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Abstract

This is a survey of some academic research on telephone call centers. The surveyed research has
its origin in, or is related to, queueing theory. Indeed, the “queueing-view” of call centers is both
natural and useful. Accordingly, queueing models have served as prevalent standard support tools
for call center management. However, the modern call center is a complex socio-technical system.
It thus enjoys central features that challenge existing queueing theory to its limits, and beyond.

This paper (and its future updates) can be downloaded from www.cs.vu.nl/obp/callcenters
and ie.technion.ac.il/serveng.
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1 Introduction

Call centers, or their contemporary successors contact centers, are the preferred and prevalent way
for many companies to communicate with their customers. The call center industry is thus vast,
and rapidly expanding in terms of both workforce and economic scope. For example, it is estimated
that 3% of the U.S. and U.K. workforce is involved with call centers, the call center industry enjoys a
annual growth rate of 20% and, overall, more than half of the business transactions are conducted over
the phone. (See callcenternews.com/resources/statistics.shtml for a collection of call center
statistics.)

Within our service-driven economy, telephone services are unparalleled in scope, service quality
and operational efficiency. Indeed, in a large best-practice call center, many hundreds of agents could
cater to many thousands of phone callers per hour; agents utilization levels could average between 90%
to 95%; no customer encounters a busy signal and, in fact, about half of the customers are answered
immediately; the waiting time of those delayed is measured in seconds, and the fraction that abandon
while waiting varies from the negligible to mere 1-2% (e.g., see Figures 4, 5 and 7). The design of
such an operation, and the management of its performance, surely must be based on sound scientific
principles. This is manifested by a growing body of academic multi-disciplinary research, devoted to
call centers, and ranging from Mathematics and Statistics, through Operations Research, Industrial
Engineering, Information Technology and Human Resource Management, all the way to Psychology
and Sociology. (The bibliography [47] covers over 200 research papers.) Our goal here is to survey
part of this literature, specifically that which is based on mathematical queueing models and which
potentially supports Operations Research and Management. Along the way, we take the opportunity
to point out some challenges, both theoretical and practical, that give rise to worthy (at least in our
opinion) open research directions.

There already exist several academic surveys on call centers. (There are numerous survey papers
in the business literature, which are not addressed here.) We are aware of five such articles: Pinedo
et al. [56], giving basics of call center management, including some analytical models; Anupindi &
Smythe [7], which describes the technology that enables current and plausibly future call centers;
Grossman et al. [36] and Mehrotra [53], which are both short overviews of some OR challenges in
call center research and practice; and finally Anton [6], who provides a managerial survey of the past,
present and future of customer access (contact) centers.

One can possibly view our survey as a supplement to [56, 53], aimed at academic researchers that
seek an entry to the subject, as well as to queueing theorists and practitioners who develop call center
applications. The surveys [6, 7] add some interesting background information. Additional articles
that we recommend as part of a quantitative introduction to call centers are Brigandi et al. [20],
Mandelbaum, Sakov and Zeltyn [51], Evenson et al. [25] and Duxbury et al. [23]. The first one [20]
presents a long-term effort that demonstrates the payoffs in call center modeling. The second [51],
parts of which have been adapted to the present text, provides a statistical description of call center
operations. The rest [25, 23] are managerial surveys of performance drivers and state-of-the-art. One
could also add the book Cleveland and Mayben [22] as a practitioners’ overview.

While the focus of our survey is mathematical queueing models of call centers, no model will
actually be formulated here, but rather a multitude of models will be referred to, and only some
described. Our conception, and hope, is that readers will be stimulated enough to pursue the details
through their sources, namely the original research articles that are surveyed here.
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The working environment of a call center

Figure 1: The working environment of a call center

1.1 What is a call center?

A call center constitutes a set of resources (typically personnel, computers and telecommunication
equipment), which enable the delivery of services via the telephone. The working environment of
a large call center (Figure 1) could be envisioned as an endless room with numerous open-space
cubicles, in which people with earphones sit in front of computer terminals, providing tele-services to
unseen customers. Most call centers also support Interactive Voice Response (IVR) units, also called
Voice Response Units (VRU’s), which are the industrial versions of answering machines, including the
possibilities of interactions. But more generally, a current trend is the extension of the call center into
a contact center. The latter is a call center in which the traditional telephone service is enhanced by
some additional multi-media customer-contact channels, commonly VRU, e.mail, fax, Internet or chat
(in that order of prevalence).

Most major companies have reengineered their communication with customers via one or more
call centers, either internally-managed or outsourced. The trend towards contact centers has been
stimulated by the societal hype surrounding the Internet, by customer demand for channel variety,
and by acknowledged potential for efficiency gains (requests for e.mail and fax services can be “stored”
for later response and, when standardized and well-managed, they can be made significantly cheaper
that telephone services). Our survey deals almost exclusively with pure telephone services. Indeed, to
the best of our knowledge, no analytical model has yet been dedicated to truely multi-media contact
centers, though a promising framework (skill-based routing) and a few models that accommodate
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Figure 2: Call Center Technology (Operator Assistance in British Telecom UK [23])

IVR’s, e.mails and their blending with telephone services, will be described later in Section 3.

1.2 Technology

The large-scale emergence of call centers, noticeably during the last decade, has been enabled by
technological advances in the area of Information and Communication Technology (ICT). First came
PABX’s (Private Automatic Branch Exchanges, or simply PBX), which are the telephone exchanges
within companies. A PABX connects, via trunks (telephone lines), the public telephone network to
telephones within the call centers. These, in turn, are staffed by telephone agents, often called CSR’s
for Cusomer Service Representatives, or simply “rep’s” for short. Intermediary between the PABX and
the agents is the ACD (Automatic Call Distribution) switch, whose role is to distribute calls among
idle qualified agents. A secondary responsibility of the ACD is the archival collection of operational
data, which is of prime importance as far as call center research is concerned (see Subsection 2.2
below for an elaboration). While there exists a vast telecommunications literature on the physics
of telephone-traffic and the hardware (technology) of call centers, our survey focuses on the service
contact between customers and agents, sometimes referred to as the service’s “moment of truth”.

Advances in information technology have contributed as importantly as telecommunication to the
accelerated evolution of call centers. (See Figure 2 for a concrete example.) To wit, rather than search
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for a paper file in a central archive, that renders impossible an immediate or even fast handling of
a task related to that file, nowadays an agent can access, almost instantaneously, the needed file in
the company’s data base. A new trends in ICT is the access of customer files in an automatic way.
The relevant technology is CTI (Computer Telephony Integration), which does exactly what its name
suggests. In fact, this can go further. Consider, for example, a customer who seeks technical support
from a telephone help-desk. That customer can be often automatically identified by the PABX, using
ANI (Automatic Number Identification). This triggers the CTI to search for the customer’s history
file; information from the file then pops up on the agent’s computer screen, detailing all potentially
relevant support for the present transaction, as well as pointers for likely responses to the support
request. Having identified the customer’s need, this could all culminate in an almost instantaneous
automatic e.mail or fax that resolves the customer’s problem. In a business setting, CTI and ANI are
used to identify, for example, cross- or up-selling opportunities and, hence, routing of the call to an
appropriately skilled agent.

1.3 The world of call centers

Call centers can be categorized along many dimensions: functionality (help desk, emergency, tele-
marketing, information providers, etc.), size (from a few to several thousands of agent seats), geogra-
phy (single- vs. multi-location), agents charateristics (low-skilled vs. highly-trained, single- vs. multi-
skilled), and more. A central characteristic of a call center is whether it handles inbound vs. outbound
traffic. (Synonyms for inbound/outbound are incoming/outgoing.) Our focus here is on inbound call
centers, with some attention given to mixed operations that blend in- and out-going calls. An example
of such blending is when agents are utilizing their idle time to call customers that left IVR requests
to be contacted, or customers that abandoned (and had been identified by ANI) to check on their
wishes. Pure outbound call centers are typically used for advertisement or surveys - they will be only
briefly described (and contrasted with pure inbound and mixed operations) in Subsection 3.5.

Modern call/contact centers however are challenged with multitude types of calls, coming in over
different communication channels (telephone, internet, fax, e.mail., chat, mobile devices, ...); agents
have the skill to handle one or more types of calls (e.g., they can provide technical support for
several products in several languages by telephone, e.mail or chat). Furthermore, the organizational
architecture of the modern call center varies from the very flat, where essentially all agents are exposed
to external calls, to the multi-layered, where a layer represents say a level of expertise and customers
could potentially be transferred through several layers until being served to satisfaction. Further yet,
a call center could in fact be the virtual embodiment of few-to-many geographically dispersed call
centers (from the very large, connected over several continents - for example, mid-West U.S.A. with
Ireland and India - to the very small, constituting individual agents that work from their homes in
their spare time).

1.4 Management and quality of service

There exists a large body of literature on the management of call centers, both in the academia (Section
VII in [47] contains close to 50 references) and even more so in the trade literature. The traditional
view of the call center has been that of a necessary evil - something that a well-respected company
must maintain, and pour money into - indeed too much of it. However, and as already indicated, call
centers have evolved into the main contact frontier of businesses with their customers and, as such,
present highly promising business opportunities. (One talks about the transformation of call centers
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from being mere operational “cost centers” to strategically-significant “profit centers”.) Call center
managers are thus faced with the conflicting goals of providing consistent high service quality, through
a turbulent fast expanding service channel, to an often huge customer base - a truly fertile ground
for Operations Research models and analysis, with a special role reserved for queueing theory and
queueing science.

Typically, call center goals are formulated as the provision of service at a given quality, subject to
a specified budget (more on this momentarily). While Service Quality is a very complicated notion, to
which numerous articles and books have been devoted [32, 12, 27], a highly simplified approach suffices
for our purposes. We measure service quality along two dimensions: qualitative (psychological) and
quantitative (operational). The former relates to the way in which service is provided and perceived
(am I satisfied with the answer, is the agent friendly, etc.; for example, [66]). The latter relates more
to service accessibility (how long did I have to wait for an answer, was I forced into calling back, etc.).
Models in support of the qualitative aspects of service quality are typically empirical, originating in the
Social Sciences or Marketing (see Sections III, IV and VIII in [47]). Models in support of quantitative
management are typically analytical, and here we focus on the subset of such models that originates
in Operations Research in general and Queueing Theory in particular.

Common practice is that upper management decides on the desired service level and then call
center managers are called on to defend their budget. Similarly, costs can be associated with service
levels (eg. toll-free services pay out-of-pocket for their customers’ waiting), and the goal is to minimize
total costs. These two approaches are articulated in Borst, Mandelbaum and Reiman [15]. It occurs,
however, that profit can be linked directly to each individual call, for example in sales/mail-order
companies. Then a direct trade-off can be made between service level and costs so as to maximizes
overall profit. Two papers in which this is done are Andrews & Parsons [5] and Akşin & Harker [2]. In
what follows we concentrate on the service level vs. cost (efficiency) trade-off. The fact that salaries
account for 60–70% of the total operating costs of a call center justifies our looking mostly at personnel
costs. This is also the approach adopted by workforce management tools, that are used on a large
scale in call centers. By concentrating on personnel, one presumes that other resources (such as ICT)
are not bottlenecks (see however the work of Akşin and Harker [1, 2]).

1.5 Performance measures

Operational service level is typically quantified in terms of some congestion or performance measures.
Our experience, backed up by [27], suggests a focus on abandonment, waiting and/or retrials, which
underscores the natural fit between queueing models and call centers (Subsection 1.7).

Abandonment is measured by the fraction of customers that abandon the queue prior to being
served (either out of all customers, or out of those actually delayed, or sometimes out of those waiting
over some small threshold, say 5 seconds). Waiting is measured by either its average (ASA = Average
Speed of Answer), or by some percentile of the waiting-time distribution. An industry standard for
telephone services seems to be the 80/20 rule, under which at least 80% of the customers must wait
no more than 20 seconds. (We are aware of no rationalized justification for these parameter values;
moreover, different standards are applied to emails, faxes and regular mail.) Finally, retrials can be
quantified by the fraction of customers whose request is satisfied on first attempt, or by the average
number of visits needed to resolve a single problem.

Performance measures are of course intercorrelated - see [69] for the remarkably linear relation
between the fraction of abandoning customers and average waiting time. They could also convey
more information that actually meets the eye. For example, in contrast to waiting statistics which
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are objective, abandonment and retrial measures are subjective in that they incorporates customers’
view on whether the offered service is worth its wait (abandonment) or returning to (retrials). As
another example, it turns out that one can quantify customers’ patience in terms of the ratio between
the fraction abandoned to the fraction served - indeed, it is shown in [51] that this ratio can be also
interpreted as that between the average time that customers are willing to wait to the average time
that they expect to wait.

The practice of service levels must be handled with care. For example, a low fraction of abandoning
customers need not indicate a high level of service but possibly an urgent need for it. Low levels of
waiting could correlate highly with short service times which, in turn, could result in many retrials -
in other words, service times and delays are effectively long, being accumulated over several visits. It
is also unclear whether service level must hold for every time interval, or on average over the whole
day, or perhaps for an arbitrary customer. The usual situation is that the service level must hold for
every time interval. (Koole and van der Sluis [44] emphasize the advantages of looking at an overall
service level. For an example of rigorous considerations of these issues, involving convex analysis of
the relevant performance measures, see Part 1 of Homework 11, in ie.technion.ac.il/serveng.)

For performance measures to be useful, they must be archived at a proper resolution and observed
at the appropriate frequency. Ideally, one would like to store, for each individual transaction at the call
center, its operational and business characteristics. This raw data can then be mined for exploratory
purposes, or aggregated into performance measures for management use. For example, Figures 4 and
7 exhibit the prevailing standard, under which operational data is averaged over half-hour intervals.
(See Section 2 for details.) Such an averaging, however, is insufficient for deeper needs, as amply
demonstrated in [51].

1.6 A scientific approach to management

In the practice of call center management, a quantitative approach often amounts to merely moni-
toring, explaining or intervening with quantitative changes in performance. The call center manager
tracks performance indicators and reacts when they reach unacceptable levels; for example, too many
customers are waiting or too many agents are idle. These reactions are typically based on subjectively-
biased experiences, and a decision is doomed “poor” or “wrong” if the resulting performance turns
out worse than expected.

In a more scientific approach, management is pro-active rather than reactive - for example, ensuring
that waiting is scarce rather than adding agents when waiting becomes excessive. Here quantitative
models - analytical or simulation - turn out useful for developing rules-of-thumb and intuition, or
practically supporting design and control. For example, the “what-if” scenarios in the Introduction to
[15] demonstrate, via a simple analytical model, that call centers are typically extremely sensitive to
changes in underlying parameters; this is closely related to the square-root principle for staffing, which
is a rule-of-thumb that is presented in Subsection 3.1.1 below. Models have in fact become integral
parts of the widely used workforce scheduling tools; but such uses rarely go beyond the rudimentary
M/M/s (Erlang-C) queue, let alone the more sophisticated models that are surveyed in Section 3.

Analytical models are commonly contrasted with simulation (Section VIII in [47]),which has been
growing in popularity. This is partly because of an improved user-friendliness in simulation tools,
partly in view of the scarcity of mathematical skills required for the alternatives to simulation, but
perhaps mostly due to the widening gap between the complexity of the modern call center relative to
the analytical models available to accommodate this complexity.

We shall not delve here on the virtues and vices of analytical vs. simulation models. Our contention
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is that, ideally, one should blend the two: analytical models for insight and calibration, simulation
also for fine tuning. In fact, our experience strongly suggests that, having analytical models in one’s
arsenal, even limited in scope, improves dramatically one’s use of simulation. These analytical models
are often, as it turns out, related to queueing theory and their state-of-the-art, in the context of call
centers, is described in Section 3.

1.7 Queueing Theory and Science

Queues in service operations are often the arena where customers, service providers (servers, or agents)
and managers establish contact, in order to jointly create the service experience. Process-wise, queues
play in services much the same role as inventories in manufacturing. But in addition, “human queues”
express preferences, complain, abandon and even spread around negative impressions. Thus, cus-
tomers treat the queueing experience as a window to the service-providing party, through which their
judgement of it is shaped for better or worse. Managers can use queues as indicators (queues are the
means, not the goals) for control and improvement opportunities. Indeed, queues provide unbiased
quantifiable measures (these are not abundant in services), in terms of which performance is relatively
easy to monitor and goals are naturally formulated.

Research in quantitative call center management is concerned with the development of scien-
tifically-based design principles and tools (often culminating in software), that support and balance
service quality and efficiency, from the likely conflicting perspectives of customers, servers, managers,
and often also society. Queueing models constitute a natural convenient nurturing ground for the
development of such principles and tools [31, 15]. However, the existing supporting (Queueing) theory
has been somewhat lacking, as will now be explained.

The bulk of what is called Queueing Theory, consists of research papers that formulate and analyze
queueing models with a realistic flavor. Most papers are knowledge-driven, where “solutions in search
of a problem” are developed. Other papers are problem-driven, but most do not go far enough in the
direction of a practical solution. Only some articles develop theory that is either rooted in or actually
settles a real-world problem, and scarcely few carry the work as far as validating the model or the
solution [34, 38]. In concert with this state of affairs, not much is available of what could be called
Queueing Science, or perhaps the Science of Congestion, which should supplement traditional queueing
theory with empirically-based models [69], observations [51] and experiments [59, 46]. In call centers,
and more generally service networks, such “Science” is lagging behind that in telecommunications,
computers, transportation and manufacturing. Key reasons for the gap seem to be the difficulty of
measuring service operations (see Section 2), combined with the need to incorporate human factors
(which are notoriously difficult to quantify) - see Subsections 2.3.3 and 3.2 for a discussion of human
patience while waiting in tele-queues.

1.8 Call centers as queueing systems

Call centers can be viewed, naturally and usefully, as queueing systems. This comes clearly out of
Figure 3, which is an operational scheme of a simple call center. (See Subsection 3.1 for an elaboration.)

In a queueing model of a call center, the customers are callers, servers (resources) are telephone
agents (operators) or communication equipment, and tele-queues consist of callers that await service by
a system resource. The simplest and most-widely used such model is the M/M/s queue, also known in
call center circles as Erlang C. For most applications, however, Erlang C is an over-simplification: for
example, it assumes out busy signals, customers impatience and services spanned over multiple visits.
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A Simple Call Center

lost calls

arrivals

lost calls

retrials

retrials

abandonment

returns

queue
ACD

agents
busy

Figure 3: Operational Scheme of a Simple Call Center.

These features are captured in Figure 3, which depicts a single finite-queue with abandonment [31]
and retrials [63, 38]. But the modern call center is often a much more complicated queueing network:
even the mere incorporation of an IVR, prior to joining the agents’ tele-queue, already creates two
stations in tandem [19], not to mention having multiple teams of specialized or cross-trained agents
[30, 13], that are geographically dispersed over multiple interconnected call centers [43], and who are
faced with time-varying loads [50] of calls by multi-type customers [8, 2].

1.9 Keeping up-to-date

A fairly complete list of academic publications on call centers has been compiled in [47]. There are over
200 publications, arranged chronologically within subjects, each with its title and authors, source, full
abstract and keywords. Section I in [47], entitled “Operations Research, Operations Management”,
covers analytical queueing models of call centers. The material in [47] has been updated through
September 2001, and attempts will be made to keep it up-to-date. Indeed, authors of papers related
to call centers are encouraged to send their work to the second author (see the cover page of [47] for
guidelines).

Given the speed at which call center technology and research are evolving, advances are perhaps
best followed through the Internet - either via sites of researchers active in the area, or industry sites -
see Section XI of [47] for a list of 15 web sites. As an example, the first author maintains a web site with
call center research done in his research group. It can be found at www.cs.vu.nl/obp/callcenters.
The site of the second author (ie.technion.ac.il/serveng) includes material from a course entitled
Service Engineering, the inspiration and data for which came out of call centers that are conceptualized
as queueing systems. Alternatively, one could activate any standard search engine with the keywords
“call center” (for example Google (www.google.com)) - this could become the start of a possibly long
but potentially very interesting journey.
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1.10 The overall picture

Any generalization or classification has the disadvantage of ignoring certain relations. Moreover, there
are a multitude of ways to survey a broad subject, each having its advantages and disadvantages. Yet
a coherent presentation must strike a compromise on some sort of classification which, in our case, is
as follows:

A modeling study must incorporates, at some point, the collection and analysis of relevant data.
We thus start our survey with a description of call center data. Directly measurable quantities, such
as arrival rates and service time distributions, are referred to as primitives - these are typically the
required inputs (parameters) for any performance model.

Next, we move on to models that are used to calculate and optimize call center performance over
short time intervals (in practice 60-, 30- and less frequently 15-minute intervals). Such models are
used for two distinct goals: first, they assist in the operational control of call centers, in the sense that
for example call routing decisions are based on or even taken by these models; second, they provide
input for the staffing algorithms in the form of required numbers and skills of agents, over all relevant
time intervals.

Staffing models are the subject of our last section. At present, they constitute the most used
mathematical models of call centers, often embedded within so-called workforce management systems.
Our survey follows the practice of workforce management, which is typically exercised hierarchically:
from the strategic, through tactical to the operational and online-control levels [29]. The queueing
models of Section 3 are most appropriate for the online-control level For the other levels, mathematical
programming models are the ones used. To the best of our understanding, there is a scarcity (both in
theory and practice) of strategic models that support business plans and integrate with lower levels
of decision (Xu [68]).

To sum up, call centers offer numerous opportunities for scientific and engineering research, that
will enhance the understanding of their operations and support their management. Such research
must be based on analytical models, and validated with real data (as in Green and Kolesar [34]), to be
of practical value. In the sequel we survey the state-of-the art of this research. As will be unraveled,
a very wide gap does exist between the available and what is still needed, but a considerable effort
has already been undertaken.

2 Data analysis and forecasting

Any modeling study of call centers must necessarily start with a careful data analysis. For example,
the simplest Erlang C queueing model of a call center requires the estimation of calling rate and
mean service (holding) times. Moreover, the performance of call centers in peak hours is extremely
sensitive to changes in its underlying parameters. (See Figure 7, and the discussion in Subsection
3.2.) It follows that an extremely accurate estimation/forecasting of parameters is a prerequisite for
a consistent service level and an efficient operation.

Section II in [47] lists only 16 papers on the statistics and forecasting of call center data. Given the
data-intensive hi-tech environment of modern call centers, combined with the importance of accurate
estimation, it is surprising, perhaps astonishing, that so little research is available and so much is yet
needed. (Compare this state-of-affairs with that of Internet and telecommunication - here, only few
year ago, a fundamental change in the research agenda was forced on by data analysis, which revealed
new phenomenon, for example heavy-tails and long-range-dependence.)

There is a vast literature on statistical inference and forecasting, but surprisingly little has been
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devoted to stochastic processes and much less to queueing models in general and call centers in
particular (see Section II in [47] for some exceptions). Indeed, the practice of statistics and time series
in the world of call centers is still at its infancy, and serious research is required to bring it to par with
its needs.

The scarcity of statistical research of call centers renders our survey effort relatively easy. We start
with a brief discussion on model types: empirical, explanatory and theoretical. Then we move on
to describing existing sources for call center data. We conclude with some models for primitives and
traffic that are based on these data: first, common models for call arrivals and service/holding times,
followed by less common models for some aspects of customers’ behavior, specifically (im)patience and
retrials. We restrict attention to individual call centers for lack of any empirical studies on networks.

2.1 Empirical, explanatory and theoretical models

Parts of the present section are adapted from the report Mandelbaum, Sakov & Zeltyn [51]. This
is an in-depth empirical analysis, mostly descriptive, of call center operational data, gathered at a
small Israeli bank over the 12 months of 1999. (Both the report and the data are downloadable from
ie.technion.ac.il/serveng.) Descriptive analysis culminates in empirical descriptive models, the
simplest of which are tables or histograms of parameters and performance; for example, an end product
is a histogram of service duration by service type, or of customers’ patience by customer type or of
waiting times for those ultimately served. It is to be contrasted with statistical analysis, that seeks
to develop mathematical or theoretical models; for example, identifying that the arrival process is a
Poisson process or a mixture of such [42]; or that service duration is exponentially distributed, with
parameters that depend on time-of-day and are correlated with patience. (Such statistical analysis
that accompanies [51] is now in progress, jointly with Larry Brown, Noah Gans and Linda Zhao of
the Wharton Business School.)

Intermediary between empirical and theoretical models are explanatory models, for example re-
gression and time series. These go beyond say histograms by identifying and capturing relations in
terms of explanatory variables, but they go short of theoretical models in that there is no attempt
to explain these relations. For a clarification, consider three possible models for the arrival process
of calls to a call center during a given day (Section 4 in [51]): a descriptive model could be simply a
deterministic fluid-like model of the time-varying calling rate [51], based on averaging out stochastic
variability in previous similar days; a theoretical model could be a time-inhomogeneous Poisson pro-
cess [41], expressing the fact that arrivals are completely random; an explanatory model could be a
histogram for the total number daily arrivals, by the hour, based on an ARIMA-related time-series [4]
that captures trends due to holidays and advertisement campaigns.

Queueing models constitute mathematical relations among building blocks, for example arrivals
and services, which we refer to here as primitives. Queueing analysis of a given model starts with
assumptions on its primitives and culminates in properties of its performance measures. Validation
of the model then amounts to a comparison of its primitives and performance measures - typically
theoretical, against their analogs in a given call center - mostly empirical.

While models of primitives and performance measures could be empirical, theoretical or explana-
tory, the latter type will not be surveyed here. One reason is that explanatory models for primitives
have been rarely used in queueing theory. A further justification is that Queueing Science typically
validates theoretical primitives and performance measures against their empirical analogs. For ex-
ample, theoretical analysis of the G/G/s queue gives rise to Kingman’s law of congestion: in heavy
traffic, the waiting time of delayed customers is close to being exponentially distributed. Empirical
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analysis, as in [51], can then validate Kingman’s law against the reality in one or many call centers
operating in heavy traffic.

2.2 Call center data

We distinguish between three types of call center data: operational, marketing, and psychological.
Operational data is typically collected by the Automatic Call Distributor (ACD), which is part of the
telephony-switch infrastructure (typically hardware-, but recently more and more software-based).
Marketing or Business data is gathered by the Computer Telephony Integration/Information (CTI)
software, that connects the telephony-switch with company data-bases, typically customer profiles
and business histories. Finally, psychological data is deduced from surveys of customers, agents or
managers. It records subjective perceptions of service level and working environment, and will not be
discussed here further.

Existing performance models are based on operational ACD data. The ultimate goal, however, is
to integrate data from the three sources mentioned above, which is essential if one is to understand
and quantify the role of (operational) service-quality as a driver for business success. For example, in a
sales call center, customers’ (im)patience (psychological) affects both staffing levels (operational) and
the likelihood of a purchase (marketing). But there is ways to go. First, “dialogues” between ACDs
and CTI’s are non-existing (the two typically originate in separate vendors). Moreover, our experience
has been that both types of data are very difficult to access: ACD data for technical reasons and CTI
data due to confidentiality concerns. (Interestingly, this state of affairs seems to be different with
Internet services.)

2.2.1 Operational data (ACD)

Most modern call centers are equipped with an ACD: this is the switch that routes calls to agents, while
tracing and capturing the history of each call as it flows through the call center. ACD data include
each call’s arrival time, waiting time in the tele-queue, and service duration. (A related software
tool goes under the name of Customer Relations Management (CRM) - it also records individual
service transactions, but more in terms of work content and customer value rather than operational
characteristics.)

ACD data is typically used through aggregated reports. These consist of counts and averages
over 15/30/60 minutes periods at the lowest level, and daily/weekly/yearly periods at higher levels
(Figures 5 and 7). In such reports one can find, among other things, the total number of calls served
or abandoned during the given period, average waiting times, the agents’ utilization levels, etc. The
call-log files, with individual call histories, is commonly erased after being aggregated. The reasons,
we believe, are at least the following. First is the desire to save storage space, which nowadays is
economically unfounded: a whole month worth of data, from a large call center, would fit onto a
single compact disc. But more importantly is the lack of understanding on what can be done with
individual transaction data (the increasing popularity of CRM helps here) and sometimes also the
lack of capabilities for deciphering vast data warehouses (here Data Mining appears to come to some
rescue.)

2.2.2 Marketing data (CTI)

The other main type of data is marketing (business) data. It is typically collected by CTI software
(middleware), that integrates telephone data, specifically the caller ID, with computer data bases that
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include the caller’s profile and business history. (Some associate CRM tools with this kind of data,
rather than with ACD data). Having made the integration, the CTI software pops up a relevant
description of the customer on the agent’s terminal screen. This description includes, for example,
the history of the previous calls and, if relevant, dollar-figures for past sales and future tele-marketing
targets. (It is less relevant, for example, in Help Desks, which are Technical Support Centers; here
history would include, for example, past complaints and repairs.)

2.2.3 Additional data sources

Two additional sources of data are important to acknowledge. First, some companies record individual
calls for legal needs (e.g., online insurance) or training reasons. While potentially useful, there is of
yet no simple machinary to translate this data into, say, a spreadsheet. A second source are subjective
survey data, which could include both operational and marketing data. While serving a useful rough
benchmarking role (see, for example, www.e-interactions.com), such data should be handled with
care. It definitely can not serve as a substitute, or even a proxy, for the ACD and CTI data discussed
above.

2.2.4 On the use of data

The data that is needed for a modeling study depends on the goal of that study. Call centers are
dynamic environments, where agent groups and routing tables are frequently changing. This makes
historical data useful only if carefully used. In addition, a proliferation of suppliers of hardware and
software, and the many custom-made management information systems used to retrieve data, make
most data analysis projects of call centers rather unique undertakings. (Though experience does help:
for example, the project of the small call center in [51] is now redone at Wharton with a large U.S.
bank, controlling four networked call centers - this would have been impossible as a first project!)

We believe that a call center should keep at least several months worth of transactional data,
namely data at the individual call level, together with utilization profiles of individual agents. The
data should be complete, showing for each call its full trace (as in [51]), and for each agent lists of
periods of availability for service, breaks and their reasons, etc. Aggregate data should always be kept
and archived, with the level of aggregation (per interval, per day) increasing (if necessary) as the data
gets older. It is also useful to keep management data, such as attained service levels. (Incidentally,
computing these service levels from the data often results in a discrepancy from the service level
obtained directly from the ACD. Finding out the causes for these differences can be a very interesting
exercise.)

In summary, as modeling efforts of call centers become commonplace, which undoubtedly is to
come, the practice of gathering and analyzing individual calls, customers and agents will gain pop-
ularity as well - both separately and integratively over the operational, marketing and psychological
data sources.

2.3 Models of primitives

As argued above, queueing models are created from primitives. For example, the most basic oper-
ational model of a call center is the M/M/s queue with parameters λ, µ and s: the primitives are
the arrival process (assumed Poisson at a constant rate λ), the service times (assumed exponentially
distributed with mean µ−1), and the agents (s of them); there are additional implicit assumptions,
such as independence among the primitives, FCFS service disciplines and more. In order to apply the

12

http://www.e-interactions.com


M/M/s model, one must estimate its parameters based on historical data. But a more fundamental
question is whether the underlying M/M/s assumptions are at all valid - are arrivals Poisson? are
service times exponential? and if not, what are alternative useful models for arrivals and services? For
our purposes, usefulness means that they can serve as primitives for analytical models - a definition
that depends, of course, on modeling scope and capabilities of the model builder. This defines the
main research agenda for Queueing Science, in the context of call centers: to identify, validate and
archive (publish) useful models for primitives and performance measures of call centers.

2.3.1 Call arrivals

The arrival process records the epochs that calls arrive to the call center. It can be described at
different levels of detail, and from various points of view (as done in Subsection 2.1). Arrivals to call
centers are typically random. For our purposes, randomness can be explained as follows: there are
many potential, statistically identical callers to the call center; there is a very small yet non-negligible
probability for each of them calling at any given minute, say, and they decide on whether to call
independently of each other. Under such circumstances, theory dictates that the arrival process fits
well a Poisson process. If more customers are likely to call say at 10:30 am than at 1:00 pm, one gets a
time-inhomogeneous Poisson process. Common call-center practice is to assume constant arrival rates
over, say, individual hours or half hours. Such an approximation, by a piecewise-constant arrival rate
function allows one to use standard steady-state models. This is reasonable if steady state is achieved
relatively fast, in particular predictable variability does not change abruptly.

There are scenarios where the Poisson assumptions are violated. A simple example is when callers
react to an external event, such as a telephone number shown in a TV commercial, which can be
modeled by adding a Poissonian number of arrivals at a predictable point in time. (This is still
referred to a Poisson point process, which “enjoys” discontinuity in its cumulative arrival rate.) Other
examples are when busy-signals or retrials occur frequently, or when call centers are interconnected
via overflow protocols, for example via centralized load-balancing. In analogy to Internet traffic, it is
conceivable that phenomena such as long-range dependence, or heavy tails of the interarrival times,
would emerge, but there has been no empirical support of that.

Overall, traffic models are very important to call centers as they are used to forecast future traffic.
Evidently, without good forecasts it is impossible to schedule personnel efficiently. As traffic volume
depends on many factors, statistical techniques using explanatory variables are used to represent the
day and the time, and all kinds of influences related to holidays, for example. However, call centers
do not always have sufficient historical data to base forecasts on, and certain factors such as weather
conditions cannot be predicted. A possible solution to this is offered in Jongbloed and Koole [42],
where a method is developed to derive intervals for arrival rates rather than point estimates. Gordon
& Fowler [33] also pay attention to this problem, but in less detail.

Many companies notice the influence of internal and external events (such as advertisement cam-
paigns, or the release of new product versions) on the traffic load. They also experience a relation
between the number of users of a products and the traffic related to a product (and whether a customer
is a new or a long-time user, etc.). For these reasons certain centers prefer to base their forecasts on
the numbers of customers and acticipated events, and just use the historical data to estimate the
behavior of individual customers. As far as we know, no academic studies have been undertaken that
explore this practice.
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2.3.2 Service duration

Most applications of queueing theory to call centers assume exponentially distributed service durations
as their default. The main reason is the lack of empirical evidence to the contrary, which leads one to
favor convenience and apply models that are analytically tractable (for which there are readily available
formulae). And indeed, models with exponential service times are amenable to analysis, especially
when combined with the natural assumption that arrival processes “are” Poisson (see Section 3 for a
discussion of queueing models).

In some studies, the exponentiality assumption was indeed validated as an acceptable fit. Rep-
resentatives are Kort [46], who summarizes models of the Bell System Public Switched Telephone
Network, developed in the 70’s and 80’s; and Harris et al. [38], that analyzes IRS call centers. Our
experience has confirmed these findings for human services that are homogeneous and unpaced (not
only telephone services), but this is definitely not the case with mixtures of such, as will be discussed
momentarily. In many service time formulae or their approximations service times manifest themselves
merely through their means and standard deviation. Consequently, for practical purposes, if means
and standard deviations are close to each other, then one can assume exponentiality of service times.
Define the squared-coefficient-of-variation C by C2 = E2/σ2, where E is the average service time, and
σ its standard deviation. Having C < 1 can be accommodated by Erlang distributions; C > 1 arises
with hyperexpontials; and mixtures of Erlangs (as in [63]) are in fact dense among all service time
distributions. This subfamily of phase-type distributions is very convenient numerically but less so
theoretically, having ample parameters. To this end, parametric models are desired, which has lead
us to the important issue of fitting a parametric statistical family to service times.

Two such families arose in practice: Erlang or more generally Gamma, and the lognormal distri-
bution [14]. Both families are explored in Chlebus [21], who analyzes holding time distributions in
cellular communication systems. Other confirmations for the lognormal fit are provided by the service
times in [51] (where the fit has been found truly remarkable), and in the analysis of the data from the
call center of a Dutch bank. The excellent fit is not only for the overall service time, but also when
restricted to service types, individual agents, etc. It follows that the natural log (loge) of service time
is normally distributed. The implications of these findings are presently being explored. One example
is the analysis of covariates that affect service time, by simply applying standard regression techniques
to log(service time).

Often time, non-standard service duration arise in practice. Consider the following very partial list.
First, various ingredients of the call center have associated service times, for example IVR’s, but little
is known about their distributions. Management practice could effect dramatically service duration
- for example, agents could hang up on customers (Figure 17 and Table 40 in [51]), say in order to
adhere to a distorted incentive scheme that rewards mostly the number of served calls at day-end.
Technology also has been effecting service duration. We already mentioned CTI; a simpler example
is when greetings and farewell of telephone services are recorded for automation, which reduces both
service duration and its stochastic variability. Next, the heterogeneity of servers could be such that a
separation of services into types becomes a must for appropriate modeling, and a virtue for efficiency
(Whitt [67]). And finally [63], “operators may initially work faster during periods of overload to work
off the customer queue, but may tire and work slower than usual if the heavy load is sustained and if
no relief is provided”.
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2.3.3 Abandonment and retrials

One of the most challenging aspects in developing queueing models for call centers is the incorporation
of human factors, for both customers and agents, in a practical manner. This opens up a vast multi-
disciplinary research agenda which here we only touch on. Specifically, we address the operational
service experience of a customer, once joining the tele-queue: most attention is given to customers’
(im)patience, with little also devoted to the tendency to retry (redial). One should mention that there
has been a lot of work on human factors while waiting in queues, which originates in psychology and
marketing. (The articles in Section III of [47], entitled “Consumer Psychology”, would have ample
leads.) However, most of this work has to do with visible queues, such as in a bank or a clinic, while
telephone queues are phantom, and hence the waiting experience could be vastly different.

Human factors could be tricky to quantify, measure and model. Consider, for example, human
(im)patience while waiting for service at the phone. It surely depends on the communication channel
(telephone, internet, IVR), or on customer type (who are more patient - regular of VIP customers?).
Is patience an absolute or relative quantity? For example, if a customer is willing to wait 10 minutes
on the phone, does it indicate ample patience? Or does it indicate more of a need? Or perhaps it
depends on prior expectations, namely willing to wait 10 minutes indicates ample patience if prior
expectation is for 1 minute’s wait, but little patience if one expects 1 hour’s wait.

In most work, redial behavior is quantified in terms of some perseverance function that gives the
probability of an nth attempt, given a survival beyond the (n − 1)th attempt. A basic description
of patience is the distribution of the time beyond which a customer would not be willing to wait; an
equivalent description is the hazard rate, which provides a natural dynamic depiction of patience, as
it evolves while waiting (more on this momentarily).

Models for human factors during telephone services were first developed in the 40’s by Palm [54])
and later, during the 70’s and 80’s, in France by Roberts [59]) and in the U.S.A., reported in Kort [46].
All this work analyzed the behavior of telephone subscribers, as they attempt to establish telephone
connections. For example, “customer may abandon a call attempt in any of three stages of call setup:
while waiting for a dial tone, during dialing, or while waiting for network response after dialing is
complete.” [46].

Palm [54] develops explanatory models for human patience. Roberts [59] presents descriptive
models, based on experimental observations, for redial and abandonment behavior. Kort describes
models, mostly parametric, for customer opinion and behavior models. To the best of our knowledge,
the only analogous study of human factors in call centers, for customers waiting to be served by an
agent, is [51] who develop descriptive models for customer patience. The rest of the present subsection
will be devoted to a survey of all these works.

As mentioned above, Palm [54] was the first to recognize the need for incorporating (im)patience
in performance analysis. Palm modeled impatience (while waiting for a telephone connection) as a
distribution of the time beyond which a customer would not be willing to wait. To quantify this
function, Palm introduced an inconvenience function of time I(t), t ≥ 0, the derivative of which he
called irritation. As a plausible form for irritation, Palm proposed dI(t) = c · tλdt and closed the circle
by axiomatizing that irritation is proportional to the hazard rate of customers patience. In other
words, the distribution of patience is assumed Weibull.

Palm’s findings are remarkably consistent with those reported in Kort [46] where, based on aban-
donment behavior in laboratory testing, Weibull was proposed as the distribution of patience while
waiting for a dial tone. From direct measurements of patience, Palm concluded that λ is close to
unity, possibly slightly less. Kort, on the other hand, has λ = 1.23. Kort has in fact two additional
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models of patience: abandonment time while dialing, described in terms of a shifted exponential;
and abandonment time prior to network response (after dialing), where a mixture of two lognormal
distribution fitted well.

Descriptive models (histograms) of patience, while waiting for a network connection, were also
developed in Roberts [59]. A parametric model for the data in [59] was later described in Baccelli
and Hebuterne [10], where Erlang with 3 phases turned out a reasonable fit. Roberts also estimated
the distribution of the time that a customer would have to wait for service, given infinite patience.
Assuming customers’ familiarity with the system, based on prior service experience, this is also the
distribution of the time that a customer expects to wait [52, 69]. One deduces an improved two-
dimensional assessment of human patience, where one compares the time that a customer is willing
to wait against the time the customer expects to wait. (See Subsection 6.2.1 in [51] for more details).

Mandelbaum, Sakov & Zeltyn [51] contains an empirical study of abandonment in a call center (see
also Subsection 6.3). Descriptive models of patience are developed, which requires tools from statistical
survival analysis in order to accommodate censored data: indeed, observations of the patience of those
who got served (the time that they would be willing to wait for service) are censored by their actual
waiting time. (See the Appendix in [69] for details.) The need for censoring was already recognized
by Roberts [59], who circumvented it in an own-developed method. (Interestingly, no censoring was
required in [54, 46], as patience data there was uncensored.)

A comparison of [51] with [54, 59, 46] is not straightforward for several reasons. Indeed, all deal with
(im)patience, but in different circumstances. Thus, the natural time units for [54, 59, 46] are seconds,
while patience in a call center is typically measured in minutes (an average of about 10 minutes in [51]).
In addition, the call center in [51] provides, during waiting at the phone, some form of information
on the position of customers in queue. Such information turns out to cause noticeable spikes in the
hazard rate of patience, exactly at those (predictable) times when announcements are made. This
demonstrates that the information encourages abandonment, perhaps in contrast to original intentions
where information was intended to reduce uncertainty in order to prevent abandonment.

3 Performance models

The essence of operations management in a call center is the matching of service requests (demand)
with resources (supply). The fundamental tradeoff is between service quality vs. operational effi-
ciency. Performance analysis supports this tradeoff by calculating attained service level and resource
occupancy/utilization as functions of traffic load and available resources. We start with describing
the simplest such models and then expand to capture main characteristics of today’s highly com-
plex contact centers. Examples include patience and abandonment [54, 31], retrials [38], time-varying
operations [41, 50], skill-base-routing [30, 16, 45], human factors [69, 8], and networked call centers
[43].

There exist no single analytical model that accommodates all, or even most, aspects of the modern
call center. But this need not be a vice: relatively simple models that capture only key characteristics,
unilaterally, typically suffice for management support (insight, design, control, etc).

3.1 Single-type customers and single-skill agents

A schematic operational model of a simple call center is depicted in Figure 3. The connotation is that
of the old-times switch-board, either those operated by telephone companies or as part of individual
organizations, where telephone operators were connecting incoming calls physically to the proper
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extension/line. (Old papers on telephone services, as the classical Erlang [24] and Palm [54], were in
fact modeling such switch-boards.) Modern technology has now replaced these human operators by
the ACD, that routes customers calls to idle agents. What renders the operation depicted above, as
well as its model, “simple” is that there is a single type of calls that can be handled by all agents
(statistically identical customers and servers).

The simplest and most used performance model is the stationary M/M/s queue. It describes a
single-type single-skill call center with s agents, operating over a short enough time-period so that
calls arrive at a constant rate, yet randomly (Poisson); staffing level and service rates are also taken
constant. The assumed stationarity could be problematic if the system does not relax fast enough,
for example due to events such as an advertisement campaign or a mew-product release. The model
assumes out busy signals, abandonment, retrials and time-varying conditions. All of these, except for
busy signals, are accommodated by the fluid and diffusion approximations of Mandelbaum, Massey,
Reiman, Reider and Stolyar ([49, 50]. But the state-of-the art of these approximations is not yet ripe
for serious applications.

The reason for using the M/M/s queue is of course the fact that there exist closed form expressions
for most of its performance measures. However, M/M/s predictions could turn out highly inaccurate
because, as articulated in Subsection 2.3 and recalled above, reality often “violates” its underlying
assumptions, and these violations are not straightforward to model. For example, non-exponential
service times leads one to the M/G/s queue which, in stark contrast to M/M/s, is analytically
intractable. One must then resort to approximations, out of which it turns out that service time
affects performance through its coefficient-of-variation C = E/σ). Specifically,

E[Wait for M/G/s] ≈ E[Wait for M/M/s]× (1 + C2)
2

.

Thus, performance deteriorates (improves) as stochastic variability in service times increases (de-
creases). The above approximation was advocated by Sze [63], where it is attributed to Lee and
Longton from 1959. Sze was in fact motivated by a traffic mix problem, where service duration was
“definitely not exponential” but rather a mixture of two types of services, each well fitted with an
Erlang distribution. (Service time was therefore phase-type.)

When modeling call centers, the useful approximations are typically those in heavy-traffic, namely
high agents’ utilization levels at peak hours. Consider again the M/G/s queue. For small to moderate
number of agents s, Kingman’s classical result asserts that Waiting Time is approximately exponential,
with mean as given above. Large s, on the other hand, gives rise to a different asymptotic behavior.
This was first discovered by Halfin and Whitt [37] for the M/M/s queue, and recently extended to
M/PH/s by Puhalski and Reiman [57]. We now discuss these issues within the context of two key
challenges for call center management: agent staffing in Subsection 3.1.1 and site pooling in Subsection
3.1.2.

3.1.1 Square-root safety staffing

The square-root safety-staffing principle, introduced formally by Borst, Mandelbaum and Reiman [15]
but having existed long before, recommends a number of servers s given by

s = R+ ∆ = R+ β
√
R , −∞ < β <∞ ,

where R = λ
µ is the offered load (λ=arrival rate, µ=service rate) and β represents service grade. The

actual value of β depends on the particular model and performance criterion used, but the form of s
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is extremely robust and accurate. As an example, for the M/M/s queue analyzed in [15], β could be
taken a positive function of the ratio between hourly staffing and delay costs, ∆ is the safety staffing,
and performance measures are approximately given by the following formulae:

P{Wait > 0} ≈ P (β) =
[
1 +

βΦ(β)
φ(β)

]−1

,

E[Wait] ≈ E(S) · P{Wait > 0}
β
√
R

,

P{Wait > T · E(S)} ≈ P{Wait > 0} · e−T∆ .

Here Φ and φ are, respectively, the distribution and density functions of the standard normal
distribution (mean=0, variance = 1). It is shown in [15] that the square-root principle is essentially
asymptotically optimal for large heavily-loaded call centers (λ ↑ ∞, s ↑ ∞), and it prescribes operation
in the rationalized (Halfin-Whitt) regime (more on this in Subsection 3.1.2).

The square-root principle is applicable beyond M/M/s (Erlang C). Garnett et al. [31] verify it
for the M/M/s model with abandonment (Subsection 3.2) - here β can take also negative values,
since abandonment guarantee stability at all staffing levels; for time-varying models, as in Jennings et
al. [41], β varies with time; and Borst and Seri [16] use it for skill-based routing. Finally, Puhalskii and
Reiman [57] support the principle for the M/G/s queue, given service times that are square integrable.
(Extensions to heavy-tailed service times would plausibly give rise to safety staffing with power of R
other than half.)

In all the extensions of [15], only the form s = R+β
√
R was verified, theoretically or experimentally,

but the determination of the exact value of β, based on economic considerations, is still an important
open research problem. The square-root principle embodies another operational principle of utmost
importance for call centers - economies of scale (EOS) - which we turn to.

3.1.2 Operational regimes, pooling and economies of scale

Consider Figure 4, that summarizes the performance of a large U.S. mail-catalogue retailer.
Focus on the peak period of 10:00-11:00: 765 customers customers called; service time is about

3.75 minutes on average with an after-call-work of 30 seconds and auxiliary work to the order of 5% of
the time; ASA is about 1 seconds and only 1 call abandoned (after 1 second - which seems more like
a “typo”). But there were about 95 agents handling calls, resulting in about 65% utilization - clearly
a quality-driven operation.

At the other extreme there are efficiency-driven call centers: with a similar offered work as above,
ASA could reach many minutes and agents are utilized very close to 100% of their time.

Within the quality-driven regime, almost all customers are served immediately upon calling. At the
efficiency-driven regime, on the other hand, essentially all customers are delayed in queue. However,
as explained in [15] and elaborated on momentarily, well-managed large call centers operate within a
rationalized regime, where quality and efficiency are balanced in the face of scale economies. This is
the case in Figure 5, summarizing the performance of 12 call centers, operated by a large U.S. health
insurance company: one observes a daily average of 2.8% abandonment (out of those called), 31
second ASA, 318 seconds AHT (Average Handling Time, namely service duration), with 91% agents’
utilization (and over 95% in a couple of the call centers).

A characteristic of the rationalized regime is a fraction of delayed customers that is neither close to
zero (quality-driven) nor to unity (efficiency-driven). The second author obtained more refined data
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Figure 4: A quality-driven call center.

Figure 5: Performance of 12 call centers in the rationalized regime.
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from the above-mentioned health insurance company, from which it was calculated that, overall, only
about 40% of the customers were delayed while the other 60% accessed an agent immediately without
any delay.

The rationalized regime was first identified in practice by Sze [63], from which we loosely quote the
following: “The problems faced in the Bell System operator service differ from queueing models in the
literature in several ways: 1. Server team sizes during the day are large, often 100-300 operators. 2.
The target occupancies are high, but are not in the heavy traffic range. Approximations are available
for heavy and light traffic systems, but our region of interest falls between the two. Typically, 90-
95% of the operators are occupied during busy periods, but because of the large number of servers,
only about half of the customers are delayed.” Theory that supports the rationalized regime was first
developed by Halfin and Whitt [37].

Thus large call centers operate in a regime that seems to circumvent the traditional tradeoff between
service-level and resource-efficiency - EOS is the enabler. We demonstrate this through an example
where we quantify the operational benefits from pooling several call centers. This example is adapted
from Homework 11 in ie.technion.ac.il/serveng. It demonstrates that our three operational
regimes (efficiency-driven, quality-driven and rationalized) can be naturally associated with different
staffing guidelines, and that the regimes vary significantly with respect to the EOS that pooling yields.

Consider the pooling of m statistically identical call centers into a single operation. Each call
center has the same λ and µ; the arrival rate to the pooled call center is m×λ, and its µ is unaltered.
One asks: what should be the staffing levels after pooling, so as to sustain service level.
Three scenarios are explored:
- Scenario 1 (Efficiency-driven staffing): ASA = E[Wait|Wait>0] is sustained.
- Scenario 2 (Quality-driven staffing): Agents’ occupancy level is sustained.
- Scenario 3 (Rationalized staffing): Congestion = delay probability is sustained.
(The terminology hints at the connection with our operational regimes.)

Define the Total Service Factor (TSF) by

TSF = P{Wait > T · E(S) |Wait > 0} .

(This differs from the standard definition, which is TSF = P{Wait > T}.) Similarly, let

ASA = E
[

Wait
E(S)

∣∣∣∣ Wait > 0
]
.

(The standard is ASA=E[Wait], but our approach is natural and, moreover, it gives rise to simpler
mathematical formulae for performance.) The main operational and performance characteristics of
the call center are summarized in Figure 6, which we now briefly explain. (The framed entries are
those sustained after pooling; the function P (β was introduced for the square-root staffing principle.)
- Scenario 1 implies a decrease of the service grade β to β/

√
m, and an increase of the delay probability

from P (β) to P (β/
√
m) (which could be significant even for small m’s). Note, however, that ASA and

TSF are unchanged. We observe convergence, as m ↑ ∞, to an efficiency-driven regime where servers
are close to 100% utilized and essentially all customers are delayed.
- Scenario 2 exhibits overall improvement of service-level: ASA decreases to ASA/m, TSF decreases to
(TSF)m and the delay probability decreases from P (β) to P (β

√
m). This is our quality-driven regime

since, as m ↑ ∞, essentially all customers are served immediately upon arrival.
- Scenario 3 implies the same service-grade and probability of wait as in the base-case. ASA decreases
to ASA/

√
m, and TSF decreases to (TSF)

√
m. This is the rationalized regime: it is both efficiency-
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Figure 6: Erlang C in the efficiency, quality and rationalized regimes.

driven (occupancy increases to 100%) and quality-driven (a significant fraction, namely 1 − P (β), of
the customers are served immediately.)

Note that, agents’ utilization increases in both Scenarios 1 and 3: pooling allows for higher pro-
ductivity as well as improved service-level - a clear manifestation of EOS.

3.2 Busy signals and abandonment

Each caller within a call center occupies a trunk-line. When all the lines are occupied, a calling cus-
tomer gets a busy signal. Thus, a manager could eliminate all delays by dimensioning the number
of lines to be equal to the number of agents. in which case M/M/s/s, or Erlang-B (“B” for Block-
ing) becomes the “right” model. But then there would typically be ample busy-signals. Moreover,
prevailing practice goes in fact the other way: it is to dimension amlple lines so that a busy signal
becomes a rare event. But then customers are forced into long delays. This is costly for the call center
(think 1-800 costs) and possibly also for the customers - they might well prefer a busy-signal over an
information-less delay, and hence they abandon the tele-queue before being served.

The busy-signal vs. delay vs. abandonment trade off has not yet been formally and fully analyzed,
to the best of our knowledge. A simulation study of M/M/s/B is presented by Feinberg [26], where
B stands for the overall number of lines (B ≥ s); it is argued that only 10% lines in excess of agents
provides good performance: more lines would give rise to too much waiting and fewer to too many
busy signals. A more appropriate framework would be the M/M/s/B+G queue, where +G indicates
arbitrarily distributed patience (following the notation and results of [10]). An analytically tractable
model is the M/M/s/B + M , in which patience is assumed exponential. (For mathematical details
see Riordan [58], pages 109–112, and [31].) Procedures for estimating the mean patience, as an input
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Figure 7: Performance of a large call center in the rationalized regime.

parameter to performance analysis, are given in [31, 51]. Alternatively, mean patience could be used
as a tuning parameter, where its value is determined to establish a fit between practice and theory -
this will be the approach taken in the following example.

3.2.1 Performance sensitivity in heavy traffic, via Erlang A

In heavy traffic, even a small fraction of busy-signals or abandonment could have a dramatic effect on
performance, and hence must be accounted for. This will now be demonstrated via the M/M/s+M
model [54, 10, 31], which adds an abandonment feature to M/M/s (Erlang C): specifically, one models
customers’ patience as exponentially distributed, independently of everything else; customers abandon
if their patience expires before they reach an agent. We shall refer to the M/M/s + M queue as
Erlang A, “A” for Abandonment, and for the fact that this model interpolates between Erlang B and
Erlang C.

A model for a call center with busy-signas should be M/M/s/B + M , to account for the ex-
istence of B lines. Performance analysis of the M/M/s/B + M queue has been implemented at
www.4callcenters.com. This web-site includes two tools, iProfler and Charisma, to support work-
force management of inbound call centers. iProfiler is available for online experimentation, free of
charge. It will now be used to demonstrate performance sensitivity of a large call center in heavy
traffic. In this example, there were sufficiently many lines so that the busy signal phenomenon was
negligible. We thus use Erlang A.
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Consider Figure 7, which summarizes the daily operation of the Charlotte call center from Figure
5. Note the significant differences in performance over the busy half-hour periods while, on the other
hand, the numbers of calling customers, as well as AHT and the number of agents working (“on
production”) do not seem to vary that significantly. Let us understand these performance differences.
For example, during the period 10:30-11:00, the absence of only 5 agents (out of the 223 working)
would likely result in almost doubling of both ASA and the fraction abandoning. We arrived at this
projection by choosing the average of customers’ patience (30 minutes) so that the predicted theoretical
performance was close to the observed one. Interestingly and significantly, a model in which average
patience is 30 minutes differs dramatically from a model which does not acknowledge abandonment
(“infinite patience”): with our parameters, the latter would give rise to an unstable system (agents
are required to be busy “more than 100%” of their time); stability could nevertheless be achieved by
adding only 2 agents (225 all together), but in this case ASA would get close to 7 minutes - an order of
magnitude error in predicting performance if one ignores abandonment (that is, if one uses Erlang C
instead of Erlang A).

3.2.2 More models

The prevalent analytical models for performance analysis are sometimes Erlang B and mostly Erlang C:
the first is typically inappropriate for not acknowledging waiting; the second lacks central features,
notably customer abandonment [31] and heterogeneity [30]. While heterogeneity could requires a leap
in modeling capabilities, the Erlang A model is ripe for applications (www.4callcenters.com), and
we strongly recommend it as the standard to replace the prevalent Erlang C model.

Brandt, Brandt, Spahl, & Weber [19] consider a call center with a finite number of lines, exponential
patience and, prior to waiting, an IVR message of constant-duration. The model is thus a two-
dimensional network, allowing for only approximations. Brandt & Brandt [18] solve the system with
generally distributed patience (times to abandonment) and a finite number of lines. Also Brandt &
Brandt [17] study a system with generally distributed patience and a secondary “call back” queue;
again, this gives rise to approximations of a two-dimensional network.

Mandelbaum & Shimkin [52] take another perspective: they assume that rational customers com-
pare their expected remaining waiting time with their subjective value of service. They provide
evidence why rational callers should abandon at some time while being queued. Finally, Zohar, Man-
delbaum & Shimkin [69] provide numerical evidence for the thesis of rational adaptive customers and
present a new model for abandonment (simpler and more practical than that in [52]). For a discussion
on service levels, including abandonment, we recommend Cleveland & Mayben [22].

Reality is even more complicated than described above, as demonstrated by the following rea-
soning. Decisions on agent staffing must take into account customer patience; the latter, in turn,
is influenced by the waiting experience which, circularly, depends on staffing levels. An appropri-
ate framework, therefore, is that of an equilibrium (Game Theory), arrived at through customer
self-optimizing and learning. This is the perspective of Mandelbaum & Shimkin [52] and Zohar, Man-
delbaum & Shimkin [69], which constitutes merely a first step. In [52], abandonment arises as an
equilibrium behavior of rational customers who optimaly compare their expected remaining waiting
time with their subjective value of service. In [69], the model of [52] is simplified, which enables some
support for adaptive behavior (learning) of customers. For a discussion on service-levels that includes
abandonment, we recommend Cleveland & Mayben [22].

In Akşin & Harker [1], a model is considered where computer resources are assumed the bottlenecks,
and hence they are explicitly modeled. Here all agents compete, in a processor sharing manner, for the
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same computer resource. This leads to certain counterintuitive phenomena: for example, performance
levels could decrease as the number of agents increase. (In fact, [1] analyses a multi-skill environment.)

3.3 Performance over multiple intervals and overload

To make the translation to intra-day performance, and thus to inhomogeneous Poisson arrivals,
(weighted) sums of interval performances are taken, where for each interval another call arrival rate
is taken. Green & Kolesar [35] call this the pointwise stationary approximation. An alternative idea
would be to take the average arrival rate, and use this as input for a performance model. This can
give extremely bad results, even if the occupancy is constant; see Green & Kolesar [34, 35].

Insight on the asymptotic behavior of the minimal occupancy as the load tends to ∞ can be
obtained from Borst, Mandelbaum & Reiman [15] - see above, where we introduced the square-root
staffing principle.

Standard modeling applications for call centers use stationary performance measures for each inter-
val, say of 30 minutes duration. This works in general pretty well. But exceptions arise with abrupt
significant changes in arrival rate, particularly when overload occurs during one or more intervals.
Then a backlog is built up, and nonstationarity has to be accounted for. As already mentioned, such
a behavior could arise from an external event, such as advertising a telephone number on TV, or when
the call center opens in the middle of the day. Such abrupt overloads can be modeled with the help of
fluid models, as in Mandelbaum, Massey, Reiman, & Rider [49]. These results are extended in Man-
delbaum, Massey, Reiman, Rider, & Stolyar[50]. Unfortunately these fluid approximations work less
well in underload situations, as has been argued in Altman, Jiménez, & Koole [3]. A numerical way
to include nonstationary behavior is described in Fu, Marcus & Wang [28]. Jennings, Mandelbaum,
Massey & Whitt [41] propose staffing guidelines, which were developed heuristically and gave rise to
a time-varying square-root staffing principle.

3.4 Skill-based routing: on-line and off-line

The operational characteristics of multi-type/channel multi-skill contact centers could get very com-
plicated [30]. Simply conceptualize a call center of say a large European company, which provides
technical support in all major European languages for a broad product line. Nevertheless, and out of
necessity, most call centers are multi-type multi-skill operations, and hence practice is here awaiting
theoretical research for guidelines.

If each skill has dedicated agents, then of course the call center can be regarded as several inde-
pendent single-skill call centers operating in parallel. But then one does not exploit the economies of
scale, due to resource flexibility, of a large call center with multi-skill agents. At the other extreme,
complete flexibility where all agents can do all tasks (for example, be able to support all products in
all languages) is typically unrealistic. Thus a compromise must be struck where a subset of tasks,
which we refer to as a skill, can be performed by a subgroup of agents - namely a skill group. Skills
of different skill groups could overlap, which enables the benefits from economies of scale without the
need to train all agents at all skills.

The operational challenges are then both off- and on-line. One should determine off-line the overall
number of agents required of each skill, which are to be part of the company’s permanent or temporary
pool of agents; and out of these, how many and who should occupy a given shift. On-line, one should
determine for an idling agent which caller to attend to first; and for an arriving call, who will be the
agent to cater to it. In this section we survery on-line problems. The off-line issues are related more
to human resource management and are discussed in Section 4 on staffing and workforce management.
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Skill-based routing refers to the on-line strategy that matches callers and agents. It is nowadays
part of any advanced ACD, often provided as a list of options that managers can choose from, but
without any guidelines to accompany them. We now survey some related available research. For more
information, readers are referred to the short literature survey in [30] and the OR and Simulation
sections in [47].

Garnett & Mandelbaum [30] constitute an introduction to skill-based routing and its operational
complexities. Via simulation, it is demonstrated there that advantages can be considerable, already
for simple scenarios. Perry and Nilsson [55] provide a useful brief introduction to both theory and
practice.

A common way of implementing skill-based routing is by specifying two selection rules: agent
selection - how does an arriving call select an idle agent, if there is one; and call selection - how does
an idle agent select a waiting call, if there is one. Here are some details. Agents are first divided
into groups such that all agents within the group share the same skills. In general, several groups
could have the same skill. The PABX/ACD contains, for each skill, an ordered list of agent groups
containing that skill. An arriving call for a certain skill is then assigned to the first group in the list
that has an agent available. When no agent with the right skill is available, then the call is assigned
to the first agent with the skill that becomes available. If an available agent can handle each one of
several waiting calls, then some priority rule is employed in order to determine which call to handle
first. As far as we know, this common protocol has not been analyzed analytically.

If one leaves out the possibility that a call finds all agents occupied, then a flow of calls of a certain
type from one agent group to the next group occurs only if all agents are occupied, i.e., it is overflow.
These are notoriously hard to analyze, see [40], because the overflow process is not Poisson. The
performance of this type of an overflow queueing network in the context of call centers is studied in
Koole & Talim [45].

It is also possible to program a PABX in such a way that a call is assigned to a group only if there
is at least a certain threshold number of agents available for service. Thus agents are reserved idle
for future high-priority calls while low-priority calls are presently waiting to be served. This becomes
useful if a group has skills of varying importance, and it is advisable to reserve several agents free for
the most important call types.

Although the above protocol is commonplace, it is certainly not optimal. E.g., it can occur that
the last agent with skill A is occupied by a call of skill B, while there are multiple agents available
with skills B and C. This effect cannot be avoided by changing the routing lists, due to the random
behavior of the system. In fact, to reach optimal routing, one has to take the number of available
agents in all groups into account. This way the routing becomes completely dynamic. The standard
way to solve this type of problems is by Dynamic Programming. Unfortunately, it is impossible
to apply standard Dynamic Programming to identify the optimal assignment, neither theoretically
(the problem as of now seems too hard) nor practically, due to the so-called curse of dimensionality
[11]: the number of possible configurations is exponential in the number of agent groups, making it
numerically infeasible to apply standard algorithms from Markov decision theory. One way to overcome
the problem’s complexity is to consider simple structures and specific strategies. For example, [55]
consider a two-channel system, where waiting customer are assigned an aging factor, proportional to
their waiting time. Then customers with the largest aging factor is chosen for service. Alternatively,
one could analyze provably-reasonable approximations, for example Borst & Seri [16]. Both [55] and
[16] consider the on-line routing problem as well as the of-line staffing problem - namely, how many
agents are to be available for answering calls so as to maintain an acceptable grade of service. ([16]
actually applies the square-root staffing principle.)
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3.5 Call blending and multi-media

Different multi-media services require differing response times. Specifically, telephone services should
be responded to within seconds or minutes and, once started, should not be interrupted; e.mail and
fax, on the other hand, can be “stored” towards response within hours or days, and can definitely
be preempted by telephone calls, and then resumed; chat services are somewhere in between. In
Mandelbaum, Massey, & Reiman [48], a mathematical asymptotic framework of Markovian Service
Networks is developed, where multi-type customers are served according to preemptive-resume priority
disciplines. The primitives of a Markovian service network are time-varying, abandoment and retrials
are accomodated, and the asymptotics is in the rationalized (Halfin-Whitt) regime. The framework
of [48] is thus applicable for performance analysis of large multi-media call centers - as indeed was
done in [49, 50]. Note however that the framework can not accommodate non-preemptive priority
disciplines or finite buffers (busy signals).

We now continue with models that include IVR and e.mail. Brandt and Brandt [17], already
mentioned in the context of abandonment, propose a (birth-and-death) queueing model for a call
center with impatient callers and an integrated IVR: callers that are patient enough, and which have
been waiting online beyond a given threshold, are then transferred to (“stored in”) an IVR-queue; the
latter is served later, as soon as no customers are waiting online, and the number of idle agents exceeds
another threshold. Armony and Maglaras [8] establish the asymptotic optimality in equilibrium of
such a threshold strategy, when customers act rationally. By this we mean that customers who are
not served immediately optimize among balking, abandoning, or opting for a return call (or a later
e.mail) if they assess their anticipated delay as exceeding its worth. The equilibrium formulation is
inspired (but differs from) [52, 69]; the asymptotics is taken in the rationalized (Halfin-Whitt) regime.

If we mix traffic from multiple channels, then additional questions arise. Historically, these ques-
tions first arose in the context of mixing inbound and outbound traffic, but they are also applicable
to multi-media traffic. The solution is called call blending, where agents are made to switch between
inbound and outbound traffic, depending on the traffic loads of inbound traffic. A mathematical model
for call blending is presented and solved in Bhulai & Koole [13].

Pure outbound Call centers are becoming more prevalent, mainly in surveys and tele-marketing.
They use devices called predictive dialers that automatically call up customers, according to a prepared
list. In order to reduce idleness of the most expensive call center resource, its agents, it often happens
that the PABX calls the next customer on the list while, in fact, there are no agents available to
take the call. Thus, the central problem is balancing between agent productivity (is there always a
customer right away?) and customer dissatisfaction (no agent is idle while a customer picks up the
phone), in a manner that is consistent with the company-specific relative importance of these two
goals. For more information on predictive dialers, see Samuelson [62].

3.6 Geographically dispersed call centers

Another subject, growing in importance, is that of multiple geographically dispersed call centers. By
interconnecting them properly (dynamic load balancing), performance can get close to that of a single
virtual call center, thus exploiting fully the economies of scale. This is the case in Figure 5, the header
of which reads “Command Center Intraday Report”: and indeed, load balancing is exercised from
a single Command Center that overseas the 12 call centers represented in the table. An ACD that
distributes calls to several call centers is often referred to as a network-ACD.

Servi & Humair [61] analyze the problem of setting routing probabilities, but more can be gained
if routing is completely dynamic. Kogan et al. [43] compares two basic strategies for a network-ACD:
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a centralized FIFO vs. a distributed strategy that routes an arriving call to the call center with least
expected delay. Both strategies require information-exchange over the network. While FIFO is, of
course, much more taxing, it could nevertheless be still inferior, given certain delays in switching calls
between centers. This paper provides references to previous works on the subject, by the same group
at AT&T.

4 Workforce management

Up to now, we have mainly discussed mathematical models for determining minimal occupancy levels.
Next we shall see how this fits into the overall picture of workforce management as it is practiced in
call centers. A well written practical book about workforce management, that also touches on some
mathematical issues, is Cleveland & Mayben [22].

4.1 Decisions at the tactical and strategic levels

Long-term strategic issues are related to the way in which a call center operates and to the way in
which its human resources are managed. Questions in the first category include the deployment of a
voice response unit (VRU) to answer simple questions thus saving costly human intervention, whether
or not to have different skill groups, etc. Questions in the second category deal for example with the
type of agents contracts used: part-time vs. full-time, a fixed or flexible number of working hours,
etc. It is least expensive to have full-time non-flexible contracts because training part-time agents
is relatively expensive (the costs per working hour is higher), and because flexibility has its price as
well. Whether employing full-time agents is desirable from a scheduling point of view depends on the
organization and traffic load of the call center. The organization determines routing possibilities, the
way skills are dealt with, the possibilities of call blending, etc. Then, using a performance model, it
should be determined what mix of contract types is best for the call center. It is interesting to note
that the operational performance model can play an important role in the strategic decisions of the
call center. A model for hiring and training decisions can be found in Gans & Zhou [29].

The importance of good staffing decisions is illustrated by the following reasoning. Staffing policies
should of course take into account agents’ turnovers (often very high), training (could be costly) and
on-the-job learning (possibly slow); the latter factors depend on job-enrichment and career paths (Hu-
man Resource Management), which are enabled by the technology of skill-based-routing (Operations
Research) that, again circularly, affect staffing. Similarly, operationally-driven staffing could lead to
exaggerated agents utilization that, in turn, promote burnout and hence turnovers. Avoiding such a
negative spiral by having good working conditions and inviting incentives is typically less expensive
than trying to recover out of one.

At the tactical level there are issues related to the skills that agents acquire. Until recently, career-
growth opportunities within call centers were unusual, resulting in low motivation (hence low service
level) and fast burnout (hence high turn-over). Some even refer to the call centers as the modern-age
sweat shops. But in today’s call centers agents could start as specialists with a single skill, and then
get up the ranking by acquiring more skills and being granted more responsibilities. The result is the
possibility for a full working career, from the novice to the manager of a large multi-national operation.
But then the challenge is to design and implement appropriate hiring and training plans which ensure
that, at all times, each call center has at its disposal the right number of agents with the right skills.
This would require a multi-disciplinary effort, with an important part being played by performance
models and analysis.
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4.2 Operational decisions

Operational decisions vary from those taken a few weeks in advance of the day concerned until those
controls that take effect immediately. In most call centers there is a planner that is responsible for
agents rosters. This person starts every week or every couple of weeks with preparing a forecast for the
specified period. Based on this forecast, occupancy levels are determined, and together with agent and
management input (concerning days off, meeting, etc.), a roster is determined. This process is very
often supported by a workforce management tool. Such a WFM tool integrates a forecasting algorithm,
a performance model that allows for the computation of staffing levels, and (mostly) mathematical
programming models that have as output agent rosters. See the next subsection for a discussion of
staffing models. These WFM tools are decision support systems in the true sense of the word, in that
they are often very user friendly, and that they allow for ample communication between the system
and the user. E.g., search Google for “call center workforce management” for a list of vendors.

Establishing the agent roster is not yet the end of story: changes will take place to this roster
until the scheduled day itself, based on changing forecasts and internal and external events. When
the roster is executed then a supervisor is responsible for the service levels and the productivity. He
or she monitors the service levels, changes agents of group, organizes call blending (if this is not done
automatically), etc.

During the day, data is fed back into the workforce management tool. Based on this feedback,
forecasts are updated or new ones created, and the process repeats itself.

4.3 Staffing models

Consider first a single-skill call center. One simplifies the problem of determining the working hours
of each agent by splitting it into two steps: first the shifts are determined, and then the agents are
assigned to shifts. Different approaches for the first step are used. E.g., a heuristic approach is
advocated in Henderson & Berry [39], while Segal [60] uses linear programming. Other aspects such
as break placements are also studied in detail (see Aykin [9] and references therein). An overview of
the area (not necessary dealing with call centers) can be found in the introduction to Thompson [64].
A paper that describes a case study in which agents had to be assigned to shifts (the second step) is
Thompson [65].

Translating minimal interval occupancies to agent rosters is a task that occurs also in contexts
other than call centers and hence it has been well studied. See [60] and [39]. These papers use
approaches based on integer programming.

There are also some papers that focus on break placement (see Aykin [9] and references therein).
However, in practice there are many additional constraints that make it necessary to use other op-
timization techniques. Therefore we see in practice techniques such as constraint satisfaction and
techniques based on local search employed in software. In the literature there are no papers that deal
with this assignment problem in its full generality.

The model needed becomes even more complex if one realizes that splitting the problem in two
(making shifts first, and then assigning shifts to agents) can turn out to be significantly suboptimal:
the availability of agents can greatly influence the types of shifts required. This calls for a method
in which shift determination and shift assignment are integrated. Heuristic methods allow for this.
Koole & van der Sluis [44] go a step further: they argue that shift determination (and assignment)
should be integrated with the determination of the desired occupancy level. Indeed, requiring that
service levels are satisfied for every time interval together with minimal shift lengths generally result
in overstaffing during some intervals. But overstaffing in certain intervals could be compensated by
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understaffing in other intervals. This requires combined performance and staffing models that work
with a single service level for the entire day.

The situation in a multi-skill call center is even more complicated. Many different agent combi-
nations might be possible for fulfilling service requirements. For example, in a two-skill call center,
it might be that during a certain interval 5 skill-1 and 10 skill-2 agents are necessary. But 13 agents
with both skills might also suffice, or an in-between configuration, with both single skill and double
skill agents, might do. Many different agent combinations potentially solve the occupancy model, even
if shift duration are fixed. This makes necessary the integration of the performance model and the
occupancy model . Creating rosters becomes an extremely difficult task, for which no methods are
available in the research literature.

Another type of problems arises if we consider multiple channels. The central difference, from a
scheduling point of view, is that processing capacity for the low-service level channels can be assigned
to different intervals. E.g., work that comes in through faxes or regular mail can be handled by agents
at times when there is over-capacity. As such, contact centers enjoy an advantage over call centers
in that some of the offered load can be shifted between intervals (inventoried). This can help reduce
costs but, at the same time, it adds complexity to scheduling.

5 Conclusions

The world of call centers is a challenging fertile area for the applications of queueing models. Simple
models are already incorporated into workforce management tools and are widely used. However,
current explosion in scale and scope necessitate the use of more complex models, and many of these
are yet to be formulated, analyzed and implemented. Only then shall we gain the full benefits of the
modern contact center.

References
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