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The success of ligand-based virtual-screening calculations is influenced highly by the nature of

target-specific structure–activity relationships. This might pose severe constraints on the ability to

recognize diverse structures with similar activity. Accordingly, the performance of similarity-based

methods strongly depends on the class of compound that is studied, and approaches of different design

and complexity often produce, overall, equally good (or bad) results. However, it is also found that there

is often little overlap in the similarity relationships detected by different approaches, which rationalizes

the need to develop alternative similarity methods. Among others, these include novel algorithms to

navigate high-dimensional chemical spaces, train similarity calculations on specific compound classes,

and detect remote similarity relationships.
Introduction
Essentially, every small molecule-based approach to either design-

ing or identifying novel active compounds focuses on the explora-

tion of ’molecular similarity’, albeit often from different points of

view. Methods to analyze pharmacophores [1] or quantitative

structure–activity relationships (QSARs) [2] focus on ‘local’ simi-

larities when studying molecular determinants of biological activ-

ity, such as functional groups and their specific geometric

arrangements and/or resulting chemical properties. By contrast,

molecular-similarity analysis, as we understand it today, originates

from the ‘similar property principle’ (SPP) [3] and employs a

‘global’ or ‘holistic’ molecular view. The appropriateness of such

viewpoints is related directly to the nature of structure–activity

relationships (SARs) that characterize biologically active molecules

and present crucial determinants for the success of ligand-based

virtual-screening (LBVS), irrespective of the methods used. Thus,

fundamental considerations of molecular-similarity concepts are

likely to be as important as the design of novel computational

approaches. Accordingly, in this review we provide both insights

into crucial aspects of molecular similarity and review some of the

novel methodological developments in LBVS, including methods

that explore high-dimensional chemical reference spaces or add

activity class-specific training to similarity searching.
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Molecular similarity and SARs
The SPP states that molecules that are similar overall should have

similar biological activity [3]. Although this concept is intuitive

and supported by many observations, medicinal chemists also

know that small chemical changes in an active molecule can

render it either nearly or completely inactive or increase its activity

dramatically [4]. This situation provides the basis for lead-optimi-

zation efforts. Clearly, reasons for this apparent inconsistency

must include fundamental differences in underlying SARs.

In a recent editorial [5], Gerry Maggiora, one of the pioneers of

molecular similarity analysis, commented on the different nature

of SARs in the light of limitations in the accuracy of QSAR models.

He described molecular ‘activity landscapes’ as akin to either

gently rolling hills or rugged canyons where the presence of

‘activity cliffs’ is likely to cause errors in QSAR modeling. Similarly,

we can also rationalize SARs as either ‘continuous’ or ‘discontin-

uous’ in nature. In the presence of gently rolling hills, or contin-

uous SARs, small changes in molecular structure will cause small

effects on activity and the ‘biological activity radius’ will be

populated by a spectrum of increasingly diverse structures of

similar activity. Figure 1 shows an example of a continuous SAR

in which the structural similarity of active compounds gradually

‘fades away’ when departing from known leads. Such SARs are

consistent with the SPP and the holistic view of molecular simi-

larity. This is in contrast to discontinuous SARs, where small
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FIGURE 1

Structural spectrum of thrombin inhibitors. Starting with known inhibitors of thrombin, a sequence of hits ranging from close analogs to increasingly diverse
structures was identified in a simulated LBVS campaign in a large screening database containing �1.4 million compounds. Left: three of the five

reference molecules. Right: examples of hits identified in a selection set of 250 database compounds. Hits are arranged in layers of increasing structural

diversity (top down, from left to right). As a measure of structural similarity, the Tanimoto coefficient (Tc) [29] is reported for each hit relative to the most

similar of the five reference molecules. Reference molecules and hits were compared using a fingerprint consisting of the publicly available set of
166 MACCS structural keys (MDL Elsevier). Virtual screening calculations used the DynaMAD algorithm described in the text.
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changes in structure have dramatic effects. For LBVS, recognizing

increasingly diverse structures that have similar activity is a major

goal [6].

Molecular similarity and target–ligand interactions
The principles of molecular similarity can be evaluated further,

going beyond the small molecule-centric view. The specific bio-

logical activity of a synthetic molecule is, first and foremost, the

result of well-defined interactions with a macromolecular target,

most often a protein, and small-molecule SARs should take into

account knowledge of specific protein–ligand interactions [7].

From structural biology and structure-based design we know that

protein–ligand interactions are determined by the formation of

specific interactions of different chemical nature (i.e. polar/

charged, hydrophobic/aromatic), a high degree of shape comple-

mentarity, and other entropic effects. It is also known that a single

interaction, such as a hydrogen bond, can dramatically alter the

selectivity and/or potency of a compound.

Given the structural constraints on specific protein–ligand

interactions, why are not all small molecule SARs discontinuous?

Or are they? Clearly, any gently rolling activity landscape will,

ultimately, face a ‘cliff’ (probably more than one) that corresponds
226 www.drugdiscoverytoday.com
to structural alterations that either abolish or increase specific

binding. Thus, any activity radius, as illustrated in Figure 1, has

its boundaries. However, the architectures of protein–ligand com-

plexes are not determined entirely by rules of static molecular

engineering. Many ligand-binding sites are characterized by a

degree of structural plasticity, and even similar ligands can differ

in binding conformation and/or orientation [8]. Also, structurally

distinct ligands can be accommodated in an adaptable binding

site, as illustrated in Figure 2. In this example, the structural

divergence of inhibitors of HIV reverse transcriptase inhibitors

can be rationalized on the basis of their different binding modes.

In principle, the specific binding of different structural motifs to a

target site is often indicative of a continuous SAR.

Heterogeneous SARs
What do we conclude from the above considerations? At the

atomic level, individual interactions that are crucial for the for-

mation of protein–ligand complexes introduce cliffs in activity

landscapes but do not transform rolling hills into desert canyons.

‘All-or-none’ binding events are rare, because most binding sites

accommodate at least some analogs of active compounds and are

permissive to structural variations. Therefore, SARs should, in
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FIGURE 2

Bindingmodes of non-nucleoside reverse transcriptase inhibitors (NNRTIs). Lower right: the structure of HIV-1 reverse transcriptase (pdb id ‘1vrt’) and the location

of the binding pocket (purple) of NNRTIs. Upper right: close-up view comparing the binding of three NNRTIs (based on superposition of the enzyme).
Nevaripine (pdb id ‘1vrt’), a first-generation NNRTI, is in red and exhibits a ‘butterfly-like’ binding mode that is different from that of efavirenz (pdb id ‘1fk9’)

in blue. TMC120-R147681 (pdb id ‘1s6q’), in yellow, is a diarylpyrimidine (DAPY) analogue with a binding mode that differs from nevaripine and efavirenz.

Moreover, DAPY analogues change conformation, and reorient and reposition themselves when natural mutations alter the shape of NNRTI binding pocket

(for example, of residues shown in purple). Typically, such mutations lead to high resistance against nevaripine but do not prevent the DAPY analogues
from binding with EC50 values of <0.01 mM [53].
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principle, be heterogeneous in nature and their activity surfaces

should contain both flat (continuous) and steep (discontinuous)

regions. Figure 3 shows an example of a heterogeneous SAR.

Different structural motifs represent potent, selective tyrosine

kinase inhibitors (within a flat region of the activity landscape),

but close analogs of these molecules have dramatically reduced

potency (indicating the proximity of cliffs).

If an activity surface contains flat regions, the SSP applies and

molecular-similarity calculations that focus on these regions,

through the use of appropriate reference molecules, can be

expected to identify different structures with similar activity. By

contrast, in steep regions and close to cliffs, similarity analysis is

meaningless. Figure 3 presents an extreme example: a similarity

method must recognize the two nearly identical analogs on the

right in this figure as being ‘similar’, although one of them is

essentially inactive.

Implications for similarity methods and their relative
performance
The proposed presence of differently balanced and heterogeneous

SARs helps to explain the success of molecular similarity analysis

[6], although similarity calculations have limitations in many, if

not all, cases. If SARs are predominantly discontinuous and their

activity radii are small, similarity methods are likely to fail, irre-

spective of their complexity or specific features, and one of the
unsolved key problems is how to select reference molecules that

focus similarity analysis on sparse continuous segments. Other

questions include why does the relative performance of similarity

methods generally depend on compound classes [9], and why do

all methods not succeed (or fail) equally? These questions can be

answered by taking into account that the nature of SARs depends on

the chosen molecular representations and the reference spaces into

which compound sets are projected. Generally, different similarity

methods rely on different descriptors, representations and reference

spaces, and the SAR landscapes of compound activity classes are

influenced strongly by changing reference frames. This observation

has been made, for example, when selecting compounds for follow-

up evaluation after initial high-throughput screening [10]. Different

molecular representations that generated distinct chemical spaces

produced candidate compound lists with only�15% overlap. After

compound screening, most of the newly identified hits were

selected by only one of the alternative methods.

Developing an understanding of the complications described

above is helpful in putting the opportunities and limitations of

similarity calculations into perspective. One possible conclusion is

that it is worth continuing to design novel algorithms and simi-

larity methods to benefit from their complementary nature and to

explore SARs more thoroughly. Therefore, in the second part of

this review we discuss some novel developments that depart from

conventional schemes.
www.drugdiscoverytoday.com 227
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FIGURE 3

Heterogeneous SARs. Shown are four vascular endothelial growth-factor receptor (VEGFR-2) tyrosine kinase inhibitors with different structures and potencies.

The two inhibitors at the top are potent and bind with IC50 values of 6 nM, although they have different core structures. However, subtle structural
modifications of each inhibitor decrease their potency by two to three orders of magnitude. MACCS Tc values are reported for pairwise structural comparisons.
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High-dimensional similarity methods
Because of the pioneering contributions of Pearlman [11], Agra-

fiotis [12] and others, calculations in low-dimensional reference

spaces have become a paradigm in chemoinformatics. Advantages

of low-dimensional space representations include, for example,

creation of orthogonal reference frames, removal of descriptor

correlation effects, controlled occupancy of subregions or cells

in chemical space, ease of interpretation of compound distribu-

tions and possible visualization without substantial loss of infor-

mation. Accordingly, one might ask whether low-dimensional

space representations are essential for the success of molecular

similarity analysis or virtual screening. The answer is no. Cluster-

ing or partitioning algorithms have been applied using a relatively

large number of descriptors and a few methods have been devel-

oped specifically to navigate high-dimensional descriptor spaces.

For example, there has been much interest in support vector

machines (SVMs) for compound classification and class label pre-

dictions [13,14]. Methods of molecular similarity analysis utilize

information that is provided predominantly by active compounds,

whereas machine learning techniques such as SVM require train-

ing sets that include active and inactive molecules. Initially, the

SVM method projects compounds as descriptor vectors into high-

dimensional spaces and then constructs a maximum-margin

hyperplane by linear combination of training set vectors to opti-

mally separate two classes of compounds (active/inactive). If no

linear separation of the training classes is possible a ’kernel trick’ is

applied that introduces additional dimensions to enable linear

classification in the transformed space. In class label predictions,

SVMs currently achieve at least 80% prediction accuracy, which

makes them attractive for binary compound classification. A

recent study [14] adopted SVMs for virtual screening: the SVM

classification function was modified to generate real numbers

instead of yes/no decision values. These numbers were then used

to rank a screening database, providing a strategy that was more
228 www.drugdiscoverytoday.com
effective at enriching selection sets for active compounds with

‘novel chemistries’ than fingerprint-based methods.

Novel, high-dimensional similarity methods have been a focus in

our laboratory and we have pursued two avenues, the design of

distance functions [15,16] and mapping algorithms [17–20]. A

surprising finding has been that a simple distance function can

successfully capture SARs in unrefined descriptor spaces of >100

dimensions. The approach, called distance in activity-centered

chemical space (DACCS) involves a scaling procedure that centers

high-dimensional descriptor spaceson a subspace populated bya set

of active compounds and then superimposes an approximated

orthogonal coordinate system onto this subspace [15]. As a measure

of similarity, DACCS calculates Euclidian-like distances from the

center of the ‘active subspace’ to compounds in a screening data-

base, and generates a distance-based ranking of candidates that

corresponds to decreasing molecular similarity. Through Bayesian

modeling, the DACCS function has also been transformed into a

likelihood estimate (BDACCS) where theprobability thata molecule

is active decreases with its distance from the active subspace [16].

These distance functions have been tested on >50 compound

classes and performed either as well as or better than different 2D

fingerprints (which also produce a similarity ranking of test com-

pounds) [16].

Mapping algorithms originated with the introduction of

dynamic mapping of consensus positions (DMC), a method to

determine and iteratively refine consensus positions of classes of

active compounds in simplified descriptor spaces of gradually

increasing dimensionality [17]. Database compounds that match

these positions are selected as candidates for hit identification.

Subsequently, a potency scaling function was implemented in

DMC that tunes search calculations towards the recognition

of potent database hits [18]. The idea behind operating

in descriptor spaces of progressively increasing dimensionality is

that irrelevant database compounds are removed iteratively from
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activity-dependent consensus positions until only similar com-

pounds remain. Therefore, it is not necessary to determine or ‘guess’

an appropriate number of dimensions before the calculations.

Second-generation mapping algorithms, such as mapping to activ-

ity-selective descriptor value ranges (MAD) [19] and dynamic MAD

(DynaMAD) [20], operate in high-dimensional spaces without the

need to simplify the representations, similar to distance functions.

Crucially important for the development of these algorithms is the

finding that activity class-selective value ranges can be systemati-

cally identified for many molecular property descriptors [19]. The

MAD algorithm utilizes a predefined number of such descriptors to

map database compounds to multiple value ranges that have a
FIGURE 4

Schematic outline of DynaMAD. (a) Initially, the algorithm uses known, active compo
value ranges and then assigns descriptors to different scoring layers or dimensio

interval represent a scoring layer. During dimension extension descriptors of the

chemical reference space in a stepwise manner. (b) Database molecules are then
of each scoring layer and only the compounds that match all value ranges qualif

compound mapping are continued until a small compound selection set is obtai
selective tendency for a given activity class, and ranks database

compounds according to the proportion of ranges that they match.

DynaMAD then adds a DMC-like dimension extension routine to

MAD to map molecules to descriptor value ranges in spaces of

increasing dimensionality. The DynaMAD approach is summarized

in Figure 4. In benchmark calculations, mapping algorithms recog-

nized diverse structures having similar activity, as also illustrated in

Figure 1. Furthermore, a characteristic feature of mapping algo-

rithms is enrichment of active compounds in small selection sets.

For example, MAD frequently recovered >50% of potential hits

from a source database containing �1.34 million molecules in

selection sets of fewer than 50 database compounds [19].
unds to score descriptors according to the presence of activity class-selective
n extension levels (DEL). Descriptors that fall within a specified score

next scoring layer are added, which increases the dimensionality of the

iteratively mapped to the activity-selective descriptor value ranges
y for the next dimension extension step. Dimension extension and

ned.
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Virtual screening using mapping algorithms
In general, retrospective benchmarking has limited value in evalu-

ating compound identification methods. Ultimately, the ability to

identify novel active compounds needs to be assessed. Therefore,

practical applications are as important as novel developments to

advance the virtual-screening field. In collaboration with a phar-

maceutical company, a parallel virtual screen using mapping algo-

rithms was carried out for antagonists of an ion channel. Of the

�6 million compounds screened with DMC, MAD and DynaMAD,

76 compounds were selected for testing. This small test-set con-

tained three active molecules, one with (undesired) agonist activity

that was identified with MAD, and two antagonists, one identified

using both MAD and DynaMAD and the other with DMC. Both

antagonists were active in the low micromolar range and structu-

rally distinct from the reference molecules. These studies confirm

the ability of mapping algorithms to identify active compounds in

small selection sets.

These findings also reflect a trend observed when similarity

methods are applied successfully: typically novel hits are active

in the micromolar range and are not highly potent. This situation

is rationalized by considering principles of molecular similarity

analysis, as discussed above. Reference molecules for similarity

calculations are usually optimized and, thus, highly potent mole-

cules. Because the goal is to depart from optimized structural

motifs and identify different structures with similar activity, novel

hits are not optimized for potency and are most likely to represent

starting points for a new optimization effort.

Molecular fingerprints
Since the early days of chemoinformatics, there has been much

debate whether 2D or 3D descriptors and methods are superior [21].

This discussion continues [22,23] and, depending on the test cases,

different conclusions are often drawn. For fingerprints, which are

bit-string representations of molecular structure and properties, the

dimensionality of encoded descriptors has also been studied inten-

sely and, in this case, some firm conclusions can be drawn: 2D

fingerprints are often powerful similarity search tools [6], and even

simple search strings and atom count vectors recognize active

compounds successfully [24,25]. It is, therefore, not surprising that

2D-similarity searching continues to be a topic in chemo-infor-

matics research. State-of-the-art 2D fingerprints include, for exam-

ple, hashed connectivity pathways [26], and structural dictionary-

based [27] and layered atom environment fingerprints [28]. In many

publications and for historical reasons, daylight fingerprints [26] are

used as a standard for benchmarking. Scientifically, it is difficult to

accept any 2D fingerprint as a standard for similarity searching.

Originally, 2D fingerprints were developed for similarity search-

ing using single template molecules, but independent studies have

shown that search performance is enhanced if multiple reference

compounds are used [29]. Preferably, all templates are known

actives. But even molecules found to be most similar to a single

reference compound in an initial similarity search can be included,

irrespective of activity. This is known as ‘turbo’ similarity searching

[30]. Recent investigations to increase fingerprint search perfor-

mance utilizing multiple reference compounds have much concen-

trated on strategies to either scale [31] or average [32] fingerprints

and on the evaluation of alternative scoring schemes, in particular,

nearest neighbor methods [32] and data fusion [33]. In data fusion
230 www.drugdiscoverytoday.com
and nearest neighbor methods, similarity values are determined

individually for each available reference compound and for each

database compound, the similarity score is either calculated as the

average similarity against a pre-specified number of nearest neigh-

bors in the reference setoras themaximum [32]. The latter approach

is termed 1-NN or ‘sum fusion rule’ and has often produced the best

results in comparative studies [33]. However, nearest neighbor

methods, in particular 1-NN, might have the drawback that they

often show less potential to identify structurally diverse active

compounds than methods utilizing multiple compound informa-

tion as a whole [34]. For an extensive discussion of similarity

coefficients and data fusion techniques, see the recent review by

Peter Willett [35].

Another fingerprint-based, machine-learning methodology

that is used increasingly for either compound classification or

LBVS is binary kernel discrimination (BKD) [36]. Following this

approach, binary fingerprints are used to estimate the probability

that a molecule is active. Fingerprint bit positions that differ

between pairs of test molecules are determined as input for a

kernel function to derive probability density functions for known

active and inactive compounds. These density functions are then

used to estimate the probability of whether a molecule is active,

based on its fingerprint settings. In benchmark calculations, BKD

compared favorably to other multiple-template, fingerprint-

based methods [33].

In contrast to the development of different fingerprint-search

strategies discussed above, few novel types of 2D fingerprints have

been designed in recent years. One approach follows an original

idea of experimentally fingerprinting a test compound against a

panel of proteins [37]. This process was mimicked by docking of

compounds into arrays of protein-binding sites and scoring them

as a measure of similarity [38]. A recent study extends this

approach exclusively to the ligand level and explores the similarity

of a test molecule to different compound activity classes using

Bayesian modeling, which generates a quasi-fingerprint that con-

sists of the resulting activity class scores [39].

Recent 2D-fingerprint designs include Molprint 2D, a complex

atom environment fingerprint consisting of up to 250 theoretically

possible strings [28], and property descriptor value range-derived

fingerprint (PDR-FP), a low-complexity fingerprint consisting of

500 bits [40]. PDR-FP is designed specifically for similarity search-

ing using multiple reference compounds. It encodes the screening

database value ranges of property descriptors that display a general

tendency to respond to compound activity classes through a

process termed ‘equifrequent’ binning. This procedure divides

the value range into several intervals, such that each interval

(bit) is matched by the same number of database compounds.

For every test compound and descriptor, exactly one bit is set and

the constant bit setting renders PDR-FP calculations independent

of molecular size. For a series of reference compounds, an activity

class-specific search string is created by recording their bit fre-

quencies in PDR-FP. Bit positions with high frequencies indicate

substantial deviations between active reference compounds and

database compounds. Thus, the activity-dependent search string

represents a fingerprint trained on a given activity class that is then

compared with bit strings of individual database compounds. PDR-

FP performed better on structurally diverse active compounds than

other 2D fingerprints [40]. In this study, PDR-FP also produced
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meaningful results on peptide-like molecules, which are notor-

iously difficult for similarity searching.

3D similarity methods
Many of the methodologies described herein can make use of either

2D or 3D molecular descriptors. In addition, exclusive 3D-similarity

methods have been developed, including shape-matching algo-

rithms [41], shape-based fingerprints [42], fuzzy, 3D-feature repre-

sentations derived from cluster analysis of molecular conformations

[43], molecular field descriptors [44] and pharmacophore finger-

prints [45]. These fingerprints systematically monitor potential

pharmacophore arrangements in molecules and, thereby, trans-

form local molecular views into a global view. Ensemble pharma-

cophore methods make 3D-similarity searching independent of

detailed predictions of the conformation of a bioactive compound,

which continues to be a major bottleneck for meaningful applica-

tions of many 3D descriptors and methods.

Descriptor-independent similarity methods
Although most similarity methods depend on the use of prede-

fined chemical descriptors and chemical reference spaces, a few

approaches do not. These include string-based similarity searching

[46], reduced (or simplified) 2D molecular graph representations
TABLE 1

Classification of representative LBVS methods

Method Descriptors Approach

Compound classification

Clustering Continuous, also fingerprints Groups com

Cell-based partitioning Continuous, binned Compounds

BKD Binary transformed or fingerprints Machine lea

SVM Continuous, also fingerprints Class label p

Mapping algorithms and distance functions

DACCS Continuous Determines

BDACCS Continuous Transforms

DMC Binary transformed Maps comp

MAD Continuous Maps comp

DynaMAD Continuous Adds dimen

Fingerprints

BCI Predefined structural fragments Quantitative

for single or
for kernel m

Daylight Hashed connectivity pathways

Molprint 2D Layered atom environments

Shape fingerprint Set of reference shapes

3D Pharmacophore

fingerprint

Set of potential pharmacophore

arrangements

Bayes affinity fingerprint Conventional fingerprints Generates q

PDR-FP Continuous, binned to

equifrequent intervals

Generates c

Others
LINGO SMILES substrings Comparison

MolBlaster Random fragment profiles Uses inform

Reduced graphs Simplified 2-D molecular graphs Directly com

ROCS Gaussian shape models Determines

Fingerprints are considered to be both methods and descriptors. If not specified, descriptors

Abbreviations: BCI, Barnard Chemical Information; ROCS, rapid overlay of chemical structure.
for similarity searching [29,47] and the MolBlaster methodology

[48]. Reduced graphs of molecules can be compared for overlap as a

similarity criterion. By contrast, systematic matching of combina-

tions of nodes and edges in regular graphs is computationally

unfeasible on a large scale (because of the combinatorial problem

that is commonly referred to as ‘subgraph isomorphism’). Mol-

Blaster produces random-fragment profiles of molecules from their

connectivity tables and records them in histogram representa-

tions. The fragmentation scheme is reminiscent of, but distinct

from, mass spectrometry. MolBlaster fragment profiles of different

molecules are compared quantitatively using information entro-

pic metrics as a measure of molecular similarity. Histogram com-

parisons accurately reproduced similarity-based compound

rankings that were generated using 2D fingerprints [48], and the

approach has also been adopted for large-scale LBVS [49].

Conclusions and future perspectives
There is no doubt that the concept of ‘molecular similarity’ is more

complex than it might first appear, and there is room for further

investigations and developments. Although the postulated het-

erogeneous nature of many SARs is, in part, consistent with the

SPP, it puts severe constraints on molecular similarity analysis.

Regardless of this, similarity-based methods are cornerstones of
Refs

pounds by means of distances in descriptor or fingerprint space [29]

are mapped to subsections of chemical space [11]

rning technique to estimate class label probabilities [36]

rediction using a maximum-margin hyperplane [13,14]

compound distances from the center of an ‘active subspace’ [15]

DACCS into a likelihood estimate [16]

ounds to consensus bit positions in chemical space [17,18]

ounds to activity-selective descriptor value ranges [19]

sion extension to MAD [20]

comparison of bit strings using a similarity coefficient

multiple reference compounds; also input
ethods or clustering

[27]

[26]

[28]

[42]

[1,45]

uasi-fingerprints of Bayes scores for correlation analysis [39]

ompound class-specific search strings for similarity evaluation [40]

of strings using similarity coefficient [46]

ation entropic metrics to compare fragment profiles [48,49]

pares simplified graph similarity [29,47]

volume overlap as a measure of similarity [41]

refer to molecular property descriptors.
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chemoinformatics and computer-aided pharmaceutical research.

The conceptual diversity of successful methods is astonishing.

Table 1 classifies the representative methods described here, and

additional methods that have not been discussed in detail because

of space constraints. Successful benchmark calculations are

reported using low-dimensional and high-dimensional reference

spaces, 2D and 3D descriptors, and methods of low- and high-

computational complexity. However, in most cases the results

depend strongly on the test cases used. Considering the spectrum

of similaritymethods, it looks as if ‘anything goes’. Being optimistic,

we might conclude that many powerful methodologies are avail-

able. An alternative conclusion is that many methods are successful

because SARs are ‘easy’ to study, in qualitative terms at least. How-

ever, given the considerations above, this seems unlikely. Being

more pessimistic, we might assume that the performance of diverse

methods is limited principally by the nature of SARs, and that

benchmark calculations provide artificial insights. Perhaps the only

firm conclusion that can be drawn is that LBVS has identified

novel, active compounds in many applications, which indicates
232 www.drugdiscoverytoday.com
that similarity methods do have substantial ‘selectivity’ in recog-

nizing diverse, active compounds. Their principal limitation in

‘real-life’ applications is the tendency to detect false-positives [50],

which corresponds to low ‘specificity’. This indicates future direc-

tions for research. For example, systematic deselection of either

inactive or irrelevant compounds is as important for the success of

molecular similarity analysis as the selection of active compounds

[51]. Furthermore, given the complex nature of many SARs and the

inherent approximation of similarity methods, finding ‘active

needles in chemical haystacks’ might not be the most promising

application scenario of LBVS. Other applications, for example

enriching moderately sized subsets of databases with desired

compounds and, thereby, interfacing similarity analysis with bio-

logical screening are thought to be particularly attractive [6,52],

and provide further opportunities for basic and applied research.
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