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Abstract

Conventional appearance-based face recognition meth-
ods usually assume there are multiple samples per person
(MSPP) available during the training phase for discrimi-
native feature extraction. In many practical face recogni-
tion applications such as law enhancement, e-passport and
ID card identification, this assumption, however, may not
hold as there is only a single sample per person (SSPP)
enrolled or recorded in these systems. Many popular
face recognition methods fail to work well in this sce-
nario because there are not enough samples for discrim-
inant learning. To address this problem, we propose in
this paper a novel discriminative multi-manifold analysis
(DMMA) method by learning discriminative features from
image patches. First, we partition each enrolled image into
several non-overlapping patches to form an image set for
each sample per person. Then, we formulate the SSPP face
recognition as a manifold-manifold matching problem and
learn multiple DMMA feature spaces to maximize the man-
ifold margins of different persons. Lastly, we propose a
reconstruction-based manifold-manifold distance to iden-
tify the unlabeled subjects. Experimental results on three
widely used face databases are presented to demonstrate
the efficacy of the proposed approach.

1. Introduction

Appearance-based methods have been widely used in

face recognition, and a large number of such algorithms

have been proposed in recent years [1, 10, 28, 33]. The

common goal of these methods is to learn a compact

and low-dimensional feature subspace for face represen-

tation in a supervised, semi-supervised or unsupervised

manner, such that the intrinsic characteristics of the orig-

inal face samples are well preserved. Representative and

popular algorithms include principal component analysis

(PCA) [28], linear discriminant analysis (LDA) [1], locality

preserving projections (LPP) [10], marginal fisher analysis

(MFA) [33], and their weighted, kernelized and tensorized

variants [16, 17, 35]. Despite the different assumptions of

these methods, they can be unified into a general graph em-

bedding (GE) framework [33] under different constraints.

The performance of the appearance-based methods in

face recognition, however, is heavily affected by the number

of training samples per person [11]. Specifically, if the num-

ber of training samples per person is much smaller than the

feature dimension of face samples, it is generally inaccurate

to estimate the within-class variance of LDA and exploit

discriminant and geometrical information of most existing

manifold learning algorithms [4, 18] for face recognition.

In many practical face recognition applications, such as law

enhancement, e-passport and ID card identification, there is

usually only a single sample per person (SSPP) recorded in

these systems because it is generally difficult to collect ad-

ditional samples under these scenarios. Therefore, many ex-

isting appearance-based methods such as LDA and its vari-

ants [35] cannot be directly applied for feature extraction

due to the lack of samples to compute the within-class scat-

ter.

To address the SSPP problem in face recognition, there

have been some attempts in the literature, which can be

mainly classified into three categories [27]: generic learn-

ing, virtual sample generation, and image partitioning. For

the first category, an additional generic training set with

multiple samples per person (MSPP) is applied to extract

discriminative features, which are then used to identify the

persons each enrolled with a single sample. For exam-

ple, Kim and Kitter [14] employed a generic training set to

learn discriminative features to address the SSPP problem in

pose-invariant face recognition. Wang et al. [31] proposed

a general generic learning framework and presented several

appearance-based discriminant feature extraction methods

under this framework. While discriminative information

can be exploited, there is one common assumption among

these methods that the inter-class and intra-class variations

of the MSPP generic training set and the SSPP gallery set
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are similar, which may not hold in many real world applica-

tions because it is not easy to collect a MSPP generic train-

ing set which well represents all the gallery sets. To address

this issue, Su et al. [25] proposed an adaptive generic learn-

ing method to infer the discriminative information of the

SSPP gallery set by using a prediction model learned from

the generic training set. Si et al. [24] proposed a trans-

fer subspace learning approach to transfer the discrimina-

tive model learned from the MSPP training set to the SSPP

gallery set for face recognition. Even if there are some im-

provements on addressing the SSPP face recognition, the

performance of these methods is heavily affected by the se-

lected generic training set, which is still very difficult to

obtain in practical applications.

For the second category, some additional training sam-

ples for each person are virtually generated such that dis-

criminant subspace learning can be used for feature extrac-

tion. For example, Zhang et al. [36] and Gao et al. [8] pre-

sented two singular value decomposition (SVD) based per-

turbation algorithms to obtain multiple images for each per-

son and then applied the conventional LDA for feature ex-

traction. While these methods can alleviate the SSPP prob-

lem to a certain extent, one common shortcoming among

these methods is that there is high correlation among the

virtually generalized samples as they cannot be considered

as independent samples for feature extraction, and this may

result in much redundancy in the learned discriminative fea-

ture subspace, as stated in [19].

For the third approach, each face image is first parti-

tioned into several local patches and then some discriminant

learning techniques can be applied for feature extraction.

An early such attempt [20] divided each face image into six

elliptical parts and learned a local probabilistic model for

recognition. Tan et al. [26] extended this work by propos-

ing an alternative way of representing each face subspace

with self-organizing maps (SOM). Chen et al. [5] employed

LDA and Kanan et al. [13] presented a weighted pseudo-

Zernike moment to extract discriminative features of each

local patch, respectively. However, these methods ignore

the geometrical information of the local patches in the fea-

ture extraction procedure. Specially, when a face image

is partitioned into several local patches, they represent dif-

ferent parts (semantics) of the original face image, such as

nose, mouth and eyes, and may not be modeled accurately

by a simple distribution. It is more likely that these patches

reside in a manifold and each patch corresponds to a point

in the manifold. Motivated by this observation, we consider

the local patches of each person as a manifold, and the SSPP

face recognition can be formulated as a manifold-manifold

matching problem, as illustrated in Fig. 1.

Given a (frontal) face image, there are usually two eyes,

one nose and one mouth in the image. Intuitively speak-

ing, the similarity between two noses of different persons

Fig. 1. Manifold-manifold matching for SSPP face recognition.

Each image is partitioned into many local patches and represented

by a manifold and the SSPP face recognition is converted into a

manifold-manifold matching problem.

is usually higher than that between the nose and the mouth

of the same person. Hence, there is high overlapping be-

tween these manifolds and the distances between patches

at the same location of different images (persons) are usu-

ally smaller than those at different locations of the same

image (person). Hence, a key challenge to address the

SSPP problem is how to extract discriminative features such

that the points in the same manifold become closer and

those in different manifolds are far apart. To achieve this

goal, we propose in this paper a novel discriminative multi-

manifold analysis (DMMA) method to learn the local dis-

criminant features to maximize the manifold margins of dif-

ferent persons, so that more discriminant information can

be exploited for recognition. In the recognition phase, we

propose a reconstruction-based manifold-manifold distance

to identify the unlabeled subjects. Experimental results on

three widely used face databases are presented to demon-

strate the efficacy of the proposed approach.

The rest of the paper is organized as follows. Section 2

details the proposed approach. Section 3 provides the ex-

perimental results and Section 4 concludes the paper.

2. Proposed Approach

Let X = [x1, x2, · · · , xN ] be the training set, xj is the

training image of the jth person with a size of m × n, 1 ≤
j ≤ N , N is the number of persons in the training set.

We first divide each image xj into t non-overlapping local

patches with an equal size of a × b, where t = m×n
a×b . Let

Mi = [xi1, xi2, · · · , xit] be the image patch set of the ith
person, which consists of a manifold Mi.



Fig. 2. Visualization of five manifolds corresponding to five per-

sons from the FERET database.

2.1. Motivation

To explore the geometrical information of the partitioned

local patches, we randomly selected five subjects from the

FERET database [22] to visualize the manifold structure

of these local patches. Fig. 2(a) shows five 60×60 well-

aligned face images, each is partitioned into 36 10×10

non-overlapping patches. The distribution of all the image

patches of the five subjects is shown in Fig. 2(b), in a three-

dimensional space for ease of presentation. We can see that

there is high overlapping among the manifolds correspond-

ing to different persons. We can also see that there is large

variation on the appearance of intra-subject patches.

As we mentioned above, the similarity between the same

sematic patches of different subjects is usually higher than

that of different sematic patches of the same subject. This is

illustrated from Fig. 3(a), where the similarity of two eyes

from two different subjects is usually higher than that of an

eye and a cheek from the same person. Hence, in the origi-

nal image patch space, different sematic patches of the same

subject are well separated while the same sematic patches

of different subjects are clustered, which is the main chal-

lenge in our task. We aim to learn some mappings to project

the patches in the same manifold to be close and those in

different manifolds to be far apart, respectively. Fig. 3(b)

shows the desired result of the proposed method, where lo-

cal patches of different subjects are well separated while

those of the same subject become closer after the mappings.

As a result, the manifold margin in the low-dimensional

feature space is much larger and more discriminative infor-

mation can be exploited for recognition. Yet most exist-

ing discriminative manifold learning methods assume that

the samples from different classes define a single mani-

Fig. 3. Illustration of the proposed DMMA method. (a) Three pairs

of patches of two subjects in the original high-dimensional space.

(b) Desired distribution in the low-dimensional feature space.

fold in the feature space and seek a common feature space

for all samples so that the ratio of between-class locality

variance to within-class locality variance is maximized [4].

However, these methods may fail to uncover the geometri-

cal structure of the data sampled from multiple manifolds

which are of possibly different dimensionalities. This is be-

cause the manifolds corresponding to different classes may

not have the same intrinsic dimensionality. In our proposed

approach, we model the local patches of each subject as

a manifold so that they can be better separated when the

feature dimensions are selected to be different in the low-

dimensional feature spaces. With this, we do away the as-

sumption that each sample must have the same feature di-

mension and aim to seek multiple projections to project the

data into different feature spaces to better separate them.

2.2. DMMA

Let M = [M1,M2, · · · ,MN ] be the training set of N
persons and Mi = [xi1, xi2, · · · , xit] be the manifold of

the ith person, xij ∈ Rd, 1 ≤ i ≤ N , 1 ≤ j ≤ t. The aim

of DMMA is to seek N feature matrices W1, W2, · · · , WN ,

Wi ∈ Rd×di , i = 1, 2, · · · , N , to project the training set

into N low-dimensional feature spaces, such that the mani-

fold margins are maximized.

To the best of our knowledge, a formal definition of man-

ifold margin has not been defined. In the literature, there

have been a few attempts to compute the distance between

two manifolds. For example, Wang et al. [30] proposed

a maximal linear patch (MLP) clustering method to parti-

tion each manifold into several clusters, modeled each clus-

ter with a subspace, and then computed the nearest sub-

space distance as the manifold distance. To address the

unbalanced cluster issue in the MLP method, Wang and

Chen [29] further proposed a hierarchical divisive clustering



method to better approximate the manifold by several sub-

spaces, and then learned a discriminant function for feature

extraction. While these methods can calculate the manifold

distance approximately, they also assumed that all data are

sampled from one single manifold and only one projection

is derived for feature extraction. In our proposed approach,

we aim to seek multiple projection matrices to uncover the

geometrical information of these manifolds and better char-

acterize the manifold margin in the low-dimensional feature

spaces.

Given a sample xij , which is the jth patch of the ith man-

ifold, there are usually two kinds of neighbors in these man-

ifolds: intra-manifold neighbors Nintra and inter-manifold

neighbors Ninter. From the viewpoint of classification, we

aim to minimize the intra-manifold variance and maximize

the inter-manifold separability in the low-dimensional fea-

ture spaces, simultaneously, so that the manifold margin can

be maximized for feature extraction. To achieve this goal,

we formulate the proposed DMMA as the following opti-

mization problem:

max
W1,W2,··· ,WN

J(W1,W2, · · · ,WN )

= J1(W1,W2, · · · ,WN ) − J2(W1,W2, · · · ,WN )

=
N∑

i=1

(
t∑

r=1

k1∑
p=1

‖WT
i xir − WT

i xirp‖2Airp

)

−
N∑

i=1

(
t∑

r=1

k2∑
q=1

‖WT
i xir − WT

i xirq‖2Birq

)
(1)

where xirp represents the pth k1-nearest inter-manifold

neighbors and xirq denotes the qth k2-nearest intra-

manifold neighbors of xir, respectively, Airp and Birq are

two affinity matrices to characterize the similarity between

xir and xirp as well as xirq , respectively. While many graph

construction methods have been proposed in the machine

learning and computer vision community recently [12], we

apply the conventional k-nearest-neighbor method, for its

high effectiveness and efficiency, to calculate the affinity

matrices A and B, as follows:

Airp =

{
exp (−‖xir − xirp‖2/σ2, if xirp ∈ Nk1

inter(xir)
0, otherwise

(2)

Birq =

{
exp (−‖xir − xirq‖2/σ2), if xirq ∈ Nk2

intra(xir)
0, otherwise

(3)

where Nk1
inter(xir) and Nk2

intra(xir) denote the k1-inter-

manifold neighbors and k2-intra-manifold neighbors of

xir, respectively; k1, k2 and σ are three empirically pre-

specified parameters.

The objective function of J1 in Eq. (1) is to ensure that

if xir and xirp are close and from different subjects, then

their low-dimensional representations are separated as far

as possible. On the other hand, J2 in Eq. (1) ensures that if

xir and xirq are close and from the same subject, then their

low-dimensional representations are close as well.

To the best of our knowledge, there is no closed-form

solution for the optimization problem defined in Eq. (1)

as there are N projection matrices to be obtained simul-

taneously. We solve this problem in an iterative manner

as inspired by recent advances in high order tensor de-

composition [16, 33]. The basic idea is to first initialize

W1,W2, · · · ,Wi−1,Wi+1, · · · ,WN with a valid initial so-

lution, and then solve Wi sequentially.

Given W1,W2, · · · ,Wi−1,Wi+1, · · · ,WN , Eq. (1) can

be rewritten as

max
Wi

J(Wi)

= (J1(Wi) + F1) − (J2(Wi) + F2)

= (
t∑

r=1

k1∑
p=1

‖WT
i xir − WT

i xirp‖2Airp + F1)

− (
t∑

r=1

k2∑
q=1

‖WT
i xir − WT

i xirq‖2Birq + F2) (4)

where F1 =
N∑

j=1,j �=i

(
t∑

r=1

k1∑
p=1

‖WT
j xjr − WT

j xjrp‖2Ajrp)

and F2 =
N∑

j=1,j �=i

(
t∑

r=1

k2∑
q=1

‖WT
j xir − WT

j xjrq‖2Bjrq) are

two constant matrices and which can be ignored as they

don’t affect the optimization of Wi.

After some algebraic manipulations, we can simplify

J1(Wi) to the following form

J1(Wi)

=
t∑

r=1

k1∑
p=1

‖WT
i xir − WT

i xirp‖2Airp

=
t∑

r=1

k1∑
p=1

tr(WT
i xir − WT

i xirp)(WT
i xir − WT

i xirp)T Airp

=
t∑

r=1

k1∑
p=1

tr
(
WT

i [(xir − xirp)(xir − xirp)T Airp]Wi

)

=tr

(
WT

i [
t∑

r=1

k1∑
p=1

(xir − xirp)(xir − xirp)T Airp]Wi

)

=tr
(
WT

i H1Wi

)
(5)

where

H1 �
t∑

r=1

k1∑
p=1

(xir − xirp)(xir − xirp)T Airp (6)



Input: Manifold M1,M2, · · · ,MN , Mi = [xi1, xi2, · · · , xit],

xij ∈ Rd, i = 1, · · · , N , j = 1, 2, · · · , t, values of

the parameters k1, k2 and σ, iteration number T ,

and convergence error ε.

Output: Projection matrices Wi ∈ Rd×di , i = 1, 2, · · · , N .

Algorithm:

Step 1 (Initialization):
Set W 0

i = Id×d, i = 1, 2, · · · , N .

Step 2 (Similarity matrices calculation):
For each sample xij , calculate two affinity matrices A and

B as shown in Eqs. (2) and (3), respectively.

Step 3 (Local optimization):
For r = 1, 2, · · · , T , repeat

3.1. Compute H1 and H2 as shown in Eqs. (6) and (8),

respectively.

3.2. Solve the eigenvalue problem defined in Eq. (9).

3.3. Sort their eigenvectors [w1, w2, · · · , wdi ] according

to their associated eigenvalues: λ1 ≥ λ2 ≥ · · · ≥ λdi .

3.4. Obtain W r
i = [w1, w2, · · · , wdi ]. If r > 2 and

|W r
i − W r−1

i | < ε, go to Step 4.

Step 4 (Output projection matrices):
Output projection matrices Wi = W r

i , i = 1, 2, · · · , N .

Fig. 4. Proposed DMMA algorithm.

Similarly, we can simplify J2(Wi) as follows

J2(Wi)

=
t∑

r=1

k2∑
q=1

‖WT
i xir − WT

i xirq‖2Birq

=tr

(
WT

i [
t∑

r=1

k2∑
q=1

(xir − xirq)(xir − xirq)T Birq]Wi

)

=tr
(
WT

i H2Wi

)
(7)

where

H2 �
t∑

r=1

k2∑
q=1

(xir − xirq)(xir − xirq)T Birq (8)

Having obtained H1 and H2, we can obtain the bases of

Wi by solving the following eigenvalue equation:

(H1 − H2)w = λw (9)

Let {w1, w2, · · · , wdi
} be the eigenvectors corresponding

to the di largest eigenvalues {λj |j = 1, 2, · · · , di} ordered

in such a way that λ1 ≥ λ2 ≥ · · · ≥ λdi
. Then W =

[w1, w2, · · · , wdi ] is the projection matrix of Wi. We can

iteratively and sequentially solve Eq. (4) to determine the

N projection matrices W1, W2, · · · , WN . The proposed

DMMA algorithm summarized in Fig. 4.

Now, we discuss how to determine the feature dimension

di for the ith projection matrix Wi. Most existing manifold

learning algorithms [2, 3, 4, 10, 33] empirically select the

optimal feature dimension because there is only one projec-

tion matrix to be sought for feature extraction. In our case,

there are N feature projection matrices corresponding to N
different manifolds. Hence, it is non trivial to determine

the optimal feature dimensions because there are
∏N

i=1 di

candidates to be searched and it is time-communing, if not

impossible, to find the best one. We propose a new feature

dimension determination method by analyzing the eigenval-

ues of (H1 − H2). Since (H1 − H2) is not positive semi-

definite, the eigenvalues of (H1−H2) may be positive, zero

and negative. Let λ1 ≥ λ2 ≥ · · · ≥ λdi
> 0 ≥ λdi+1 ≥

· · · ≥ λd and Wi be ordered according to their correspond-

ing eigenvalues, We can select the first di eigenvectors to

maximize Eq. (4). This is because when the samples are

projected to one specific eigenvector wj corresponding to

an eigenvalue λj , Eq. (4) can be written as

J(wj) = J1(wj) − J2(wj)
= wT

j (H1 − H2)wj

= wT
j λjwj

= λj (10)

If λj > 0, this means that the inter-manifold distance

is larger than the intra-manifold distance along the direc-

tion of wj , and samples can likely be correctly classified.

According to this criterion, we can automatically determine

the feature dimension di of each projection Wi.

Lastly, we briefly analyze the computational complex-

ity of the DMMA method, which involves T iterations, and

each iteration solves a generalized eigenvalue equation. Let

N be the number of face samples in the training set, each

image patch is d2 = a ∗ b, and t is the number of local

patches of each image. Assume k = min{N ∗ t, d2}, the

computational complexity of our proposed DMMA method

is O(NTk3).

2.3. Recognition

Given a test sample T , we first partition it into t non-

overlapping local patches and model it as a manifold MT =
[xT1, xT2, · · · , xTt]. We then assign a label c to MT as

follows:

c = arg min
i

d(MT ,Mi), i = 1, 2, · · · , N. (11)

where d(MT ,Mi) is the manifold distance between MT

and Mi.

Different from existing manifold distance methods [29,

30], which calculate the nearest subspace-subspace distance

to approximate the manifold-manifold distance, we propose

here a novel reconstruction-based method to compute the



manifold distance by using all rather than selected samples

in the two manifolds. The main reason is that there is high

correlation among the samples used in existing manifold-

manifold distance methods, and a subspace can well ap-

proximate their variations in each manifold. However, the

samples used in our case are local patches of an image in

the same manifold and we will lose some patch informa-

tion if not all the patches are used to calculate the subspace

distance.

Let Yi = WT
i Mi = [yi1, yi2, · · · , yit] and YT =

WT
i MT = [yT1, yT2, · · · , yTt] be the low-dimensional

representations of manifolds Mi and MT . The manifold

distance between them is defined as follows:

d(MT ,Mi) =
1
t

t∑
j=1

d (ytij , Gk(ytij)) (12)

where Gk(ytij) denotes the k-nearest neighbors of ytij in

Yi and d (ytij , Gk(ytij)) can be easily obtained by solving

the following constrained optimization problem, similar to

the locally linear embedding method as discussed in [23],

and described below as

d (ytij , Gk(ytij)) = min∑ k
s=1 cs=1

‖ytij −
k∑

s=1

csGs(ytij)‖2 (13)

where cs is the reconstruction coefficient of the neighbor

Gs(ytij) to ytij .

3. Experiments
We have evaluated the proposed DMMA method by con-

ducting a number of SSPP face recognition experiments on

three widely used face databases. The following describes

the details of the experiments and results.

3.1. Datasets

Three publicly available face databases, namely AR [21],

FERET [22] and FG-NET [15], are used for evaluation to

demonstrate the efficacy of the proposed method. The AR

face database contains over 4000 color face images of 126

people (70 men and 56 women), including frontal views of

faces with different facial expressions, lighting conditions,

and occlusions (sun glasses and scarves). There are 26 dif-

ferent images per person, taken in two sessions (separated

by two weeks), and each session contains thirteen 768×576
color images. In our experiments, eight subsets of 800 im-

ages from 100 different subjects (50 men and 50 women)

were used, which were taken from two different sessions

and with different expressions. Table 1 provides the detailed

information of each subset. Fig. 5(a) shows eight sample

images of one subject from the Subset A to H of the AR

database. In our experiments, we used Subset A for training

and the remaining seven subsets for testing.

Table 1. Detailed information of all the eight subsets of the AR

database used in our experiments.

Dataset Collection condition

Subset A Collected in the first session with neural expression

Subset B Collected in the first session with smile expression

Subset C Collected in the first session with anger expression

Subset D Collected in the first session with scream expression

Subset E Collected in the second session with neural expression

Subset F Collected in the second session with smile expression

Subset G Collected in the second session with anger expression

Subset H Collected in the second session with scream expression

Fig. 5. Sample face images from the (a) AR, (b) FERET and (c)

FG-NET database.

The FERET database consists of 13539 facial images

corresponding to 1565 subjects, who are diverse across eth-

nicity, gender and age. Similar to [6, 26, 32, 36], we used

a subset of the FERET database including 400 gray-level

frontal face images comprising 200 different persons, with

the size of 256× 384. There are 71 females and 129 males,

each of who has two two images (fa and fb), with different

races, genders, ages, expressions, illuminations and scales,

etc. For this database, we applied fa images for training and

fb images for testing. Fig. 5(b) shows some sample images

of one subject from the FERET database, where the first

row are fa images and the second row are fb images.

The FG-NET database consists of 1002 face images with

large variations in lighting, pose, and expression. There are

82 subjects (around 12 images/subject) in total with ages

ranging from 0 to 69 years old. In our experiments, we

constructed four subsets (Subsets A-D) from the FG-NET

database. Each subset contains 82 subjects and there are two

images (S1 and S2) for each subject. The age gap between

S1 and S2 for Subsets A to D are (0, 3], (3, 6], (6, 9] and

(9, 12], respectively. Fig. 5(c) shows some sample images

from the FG-NET database extracted by using the active ap-

pearance model features, where the first row are S1 images

and the second row are S2 images. In our experiments, we

used S1 for training and S2 for testing.



3.2. Experimental Settings

For all images in the above three datasets, the facial part

of each image was manually cropped, aligned and resized

into 60 × 60 pixels according to the eyes’ positions. We

have compared our method with 11 algorithms which can

be used to address the SSPP face recognition problem, in-

cluding PCA [28], (PC)2A (projected-combined principal

component analysis) [32], E(PC)2A (enhanced projected-

combined principal component analysis) [6], 2DPCA (two-

dimensional PCA) [34], (2D)2PCA (two-directional two-

dimensional PCA) [37], SOM [26], LPP [10], SVD-

LDA (singular value decomposition-based linear discrimi-

nant analysis) [36], Block PCA [9], Block LDA [5] and UP

(uniform pursuit) [7]. The nearest neighbor classifier with

the Euclidean distance was applied for recognition.

We implemented these methods ourselves and tuned the

best parameters for each method for a fair comparison. For

(PC)2A, the weighting parameter α was tuned to be 0.25.

For E(PC)2A, two parameters α and β were used to weight

the projected-combined principal component and they were

empirically set to 0.25 and 0.5, respectively. For SVD-

LDA, the first 3 singular values and the corresponding sin-

gular vectors were applied to construct a virtual sample to

calculate the within-class scatter. For the LPP and UP meth-

ods, the number of nearest neighbors was selected to be 4

and t was set to be 100 to calculate the similarity matrix.

For all block-based methods, such as Block PCA, Block

LDA and our proposed DMMA method, the size of each

block was empirically tuned to be 10× 10. For our DMMA

method, the values of the parameters k1, k2, k and σ were

empirically tuned to be 15, 5, 4 and 100, respectively, and

the feature dimensions of these manifolds vary from 15 to

25.

3.3. Results and Analysis

Table 2 tabulates the rank-one recognition rate of dif-

ferent methods on the AR and FERET databases. The best

recognition accuracy of each method was recorded for a fair

comparison. As can be seen from this table, the proposed

DMMA consistently outperforms the 11 compared methods

with the lowest gains in accuracy of 1%, 4%, 5%, 2%, 8%,

11% and 3% on Subsets B-H of the AR database, and 2%
on the FERET database, respectively.

We have made three observations from the results listed

in Table 2: 1) PCA and Block PCA obtain similar perfor-

mance on both the AR and FERET databases, which indi-

cates that there is no significant difference on the perfor-

mance of either holistic-based or patch-based feature repre-

sentation for unsupervised learning on the SSPP face recog-

nition. 2) SVD-LDA obtains the worst performance on the

AR database even though it is a supervised method. The

reason is that the virtually generated samples by SVD-LDA

are highly related to the original sample as the new sam-

Table 2. Rank-1 recognition accuracy (%) of different methods on

different subsets of the AR and FERET databases.

Method AR FERET
B C D E F G H

PCA 97 87 60 77 76 67 38 84.0

(PC)2A 97 87 62 77 74 67 40 84.5

E(PC)2A 97 87 63 77 75 68 41 85.5
2DPCA 97 87 60 76 76 67 37 84.5

(2D)2PCA 98 89 60 71 76 66 41 85.0
SOM 98 88 64 73 77 70 42 91.0
LPP 94 87 36 86 74 78 20 84.0
SVD-LDA 73 75 29 75 56 58 19 85.5
Block PCA 97 87 60 77 76 67 38 84.5
Blcok LDA 85 79 29 73 59 59 18 86.5
UP 98 88 59 77 74 66 41 90.0
DMMA 99 93 69 88 85 79 45 93.0

ple is just an approximation by discarding some smaller

singular values of the original image. Hence, the within-

class variance cannot be accurately estimated in this sce-

nario. Another reason is that LDA usually obtains better

recognition when the number of samples per class is large.

However, when the number of sample per class is small, the

recognition performance of LDA is poor and even worse

than PCA, as also shown in [20]. 3) DMMA obtains the

best recognition performance on all the experiments, which

implies that both discriminant and geometrical information

of local patches are important for recognition.

Table 3 shows the rank-one and rank-10 recognition ac-

curacy obtained by different methods on the four subsets

of the FG-NET database. We can observe that the recog-

nition performance of all the methods are generally lower

than those obtained in the AR and FERET databases, which

implies that aging could affect the performance of the SSPP

face recognition more than other factors such as lighting and

expression variations. However, we can still see that that

our proposed DMMA consistently outperforms other com-

pared methods in terms of both rank-1 and rank-10 recogni-

tion accuracies. This is because compared with the holistic-

based methods such as PCA, 2DPCA, LPP, and UP, the pro-

posed DMMA extracts features from local patches and the

appearance differences caused by aging are mitigated in the

local patches and better age-invariant feature can be pre-

served. Compared with other block-based methods such as

Block PCA and Block LDA, DMMA can exploit both dis-

criminant and locality information to improve the recogni-

tion performance.

4. Conclusion and Future Work
We have proposed in this paper a novel discriminative

multi-manifold analysis (DMMA) method to address the

SSPP problem in face recognition. We partition each en-

rolled image into several non-overlapping patches, and con-

struct an image set for each sample per person, and then

learn multiple feature spaces to maximize the manifold mar-

gins of different persons. Experimental results on three

widely used face databases are presented to demonstrate the



Table 3. Rank-1 and rank-10 recognition accuracies (%) of differ-

ent methods on different subsets of the FG-NET database.

Method Rank-1 accuracy Rank-10 accuracy
A B C D A B C D

PCA 23.2 15.9 11.0 8.5 39.0 32.9 35.4 25.6

(PC)2A 24.4 17.1 11.0 8.5 40.2 34.2 36.6 26.8

E(PC)2A 24.4 15.9 12.2 9.8 41.5 35.4 36.6 26.8
2DPCA 24.4 17.1 13.4 9.8 40.2 34.2 36.6 26.8

(2D)2PCA 24.4 17.1 14.6 11.0 41.5 35.4 37.8 28.1
SOM 25.6 18.3 15.9 13.4 43.9 36.6 39.0 30.5
LPP 23.2 14.6 11.0 8.5 39.0 34.2 35.4 26.8
SVD-LDA 22.0 14.6 11.0 8.5 37.8 30.5 32.9 24.4
Block PCA 28.1 22.0 14.6 12.2 43.9 37.8 39.0 30.5
Blcok LDA 26.8 22.0 13.4 12.2 42.7 36.6 37.8 30.5
UP 24.4 19.5 12.2 11.0 41.5 35.4 36.6 28.1
DMMA 32.9 26.8 18.3 14.6 48.8 42.7 43.9 36.6

efficacy of the proposed approach. How to extend the pro-

posed DMMA method to MSPP face recognition appears to

be another interesting direction of future work.
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