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a b s t r a c t

Cohen’s weighted kappa is a popular descriptive statistic for
measuring the agreement between two raters on an ordinal scale.
Popular weights for weighted kappa are the linear weights and
the quadratic weights. It has been frequently observed in the
literature that the value of the quadratically weighted kappa is
higher than the value of the linearly weighted kappa. In this paper,
this phenomenon is proved for tridiagonal agreement tables. A
square table is tridiagonal if it has nonzero elements only on the
main diagonal and on the two diagonals directly adjacent to the
main diagonal.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The kappa coefficient (denoted by κ) is a widely used descriptive statistic for summarizing two
nominal variableswith identical categories [2,5,19,21,20,22,25,26]. Cohen’s κ was originally proposed
as a measure of agreement between two raters (observers) who rate each of the same sample of
objects (individuals, observations) on a nominal scalewith n ∈ N≥2 mutually exclusive categories. The
κ statistic has been applied to numerous agreement tables encountered in psychology, educational
measurement and epidemiology. The value of κ is 1 when perfect agreement between the two
raters occurs, 0 when agreement is equal to that expected under independence, and negative when
agreement is less than that expected by chance. The popularity of κ has led to the development of
many extensions [1,11,23].

A popular generalization of Cohen’s κ is theweighted kappa coefficient (denoted by κw) whichwas
proposed for situations where the disagreements between the raters are not all equally important
[6,9,10,13,15,25]. For example, when categories are ordered, the seriousness of a disagreement
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Table 1
Ratings of 100 patients by pairs of observers on the degree of disability on a 6-category scale [16].

Observer 2 Observer 1 Row totals
0 1 2 3 4 5

0 = No symptoms 5 5
1 = Not significant disability 6 2 8
2 = Slight disability 1 4 13 5 2 25
3 = Moderate disability 6 9 4 19
4 = Moderately severe dis. 2 8 1 11
5 = Severe disability 8 24 32

Column totals 6 10 21 16 22 25 100

depends on the difference between the ratings. Cohen’s κw allows the use of weights to describe the
closeness of agreement between categories. Popularweights are the so-called linearweights [4,12,15]
and the quadratic weights [9,13]. In this paper, the linearly weighted kappa will be denoted by κ1,
whereas the quadratically weighted kappa will be denoted by κ2.

A frequent criticism against the use of κw is that the weights are arbitrarily defined [15]. In support
of κ2 it turns out that κ2 is equivalent to the product-moment correlation coefficient under specific
conditions [6]. In addition, κ2 may be interpreted as an intraclass correlation coefficient [9,13]. In
support of κ1 it turns out that the components of κ1 corresponding to an n × n agreement table can
be obtained from the n − 1 distinct collapsed 2 × 2 tables that are obtained by combining adjacent
categories [15].

It has been frequently observed in the literature that the value of κ2 is higher than the value of
κ1. For example, consider the data in Table 1 taken from a study in [16]. In this study 100 patients
were rated by two randomly allocated observers on their degree of handicap. For these data we have
κ1 = 0.780 < 0.907 = κ2. A value of 1 would indicate perfect agreement between the observers.
The value of κ2 does not always exceeds the value of κ1. It turns out however that the inequality
holds for a special kind of agreement table. In this paper, we prove that κ2 > κ1 when the agreement
table is tridiagonal. A tridiagonal table is a square matrix that has nonzero elements only on the main
diagonal and on the two diagonals directly adjacent to the main diagonal [25]. Note that Table 1 is
almost tridiagonal. Agreement tables that are tridiagonal or approximately tridiagonal are frequently
observed in applications with ordered categories [3,7,8,14].

The paper is organized as follows. In the next section, we define a particular case of κw , denoted by
κm, of which κ1 and κ2 are special cases. The main result, a conditional inequality between κm and κℓ

form > ℓ ≥ 1, is presented in Section 3. The result depicted in the title of this paper is an immediate
consequence of the main result.

2. Cohen’s weighted kappa

Suppose that two observers each distribute the same set of k ∈ N≥1 objects (individuals) among
a set of n ∈ N≥2 mutually exclusive categories that are defined in advance. Let F =


fij

with

i, j ∈ {1, 2, . . . , n} be the agreement table with the ratings of the observers, where fij indicates the
number of objects placed in category i by the first observer and in category j by the second observer.
We assume that the categories of observers are in the same order so that the diagonal elements fii
reflect the number of objects put in the same categories by the observers. For notational convenience
we work with the table of proportions P =


pij


with relative frequencies pij = fij/k.

Row and column totals

pi =

n−
j=1

pij and qi =

n−
j=1

pji

are the marginal totals of P . The weighted kappa statistic can be defined as

κw =
Ow − Ew

1 − Ew

(1)



442 M.J. Warrens / Statistical Methodology 9 (2012) 440–444

where

Ow =

n− −
i,j=1

wijpij and Ew =

n− −
i,j=1

wijpiqj.

For the weights wij we require wij ∈ [0, 1] and wii = 1 for i, j ∈ {1, 2, . . . , n}. In (1) we assume that
Ew < 1 to avoid the indeterminate case Ew = 1. If we use wij = 1 if i = j and wij = 0 if i ≠ j for
i, j ∈ {1, 2, . . . , n} , κw is equal to Cohen’s unweighted κ .

Examples of weights for κw that have been proposed in the literature, are the linear weights
[4,12,15,24] given by

w
(1)
ij = 1 −

|i − j|
n − 1

(2)

and the quadratic weights [9,13] given by

w
(2)
ij = 1 −


i − j
n − 1

2

. (3)

Letm ∈ R≥1. The weights in (2) and (3) are special cases of the family of weights given by

w
(m)
ij = 1 −


|i − j|
n − 1

m

for m ≥ 1.

In this paper, we are particularly interested in the special case of κw given by

κm =
Om − Em
1 − Em

(4)

where

Om =

n− −
i,j=1

w
(m)
ij pij and Em =

n− −
i,j=1

w
(m)
ij piqj.

Special cases of κm are the linearly weighted kappa κ1 and the quadratically weighted kappa κ2. We
have κ = κm in the case of n = 2 categories [17–19] and if Om = 1. For the data in Table 1 we have
O1 = 0.924, E1 = 0.655 and κ1 = 0.780, and O2 = 0.982, E2 = 0.811 and κ2 = 0.907.

3. A conditional inequality

The theorem below shows that, for m > ℓ ≥ 1, κm > κℓ if P is tridiagonal. The latter concept is
captured in the following definition.

Definition. A square agreement table P is called tridiagonal if the only nonzero elements of P are the
pii for i ∈ {1, 2, . . . , n}, and the pi,i+1 and pi+1,i for i ∈ {1, 2, . . . , n − 1}.

Theorem. Let n ≥ 3 and let m > ℓ ≥ 1. Furthermore, suppose that P is tridiagonal and that not all the
pi,i+1 and pi+1,i are 0. Then κm > κℓ.

Proof. We first show that (5) is equivalent to (9). Since 1 − Eℓ and 1 − Em are positive numbers, we
have κm > κℓ if and only if

Om − Em
1 − Em

>
Oℓ − Eℓ

1 − Eℓ

(5)

⇕

(Om − Em)(1 − Eℓ) > (Oℓ − Eℓ)(1 − Em)

⇕

Om − Em − OmEℓ + EmEℓ > Oℓ − Eℓ − OℓEm + EℓEm. (6)
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Subtracting Oℓ + EℓEm from and adding Em + OℓEℓ to both sides of (6), we obtain

(Om − Oℓ)(1 − Eℓ) > (Em − Eℓ)(1 − Oℓ). (7)

Let w(ℓ) and w(m) denote the weights of pi,i+1 and pi+1,i respectively for κℓ and κm. We have

w(m)
− w(ℓ)

=
1

(n − 1)ℓ
−

1
(n − 1)m

. (8)

Since m > ℓ ≥ 1 it follows from (8) that w(m)
− w(ℓ) > 0. Furthermore, since not all the pi,i+1 and

pi+1,i are 0, there is an element on one of the diagonals adjacent to the main diagonal for which the
weights satisfy w(m)

−w(ℓ) > 0. Hence Em − Eℓ > 0, and inequality (7) is equivalent to the inequality

Om − Oℓ

Em − Eℓ

>
1 − Oℓ

1 − Eℓ

. (9)

Next, if P is tridiagonal inequality (9) becomes

(w(m)
− w(ℓ))

n−1∑
i=1

(pi,i+1 + pi+1,i)

n∑ ∑
i,j=1

(w
(m)
ij − w

(ℓ)
ij )piqj

>

(1 − w(ℓ))
n−1∑
i=1

(pi,i+1 + pi+1,i)

n∑ ∑
i,j=1

(1 − w
(ℓ)
ij )piqj

. (10)

Since
∑n−1

i=1 (pi,i+1 + pi+1,i) > 0 (not all the pi,i+1 and pi+1,i are 0), (10) is equal to the inequality

n− −
i,j=1


(w(m)

− w(ℓ))(1 − w
(ℓ)
ij ) − (1 − w(ℓ))(w

(m)
ij − w

(ℓ)
ij )


piqj > 0. (11)

For |i−j| = 0we havew
(ℓ)
ij = w

(m)
ij = 1, whereas for |i−j| = 1we havew

(ℓ)
ij = w(ℓ) andw

(m)
ij = w(m).

In both caseswe have (w(m)
−w(ℓ))(1−w

(ℓ)
ij ) = (1−w(ℓ))(w

(m)
ij −w

(ℓ)
ij ). Hence, inequality (11) holds if

(w(m)
− w(ℓ))(1 − w

(ℓ)
ij ) − (1 − w(ℓ))(w

(m)
ij − w

(ℓ)
ij ) > 0 (12)

for |i − j| ≥ 2.
We have

1 − w
(ℓ)
ij =


|i − j|
n − 1

ℓ

(13a)

1 − w(ℓ)
=

1
(n − 1)ℓ

(13b)

w
(m)
ij − w

(ℓ)
ij =


|i − j|
n − 1

ℓ

−


|i − j|
n − 1

m

. (13c)

Using the identities in (8) and (13), inequality (12) is equal to
1

n − 1

ℓ

−


1

n − 1

m
 

|i − j|
n − 1

ℓ

>


1

n − 1

ℓ


|i − j|
n − 1

ℓ

−


|i − j|
n − 1

m


⇕
1

n − 1

ℓ 
|i − j|
n − 1

m

>


1

n − 1

m 
|i − j|
n − 1

ℓ

⇕
|i − j|
n − 1

m−ℓ

>


1

n − 1

m−ℓ

. (14)
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Inequality (14) and thus inequality (12) hold for |i − j| ≥ 2, and hence inequality (11) is valid. This
completes the proof. �

Recall that κ denotes Cohen’s unweighted kappa. Since κm satisfies the conditions of the theorem
in [25] we have the following result.

Corollary 1. Let n ≥ 3. Furthermore, suppose that P is tridiagonal and that not all the pi,i+1 and pi+1,i
are 0. Then κm > κ .

Thus, the value of Cohen’s κ never exceeds the value of κm if the agreement table is tridiagonal.
The result depicted in the title of this paper is an immediate consequence of the theorem above.

Corollary 2. Let n ≥ 3. Furthermore, suppose that P is tridiagonal and that not all the pi,i+1 and pi+1,i
are 0. Then κ2 > κ1 > κ .
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