Since all fault-
handling methods discussed address faults through FPGA reconfiguration, a portion of
the time taken to recover from a single fault is due to the time taken to reconfigure the
device, namely configuration time. Configuration times are calculated for the largest
Xilinx Virtex-4 device, XC4VLX200, as an upper bound. Using the Virtex SelectMAP
byte-wide parallel, continuous loading interface, configuration times are calculated
using the following equation derived from Xilinx [2009]. We have

tconfig = (bytes + 3) · 1
fcclk

, (3)

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:24 M. G. Parris et al.

where bytes is the size of the configuration file in bytes and fcclk is the frequency of the
configuration clock. A full-device bitstream for the XC4VLX200 is 6.12MB and thus
requires 64ms using a 100 MHz configuration clock.

Some methods, such as fine-grained methods, rely on reconfiguring the FPGA with a
partial configuration bitstream. For such methods, configuration times are calculated
based on the size of the partial configuration bitstream. The height of a configuration
frame for the Virtex-4 family is 16 PLBs [Lysaght et al. 2006]. Thus, the smallest
possible partial configuration frame has a height of 16 PLBs and a width of one PLB.
This partial bitstream is 4.2KB bytes in size whereas a bitstream for half of the device is
2.5MB in size. These bitstreams require 44μs and 26ms, respectively, for configuration
using a 100 MHz configuration clock. Since partial configuration bitstreams do not
reconfigure many parts of the device such as input/output buffers, the half-device
bitstream is less than half of the full-device bitstream. The configuration times for the
techniques that leverage partial reconfiguration are estimated based on the sizes of
the smallest and largest partial reconfiguration bitstream the method uses.

5.1.5. Summary. The authors of the fine-grained approach describe the AFTBs as con-
sisting of a set of PLBs and the interconnect resources associated with them. As listed
in Table II, the method does not address faults in the interconnect resources directly
dedicated to specific PLBs, since these appear as faults in the PLBs. Therefore, the
physical resource overhead for the method is only listed as the sum of logic resources
(PLBs) required to configure the logic in the desired manner. In general, the a priori
methods listed in Table II have a physical resource overhead directly proportional to
the size of the spare configuration or the granularity of the a priori resource allocation.
Due to this, these methods involve planning at the design stage, and there are limita-
tions concerning the portability of a developed scheme across applications. Except for
the functional-unit partitioning system developed by the TMRSB method described in
Section 3.1.2, none of the surveyed a priori methods has integrated fault detection or lo-
cation capability. Significantly, for the TMRSB method, the physical resource overhead
is 200% of the size of the application. Also, for this method, the throughput reduction
varies depending on the configuration selected to replace the fault-affected configu-
ration. Though a quantitative analysis of the throughput reduction incurred by the
technique can be attempted, the authors do not provide estimates for the throughput
reduction across the standby configurations, as is the case with the sub-PLB spares-
based technique. Since the outputs for the system are based on majority voting of the
outputs of individual functional units, the system provides for continuous operation
at some degraded level of throughput even in the presence of a fault. As compared to
methods relying on spare configurations, the spare resource-based techniques incur
overheads related to placement and/or routing during fault recovery. However, un-
like the spare configuration-based methods, these techniques do not require additional
design-time effort to anticipate and accommodate expected runtime fault scenarios.

GA-based and other dynamic offline techniques do not define a fixed resource
overhead. These techniques leverage redundancy at varying levels of granularity—as
low as spare PLB I/O pins and as high as a set of spare PLBs—in order to realize a
response to faults. All the online recovery methods except the online BIST method
provide for immediate fault detection. Due to the roving nature of the STARs in the
online BIST method, the fault detection latency can be as high as 17s. On the other
hand, this method provides quick recovery once the fault is identified. This is also true
of TMR with single-module-recovery methods, which provides for the device to remain
functional in the presence of a fault at the cost of 200% physical resource overhead.
It is not possible to estimate throughput reduction for dynamic methods that rely on
evolutionary techniques due to their inherently stochastic nature. Of the dynamic

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:25

methods, the TMR with single module recovery method provides for immediate fault
resolution since the majority output from the voter guarantees sustained throughput.
However, until the faulty module is refurbished, the system remains susceptible to a
fault in either of the other two fault-free modules. The recovery time for online BIST
is factored into the detection latency since tests are conducted on inactive PLBs. For
GA-based methods, the recovery time is unbounded. In order to recover from a fault,
the GA must generate a configuration, or, in the case of competing configurations, find
a preexisting fault-free configuration through a process of reconfiguring the device.

5.2. Sustainability Metrics

Sustainability metrics provide a qualitative comparison of the benefits provided by the
various methods. In conjunction with the overheads, these metrics provide insight into
the trade-offs involved in choosing a specific method.

5.2.1. Fault Exploitation. By nature, all fault-handling methods are able to bypass faulty
resources. Methods that are capable of fault exploitation can reuse residual functional-
ity in fault-affected elements. Such methods increase the effective size of the resource
pool by virtue of recycling faulty resources. For example, authors of the online BIST
method state that if an LUT has a cell stuck-at-0 fault the LUT can still be used to
implement a function that requires a 0 to be in that cell.

5.2.2. Recovery Granularity. Recovery granularity defines the smallest set of FPGA re-
sources in which faults can be handled. The set of resources identified as being fault-
affected is excluded from further utilization by the methods that are not capable of
fault exploitation.

5.2.3. Fault Capacity. Each method is capable of handling a varying number and types of
faults. Fault capacity defines the number of fault-free resource units required to ensure
that the system continues to function if there is a single additional fault, irrespective
of the location of the faults. The fault capacity for the surveyed methods is listed in
Table III and discussed subsequently.

5.2.4. Fault Coverage. Fault coverage defines the ability of a method to handle faults
in various components of the FPGA. Some of the surveyed methods can distinguish
between transient and permanent faults. All methods surveyed handle faults occurring
within logic resources. None of the surveyed methods handles faults occurring within
I/O blocks. Only some of the methods surveyed, however, address faults occurring
within interconnect resources. Since the interconnect resources can compose up to 90%
of the FPGA area [Hanchek and Dutt 1998], the probability of a fault occurring within
interconnect is higher than that of an occurrence within PLB logic resources. As such,
interconnect fault coverage is an important metric outlined by Table III.

5.2.5. Critical Components. Critical components are those FPGA components that are
essential for fault-free operation of the fault-handling method. If the fault-handling
techniques do not provide coverage for these components, a single fault in one of these
can cause the failure of the fault-handling technique, thus defining a single point of
failure. Table III provides a list of components that are critical to each technique. FPGAs
such as the Virtex-4 XC4VFX140 include embedded microprocessors or can realize
such hardware equivalents with its PLB logic and interconnect. Some techniques may
incorporate external procedures such as a custom place-and-route mechanism within
the device by utilizing these device capabilities. While such instantiations are not
external to the actual device, they are critical components if the technique does not
provide coverage for faults in the components used to realize them.

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:26 M. G. Parris et al.

Table III. Sustainability Metrics

Metrics
Interconnect

Fault Recovery Fault Fault Critical
Exploitation Granularity Capacity Coverage Components

S
pa

re
C

on
fi

gu
ra

ti
on

s

A
-p

ri
or

iR
es

ou
rc

e
A

ll
oc

at
io

n
s

Fine-grained PLB One PLB per tile Implicit, inside
partitions

Config memory

Functional-
unit

Variable Three
configurations

Implicit, inside
partitions

Voter, Config
memory

Coarse-
grained

Column(s) of
PLBs

Column(s) of
PLBs

Implicit, inside
partitions

Config memory

S
pa

re
R

es
ou

rc
es Sub-PLB

Spares
Lookup Table One LUT input

or One BLE per
PLB

None Custom placer
and router

PLB Spares PLB One PLB per row None Custom placer

D
yn

am
ic

R
ec

ov
er

y
P

ro
ce

ss
es

O
ffl

in
e

R
ec

ov
er

y Incremental
Rerouting

PLB One PLB Explicit Custom placer
and router

GA Recovery
√

Variable Indeterminate Implicit Processor and
Config memory

Augmented
GA Recovery

√
Variable Indeterminate Implicit Processor and

Config memory

O
n

li
n

e
R

ec
ov

er
y TMR w/Single

Module
Recovery

√
Variable Three

configurations
Implicit Voter,

Processor and
Config memory

Online BIST
√

Lookup Table One H-STAR &
One V-STAR

Explicit Processor and
Config memory

Competing
Configura-
tions

√
Variable Two

configurations
Implicit Processor and

Config memory

5.2.6. Summary. A priori allocations depend on occluding faulty resources for creating
recovery configurations. The dynamic methods bypass the faulty resource partially or
completely. In addition, these techniques are also able to leverage residual functional-
ity in the fault-affected resources. The recovery granularity for the a priori allocations
is proportional to the level at which redundant resources are allocated at design time.
Thus, the metric also determines the net decrease in the amount of hardware redun-
dancy per fault for a priori allocations. The GA-based methods provide a variable level
of fault granularity, as they refurbish fault-affected configurations without requiring
specific details regarding the precise location of the fault. Additionally, these methods
generate refurbished configurations by leveraging residual functionality in PLBs in a
manner that is transparent to the user. For example, a LUT with a stuck-at-one fault
on an input pin might still be utilized in an evolved design which synthesizes a logic
expression using that input.

The fault capacity of a technique indicates the expected lifetime of the device. The
fine-grained approach has a fault capacity limited by the number of redundant PLBs
in each tile. This method has a capacity for (n − 1) faults, where n is the number of
redundant PLBs incorporated in each tile at design time. After (n − 1) faults have
occurred, complete functionality cannot be guaranteed for any additional faults, if all
the preceding faults occurred in PLBs in the same tile. The functional-unit method is

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:27

capable of tolerating additional faults as long as three fully functional configurations
exist. The coarse-grained technique has a fault capacity limited by the number of re-
programmable columns; however, each such column may consist of multiple columns of
FPGA PLBs. Spare resource-based techniques can tolerate additional faults as limited
by the number and the location of spare resources. For example, the PLB spare-based
technique allocates a fixed number of spare PLBs per row. With n spare PLBs in each
row, a maximum of (n − 1) faults can occur before fault-free operation cannot be guar-
anteed in the event of an additional fault. The authors of the online BIST technique
state that the method can tolerate one additional fault as long as there is a pair of
fault-free H-STAR and V-STAR. For GA-based techniques, the fault capacity is listed
as indeterminate, since these methods refurbish resources for reuse at a rate depen-
dant on the evolutionary algorithm, and parameters controlled by the designer of the
algorithm. These techniques provide for control over the useful throughput that can be
obtained at repair-time, at some trade-off for slower refurbishment.

All the surveyed methods provide for coverage of faults in logic elements. Some also
provide coverage for faults in the interconnect resources: either explicitly by diagnosing
and occluding such faults, or implicitly by realizing recovery configurations that provide
functional recovery in spite of faulty interconnect. The critical components column in
Table III provides assistance in selecting the most suitable fault recovery method
based on the target application that has to be implemented on the FPGA. The points-
of-failure in each recovery method can be overcome by employing a matrix of multiple
techniques that provide for complete fault coverage. This, in conjunction with external
fault-handling mechanisms for the resources not covered by the techniques described
here, can provide a high level of system fault tolerance. As an example, the competing
configurations method can be extended by using a TMR-enabled memory subsystem
consisting of triplicate memory and a voter.

6. CONCLUSION

This work provides an overview of the characteristics and advantages of runtime fault-
handling methods for transient and permanent faults in SRAM-based FPGAs. Sev-
eral fault tolerance techniques that rely on custom-built architectures and devices are
not covered in this survey. Examples of such approaches include embryonics [Ortega-
Sanchez et al. 2000], distributed embedded systems [Dave and Jha 1997], and several
self-adaptive systems as described in Mesquita [2008]. Since commercial SRAM-based
FPGAs continue to play a vital role in the design of systems, fault-handling methods
for such devices remain a topic of active research interest.

From this study, a general consensus emerges that the fault-tolerant technique
adopted for a particular application should choose between a specific set of perfor-
mance and sustainability trade-offs. Selection of a particular fault-tolerant methodol-
ogy implies weighing overheads incurred against specific sustainability requirements
such as those of long missions where multiple faults may occur and unit-level spares
are unavailable. As listed in Table I, the overhead metrics include physical resource
overheads, throughput reduction, latency in detection, and recovery time. For mission-
critical applications, one or more of these overheads might dominate the selection of
the fault tolerance methodology. For example, real-time processing and control cir-
cuit implementations may place a higher premium on maintaining throughput within
tolerance limits, but applications used for postprocessing data might not be critically
affected by increased detection latency or recovery time, by virtue of being able to adapt
the processing rate of the throughput data.

The a priori allocations are limited by the total number of consecutive randomly
located faults they can handle, but tend to provide low detection latency and faster fault
recovery. Methods such as those based on evolutionary algorithms provide the potential

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:28 M. G. Parris et al.

for tolerating an increased number of faults, but at the cost of increased recovery
time. Significant trade-offs include design footprint size, postfault recovery time, spare-
resource overhead, and, for online systems, availability during recovery. As discussed
in Section 4.2.1, transient faults are typically addressed by some scrubbing scheme.
Whereas some fault-handling methods distinguish between transient and permanent
faults by explicitly incorporating scrubbing or rollback [Emmert et al. 2007; Garvie
and Thompson 2004; Ratter 2004], others treat every fault as if it were permanent.
In these cases, applying a new configuration to avoid the perceived permanent fault
essentially accomplishes the same effect of scrubbing by reestablishing a functionally
correct configuration and reevaluating the last incorrect computation. Whereas the
method restores functionality affected by the fault, it may still consider the resource
faulty, unnecessarily reducing the redundancy index.

As most methods suggest the system be in an offline state during the entire fault
recovery process, a particular fault may only articulate itself in a small percentage of
the output space. In such a situation, an application with low sensitivity to faulty inputs
may benefit from the faulty system remaining in an operational state during the fault
recovery process. For instance, Sharma et al. [2007] illustrate recovery goodput, which
measures the percentage of correct or useful outputs provided during the recovery
process. Whereas recovery goodput measurements are largely a result of the type of
fault and application, most fault-handling methods do not consider goodput during fault
recovery. The previously discussed competing configurations method can maintain a
required level of goodput by adjusting the rate at which configurations under repair
are implemented on the FPGA.

There exist several issues that need to be addressed with regards to selecting a
complete fault-handling technique for SRAM-based FPGAs. Though there are several
approaches for tolerating faults in the interconnect resources, the choices are limited
when it comes to online isolation of such faults. Thus, the integration of interconnect-
fault and logic-fault strategies remains a major challenge. The challenge in extending
the approach to sequential logic circuits is primarily one of being able to formulate a
strategy for evaluating the fitness of alternative designs. A general strategy to enable
sustained recovery of large sequential circuits without exhaustive resource testing
remains to be addressed.

REFERENCES

ABRAMOVICI, M., STROUD, C. E., AND EMMERT, J. M. 2004. Online BIST and BIST-based diagnosis of FPGA logic
blocks. IEEE Trans. VLSI Syst. 12, 12, 1284–1294.

ACTEL. 2005. Radiation-Hardened FPGAs datasheet. http://www.actel.com/documents/RadHard DS.pdf.
ADELL, P. AND ALLEN, G. 2008. Assessing and mitigating radiation effects in Xilinx FPGAs. JPL Publ. 08-09.
ALTERA. 2009. Stratix IV device handbook. http://www.altera.com/literature/hb/stratix-iv/stratix4

handbook.pdf.
ATMEL. 2007. Rad hard reprogrammable FPGA ATF280E. Atmel datasheet 7750.
BABB, J., FRANK, M., LEE, V., WAINGOLD, E., BARUA, R., TAYLOR, M., KIM, J., DEVABHAKTUNI, S., AND AGARWAL, A.

1997. The RAW benchmark suite: Computation structures for general purpose computing. In Proceedings
of the 5th Annual IEEE Symposium on FPGAs for Custom Computing Machines. 134–143.

BALDACCI, S., ZOLESI, V., CUZZOCREA, F., AND RAMACCIOTTI, T. 2003. SEU tolerant controls for a space application
based on dynamically reconfigurable FPGA. In Proceedings of the Military and Aerospace Programmable
Logic Devices (MAPLD) Workshop.

BRIDGFORD, B., CARMICHAEL, C., AND TSENG, C. W. 2008. Single-event upset mitigation selection guide. Xilinx
Application Note 987.

CARMICHAEL, C., CAFFREY, M., AND SALAZAR, A. 2000. Correcting single-event upsets through virtex partial
configuration. Xilinx Application Note 216.

CHEATHAM, J. A., EMMERT, J. M., AND BAUMGART, S. 2006. A survey of fault tolerant methodologies for FPGAs.
ACM Trans. Des. Autom. Electron. Syst. 11, 2, 501–533.

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays 31:29

DAVE, B. P. AND JHA, N. K. 1997. COFTA: Hardware-software co-synthesis of heterogeneous distributed
embedded system architectures for low overhead fault tolerance. In Proceedings of the 27th Annual
International Symposium on Fault-Tolerant Computing. 339–348.

DEMARA, R. F. AND ZHANG, K. 2005. Autonomous FPGA fault handling through competitive runtime reconfig-
uration. In Proceedings of the NASA/DoD Conference on Evolvable Hardware. 109–116.

DONG-MEI, L., ZHI-HUA, W., LI-YING, H., AND QIU-JING, G. 2007. Study of total ionizing dose radiation effects
on enclosed gate transistors in a commercial CMOS technology. Chinese Phys. 16, 12, 3760–3765.

DOUMAR, A. AND ITO, H. 2003. Detecting, diagnosing, and tolerating faults in SRAM-based field programmable
gate arrays: A survey. IEEE Trans. VLSI Syst. 11, 3, 386–405.

DUTT, S., SHANMUGAVEL, V., AND TRIMBERGER, S. 1999. Efficient incremental rerouting for fault reconfiguration in
field programmable gate arrays. In Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design. 173–176.

DUTT, S., VERMA, V., AND SUTHAR, V. 2008. Built-In-self-test of FPGAs with provable diagnosabilities and high
diagnostic coverage with application to online testing. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst.
27, 2, 309–326.

EMMERT, J. M. AND BHATIA, D. K. 2000. A fault tolerant technique for FPGAs. J. Electron. Test. 16, 6, 591–606.
EMMERT, J. M., STROUD, C. E., AND ABRAMOVICI, M. 2007. Online fault tolerance for FPGA logic blocks. IEEE

Trans. VLSI Syst. 15, 2, 216–226.
GARVIE, M. AND THOMPSON, A. 2004. Scrubbing away transients and jiggling around the permanent: Long

survival of FPGA systems through evolutionary self-repair. In Proceedings of the IEEE International
On-Line Testing Symposium. 155–160.

GERICOTA, M. G., ALVES, G. R., SILVA, M. L., AND FERREIRA, J. M. 2008. Reliability and availability in reconfig-
urable computing: A basis for a common solution. IEEE Trans. VLSI Syst. 16, 11, 1545–1558.

HANCHEK, F. AND DUTT, S. 1998. Methodologies for tolerating cell and interconnect faults in FPGAs. IEEE
Trans. Comput. 47, 1, 15–33.

HUANG, W.-J., MITRA, S., AND MCCLUSKEY, E. J. 2001. Fast run-time fault location in dependable FPGAs. CRC
Tech. rep. 01-5, Center for Reliable Computing, Department of Electrical Engineering and Computer
Science, Stanford University. May.

HUTTON, M., ROSE, J., AND CORNEIL, D. 1997. Generation of synthetic sequential benchmark circuits. In Pro-
ceedings of the ACM 5th International Symposium on Field-Programmable Gate Arrays.

KATZ, D. S. AND SOME, R. R. 2003. NASA advances robotic space exploration. Computer. 52–61.
KEYMEULEN, D., ZEBULUM, R. S., JIN, Y., AND STOICA, A. A. S. A. 2000. Fault-Tolerant evolvable hardware using

field-programmable transistor arrays. IEEE Trans. Reliabil. 49, 3, 305–316.
KIZHNER, S., PATEL, U. D., AND VOOTUKURU, M. 2007. On representative spaceflight instrument and associated

instrument sensor web framework. In Proceedings of the IEEE Aerospace Conference. U. D. Patel Ed.,
1–10.

LACH, J., MANGIONE-SMITH, W. H., AND POTKONJAK, M. 1998. Low overhead fault-tolerant FPGA systems. IEEE
Trans. VLSI Syst. 6, 2, 212–221.

LAKAMRAJU, V. AND TESSIER, R. 2000. Tolerating operational faults in cluster-based FPGAs. In Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 187–194.

LOHN, J., LARCHEV, G., AND DEMARA, R. 2003. Evolutionary fault recovery in a Virtex FPGA using a represen-
tation that incorporates routing. In Proceedings of the Parallel and Distributed Processing Symposium.

LYONS, R. E. AND VANDERKULK, W. 1962. The use of triple-modular redundancy to improve computer reliability.
IBM J. Res. Devel. 6, 2, 200–209.

LYSAGHT, P., BLODGET, B., MASON, J., YOUNG, J. A. Y. J., AND BRIDGFORD, B. A. B. B. 2006. Enhanced architectures,
design methodologies and CAD tools for dynamic reconfiguration of xilinx FPGAs. In Proceedings of the
International Conference on Field Programmable Logic and Applications. 1–6.

MESQUITA, A. 2008. Introduction to evolvable hardware: A practical guide for designing self-adaptive systems.
Genetic Program. Evolv. Mach. 9, 3, 275–277.

MILLER, J. F., THOMSON, P., AND FOGARTY, T. 1997. Designing electronic circuits using evolutionary algorithms.
Arithmetic circuits: A case study. In Genetic Algorithms and Evolution Strategies in Engineering and
Computer Science, D. Quagliarella, J. Periaux, C. Poloni and G. Winter, Eds., Wiley, 105–131.

MITCHELL, M. 1996. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.
MITRA, S., HUANG, W. J., SAXENA, N. R., YU, S., AND MCCLUSKEY, E. J. 2004. Reconfigurable architecture for

autonomous self-repair. IEEE Des. Test Comput. 21, 3, 228–240.
OREIFEJ, R. S., SHARMA, C. A., AND DEMARA, R. F. 2006. Expediting GA-based evolution using group test-

ing techniques for reconfigurable hardware. In Proceedings of the IEEE International Conference on
Reconfigurable Computing and FPGAs. 1–8.

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

31:30 M. G. Parris et al.

ORTEGA-SANCHEZ, C., MANGE, D., SMITH, S., AND TYRRELL, A. 2000. Embryonics: A bio-inspired cellular archi-
tecture with fault-tolerant properties. Genetic Program. Evolv. Mach. 1, 3, 187–215.

PARRIS, M. G. 2008. Optimizing dynamic logic realizations for partial reconfiguration of field programmable
gate arrays. Masters thesis, School of Electrical Engineering and Computer Science, University of
Central Florida.

RATTER, D. 2004. FPGAs on mars. Xcell J. 50, 8–11.
ROOSTA, R. 2004. A comparison of radiation-hard and radiation-tolerant FPGAs for space applications. NASA

Electronic Parts and Packaging (NEPP) Program JPL D-31228.
ROSS, R. AND HALL, R. 2006. A FPGA simulation using asexual genetic algorithms for integrated self-repair.

In Proceedings of the 1st NASA/ESA Conference on Adaptive Hardware and Systems. 301–304.
SCHWEFEL, H.-P. AND RUDOLPH, G. 1995. Contemporary evolution strategies. In Advances in Artificial Life.

Springer, 891–907.
SHANTHI, A. P., VIJAYAN, B., RAJENDRAN, M., VELUSWAMI, S., AND PARTHASARATHI, R. 2002. GA based on-line testing

and recovery for critical digital systems. In Proceedings of the HiPC Workshop on Soft Computing. 81–89.
SHARMA, C. A. 2008. Sustainable fault-handling of reconfigurable logic using throughput-driven assessment.

Doctoral dissertation, School of Electrical Engineering and Computer Science, University of Central
Florida.

SHARMA, C. A., DEMARA, R. F., AND SARVI, A. 2007. Self-healing reconfigurable logic using autonomous group
testing. ACM Trans. Auton. Adapt. Syst..

TRIMBERGER, S. 1993. A reprogrammable gate array and applications. Proc. IEEE 81, 7, 1030–1041.
VIGANDER, S. 2001. Evolutionary fault repair of electronics in space applications. Masters thesis, Depart-

ment of Computer and Information Science, Norwegian University of Science and Technology (NTNU),
Trondheim, Norway. 50.

WELLS, B. E. AND LOO, S. M. 2001. On the use of distributed reconfigurable hardware in launch control
avionics. In Proceedings of the 20th Digital Avionics Systems.

WIRTHLIN, M., JOHNSON, E., ROLLINS, N., CAFFREY, M., AND GRAHAM, P. 2003. The reliability of FPGA circuit
designs in the presence of radiation induced configuration upsets. In Proceedings of the 11th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines. 133–142.

XILINX. 2007. Virtex-4 family overview. Xilinx Data Sheet 112.
XILINX. 2008. Radiation-Tolerant virtex-4 QPro-V family overview. Xilinx Data Sheet 653.
XILINX. 2009. Virtex-4 FPGA configuration user guide. Xilinx User Guide 071.
YANG, S. 1991. Logic synthesis and optimization benchmarks user guide version 3.0. Tech. rep. Microelec-

tronics Center of North Carolina.
YUI, C. C., SWIFT, G. M., AND CARMICHAEL, C. 2003. SEU mitigation of xilinx virtex II FPGAs for critical flight

applications. In Proceedings of the IEEE Nuclear and Space Radiation Effects Conference.
ZHANG, K., BEDETTE, G., AND DEMARA, R. F. 2006. Triple modular redundancy with standby (TMRSB) supporting

dynamic resource reconfiguration. In Proceedings of the IEEE Systems Readiness Technology Conference.
690–696.

Received April 2009; revised October 2009; accepted December 2009

ACM Computing Surveys, Vol. 43, No. 4, Article 31, Publication date: October 2011.

