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1. Introduction  
For personal or domestic service robots to be successful in the market, it is essential for them 
to have the capability of natural and dependable interaction with human. However, such a 
natural and dependable human-robot interaction (HRI) is not so easy to accomplish, as it 
involves a high level of robotic intelligence for recognizing and understanding human 
speech, facial expression, gesture, behavior, and intention as well as for generating a proper 
response to human with artificial synthesis. It is our view that the first key step toward a 
successful deployment of HRI is to level up the dependability of a robot for recognizing the 
intention of the human counterpart. For instance, to date, robotic recognition of human 
speech, as well as human gestures, facial expressions, let alone human intention, is still quite 
unreliable in a natural setting, despite the tremendous effort by researchers to perfect the 
machine perception individually for recognizing the aforementioned human expressions 
and intentions. We observe that the robustness and dependability human enjoys in human-
human interaction may not merely come from the fact that human has powerful perceptual 
organs such as eyes and ears but human is capable of executing a series of behaviors 
associated with a perceptual goal, for instance, the behaviors related to the collection of 
additional evidences till the decision is sufficiently credible. In analogy, we claim here that 
the dependability of robotic recognition of human intention for HRI may not come from the 
perfection of the individual capabilities for recognizing speech, gesture, facial expression, 
etc. But, it comes with the automatic generation of robotic behaviors that makes sure 
reaching a credible decision for the given perceptual task.  
We present here “Cognitive Robotic Engine (CRE)” that automatically generates 
perceptual behaviors for selecting and collecting an optimal set of evidences, leading to a 
dependable and robust recognition of human intention under a high level of uncertainty 
and ambiguity. Note that the dependability of robotic perception may not come from "the 
perfection of individual components for perception," but from "the integration of 
individual components into dependable system behaviors, no matter how imperfect and 
uncertain individual components may be." CRE presents a novel robotic architecture 
featuring 1) the spontaneous establishment of ad-hoc missions in connection to perceptual 
goals, 2) the determination of an optimal set of evidences to be selected and/or collected 
for processing based on in-situ monitoring of the current situation, 3) the integration of 
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such behavioral building blocks as mission management, evidence selection, evidence 
collection, evidence fusion and filtering for decision-making in an asynchronous and 
concurrent architecture, and 4) the implementation of behavioral personality of a robot 
under CRE framework.  We applied CRE to a robot identifying a caller in a crowed and 
noisy environment. The experimental results demonstrate the great enhancement of the 
dependability of robotic caller identification through the proposed behavioral perception 
approach to HRI based on CRE.  

1.1. Issues involved in Conventional approach to Human-Robot Interaction  
One of the key reasons that the robot market does not evolve yet, despite various prototype 
service robots show very impressive performance in recent years is that, unlike human-
human communication, it is difficult to interact with the robot using language, gesture, 
facial expression, etc. Accordingly, development of a robot interacting with people more 
naturally is a very important issue to robot researchers for popularization of robotics (Font 
T, et al., 2003). So many researchers have been developing the technology for understanding 
human expression such as speech recognition, gesture recognition, understanding human 
facial expression and so on. And their recent research results show excellent recognition 
capabilities in their individual field (Sakaue, et al., 2006, Betkowska, et al., 2007). 
However, according to circumstances, development of individual modules such as face 
recognition and speech recognition module does not guarantee an increment of robot 
reliability enough to interact with human naturally. For example, in real dynamic 
environments, a hard situation for human face recognition like a dark room has lead to 
occasional recognition problems. Similarly it would be difficult for a robot to understand 
human speech in the noisy environment. And although dependability of individual 
modules is improved, there show unreliable results sometimes. Therefore, there is a 
certainly need of research on integrating each component module, method of proper 
module selection from the existing state of things for natural human-robot interaction (HRI). 
The “Cogniron” Project of the European Union (EU) has studied advancement of 
component and multi-modal approaches in order to make more friendly robot ( Fritsh, et al., 
2005 and Li, et al., 2005, 2007). A multi-modal interaction framework deals with the fusion of 
multiple human-robot interaction modules to reduce dependence on the single specified 
sensor data. However it does not address the robot behavior for more active collection of 
evidences. Some research has been done on the topic of a reduction of the process 
uncertainty using audio-visual integration (Choi, et al., 2006). In order to find speaker 
localization, they use probabilistic method based on bayesian theorem, but they do not deal 
with process of automatic evidences selection (herein evidences mean features such as 
human face, skin, calling voice, gesture, etc.). The paper on a robot photographer is also 
very interesting (Ahn, et al., 2006). A photographer robot is able to find the person who 
wants to have taken pictures using two processes that face detection and gesture detection. 
But if the caller suddenly disappears the robot might be not able to find the caller because 
this robot does not have the active evidence collection behaviors. Chen Bin and Kaneko 
Masahide proposed the robot behavior selection method based on integration of multimodal 
information (Bin & Masahide, 2007). This paper mentions robot behaviors; however these 
behaviors are not active action for a reduction of mission uncertainty. In order words, the 
robot does not take an action for evidence collection such as searching, wandering and 
approaching. 
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As previously stated, despite the rise of the requirements on service robots which can 
interact with people naturally, few have attempted to address increment of robot reliability 
from a synthetic point of view. Therefore, in this paper we proposed “Cognitive Robotic 
Engine (CRE)” leading to a dependable and robust recognition of human intention in the 
dynamic real environments. 

2. Cognitive Robotic Engine (CRE): Conceptual Overview 
Before introducing the concept of CRE, let us consider how a human recognizes 
objects/people in the uncertain environment, e.g., a dark room, crowded and noisy party, etc. 
It is not easy for a robot to identify objects/people in such places. Because some objects seem 
very similar in a dark place and he or she is hard of hearing in noisy place. However, a human 
is able to identify them. In this situation, how is a human able to recognize them? What would 
he or she take action to recognize something/someone? Though human decision making 
shows different aspects sometimes under uncertain situation (Neves & Raufaste, 2001), in most 
cases, people make the decision or take some action for reducing the uncertainty through the 
following procedure when finding some objects/people. If he or she heard his/her name from 
behind, but he or she was not confident because that place is so loud, he/she looked back in 
order to find who’s calling. If someone is supposed to find a specific object in a dark room, but 
if there are several similar objects, he or she must approach the object, and then take some 
proper action such as touch to recognize the object. In order words, a human takes appropriate 
actions for gathering more information (Wilson, 2000). In addition, a human makes a decision 
using not a specific sense but all the information. 
The concept of CRE like this, that is, CRE integrates information to accomplish dependable 
perception and recommends appropriate actions for gathering more information. It is 
regarded as a more general form of behavior based approach that is extended to include 
perceptual behavior (Arkin, 1998). Imitating the human dependability in perception, the 
main features and procedures of CRE is conjectured as follows: 
1) The spontaneous and self-establishment of ad-hoc perceptual missions in connection to 
particular sensing. 
2) The choice of particular asynchronous and concurrent flow architecture of perceptual 
building blocks, out of a potentially huge number of possible flow architectures as the basis 
for deriving evidences to be fused together. 
3) The incorporation of action blocks into the chosen asynchronous and concurrent flow 
architecture of perceptual building blocks as a means of proactively collecting sensing data 
of less uncertainty and of new evidence, which triggers a dynamic reorganization of the 
asynchronous and concurrent flow architecture of perceptual building blocks. 
4) The optimal process control in terms of the choice of a particular asynchronous and 
concurrent flow architecture of perceptual building blocks to follow as well as of the choice 
of particular action blocks to be invoked at each sampling time, where the optimality is 
defined in terms of the time and computing resources for uncertainty reduction. Note that 
the control strategy may differ by individuals. 

3. CRE Architecture 
Overall architecture of CRE system is shown in Fig. 1. CRE consists of three parts, 
perceptual part, control part and action part widely. Perceptual part is composed of sensors, 
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perceptual processes which are processed asynchronously and concurrently, precedence 
and evidence fusion relations through which a robot perceives the environment like a 
human. Control part takes charge of invoke mission or mission transition and it controls 
behavior selection or behavior changing. Finally, action part is in charge of robot action such 
as searching, approaching, and gazing. The system operating procedures are as follows: 1) 
the sensors receive and transmit external data, 2) the perceptual processes analyze the 
information, 3) the control part gathers all the information from perceptual processes, and 
then make a decision, 4) if there is any necessity the action part makes the robot to act. Note 
that system operates asynchronously. 

 
Figure 1. Overall Architecture of Cognitive Robotic Engine 

3.1 Perceptual Process and Precedence Relation 
The perception process of CRE means basic building block for the entire perception. Table I 
represents the specification of all perceptual processes – Novel Sound Detection (NSD), 
Frontal Face Detection (FFD), Skin Color Blob (SCB), Calling Hand Posture (CHP), Color 
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Detection (CD), and Alarm (AL). Normally, the output of individual perceptual process has 
calculated certainty (CF), spatial probability distribution (SP), action candidates that can 
improve the certainty factor (AC), processing time (PT), and packet recording time (RT).  

Def. When the sound volume exceeds the threshold, estimates the 
direction of source 

Source Mic array (3 channel) 
Input Raw data of sound 

NSD 

Output 

Direction of novel sound 
Calculated Certainty (CF) 
Spatial probability distribution (SP) 
Candidate of Action (AC) 
Processing Time (PT) 
Packet recording Time (RT) 

Def. Finds face region by image feature 
Source Camera 
Input Raw image from Camera FFD 

Output Coordinate, and size of detected face 
CF, SP, AC, PT, RT 

Def. Distinguishes skin region by RGB condition and makes 
others black in image 

Source Camera 
Input Raw image from Camera SCB 

Output 
Image of skin color segmentation 
Most probable direction that callers exist in. 
CF, SP, AC, PT, RT 

Def. Estimates calling hand by skin color in face adjacent area 
Source FFD, SCB 

Input Coordinate and size of detected face 
Skin segmented image 

CHP 

Output Direction, and distance of caller 
CF, SP, AC, PT, RT 

Def. Estimates clothing color of a person who is detected by FFD 
process. 

Source Camera, FFD 
Input Coordinate and size of detected face 

CD 

Output Estimated clothing color (Red/Blue) 
CF, SP, AC, PT, RT 

Def. Send alarm signal at reservation time 
Source Time check Thread 
Input Current time AL 

Output 
Alarm signal 
Information of reserved user 
CF, SP, AC, PT, RT 

Table 1. Description of Perceptual Processes 
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If the outputs of one or more processes are necessary as an input or inputs of another for 
processing, a relationship between the processes defines precedence relation. Each process is 
assumed independent as long as they are not under precedence restrictions. Fig. 2 shows the 
precedence relation of all perceptual processes of system. 

 
Figure 2.  The precedence relation of all perceptual processes – All the relations without 
AND mean OR 

4. In-Situ Selection of an optimal set of evidences 
4.1 Evidence Structure for the Robot Missions 

Caller 
Identification

(CI)

Calling Hand
Posture
(CHP)

Novel Sound 
Direction

(NSD)

Skin Color
Blob

(SCB)

Frontal Face
Detection

(FFD)

AND

 
Figure 3. Evidence Structure For Caller Identification Mission 
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CRE aims at combining or fusing multiple evidences in time for dependable decision. In 
order to integrate multiple evidences, we needed another relation graph for certainty 
estimation. Although, above mentioned precedence relation graph shows the input-output 
relation of each perceptual process nicely, however it is not suitable for certainty estimation. 
Because to calculate certainty of the mission, the robot applies difference shape of calculate 
expression to each mission. Therefore, we define the “evidence structure” for certainty 
estimation. 

Customer 
Identification

(CI)

Color Detection
(CD)

Novel Sound 
Direction

(NSD)

Frontal Face
Detection

(FFD)

Skin Color Blob
(SCB)

Alarm
(AL)

 
Figure 4.  Evidence Structure For Customer Identification Mission 

Caller/Customer
Following

(CF)

Color
Detection

(CD)

Frontal Face
Detection

(FFD)

The distance 
between 

the robot and
 the caller/user  

Figure 5. Evidence Structure For Caller/Customer Following Mission 
Frontal Face

Detection
(FFD)

Color
Detection

(CD)

Attention
(A)

 
Figure 6. Evidence Structure For Attention Mission 

Our analysis of current service robot’s ability tell us that main objects of service robot are 
recognizing user and providing information to the user. Therefore, bring a current service 
robot platform into focus, we created four missions which are caller identification, customer 
identification, caller/customer following and attention. Consequently, evidence structure 
was made suitability for each individual mission. The robot selects adapted evidences for 
using this structure. The reason why we was not make one united structure but made 
individual structures for four missions is that if some missions are extended in the future, it 
is difficult to design architecture graph to extended missions. The evidence structure 
described by Fig. 3 through Fig. 6 is equivalent to a Bayesian net, except that we consider 
explicitly the conjunctions of evidences that becomes sufficient for proving the truth of 
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another evidence and represent them with AND operations. This is to make it easier to 
define the joint conditional probabilities required for the computation of certainties based on 
the Bayesian probability theorem. The actual implementation of computing certainty update 
is based on the Bayesian net update procedure. 

4.2 Certainty Estimation based on Bayesian Theorem 
In this paper, we calculate the mission certainty based on Bayesian theorem. 
 

 
 
 

   (1) 
 
 
 
(1) shows that the formula of the mission certainty estimation. In here, α is calculated 
differently in each mission. Under assumption that each evidence is independent, from the 
evidence structures, we are able to calculate α. For example, if the caller identification 
mission is selected, α is calculated by formula (2). 
 
 

  (2) 
 
The rest α value of individual missions as follows: 
• Customer identification 

 ( | ) ( | ) ( | ) ( | ) ( | ) ( )
( | ) ( | ) ( | ) ( | ) ( | ) ( )
p FFD CI p SCB CI p NSD CI p CD CI p AL CI p CI
p FFD CI p SCB CI p NSD CI p CD CI p AL CI p CI

α =  (3) 

• Caller/Customer Following 

 ( | ) ( | ) ( )
( | ) ( | ) ( )
p FFD CF p CD CF p CF
p FFD CF P CD CF p CF

α =  (4) 

• Attention 

 ( | ) ( | ) ( )
( | ) ( | ) ( )
p CD A p FFD A p A
p CD A p FFD A p A

α =  (5) 

4.3 Certainty Estimation with Consider Space-Time 

 
Figure 7. Interaction Space of the Robot for Certainty Representation 

( )
1 1( | )

1( | ) ( )1
( | ) ( )

( | ) ( )
( | ) ( )

MissionCertainty Mission

P Mission Evidences
P Evidences Mission P Mission
P Evidences Mission P Mission

P Evidences Mission P Mission
P Evidences Mission P Mission

=

= =
+ α

+

 ∴  α =

( | ) ( | ) ( | ) ( | ) ( )
( | ) ( | ) ( | ) ( | ) ( )
p FFD CI p SCB CI p NSD CI p CHP CI p CI
p FFD CI p SCB CI p NSD CI p CHP CI p CI

α =
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In this research, we implemented all perceptual processes with considering the two-
dimensional interaction space of the robot. Fig 7 shows that interaction space of the robot. 
The interaction space is represented by 81(9*9) cells and each cell has around 50cm*50cm 
size. Since all processes have the information of two-dimensional space, each mission 
certainty is also represented by two-dimensional space and it is calculated for each cell. 
Therefore, the robot has spatial information. The spatial probability distribution is changed 
according to the robot behaviors and is estimated according to evidences continually. 
Moreover, in order to provide time-related service, we implemented alarm process (AL). 
Using this process, the robot is able to provide service such as delivery information for the 
customer at specific time. 

5. Evidence Collection Behaviors 
The action should be selected to eliminate uncertainty of mission, not uncertainty of 
individual process. This means that the selected action has to improve the mission certainty 
best. Let B = {b1,b2, … , bn} is a set of proposed actions by  a set of perceptual processes P= 
{p1, p2, … pn}, at time t. From the perceptual process, we can estimate the variation of 
certainty when the robot takes an action below. 
 
b1  ∆C(b1) = {∆c1(b1), ∆c2(b1), … , ∆ck(b1), … ,∆cn(b1)} 
b2  ∆C(b2) = {∆c1(b2), ∆c2(b2), … , ∆ck(b2), … ,∆ cn(b2)} 
… 
bk  ∆C(bk) = {∆c1(bk), ∆ c2(bk), … ,∆ck(bk), … , ∆ cn(bk)} 
… 
bn  ∆C(bn) = {∆c1(bn),∆ c2(bn), … , ∆ck(bn), … , ∆cn(bn)} 
 
where ∆ck(bk) is expected certainty variation of pk when the action is selected. ∆C(bk) is a 
set of variation values. Now we can select an action using (6).  
 
 
     (6) 
 
The selected action will increase the mission certainty best. 

6. Mission Management 
Most of developed service robots recognize their mission by user’s manual input. However, 
to provide advanced service, if there are several missions, the robot should be select mission 
naturally. Accordingly, we implemented the mission manager for advanced service of a 
robot. The mission manager should tell the mission with the minimum of perceptual 
processes. 
The roles of mission manager are detailed below: 
1. The manager should be monitoring enabled perceptual processes. 
2. If any change of environment stimulus some perceptual process, the manager has to 

recognizes all the missions which are related to the process. The connection relation 
between missions and perceptual processes should be pre-defined. 

max 1{ ( | ), ..., ( | )}b bn

Selection of action
b P callerID Evidences C P callerID Evidences C

=
+ ∆ + ∆
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3. Since enabled perceptual processes are very primitive, some missions will remain and 
be invoked among the subset of missions, or the others may be removed. To recognize 
which of them to be selected, additional perceptual processes should be enabled. 

4. If there is one mission selected, the manager performs it, while the number of mission is 
bigger than one, they are took into queue based on the priority of missions. Note that, 
simultaneous and multiple mission will be considered later. 

5. Performing a mission, the manager should check if the mission is on going, or success, 
or fail 

6. With succeed/failure of the mission, the manager should change the state of robot 
naturally. 

 
Figure 8. Mission Manager for Four Missions 

Mission Definition 

Attention Gazes into Caller/Customer 

Caller Identification Seeks for the caller and then identifies the 
caller 

Customer Identification Seeks for the customer and then identifies 
the customer 

Caller/Customer Following Follows the caller/customer 
Table 2. List of missions and definition 

7. Implementation 
7.1 Hardware Specification 
The approach outlined above has been implemented on the mobile robot iRobi. The 
specification of single-board-computer has Intel Pentium mobile processor 1.40GHz, 1GB 
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RAM. And the Robot has three channel microphones for estimates the direction of sound 
source. Logitech Quickcam Pro 3000 camera as imaging sensor has approximately 60° 
horizontal-field-of-view (HFOV) and 320*240 square pixels. 
 

   
Figure 9. Robot Hardware 

7.2 Software Configuration 
Overall architecture of the CRE system is presented in Fig. 10. As seen in the figure, the 
system is composed of server and client. In here, client means the robot and the robot and 
the server communicated by Common Robot Interface Framework (CRIF). It provides 
TCP/IP wireless connection so that CRE system could be adapted to another platform 
easily. Two multi threads in the server request image and sound continuously. A perceptual 
process is called when a thread get sensing information from robot. There procedures are 
operated asynchronously and concurrently. 

Server

Client (Robot)

Cognitive Robotic Engine (CRE)

CRIF

Sensors Actuators

RAL
ASL

RAPL

Multi Threads
Sound Image

Perceptual Processes

Control Thread

Behavior Generator

 
Figure 10. Overall Architecture of the System.  (RAL: Robot API Layer, ASL: API Sync 
Layer, RAPL: Robot API Presentation Layer) 
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7.2.1 Sampling Time of Control based on Forgetting Curve 
Among the several approaches for sampling time, we got the idea from psychology field 
(Brown, 1958, R. Peterson & J. Peterson, 1959, Atkison & Shiffrin 1968). Fig. 11 shows 
forgetting curve for human short-term memory. Based on that, the sampling time is 
determined as 600ms approximately. 

 
Figure 11. Forgetting curve of Brown Peterson paradigm 

8. Experimentation 
8.1 Experiment Condition 
The experimental scenario is described in Fig. 12. Experimentation had proceeded in the 
around 6m*8m size tester bed without any obstacles and the caller is only one. Please see the 
figure with attention time and variance of the mission. Descriptions on abbreviation as below: 
NSD: Novel Sound Detection, FFD: Frontal Face Detection, SCB: Skin Color Blob, CHP: 
Calling Hand Posture , CD: Color Detection, AL: Alarm. 

 
Figure 12. Experimentation of the multi-mission management and the certainty estimation 
of Cognitive Robotic Engine 

 

t0 

t1 

t4 

t3 

t2 

t7 

Handclap 

Caller Following

Caller 

Attention

No Mission

Customer Identification

t5 

t6 

t8 
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8.2 Experiment Results 
Initially, control part of CRE enables only NSD , FFD, AL processes.  
First (t0), the caller called the robot behind the robot’s back through the handclap. Then, the 
certainty of caller identification mission arisen as Fig. 13 by NSD process output, and the 
mission started (t1). 

 
Figure 13. Certainty of the caller identification mission (t1) 

As the caller identification mission started, SCB and CHP processes activated to collect more 
evidences. Fig. 14 is certainty of the mission, just after turning to the caller, and the certainty 
increased when FFD and CHP processes detected caller’s hand motion (Fig. 15). 

  
Figure 14. Certainty of the caller identification mission (t2, before calling hand posture 
detected) 
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Figure 15. Certainty of the caller identification mission (t2, after calling hand posture 
detected)) 

At this moment (t2), the mission manager changed the mission to caller tracking. So, FD and 
CD processes activated, and started to move to the caller (t3). Fig. 16 shows the certainty of 
caller tracking mission at t3. In Fig. 17, the certainty of frontal spaces of the robot is high 
enough to change the mission to attention (t4). 
 
 
 

 
Figure 16. Certainty of the caller/customer tracking mission (t3) 
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Figure 17. Certainty of the caller/customer tracking mission (t4) 

Fig. 18 shows the certainty of attention mission. Generally, the service robot can convey 
information to the caller while doing attention mission. After a communication with the 
caller, mission manager of the robot dismissed attention mission like initial state. After for a 
while, the customer identification mission started by AL process, so the robot try to find 
customer who wears red shirt (reserved mission like timer). The certainty of customer 
identification mission is shown Fig.19 (t4). When the robot found the customer, the certainty 
changed like Fig. 20, then, attention mission started (t8). 

 
Figure 18. Certainty of the attention mission (t4) 
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Figure 19. Certainty of the customer identification mission (t6) 

We recorded the results several times of experimentation, the results shows that missions 
started, stopped and changed automatically based on variation of the certainty, and by 
defining the certainty of each mission in the interaction space, behavioral parameters can be 
easily obtained. Basic rules to choose behavior is that select one behavior among candidates 
suggested by perception processes to increase their certainties. 
 
 

 
Figure 20. Certainty of the customer identification mission (t7) 
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9. Conclusion and Future work 
In this paper, we described the robotic architecture for dependable perception and action for 
service robot in dynamic environment. This architecture is organized to accomplish 
perception mission in spite of the integration of imperfect perception processes, and 
updated for managing multi-missions. The next step, we are planning to research on 
automatic discrimination method of system dependability. 
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