
A revised version of this report has been published as
Chapter 12 of Network and Distributed Systems Management,
edited by M. Sloman, Addison Wesley, 1994, pp. 303-347

Monitoring Distributed Systems

(A Survey)

Imperial College Research Report No. DOC92/23

Masoud Mansouri-Samani and Morris Sloman

1 April 1993

Abstract

Monitoring is an essential means for obtaining the information required about the
components of a distributed system in order to make management decisions and
subsequently control their behaviour. Monitoring is also used to obtain information
about component execution and interaction when debugging distributed or parallel
systems. This report presents a general functional model of monitoring in terms of
generation, processing, dissemination and presentation of information. This model can
provide a framework for deriving the facilities required for the design and construction
of a generalised monitoring service for distributed systems. A number of approaches to
monitoring of distributed systems are compared in the report.

Keywords:

Monitoring, debugging, event reporting, alarm reporting, status reporting, state
information, performance management, distributed systems management, network
management.

Imperial College of Science Technology and Medicine
Department of Computing
180 Queen's Gate,
London SW7 2BZ,
UK
Email: mm5@doc.ic.ac.uk, mss@doc.ic.ac.uk

Monitoring Distributed Systems i July 28, 1994

CONTENTS

1. Introduction...... 1

1.1 What is Monitoring..... 1

1.2 Concepts and Terminology..... 1

1.3 Monitoring Model... 4

2 Generation of Monitoring Information... 6

2.1 Status Reporting..... 6

2.2 Event Detection and Reporting..... 6

2.3 Trace Generation..... 7

3 Processing of Monitoring Information... 10

3.1 Merging and Multiple Trace Generation.. 10

3.2 Validation of Monitoring Information..... 12

3.3 Database Updating..... 12

3.4 Combination of Monitoring Information..... 13

3.5 Filtering of Monitoring Information..... 15

3.6 Analysis of Monitoring Information..... 16

4 Dissemination of Monitoring Information..... 17

5 Presentation of Monitoring Information..... 18

5.1 Display Approaches..... 18

5.2 Desirable User Interface Features..... 22

6 Implementation Issues..... 25

6.1 Intrusiveness of Monitoring Systems..... 25

6.1.1 Hardware Monitors.... 25

6.1.2 Software Monitors.... 25

6.1.3 Hybrid Monitors..... 27

6.2 Global State, Time and Ordering of Events...................................... 27

7 Some Existing Monitoring Systems.. 30

7.1 ZM4/SIMPLE...... 30

7.1.1 Model-driven Monitoring... 30

7.1.2 The ZM4/SIMPLE Monitoring Environment... 31

Monitoring Distributed Systems ii July 28, 1994

7.2 Meta...... 34

7.2.1 Instrumenting the Application..... 34

7.2.2 Structure Description..... 35

7.2.3 Expressing Policy Rules..... 35

7.3 Demon...... 35

7.3.1 Event Recognition.. 36

7.3.2 Interpretation.. 36

7.3.3 Graphical Presentation... 37

7.3.4 Programming Demon..... 38

7.3.5 Start-up Options and Operations.... 40

7.3.6 Conclusions... 40

7.4 Monitoring Databases..... 41

7.4.1 Events... 41

7.4.2 Trace Collection Service... 41

7.4.3 Combination..... 42

8 OSI MANAGEMENT STANDARDS...... 44

8.1 OSI Management Approach..... 44

8.2 Generation of Monitoring Information..... 44

8.3 Event Reporting Service..... 45

8.3 Log Service..... 46

8.4 Processing of Management Information..... 47

8.5 Discussion...... 47

9 Summary...... 48

Acknowledgements..... 48

References.. 49

Monitoring Distributed Systems 1 April 1, 1993

1. INTRODUCTION

1.1 What is Monitoring

Monitoring can be defined as the process of dynamic collection, interpretation and presentation
of information concerning objects or software processes under scrutiny [Joyce et. al 87]. It is
needed for various purposes such as debugging, testing, program visualisation and animation.
It may also be used for general management activities which have a more permanent and
continuous nature (performance management, configuration management, fault management,
security management, etc.) [Sloman 87]. In this case the behaviour of the system is observed
and monitoring information is gathered. This information is used to make management
decisions and perform the appropriate control actions on the system as shown in figure 1.1.
Unlike monitoring which is generally a passive process, control actively changes the behaviour
of the managed system and in our opinion it has to be considered and modelled separately. In
this report we are only concerned with monitoring of object-based distributed systems and
particularly its use for management purposes. Note that the generic model of management
shown below can be recursively applied to the components of the model itself. As a result a
monitoring system itself would have to be managed.

Decision Making

Control

Managed System

Monitoring

Monitoring dataControl actions

Figure 1.1 Management Model

There are a number of fundamental problems associated with monitoring of distributed
systems. Delays in transferring information from the place it is generated to the place it is used
means that it may be out of date. This means it is very difficult to obtain a global, consistent
view of all components in a distributed system. Variable delays in reporting events may result
in recording events as having occurred in the incorrect order and so some form of clock
synchronisation is necessary to provide a means of determining causal ordering. The number
of objects generating monitoring information in a large system can easily swamp managers,
thus necessitating the filtering and processing of information. Another problem is that the
monitoring system may itself compete for resources with the system being observed and so
modify its behaviour.

In order to overcome these problems, it is necessary to design a monitoring system in terms of
a set of general functions relating to generation, processing, dissemination and presentation of
monitoring information. Before we describe this model of monitoring in terms of these
activities, we shall introduce some necessary terms and concepts in section 1.2.

1.2 Concepts and Terminology

Since we are considering the subject of monitoring of object-based distributed systems and its
use in managing such systems, we must define what we mean by a managed object. A
managed object is defined as any hardware or software component whose behaviour can be
controlled by a management system (from now on we refer to a managed object just as an

Monitoring Distributed Systems 2 April 1, 1993

object unless explicitly specified). The object encapsulates its behaviour behind an interface
which hides the internal details which may be vital for monitoring purposes. For this reason,
the concept of encapsulation in object-based distributed systems causes a problem as far as
monitoring is concerned. The interface of a managed object can be divided into two parts
[Sloman 87, Holden 89a], shown in figure 1.2:

i) An operational interface which supports the normal information processing
operations, fulfilling the main purpose of the service provided by the object.

ii) A management interface which supports monitoring and control interactions with
the management system.

Management
interface

Operational
interface

Managed Object

Control Commands
Status requests
Monitoring Information

Information
Processing
Operations

Figure 1.2 A Managed Object

The management interface allows three types of operations:

i) Control commands (stop, halt, etc.)

ii) Requests for status information

iii) Monitoring information generated by the object.

An object may be passive or active. A passive object (or server) encapsulates some permanent
resource, such as a data structure, and a set of routines and operations that can be performed on
the resource (cf. monitors). It provides services which are used by one or more active objects
or clients. An active object performs some function and may also encapsulate some shared
resource and the operations for accessing it, but it may invoke operations on other objects. It
should be possible to monitor both active and passive objects.

Monitoring can be performed on an object or a group of related objects (a monitoring domain).
Each object has associated with it a status, and a set of events (i.e., status changes). The
behaviour of an object can be defined and observed in terms of its status and events. The status
of an object is a measure of its behaviour at a discrete point in time and is represented by a set
of status variables contained within a status vector [Feldkuhn & Erickson 89]. These variables
or attributes may be static (e.g., machine type) or time-varying (e.g., load). A static attribute
may further be subdivided into those associated with a permanent object or a temporary object.
An event is defined as an atomic entity that reflects a change in the status of an object. The
status of an object has a duration in time, e.g., "process is idle" or "process running", whereas
an event occurs instantaneously, e.g., "message sent" or "process started". Usually, the status
of an object is changing continually and therefore the behaviour of the object is normally
observed in terms of a distinguished subset of events, called events of interest. These reflect
changes that are of significance to the management and therefore are generated when a pre-
defined set of conditions are satisfied. In a distributed system three kinds of events can be
identified [Bemmerl et. al 90]:

i) A control flow event represents a control activity and is associated with a control thread.
Such an event occurs when a process or the operating system reaches a previously defined
statement. For example:

• process P2 enters/leaves procedure Fred for the nth time.

• the operating system enters the scheduler.

Monitoring Distributed Systems 3 April 1, 1993

ii) A data flow event occurs when a status variable is changed or accessed. For example,

• variable a of process P1 is assigned value X,

• variable b in the third invocation of procedure Fred is read by process P2.

Although such an event is coused by a specific control flow event, it is not associated with any
particular control thread.

iii) Process-level events show the creation and deletion of processes and the interactions and
data flow between them. For example,

• process P1 started,

• process P1 sends message m to process P2,

• the number of waiting processes in queue w is incremented by one.

Control flow and data flow events can be referred to as internal events which are related to the
local state of a component or object and are not visible outside it, unless explicitly made visible
at the management or debugging interface. Such events are particularly useful for debugging
purposes. Note that debug tools often create a new "interface" to make visible internal events
and state which are not normally visible at either the operational or management interface to an
object. Internal events thus violate the encapsulation of objects and are more appropriate for
analysing the behaviour of a single component.

Process-level events can be considered as external events, which represent the external
behaviour of an object and its interactions with other objects. These events are of particular
interest to management. A generalised monitoring system should allow us to observe a
combination of these events. Many monitoring tools enable the users to specify and detect only
process-level events such as interprocess communication, as these events do not violate the
encapsulation of objects and are at the correct level of abstraction for analysing the behaviour of
distributed systems [Bates 88, Joyce et al. 87, LeBlanc & Robbins 85].

Events can also be classified, according to their level of abstraction, into primitive and
combined (or correlated) events.

i) A primitive event signifies a simple change in the state of an object.

ii) A combined event is defined as a combination or grouping of other primitive and
combined events.

This classification is useful for describing the global behaviour of a group of objects in terms
of the local behaviour of every object in the group1. Various languages are used for specifying
combined events and states. This is described in more detail in section 3.4, on combination of
monitoring information.

Monitoring information describes the status and events associated with an object or a group of
objects under scrutiny. Such information can be represented by individual status and event
reports, or a sequence of such reports in the form of logs or histories, as described later.

Time-driven monitoring is based on acquiring periodic status information to provide an
instantaneous view of the behaviour of an object or a group of objects. There is a direct
relationship between the sampling rate and the amount of information generated. Event-driven
monitoring is based on obtaining information about occurrence of events of interest, which
provide a dynamic view of system activity as only information about the changes in the system
are collected. Most monitoring approaches use event-driven monitoring but a generalised

1 [Holden 88] uses the terms object set states and object set events to describe the overall
behaviour.

Monitoring Distributed Systems 4 April 1, 1993

monitoring system must provide both of these complementary techniques to suit various
monitoring requirements and constraints.

1.3 Monitoring Model

This survey is based on a general functional model which is derived from the Event
Management Model of [Feldkuhn & Erickson 89], with some changes and enhancements. This
model identifies the following four monitoring activities performed in a loosely-coupled,
object-based distributed system:

i) Generation: Important events are detected and event and status reports are generated.
These monitoring reports are used to construct monitoring traces, which represent
historical views of system activity.

ii) Processing: A generalised monitoring service provides common processing
functionalities such as merging of traces, validation, database updating, combination /
correlation and filtering of monitoring information. They convert the raw and low-level
monitoring data to the required format and level of detail.

iii) Dissemination: Monitoring reports are distributed to users, managers or processing
agents who require them.

iv) Presentation: Gathered and processed information is displayed to the users in an
appropriate form.

Implementation issues relating to the intrusiveness of the monitoring system which depends on
whether it is implemented in hardware or software and how clock synchronisation is achieved
for event ordering, provide a fifth dimension for comparing monitoring systems. Figure 1.3
summarises the elements of the monitoring reference model presented in the report.

Many models have been developed in order to describe the monitoring process. One approach
has been to identify a set of layers such as the Event/Action Paradigm of [Marinescu et al.
90]. At first sight, the above four activities appear to be a layered model with generation as the
lowest layer and presentation using the services of the lower layers. However a generalised
monitoring system may need to perform these activities in various places and in different orders
to meet specific monitoring requirements. For example generated information may be directly
displayed by an object without processing or dissemination. Events and reports which are
distributed to particular mangers, could be reprocessed to generate new monitoring information
or events. Presentation of information may occur at many intermediate stages. For these
reasons we present the monitoring model as a set of activities which can be combined as
required in a generic monitoring service.

We shall describe these activities of the Monitoring Model in detail in sections 2 to 5. Section 6
discusses some issues related to implementation of a monitoring service, such as intrusiveness
of monitoring and ordering of events. A brief summary of some of the existing approaches is
presented in section 7 and the relevant Open Systems Interconnection Management standards
are described in section 8.

Monitoring Distributed Systems 5 April 1, 1993

Generation of Monitoring Information

• Status reporting

• Event detection and reporting

• Trace generation

Processing of Monitoring Information

• Merging and multiple trace generation

• Validation

• Database updating

• Combination

• Filtering

• Analysis

Dissemination of Monitoring Information

• Registration of subscribers to dissemination service

• Specification of information selection criteria

Presentation

• Textual displays

• Time process diagrams

• Animation of events and status

• User control of levels of abstraction

• User control of information placement and time frame for updates

• Multiple simultaneous views

• Visibility of interaction message contents

Implementation Issues

• Special purpose hardware

• Software probes

• Time synchronisation for event ordering

Figure 1.3 Elements of a Monitoring Reference Model

Monitoring Distributed Systems 6 April 1, 1993

2 GENERATION OF MONITORING INFORMATION

 Monitoring data is generated in the form of status and event reports (figure 2.1). A sequence
of such reports is used to generate a monitoring trace. Status reporting, event detection and
reporting, and trace generation are described below.

Event
Detection &
Reporting

Status
Reporting

Status Vector

Status
Reporting
Criteria

Status Report Event Report

Trace
Generation

Monitoring Trace

Monitoring Reports

Event
Detection &
Reporting
Criteria

Figure 2.1 Generation of Monitoring Reports and Traces

2.1 Status Reporting

A status report contains a subset of values from the status vector and may include other related
information e.g., time stamp and object identity. It represents the status at a specific instance in
time and can be generated as described below.

i) Periodic: Reports are generated based on a pre-determined schedule.

ii) On request: A report is generated upon receiving a request (solicited reporting). Note that
the request may itself be periodic (i.e., polling) or on a random basis.

One example of periodic status reporting can be found in Conic environment [Magee, et al. 89]
where each node sends a configuration status report to a name server every 5 seconds. The OSI
event management permits scheduling of event reports on both daily and weekly basis [ISO
10164-5].

The Clouds operating system [Dasgupta 86] uses on demand status reporting scheme.
Requests are called probes and every object or process has a predefined or user defined probe
procedure which is executed whenever a probe is received. The probe handler sends a message
back to the originator of the request, reporting the status condition of the process.

Status reporting criteria will define which reporting scheme to use, what the sampling period is
and the contents of each report.

2.2 Event Detection and Reporting

Significant changes in the status of an object or a group of objects (i.e., events of interest)
would have to be detected. An event is said to have occurred when certain pre-defined
conditions are satisfied (defined by event detection criteria). To detect events associated with an
object certain software or hardware probes or sensors would have to be inserted and installed
in the object. Insertion of such mechanisms is part of a process called instrumentation. Where,
how and when event detection is carried out depends on the resources available for detection
(e.g., dedicated hardware, communication channels) and the intrusiveness of the monitoring

Monitoring Distributed Systems 7 April 1, 1993

system. This intrusiveness or probe effect is the degree to which the observed system is
perturbed by the act of monitoring2 and is discussed further in section 6.1 on intrusiveness of
monitoring systems.

i) Location of Event Detection

Event detection may be internal within the object and typically performed as a function of the
object itself. For example, a function that updates the status vector may check the event
detection criteria when it performs the update. Event detection may also be performed
externally from the object itself e.g., by an external agent which receives status reports and
detects changes in the state of the object.

ii) Time of Event Detection

Detection of event occurrences may be immediate , (real-time) or delayed, detected some time
after the occurrence. For example, signals on the internal bus of a node may be monitored,
using a hardware monitor, to detect any changes in the status of the node as and when they
occur. This is particularly used for detection of events in time frames of milliseconds.
Alternatively, status reports may be generated, stored and used to detect events at some later
time.

iii) Event Report Format

Once the occurrence of an event is detected an event report is generated. It contains attributes
such as the event identifier, type, priority, time of occurrence, the state of the object
immediately before and after the occurrence of the event and other application specific status
variables.

Event and status reports may be generated in one or more stages. A preliminary report may be
generated by an object, containing a minimum amount of monitoring information (e.g., object
and event id). Such a report could then be sent to a different object which can generate a more
complete report by adding further attributes such as time-stamps, event type or text messages.

Obviously, the amount of information contained in a monitoring report depends on the
requirements of users or clients who need them. The attributes assigned to each event or status
may be of two kind: Independent or Dependent [Mohr 90]. Independent attributes are those
primitive attributes which are assigned to all events and status, such as the time stamp, identity
of the object, etc. Dependent attributes are assigned depending on the type of the event or
status. For example, a configuration event report, representing a "create process" event may
contain the identity of the created process. Event and status reporting criteria is used to
determine what information to include within each report.

The format and structure of a report may be fixed or variable. Obviously with a variable report
structure some amount of filtering can be performed implicitly, where only the necessary
information is included within a report as explained in section 3.5 on filtering.

2.3 Trace Generation

In order to describe the dynamic behaviour of an object or a group of objects over a period of
time, event and status reports are recorded in time order as monitoring traces.

A complete trace contains all the monitoring reports generated by the system since the
beginning of the monitoring session. A segmented trace is a sequence of reports collected
during a certain period of time. It describes "a completely observed time interval" of the

2 Here we only consider detection intrusion , associated with the recognition of events, and not action intrusion,
associated with performing control actions on the system.

Monitoring Distributed Systems 8 April 1, 1993

behaviour of the monitored object or system. A trace may be segmented due to overflow of a
trace buffer, or deliberate halting of trace generation which results in the loss or absence of
reports over a period of time.

A trace may have a header giving some general information such as the start and end time
stamps, the identity of the monitored object, its size and the identity of the program etc.
Monitoring traces may be generated for various reasons:

• Archiving purposes and post-mortem analysis: Monitoring reports may be needed at
some later stage for further processing, analysis and usage. They are stored as
monitoring traces and examined by the user at a later time, possibly after the completion
of the program. This is particularly important for debugging purposes [McDowell &
Helmbold 89]. Archive traces are usually referred to as histories or logs. A logging
service can be used to generate these traces in log files. Certain facilities or services can
be used to browse or query these traces. Such traces can also be used to control a replay
or re-execution of the program, allowing the reproduction of the erroneous computations.
With a complete trace an individual process can be debugged in isolation, where the
history provides the needed communication and simulates the environment of the
process.

• Availability of resources: Other reasons for forming these traces may be lack of
processing power to analyse and interpret the monitoring reports "on the fly"; or limited
communication resources to send reports to an external processing agent, as and when
they are generated. This is particularly true for real-time monitoring.

• Speed of visualisation: Trace generation might be necessary when the rate at which
monitoring information is received and displayed is too quick for the observer to follow.
This is especially true for real-time observation and display of system activity. Special
display tools can be used to control the speed at which information is presented to the
user.

• Transformation of the logical view of the system activity: It enables the construction of a
global monitoring trace from local traces, which describe the behaviour of the system as a
whole (see merging of monitoring traces - section 3.1.1). Multiple traces can be
generated from a single trace, to reflect specialised or restricted views of the system
activity (see generating multiple traces - section 3.1.2). Lower level histories can be used
to generate more meaningful higher level monitoring information [McDowell & Helmbold
89], by using combination and filtering (see sections 3.4 and 3.5 respectively).

The design alternatives relating to trace generation include:

• Location of trace generation: Traces could be formed by objects which generated the
monitoring reports, by intermediate monitoring objects when processing monitored
information, or by the final user of such information.

• Temporary vs. long-term traces: Temporary storage involves placing the monitoring
reports in a temporary buffer before they are processed or transferred to another object
for use. Generally a report is removed from short term storage when accessed. Long-
term storage involves recording the reports in persistent log or history files by making
use of a logging service. The report would not usually be removed if it is read.

• Storage capacity: Obviously there is a limit to the amount of available storage space and
therefore the size of a monitoring trace. Overwriting older records when the maximum
storage size is reached can be appropriate if we are interested in the most recent behaviour
of the system. Alternatively new reports are discarded until more space is available
[LaBarre 91] by halting trace generation. Both these strategies may result in a segmented
trace as some of the reports may be discarded. A capacity threshold event should be
generated to indicate storage overflow.

• Sophistication of trace generation: A simple scheme would store all the reports, in the
arrival order, in a local trace-buffer of a monitoring object, without changing the contents
of the stored information. This is usually used for temporary storage of monitoring data.

A sophisticated scheme might use a logging service (which can be modelled as a managed
object [LaBarre 91]) for the long-term storage of reports together with some extra

Monitoring Distributed Systems 9 April 1, 1993

information, in a variety of formats, representations and orderings. It may allow the
generation of multiple traces or logs, representing different logical views of system
activity (see section 3.1.2). Special log records could be generated containing a log
record identifier, logging time, information contained in the report to be logged and other
related data. Various implicit or explicit filtering activities can be performed when such
records are generated and stored in log files.

A sophisticated trace generation mechanism may allow reports to be stored in occurrence
order if an occurrence time stamp is available. This overcomes the problems of ordering
according to arrival order which may lead to incorrect interleavings of monitoring reports
and invalid observations, due to communication delays. Determining the order of
monitoring reports is discussed in section 6.2.

• Access to the trace reports may be on demand by issuing an explicit request to the storage
entity, or according to pre-determined conditions. On demand access enables the
processing agent to receive the reports when it has the necessary resources to deal with
them, or when the communication traffic is low. By using a scanning and selection
service the user may be able to specify the particular reports required (e.g., generated by
a particular object), the trace file from which they may be read or the number of reports
needed.

Pre-determined conditions may be used to transfer reports from a trace-buffer to a remote
processing agent when the buffer is full, contains n elements, the communication load is
below a certain threshold or the processing load is low [Van Riek & Tourancheau 91].
These strategies are particularly useful for reducing the communication overheads by
sending reports in blocks and therefore economising on channel set-up time.

Monitoring Distributed Systems 10 April 1, 1993

3 PROCESSING OF MONITORING INFORMATION

In previous sections we discussed the steps necessary for generation of monitoring
information. In this section we will consider some common processing activities that can be
performed on this information. A monitoring service could provide certain functional units (as
building blocks) which can be combined in different ways to suit the monitoring requirements.
Figure 3.1, shows one possible combination. Note that these processing functionalities are
often integrated and are performed in different places and at various stages.

Merging

Global Monitoring Trace

Database
Updating

Validation

Combination

Validation
Report

Validation
Rules

Monitoring
Definitions

Filtering
Criteria

Dissemination

Multiple Trace
Generation

Monitoring Reports

Filtering

Monitoring Trace

Monitoring Trace

Figure 3.1 Processing of Monitoring Reports

3.1 Merging and Multiple Trace Generation

In order to provide different logical views of system activity over a period of time, monitoring
traces may be constructed and ordered in various ways. The attributes of a report which can be
used as selection criteria in determining how monitoring traces are processed include:

• Generation or arrival timestamp, priority or type of the report
• Identity, priority or type of the reporting entity
• Identity or type of the managed object to which the report refers
• Identity or type of the destination of the report

Monitoring Distributed Systems 11 April 1, 1993

Construction of monitoring traces is performed according to a trace specification, based on
these factors. It specifies how the final traces are formed and what they will contain. Obviously
not including a report in a trace is equivalent to filtering out that report from the point of view
of the users who access that trace.

Monitoring traces may be generated from event or status reports as they arrive or from one or
more already existing traces, as described in the following sections.

Multiple
Trace

generation
Merging Trace

Specification

P6 P7 P8Destination

HighLow MediumPriority

Type Configuration Fault Security

P1 P2 P3
P5

P4

(a) (b)

Figure 3.2 Merging and Multiple Trace Generation

3.1.1 Merging of Monitoring Traces

 A trace segment containing all the reports related only to one object is called a local trace
segment. A set of all the local trace segments from all the objects under scrutiny, over the same
period of time, can form a global trace segment.

One of the important activities in a monitoring system, as shown in figure 3.2a, is merging of
several monitoring traces into one trace. For example, if a monitored system consists of three
objects P1, P2 and P3, local trace segments from these objects can be merged using scanning
and selection services to generate a global trace segment, representing the global behaviour of
the system in a particular interval. The trace segment generated can then be used by a
processing agent P4.

Merging could be an iterative operation. A trace generated in this way could itself be merged
with others to generate a more general trace. The original traces may be discarded once merging
is complete. Generating one global monitoring trace from several local traces, is in effect
imposing a linear (total) ordering on the event and status occurrences within the system. An
ordered trace is simpler to understand and can be easier to work with, but a linear stream may

Monitoring Distributed Systems 12 April 1, 1993

be misleading since it implies an ordering between every pair of event or status reports, even
when they are completely unrelated. A partial ordering can more accurately reflect the
behaviour of a distributed system [McDowell & Helmbold 89]. A general technique for
obtaining the required partial ordering is described in [Fidge 88]. To achieve this a vector of
logical time stamps is associated with each event. By comparing the vectors the ordering of
events can be determined. This is described in more detail in section 6.2.

3.1.2 Generating Multiple Traces

As shown in figure 3.2b, a monitoring trace can be used to generate several other traces,
representing various logical views of object or system activity. Selection of reports from a
trace segment may be based on a combination of destination, priority, report type or other
factors as shown in figure 3.2. For example, a trace could be generated with all high priority
security events, so that they can be processed first and another trace with all the accounting
events destined for a particular process. A trace generated in this way may be used to generate
other traces.

Obviously some duplication may be necessary because some reports may have to appear in
several traces. For example, an event report may be of interest to two processing agents and
therefore it is stored in each of their trace-buffers.

3.2 Validation of Monitoring Information

Another important monitoring activity is performing validation and plausibility tests on
monitoring information, to make sure that the system has been monitored correctly. This may
be performed at different levels. When an individual report is received, its contents may be
checked to see if they are valid. For example, whether the event id. represents one of the
expected events, or the value of the time-stamp is valid. Invalid reports are discarded.
Monitoring reports may also be validated in relation to one another. For example, to see
whether two event reports in a trace satisfy an expected temporal ordering, or to check the
validity of an event report against the current system status, before applying the status change
to the model (see database updating). The detection of invalid orderings may be followed by
reordering or filtering of the reports. Validation is done according to certain validation rules,
and a validation report may be generated. The SIMPLE monitoring system [Hofmann, et al.92]
performs some validation and plausibility tests on selected event reports and event traces
(section 7.1).

3.3 Database Updating

Valid monitoring information, may be used to maintain and update a representation or model of
the current status of the system. In OSI terminology it is called the Management Information
Base (MIB). This representation could be used by other users, managers or processing agents.
For example, the configuration manager may periodically examine this data model to detect
component failures. Section 7.4 describes a data-oriented approach to monitoring
communication networks in which a conceptual data-base model of the network is constructed
and continuously updated to represent the current status of the network [Wolfson et al. 91].
Some approaches use temporal and historical databases in order to maintain both the current
and also the historical behaviour of the system [Shim & Ramamoorthy 90, Snodgrass 88].

There are two general approaches to collecting MIB data. A dynamic approach in which only
the information which is requested by the user is collected (e.g., [Snodgrass 88]). User queries
result in the automatic activation of relevant sensors in monitored objects and the collection of
the required data. The advantage of this approach is that only the requested data is collected.
This is particularly important when monitoring resources (processors, memory, etc.) are
limited and / or there are many sensors present. The disadvantage is that the queries must be
specified before the data is collected. The user, however, may not know in advance exactly
what information is required. At the other extreme, a static approach is used in which the
collection of data is independent of its use. All possible monitoring data must be collected and
stored for potential access by users. This is done by permanently enabling all the sensors, or
forcing each sensor to be enabled manually. This solves the problem associated with the

Monitoring Distributed Systems 13 April 1, 1993

previous approach but results in collection of large amounts of information that may not be
used.

In a distributed system, due to various factors such as communication delays and component
failures, it is usually impossible to construct a model which could provide a truly up-to-date
and consistent snapshot of the system status. This is further discussed in section 6.2.

3.4 Combination of Monitoring Information

Combination (also referred to as correlation or clustering) of monitoring information is the
process of increasing the level of abstraction of monitoring data. In conjunction with filtering,
it prevents the users of such information from being overwhelmed by the considerable volume
of details present in all of the system's activity, so that they can observe the behaviour of the
system at a desired level of detail. To do this low-level primitive events and states can be
processed and interpreted to give a higher-level view of the complex states and events which
occur in the system. Combination is performed according to certain event and state definitions.
These definitions specify new events and states based on primitive or other combined events
and states. In other words, events and states at one abstraction level can be used to generate
those at higher abstraction levels. The ability to combine monitoring information is particularly
important in distributed systems that implement fault tolerance. Events generated by several
sensors or probes with different failure modes can be combined to provide the necessary
reliability and resilience against failures. For example, the expression:

t-exceeded = t1-exceeded OR t2-exceeded OR t3-exceeded

with ti-exceeded representing the "temperature exceeded" event detected by sensor i, may be
used to make sure that an event representing an increase in temperature above a pre-defined
limit is detected even if two out of three independent sensors fail.

Various languages have been developed which enable the user to define new events and states
and combine monitoring information.

In the State and Event Specification Language (SESL) [Holden 89b], a user can define two
declarative statements:

e WHEN elist event e occurs when elist occurs

s EQUALS expr state s will have the value of expr

An event list (elist) defines a pattern of occurrence of events, which is specified in terms of
other event lists, events, low-level events (represented by an event notification message), and
state changes. These are related by temporal operators => and ->, and the logical operators |
and ! (see table 3.1). Each time a sequence of events occurs which matches the pattern, the
event list also occurs.

elist=>elist2 matches when elist2 occurs immediately after
elist1

elist1 > elist2 matches every time elist2 occurs after elist1 has
once occurred

elist1 -> elist2 matches when elist2 occurs sometime after elist1
elist1 | elist2 matches when either of the event lists occurs
!elist matches only if elist did not occur
elist PROVIDED condition matches if condition is true at the time elist occurs

Table 3.1 Example SESL operators for creating event lists

Also various conditions and expressions can be defined using the operators listed in table 3.2.
A condition is also an expression with a zero value representing true and a non-zero value
representing false.

Monitoring Distributed Systems 14 April 1, 1993

$state value of state defined by EQUALS
#event number of times event occurred
State("string") value of state string of monitoring activity
constant a numerical constant
!expr -expr unary operators
* / + - binary arithmetic operators
< > <= >= == != binary relational operators
& | binary logical operators

Table 3.2 SESL operators for creating expressions and conditions

As an example, to check the availability of a service consisting of two servers, the user can
write the following SESL script:

busy WHEN EVENT ("received request")
free WHEN EVENT ("sending reply")
non_busy WHEN one_busy => free
one_busy WHEN non_busy => busy | two_busy => free
two_busy WHEN one_busy => busy

The first two SESL statements can be used to show when the server is busy and when it is
free. Internal events free and busy are defined in terms of external events "received request"
and "sending reply", respectively. The next three statements define non_busy, one_busy, and
two_busy events. For example, non_busy is the internal event associated with the state
transition where no server is being used, and is triggered by the event of 1 server becoming
busy followed (without any other events) by the detection of a server becoming free. More
details about SESL can be found in [Holden 91].

 A specification language for defining process level events which can be used for debugging
and performance monitoring is described in [Lumpp, et al. 90]. The user or programmer
includes, with the application, a monitoring section that defines primitive and combined
events. This is similar to the declaration of data structures and procedures for the application
program. Examples of some event definitions are shown below:

e1 ::= (xmitregister == 1) on node 0;
e2 ::= (rcvregister == 2) on node 0;
e3 ::= e1 && (waitregister == 1) on node 0;
e4 ::= e2 && (waitregister == 1) on node 0;
e5 ::= e3 && e4;
e6 ::= (ptr > 0xE4000) on node 2
e7 ::= (touch(flag)) on node 1;
e8 ::= (reach(label_1) on any node;
e9 ::= (done_flag == TRUE) on all nodes;

Events e1-e6 are self-explanatory. They are defined in terms of counters such as rcvregister,
xmitregister and waitregister, a pointer ptr and other events on specific nodes. In the definition
of e7, touch() operator is used which specifies events that correspond to any change of a
specified variable regardless of the value stored (e.g., flag). In the definition of e8, the operator
reach() is used for tracing the flow of control of a thread. The user can place labels in
appropriate sections of the application and define events that correspond to the program counter
reaching those points (in this case label_1) during execution. The definition of an event can

Monitoring Distributed Systems 15 April 1, 1993

span more than one node in the target system (e.g., any node, all nodes, 5 nodes). The user
can specify various temporal, relational and logical relationships between events.

In another approach, [Wolfson et al. 91] use a data manipulation language based on SQL, with
some enhancements to specify primitive and combined events (section 7.4). Also, the Event
Definition Language (EDL) [Bates 88] allows the user to define primitive and higher level
events with various filtering constraints.

3.5 Filtering of Monitoring Information

A typical distributed system may generate large amounts of monitoring information. This
results in heavy usage of resources such as CPU and communication bandwidth for
generation, collection, processing, and presentation of monitoring information. In addition,
the users of the monitoring information may be overwhelmed with vast amounts of data which
they are unable to comprehend. Filtering is the process of minimising the amount of
monitoring data, so that users only receive desired data at a suitable level of detail relevant to
their purposes. It is also needed for security, where certain users should not have access to
particular monitoring information.

Filtering functionality must be considered separately from the process of combination of
monitoring information. Filtering discards information, but combining information permits
both high level and low level views on the information i.e. the information is not discarded.
Filtering may be performed, explicitly or implicitly, in different places and at various stages:

• Global filtering: Performed by discarding the monitoring reports or traces which do not
satisfy global filtering criteria. This includes validation failures.

• Reducing report contents: With a variable report structure and the use of a selection facility, a
monitoring object could receive a report and generate a new one with only a subset of
monitoring information contained in the old report. The old report could be discarded and
the new one may be used or stored by the object itself or forwarded to another object.

Obviously the best policy is to avoid generating unwanted or unnecessary information. For
example this could be done by:

• Controlling report contents: by using event and status reporting criteria at generation stage so
that only the required information is included in each report.

• Conditional generation: A monitoring report or trace is generated when certain predefined
conditions are satisfied. For example, in periodic status report generation, by increasing
the sampling period, the frequency and number of generated reports can be reduced. Also
report generation mechanisms can be activated or deactivated. This could be done at
various levels of granularity. For example, the reporting mechanisms for all or individual
events associated with a component may be deactivated.

• Dissemination Filtering: Disseminating monitoring reports based on a subscriber / provider
principle performs an implicit filtering function as selected reports are forwarded only to
those subscribers who have requested them as explained in section 4. A monitoring trace
may be generated for each destination object. A report may not be discarded, but simply
placed in one trace-buffer and not the others. Obviously, not including a report in a trace
would be equivalent to filtering it out from the point of view of the users who have access
only to that trace.

Clearly, it is better to perform the necessary filtering at an early stage to reduce the resource
usage in subsequent stages. In all the above cases, implicit or explicit filtering criteria may be
based on the information contained within the reports (e.g., event type, time, priority, type)
or external information such as previous status or events and the capacity to process each
report. Some approaches provide a language in which various filtering criteria can be defined
(e.g., FDL in the SIMPLE environment - section 7.1). Users of monitoring reports should be
able to define their own filtering criteria.

Monitoring Distributed Systems 16 April 1, 1993

3.6 Analysis of Monitoring Information

Monitoring information can be analysed to determine average or mean variance values of
particular status variables (see section 8.4). Trend analysis is important for forecasting faults
in components. Diagnosis of faults requires correlation of event reports. Some aspects of
analysis are considered part of the presentation of information e.g. displaying information as
histograms or graphs. In general, analysis is application specific so is not really considered
part of a generalised monitoring service. It can range from very simple gathering of statistics to
very sophisticated model based analysis.

Some monitoring tools collect various statistics such as total CPU usage, ready, blocked, idle
and busy times, number of messages or bytes sent, etc. (TMP [Wybranietz & Haban 90]). In
the SIMPLE environment [Mohr 90], a commercial data analysis and graphics package S from
AT&T, has been integrated for interactive and complex analysis of monitoring data. A more
complex approach has been adopted in the Event Based Behavioural Abstraction approach
(EBBA), which is a paradigm for high-level debugging of distributed systems [Bates 88]. The
EBBA toolset allows the user to construct models of system behaviour in a top-down manner.
These models reflect user understanding of the expected system behaviour, and are compared
to the actual system activity represented by the monitoring information.

Monitoring Distributed Systems 17 April 1, 1993

4 DISSEMINATION OF MONITORING INFORMATION

Monitoring reports generated by the objects would have to be forwarded to different users of
such information. The destination of such reports may be human users, managers, other
monitoring objects or processing entities. Dissemination schemes range from very simple and
fixed to very complex and specialised. An example of a fixed scheme is to broadcast all the
reports to all the users. A complex and specialised dissemination scheme could be based on the
subscription principle [Feldkuhn & Erickson 89] as shown in figure 4.1.

Subscription
Service

Dissemination
Unit

Subscription
List

Report
Selection
Criteria

Subscription
Requests

Report
Processors

or
Clients

Monitoring Report Subscription
Criteria

Figure 4.1 Dissemination of monitoring reports

Clients of a monitoring service subscribe to receive the required status or event reports from the
dissemination unit by registering themselves with the subscription service. Each client sends
a subscription request indicating its identity, the list of reports and the frequency of the reports
required. Subscription authorisation information, held by the service, is used to determine
whether the client is an authorised user and what reports it is permitted to receive. Only
authorised users are permitted to subscribe and are entered in the Subscription List maintained
by the dissemination unit. Selection Criteria contained within the subscription request are used
by the dissemination system to determine which reports and their contents should be sent to the
clients. This provides implicit filtering as only the requested reports are forwarded.

Monitoring Distributed Systems 18 April 1, 1993

5 PRESENTATION OF MONITORING INFORMATION

Generated, collected, and processed monitoring information has to be presented to clients in a
format which meets their specific application requirements. A suitable user interface should
enable the user to specify how to display information as well as cope with:

• large amounts of monitoring data generated by the system,
• various levels of abstraction of such information,
• the inherent parallelism in the system activity, represented by monitoring data
• the rate at which this information is produced and presented.

5.1 Display Approaches

 In this section, we shall describe different techniques that can be used to display information to
the user, and we will conclude by considering useful features of some existing tools. Various
presentation techniques have been used for displaying debugging data in parallel debugging
systems [McDowell 89]. Similar techniques can be used in a generalised monitoring system to
display different types of monitoring information relating to configuration, performance,
security, accounting, etc. These approaches are described below:

5.1.1 Textual Data Presentation

This is the most common type of display with a simple text presentation of the monitoring
information, which may involve highlighting or colour. Events may be displayed in their causal
rather than temporal order as in Traveller [Manning 1987].

The Jade monitoring system [Joyce et al. 87] observes the process level events such as
interprocess communication, creation and killing of a process. It provides a Text Console
which displays one or two lines of textual output to describe the event. It shows the name of
the process initiating the event, the event type, the name of the process that is the subject of the
event, if any, on the first line. If the event is one in which processes communicate, the contents
of the message are printed as the second line of the output. An example of such a display is
shown figure 5.1.

1. process1 enters the system
2. process1 waits to receive a message from any process
3. process2 enters the system
4. process2 sends a message to process1
	 "connect"
5. process1 receives a message from process2
	 "connect"
:

Figure 5.1 Example Jade Textual Display

Appropriate indentation, highlighting and colouring can be used to increase the expressive
power of visualisation and also to distinguish monitoring information at various levels of
abstraction. Advantages of this technique are that no special devices are necessary to present
monitoring data and that it is simple to convert such information to textual form. However, this
technique is not enough to present parallel system activities. Nowadays, simple textual
presentation is often used in combination with other more expressive techniques as outlined
below.

Monitoring Distributed Systems 19 April 1, 1993

5.1.2 Time Process Diagrams:

The state of the parallel system is represented as a two dimensional diagram, with one axis
representing the objects and the other representing time. It shows the current status of the
system and the sequence of events that led to that status, and therefore can display patterns of
behaviour over time. The unit of time may be the occurrence of an event or a period of real
time. One or two characters can be used to represent each of the possible events associated with
an object or group of objects. The advantage of using a time-process diagram is that monitoring
information can be presented on a simple text screen.

In Jade [Joyce, et al. 87], an event line console has been provided which displays the current
state and history of each process in a compact form and, at the same time, defines the relative
ordering of events, as shown in figure 5.2. The names of the processes and single-letter
abbreviations are listed on the right-hand side. In the middle there is one row for each process
representing the event line for that process. Each event line is divided into a number of event
intervals separating adjacent events, and each interval displays an event; events are inserted at
the right of the display and scroll to the left. The last event to scroll off the left-hand side is
always displayed (to the left of the vertical bar) so that, if a process has had all of its events
scrolled off of the middle section, the current status of a process is always available. Here, A
dotted line "..." signifies that the process is blocked and a dashed line "---" means that it is
executing.

Event Line Console Commands: Go Pause Step Quit
 a <RA | ... a P1
 b <RA |d>-Rd----------<RA..................................... b P2
 c <RA | f>-- c P3
 d <RA |e>-<Sb..............>-Re------------<RA............e>-<Sb d P4
 e Sd> | -----<Sd>---------------------<Sd.................. e P5
 f <Sc | ... f P6
 g | E-<Sa... g P7
EVENTS: I initialise <Sp...> send to p Cp create p

E enter_system <Rp...> receive from p Kp kill p
L leave_system <RA..p> receive any K killed
X exit Rp reply to p

Figure 5.2 Jade's time-process diagram (Event Line Console)

Time-process display tools may use graphics. For example in IDD [Harter et al. 85] two
points in the display are connected by a line to indicate the exchange of a message, instead of
placing one character at each point in the display. The user can magnify or scroll to see only a
selected portion of the display. Various filters may be selected by the user to limit the
information displayed on the screen.

Time process diagrams usually require a global clock. However, in one approach using a
concurrency map [Stone 1988], events are arranged to show only the order in which they
occurred based on causal ordering of a logical clock, instead of showing the exact times of
event occurrences based on a global clock. As shown in figure 5.3, the map displays the
process histories as event streams on a time grid. Each column of the grid displays the
sequential event stream of a single process. Every row represents an interval of time, and the
events that appear in different columns in that row occur concurrently. All the events in one
row occur before any of the events in the next row. Time dependencies are expressed by
arrows.

Monitoring Distributed Systems 20 April 1, 1993

A1: Compute

A2: Send M1

A3: Compute

A4: Send M2

A5: Compute
A6: Send M3

A7: Compute

B1: Compute

B2: Receive M1
B3: Compute
B4: Send M4

B5: Compute

C1: Compute

C3: Compute

C4: Receive M4
C5: Compute
C6: Send M5

C2: Receive M2

C7: Compute
 ...

A9: Compute

A8: Receive M5

B7: Compute

B6: Receive M3

...

...

Process A Process B Process C

Figure 5.3 Concurrency Map

5.1.3 Animation

Animation allows the observation of the instantaneous state of the system. A representation of
every object or selected portions of monitoring data, can be placed at a different point in a two
dimensional display. The entire display represents a snapshot of system activity. Such a
representation may be in the form of icons, boxes, Kiviat diagrams, bar charts, dials, X-Y
plots, matrix views, curves, pie graphs, meters, etc. Subsequent changes in the display, over a
period of time, could provide an animated view of the evolution of the system state.

In SIMPLE, a visualisation program (called SMART) is provided which can be used on any
ASCII-terminal [Mohr 91]. Figure 5.4 shows a screen snapshot of SMART. In this example
every column represents a process and the events which can occur in it. The user can step
through the event trace by hitting a key, the next event in the trace is highlighted on the screen,
and the current time is displayed at the bottom of display. There is also a slow-motion mode for
displaying events in a speed proportional to real time.

Monitoring Distributed Systems 21 April 1, 1993

Begin
Compute
Sync
End

Begin
Compute
Sync
End

SMART - Slow Motion Animated Review of Traces Version 2.4 01.05.90

Proc1

Begin
Compute
Sync
End

Proc2 Proc3

VisEv [7]
RecNr [6] 518 [ms]

-->
Type ? for help

Key: example
TRC: example

Figure 5.4 Screen Snapshot of SMART

Another visualisation tool has also been provided called VISIMON based on X-Windows with
graphics capabilities which allows the user to animate the execution of the program according
to a user specified animation description.

The Radar system monitors process level events and uses animation of messages, as shown in
figure 5.5 [LeBlanc & Robbins 1985]. It has two windows. The top window shows a textual
display of the events which are occurring, and the lower window has a graphical representation
of the same events. The user can see processes (represented as boxes) and messages (shown as
[+]) queued on their input ports. The drawing of a process indicates the number of input and
output ports associated with that process. The user can have the contents of a message
displayed and can set the speed of animation to single stepping or continuous.

Process Proc_B sends a message to Prec_A Event 9

Proc_A

3 in 4 out

Proc_C

3 in 4 out

2 in 5 out

[+]

Proc_B

Figure 5.5 The Radar Display

For animation purposes, heavier use of graphics provides the user with more expressive and
easily understood views of system activity. For other examples of animation technique see
[Haban & Wybranietz 90].

Often a combination of various presentation techniques, may have to be used to provide
different views of system activity, because no single view may be sufficient for monitoring
purposes. Based on the studied monitoring display tools, we can mention some desirable
features which a general purpose user interface must possess.

Monitoring Distributed Systems 22 April 1, 1993

5.2 Desirable User Interface Features

i) Visualisation at Different Abstraction Levels

A general purpose user interface must enable the user to observe system behaviour at a desired
level of abstraction. The stepwise refinement, usually used in software engineering, should
also be applied for monitoring [Klar et al. 92]. The user should be able to start the observation
at a coarse level and progressively focus on lower levels. Figure 5.6 shows the hierarchical
structure of a distributed system including the view of the physical distribution of the program
[Wybranietz & Haban 90].

Distributed Program

DU

DU

Process

System Level

(Composite
Components)

DU

DUDU

DU DU

DU

DU

Machine
Level

Distribution Unit
(DU) Level

Process
Level

Procedure
Level

Subsystem
Level

(Process Cluster)

DU DUDU DU

Machine 1 Machine 2

Figure 5.6 Hierarchical System Structure

At the procedure level we may wish to know the number of invocations of a particular
procedure or the exact times at which it was called and when it returned (c.f. profiling in
UNIX). At a process level we are interested in process concurrency, interactions and
interdependence, e.g., the number and perhaps contents of messages sent and received by a
process. At machine level, CPU usage (active, blocked, ready and idle times) may be

Monitoring Distributed Systems 23 April 1, 1993

significant, whereas at system and subsystem level it may be necessary to observe the logical
interconnection of distribution units. A Distribution Unit, is often called a cluster and would
typically be a set of lightweight processes or threads in an address space. A subsystem can be
represented by a composite component which defines internal component instances and their
interconnections.

It is important for the user to be able to focus on the monitoring information that is of
immediate relevance without having extraneous information cluttering the display. This can be
achieved by focusing on a particular level and using the combining and filtering techniques,
discussed previously, so that the behaviour of a distributed system can be viewed at a desired
level of abstraction and detail.

In TMP [Haban & Wybranietz 90], a menu-driven graphical display has been provided which
presents system behaviour with regard to the hierarchical system structure. With the aid of the
structure and type information stored in a program graph, a central station is able to graphically
display the logical structure of the distributed system on the screen (figure 5.7). The user can
start from the highest abstraction level, and refine her point-of-view by interactively zooming
through the hierarchical program structure. At each level performance metrics are presented in
suitable, easy-to-read charts and graphs. The volume of communication between different
subsystems are visualised by the width or colour of the lines representing the interconnection
between the modules.

worker 1

worker 2

server

file-server

select timer precision
reset timer
reset statistics
print statistics
change time interval
enable events
disable events
enable monitoring
disable monitoring
show details
show statistics
back
quit

Figure 5.7 Display of the logical system structure

A further display format allows the user to focus on interactions between program units
without following the hierarchy imposed by the programmer (e.g., observing the interactions
between two processes belonging to two different process clusters).

ConicDraw [Kramer et al. 89] is a graphical tool which can maintain representations of
executing Conic systems in terms of software component instances interconnections, and
execution state. It supports on-line monitoring of systems and provides graphical and textual
presentation of a system's configuration state. Clicking on a selected composite component
opens it up to display the configuration of its internal components. This enables the user to
navigate up and down the component hierarchy and view the system at different levels of
abstraction.

Monitoring Distributed Systems 24 April 1, 1993

Observation of system activities need not be restricted to exactly one level of abstraction at a
time, and it would be useful to enable the user to observe an activity at several levels
simultaneously.

ii) Placement of Monitoring Information

The ability to place a portion of monitoring data on a selected part of the screen can greatly
enhance the visibility of the information and aid in comprehension of potentially very cluttered
display.

In time process diagram of IDD [Harter et al. 85] the user can move the rows so that
information about the related processes can be placed close together.

ConicDraw [Kramer et al. 89] provides various facilities expected of a diagram editor. It allows
the user to interact with the tool to improve the visual layout of the display by moving or
resizing the boxes representing components and moving the ports so that the lines representing
port bindings do not cross.

iii) Controlling the Time of Display

Some display tools provide a history function, permitting the user to scroll the display forward
or backward in time, and control the speed at which the behaviour of the system is observed,
as in SIMPLE [Mohr 91] and Radar [LeBlanc & Robbins 1985]. This is done by providing
the following display options:

- Start and stop,
- Interrupt,
- Restart,
- Step-by-step display,
- Continuous display (real time or slow-motion)

iv) Use of Multiple Views

As mentioned before, one single view of system activity may not be enough and multiple
complementary views may be needed to enable the user to obtain a more comprehensive picture
of system behaviour. This can be achieved by using multiple windows presenting the system
activities from different points of view.

Voyeur [Socha et al. 1989] is a prototype system that facilitates the construction of multiple
application-specific, visual views of parallel programs using language-independent and system-
independent mechanisms. It concentrates on views that are close to the programmer's mental
model of the problem.

v) Visibility of Interactions

Some tools enable the user to display the contents of a particular message (e.g., the Radar
[LeBlanc & Robbins 1985]). More specifically, it would be useful to be able to chose an event
or status report and display its contents (e.g., its time stamp, object identifier, etc.). The width
or colour of the lines representing the components' interconnection can represent the volume of
communication between them (e.g., TMP [Haban & Wybranietz 90]).

Monitoring Distributed Systems 25 April 1, 1993

6 IMPLEMENTATION ISSUES

6.1 Intrusiveness of Monitoring Systems

Intrusiveness is the effect that monitoring may have on the behaviour of the monitored system,
and results from the monitoring system sharing resources with the observed system (e.g.,
processing power, communication channels, storage space). Intrusive monitors may alter the
timing of events in the system in an arbitrary manner and can lead to:

• degradation of system performance,
• a change of global ordering of these events,
• incorrect results,
• an increase in the execution time of the application,
• masking or creating deadlock situations.

This means that the results of monitoring with an intrusive monitor can only be taken as an
approximation of what happen in an unmonitored system [Lummp et al. 90].

The way that a monitoring system identifies the occurrence of events is an important parameter
by which its intrusiveness can be measured. Various detection mechanisms are available and
according to which mechanism is used, monitoring systems can be categorised into three types:
hardware monitors, software monitors and hybrid monitors.

6.1.1 Hardware Monitors

In this class of monitoring systems a separate object (a hardware monitor) is used to detect
events associated with an object or group of objects. It performs the detection by observation
of system buses or using physical probes connected to the processors, memory ports, or I/O
channels, [Marinescu et al. 90, Tsai et al. 90].

It has the advantage of being nonintrusive. This is achieved by separating the resources used
by the monitoring system from those used by the monitored system, so that the monitoring
system has minimal or no effect on the observed system. This is particularly important for
monitoring real-time systems. Hardware monitors have been successfully used for monitoring
communication networks, where a lot of monitoring information has to be generated and
processed very rapidly. The disadvantages are that:

• They require additional hardware, and therefore are more expensive.
• Generally, they provide very low-level data and do not meet the requirements of

application programmers in parallel environments. Usually considerable
processing and complicated mechanisms are required to provide application level
monitoring information, from low machine level data.

• Hardware monitors form the least portable class of monitoring mechanisms. Their
installation requires great expertise and thorough knowledge of the system, as they
often use specific and sophisticated features of the hardware [Wybranietz & Haban
90]. Nowadays, the design of hardware monitors are greatly complicated by the
use of pipelining and on-chip cache to increase the throughput of microprocessors
and also an increase in the integration of various functional units (e.g., floating
point units and memory management units) which makes monitoring difficult. In
the future, this will lead to integration of monitors on the chip [Bemmerl et al. 90].

6.1.2 Software Monitors

Software monitors usually share the necessary resources with the monitored system. The
program is instrumented by inserting software probes in the code to detect events. Use of
software monitors has the following advantages:

Monitoring Distributed Systems 26 April 1, 1993

• Monitoring information is presented in an application-oriented manner which is
easy to understand and use, compared to low-level information generated by
hardware monitors.

• Software monitors are portable and can easily be replicated.
• Compared with hardware monitors they are easier to design and construct and are

more flexible.
• No additional and dedicated hardware resources are required. This makes them

much cheaper than hardware monitors.

The disadvantage of software monitors is that they usually use the same resources as the
monitored system and therefore interfere in both the timing and space of the observed system,
which impacts on its behaviour. This impact increases if monitored data is processed and
displayed on-line. For this reason, pure software monitors are not adequate for on-line, real-
time monitoring. To limit the effect of intrusion, instrumentation must be limited to those
events whose observation is considered essential. Jade [Joyce et al. 87], and Meta [Marzullo et
al. 91] are examples of systems which use software monitors (see section 7.2).

There are various approaches to software instrumentation [Van Riek & Tourancheau 91]:

i) Instrumenting the Source-code

Software probes are inserted into the source-code of the program at appropriate points. It
provides a flexible, portable and powerful monitoring facility. The disadvantage is that
modification of the probes requires the recompilation of affected parts of the code.

These probes may be inserted manually or automatically. An example of manual
instrumentation of the source-code is in Meta [Marzullo et al. 91], where the programmer
instruments the application and its environment with sensors and actuators. Obviously manual
instrumentation is hard, time-consuming and prone to error. A monitoring system, in which
the programmer uses an event specification language and includes a monitoring segment with
the program, is described in [Lumpp et al. 90]. The monitoring segment is used by the
compiler to automatically insert the necessary probes in the source-code. Instrumentation of
complex parallel or distributed systems is a too complex a task to be done intuitively
[Hofmann, et al. 92]. In the SIMPLE environment [Klar et al. 92] a tool for Automatic
Instrumentation of C Object Software (AICOS) is available for instrumentation of procedures,
procedure calls or arbitrary statements written in the programming language C (see section
7.1).

ii) Instrumenting Library Routines

As an alternative to the previous method, software probes can be inserted in the source-code of
library routines. The behaviour of the program can be monitored by calling the instrumented
library primitives. Events can be detected and reported by the probes when the instrumented
libraries are used. One advantage of this method is that it provides a high-level of portability.
Any program which uses the instrumented library primitives can be monitored directly.
Another advantage is that when the monitoring is no longer required, the program can be linked
with an un-instrumented version of library rather than a complete recompilation being needed.
The disadvantage of this method is that only those events for which software probes are
inserted in the library routines can be detected and reported. To overcome this problem a
special trace-function can be provided and manually inserted by the application programmer to
detect a particular event.

Jade [Joyce et al. 87] is an example of a monitoring system which uses instrumented library
routines. In order to detect interprocess communication (IPC) events, processes are loaded
with a monitorable version of the IPC protocol.

Monitoring Distributed Systems 27 April 1, 1993

iii) Instrumenting the Object-code

Software probes are inserted in the object-code or in an intermediate representation of the
program at compile time [Malony et al. 89]. This is done by using a special instrumenting
compiler. Instrumenting an intermediate representation rather than the object code has the
advantage that instrumentation is machine-independent and can be transparent to the
programmer. It results in less overhead than source instrumentation, because low-level
machine instructions can be used rather than high-level source statements that need to be
compiled. The disadvantage of this method is that it requires a special instrumenting compiler.

iv) Instrumenting the Kernel

Software probes are inserted into the code of the kernel to detect system events. These software
probes are executed when an application program calls a kernel function (e.g., message send or
receive). It is similar to object-code instrumentation technique and has the advantage of making
event detection transparent to the application program. One disadvantage of kernel
instrumentation is that only events related to kernel calls can be detected and not application
events (e.g., changing of the value of an internal variable in a process). To overcome this
problem, a special trace-function can be added to the kernel which can be called when required.
An example of kernel instrumentation approach is instrumentation of MMK operating system
kernel in TOPSYS [Bemmerl et al. 91].

6.1.3 Hybrid Monitors

Hybrid monitors are designed to benefit from the advantages of both hardware and software
monitors, while overcoming their inefficiencies. They have their own independent resources
but also share some of the resources with the monitored system. Typically such a system
consists of an independent hardware device that receives monitoring information generated by
software probes inserted into monitored software objects. The event reports generated are
processed and displayed by dedicated hardware.

The main advantage of hybrid monitors is that they introduce less intrusion in the monitored
system compared with pure software monitors. Like software monitors, they generate high-
level application oriented monitoring information, compared with low-level data generated in a
purely hardware monitor. It gives them the same flexibility as software monitors. They are also
cheaper than hardware monitors as they share their resources with the monitored system and
therefore use less dedicated facilities. Because of this sharing of resources, they are more
intrusive than hardware monitors. Hybrid monitors are less portable than software monitors
because of their use of dedicated hardware.

Many monitoring systems prefer the hybrid approach. An example of that is Test and
Measurement Processor (TMP) which allows measuring, monitoring, testing and debugging of
distributed applications [Wybranietz & Haban 90]. The designers of TMP claim that the
degradation in the performance of the monitored system is less than 0.1%. TOPSYS
environment [Bemmerl et al. 91] supports software, hardware and hybrid monitoring. ZM4
[Hofmann et al. 92] supports both hybrid and hardware monitoring (see section 7.1).

6.2 Global State, Time and Ordering of Events

A typical loosely-coupled distributed system consists of a number of independent and
cooperating nodes which communicate through message-passing, with no shared memory or
common clock. Every node has its own local clock, which can be used to timestamp events
occurred at that site. Distributed systems are more difficult to design, construct and monitor,
than centralised systems because of parallelism among processors, random and non-negligible
communication delays, partial failures and no global synchronised time.

These features can affect both the behaviour of the system and the way it is monitored. Several
executions of the same distributed algorithm may result in different interleavings of events and
therefore various outcomes. This makes the behaviour of the system non-deterministic and

Monitoring Distributed Systems 28 April 1, 1993

unpredictable. Furthermore, arbitrary message delays makes it impossible to obtain an
instantaneous and consistent "snapshot" view of the system. Also, the same execution of a
distributed program may be observed differently by various observers because of different
interleavings of monitoring reports. Lack of global time makes it difficult to determine causal
relationships between events by analysing monitoring traces.

We shall briefly describe a number of approaches which are used to overcome this problem.

i) Physical clock synchronisation

The aim is to obtain a unique physical time frame within a system, where each processor
maintains its own local physical clock. Physical clock synchronisation is based on the
exchange of messages containing time-stamps. These may contain an external time stamp
received from an accurate radio time signal or local time stamps and the nodes try to maintain
processor clocks within some maximum deviation of each other.

For example [Lamport 78] proposed an algorithm which assumes that both a lower bound
(min) and an upper bound (max) are known for message delays. Every T seconds each
process sends a synch message on all of its channels, to other processes. This protocol
belongs to a deterministic class of protocols which cannot guarantee a precision better than
(max-min)(1-1/n), where n is the number of clocks which have to be synchronised.
Deterministic protocols offer a high probability of successful synchronisation with small
number of messages, at the expense of low precision.

[Christian 89] proposed a probabilistic approach for reading remote clocks subject to
unbounded message delays, which offers a higher precision than the best achieved by the
deterministic protocols, but which carries with it a certain risk of not achieving
synchronisation.

One disadvantage of keeping clocks synchronised is the additional overhead that it introduces
into the monitored system. [Duda et al 87] described an off-line approach to this problem
which is to record local traces of external events, using (unsynchronised) local clocks and to
analyse them after the execution of a distributed program to deduce global properties or global
performance indices. The global time is estimated from local traces with a desired precision. A
least-square regression analysis is used to estimate the time offset and the time offset rate
between two local clocks.

ii) Logical clocks

A system of logical clocks, based on the causality relation, can be used to establish a partial
ordering of events in the system [Lamport 78]. The system of logical clocks can be represented
by a function LC which assigns to any event e a locally maintained timestamp LC(e), such that
the following condition is satisfied:

For any events a and b, if a->b => LC(a)<LC(b)

where a->b means a precedes b

To satisfy this condition each process must increment its clock between any two events. Also
upon receiving a message, a process must advance its clock to be later than the time stamp of
the message.

This scheme has several advantages. It imposes small overheads on the monitored system. The
quantity of information contained in messages and maintained by each process is minimal – an
integer. The system can easily accommodate dynamic changes in that a component can be
added to the monitoring domain with no changes to the ordering scheme or other components.

A problem with the logical clock approach is that it lacks what is called density. Given e1 and
e2 where LC(e1)<LC(e2), it is not possible to determine if there is another event e3 such that
LC(e1)<LC(e3)<LC(e2). This is particularly important for run-time re-ordering of events where

Monitoring Distributed Systems 29 April 1, 1993

we want to detect message loss or delays. Another problem with both logical and physical time
is that although they are consistent with causality, they do not characterise it [Schwarz &
Mattern 92]. It is not always possible to determine whether the two events are causally related
or concurrent, by looking at their timestamps.

iii) Vector Clocks

[Fidge 88] has proposed an approach based on a vector of logical timestamps. Rather than one
clock value, each process Pi maintains a vector of logical timestamps VCi, where every element
of the vector corresponds to one interacting process. Intuitively, element j of Pi's logical vector
for event e is the number of events that Pi knows Pj has executed upto e. This vector is
maintained by a process and included in outgoing messages. The vector is updated whenever a
message is received from a process. Although vector clocks can overcome the problems
outlined above the overheads could be very high. A logical clock has to be maintained by every
process for all other processes with which it communicates. The vectors of timestamps
included in messages can be quite long, thus increasing the communication overhead. Also
dynamic changes to the monitoring domain becomes much more difficult.

iv) Global Snapshots

In contrast to the approaches described above [Chandy & Lamport 85] proposed a technique
which concentrates on constructing a global snapshot of system activity. This technique
encompasses the entire system in the gathering and grouping of state information. This
snapshot is constructed through the transmission of marker messages over every
communication link in the system (FIFO channels are assumed). Any process can initiate such
a snapshot by saving its local state and transmitting marker messages over each of its outgoing
links. Upon receiving its first marker, a node is incorporated into the snapshot, saves its local
state, begins recording messages on its incoming links and transmits a marker over each of its
outgoing links. A node stops recording the information received on a link when a marker is
received over it. The dissemination of these marker messages throughout the system serves to
create a timeslice, which demarcates the edge of a snapshot. The global snapshot can then be
calculated from all of the local states (snapshots) of the nodes and all of the channel information
recorded. Partial ordering is not violated by the system view captured.

The major disadvantage of this technique is that all the processes and communication links are
involved in the formation of a snapshot. This is highly inefficient means of gathering state
information to recognise an event whose scope was limited to only a small subset of the system
processors [Spezialetti & Kearns 89].

For general monitoring purposes, in addition to the ordering of events, we are interested in the
time intervals between occurrences of different events. For this purpose, using a combination
of logical vector clocks and synchronised clocks may be preferable. Obviously the overheads
involved would have to be considered.

Monitoring Distributed Systems 30 April 1, 1993

7 SOME EXISTING MONITORING SYSTEMS

In this section we describe four of the existing monitoring systems in more detail.

7.1 ZM4/SIMPLE

 A monitoring system which allows the observation and analysis of the functional behaviour
and the performance of programs in distributed systems is described in [Hofmann et al. 92,
Mohr 90, 91]. This monitoring system is used for performance evaluation, tuning and
debugging. Their approach is based on what they call model-driven monitoring.

7.1.1 Model-driven Monitoring

In model-driven monitoring, event-driven monitoring and event-based modelling are integrated
into one methodology because they both rely on the same abstraction of the dynamic behaviour:
the event.

monitoring model program

functional model
(a formal specification)aim of

measurement

model-driven
instrumentation

instrumented
programs

monitoring
with ZM4

event trace

model-driven
event trace
validation

evaluation with
SIMPLE

evaluation
results

permormance
model

model evaluation
and

performance prediction

Figure 7.1 Model-driven Monitoring

 An event-based formal model of the program behaviour using graphs, petri-nets, or queuing
models is used to derive a monitoring model3. The monitoring model is a subset of the

3Model-driven monitoring is independent of the modelling method.

Monitoring Distributed Systems 31 April 1, 1993

functional model which uses the same set of events to describe the behaviour of the program at
a desired level of abstraction. It is then used, with the help of certain tools, for systematic
program instrumentation (model driven instrumentation), event recognition, event trace
validation, and for creating a performance model as shown in figure 7.1. Model-driven
instrumentation guarantees a one-to-one mapping between the model events and the monitoring
events. The tool AICOS has been developed to allow Automatic Instrumentation of C Object
Software. Arbitrary statements in the program under investigation can be instrumented. The
instrumented program is executed and it generates an event trace. The monitoring model is
systematically checked against this linearly ordered trace and program errors are detected
during the model-driven validation stage. If the trace is valid, it is evaluated.

The monitoring model is transformed into a performance model by adding timing and
frequency attributes derived from a measured event trace. It is used for validating the dynamic
behaviour of the program and can be used for automatic event trace validation and performance
prediction of not yet available systems and implementations.

7.1.2 The ZM4/SIMPLE Monitoring Environment

i) ZM4

Instrumented objects write event tokens to the hardware interface of ZM4 (figure 7.2), which is
a distributed hybrid monitoring system. It is structured as a master / slave system with a control
and evaluation computer (CEC) as the master and an arbitrary number of monitor agents (MA)
as slaves. The master controls the measurement activities of the MAs, stores the measured data
and supports the user with a powerful toolset for evaluation of the measured data. Each MA
has up to 4 dedicated probe units (DPUs) which are printed circuit boards and link it to the
nodes of the object system. The MAs control the DPUs and buffer the measured event traces
on their local disk. Event traces are transferred to the CEC for evaluation. The DPUs are
responsible for event recognition, time stamping, event recording, and for high-speed
buffering of event traces. Event recording is independent of the object system.

M
T
G

D
P
U1

OBJ
1

OBJ
4

minimal
configuration

MA1

D
P
U4

OBJ
5

OBJ
8

MA2

OBJ
i

D
P
U4

OBJ
j

OBJ
j+15

MAn

D
P
U1

D
P
U1

tick
channel

data channel

distributed
object system

MTG = Measure Tick Generator, DPU = Dedicated Probe Unit, MA= Monitor Agent

Control &
Evaluation
Computer (CEC)

= ZM4 components

Figure 7.2 Distributed architecture of the ZM4

A local clock with a resolution of 100 ns. and a time stamping mechanism are integrated into
the DPU. The tick channel is used to synchronise the local clocks of the DPUs to the master
clock on the measure tick generator (MTG). The data channel (Ethernet with TCP/IP) forms the
communication subsystem of the ZM4 and it is used to disseminate control information and
measured data.

Monitoring Distributed Systems 32 April 1, 1993

ZM4 is scalable and large object systems are matched by more DPUs and MAs, respectively.
ZM4 can record events of arbitrary objects with arbitrary physical event representation and
format.

ii) SIMPLE

SIMPLE is a tool environment designed and implemented for performance evaluation of
arbitrarily formatted event traces and runs on UNIX and MS-DOS systems. The measured
data is considered as a generic abstract data structure or an object, which can only be accessed
via a standard set of generic procedures. This enables the user of such reports to abstract away
from different data formats, structures, representations and meanings and thus become
independent of monitored system and monitor devices used. Events can be identified by
application-oriented names to give reference to the source.

The formats, structures and properties of monitored data are described in a trace description
language (TDL) which clearly reflects the fundamental structure of an event trace (see figure
7.3).

TRACE DESCRIPTION:
 TRACE IS UNSEGMENTED;

EVENT RECORD:

 TOKEN:
 NAME IS PROCESSOR;
 LENGTH IS 1 BYTE;
 VALUES ARE [1..3];
 INTERPRETATION
 1 = 'Proc1',
 2 = 'Proc2',
 3 = 'Proc3';

 TOKEN:
 NAME IS EVENT;
 LENGTH IS 1 BYTE;
 VALUES ARE ['B','C', 'S', 'E'];
 INTERPRETATION
 'B' = 'Begin'
 'C' = 'Compute'
 'S' = 'Sync'
 'E' = 'End';

 TIME:
 NAME IS ACQUISITION;
 FORMAT IS (UNSIGNED*4, ms);
 MODE IS POINT;

monitor specific
format

event
token

problem-oriented
interpretation of
event-token

monitor specific
description of the
monitor clock

specifies global
trace properties

fields of
one event
record

7.3 Event trace description in TDL

Monitoring Distributed Systems 33 April 1, 1993

POET

Evaluation

tools

filterFDL file

TDL file

FDL
compiler Filter file

TDL
compiler

Access
key file

Event
trace file

7 . 4 Event trace access with TDL/POET/FDL

The TDL description is compiled and an access key file is generated (figure 7.4). This file is
used by a standardised Problem Oriented Interface (POET). POET enables the user or
evaluation tools to access monitored data stored in event trace files in a user-defined, problem-
oriented manner. A language called Filter Description Language (FDL), similar to TDL, has
also been developed to specify rules for filtering event reports depending on their contents.
The problem-oriented identifiers of TDL file are also used for filtering. By using
TDL/POET/FDL all tools of SIMPLE are independent of the properties of a monitored system,
especially its operating system and programming languages.

iii) Processing of Monitoring Information in SIMPLE

The tools available for processing of monitored information include:

• MERGE: takes the local event trace files and the corresponding access key files as input and
generates a global event trace and the corresponding access key.

• CHECK TRACE: performs simple validation and plausibility tests on an event trace, e.g.,
checking the validity of the time stamp, or whether the token fields contain only defined
token values.

• VARUS: performs more detailed, application specific, validation checks specified as
assertions in a formal language. For example:
i) ASSERT (EVENT=='Compute' AND PROCESSOR=='Proc1') ALTERNATING

WITH (EVENT=='Sync' AND PROCESSOR=='Proc1')
ELSE "sequence error on processor 1";

ii) ASSERT NUMBER (EVENT=='Begin')==NUMBER (EVENT=='End')

Rule (i) states that the Compute and Sync events on processor Proc1 should alternate.
Rule (ii) specifies that the number of Begin and End events should be the same.

Both CHECK TRACE & VARUS generate a report containing all errors detected.

• Filter: allows the user to select event records depending on their record fields.

• ADAR (Activity Definition and Recognition System): enables the user to combine lower level
event to form higher-level events called activities, and assign new attributes to them.

• TRCSTAT: performs simple statistical computations on an event trace. It computes
frequencies, durations, and other performance indices. For more complex computations
the data analysis package S from AT&T is used. It provides a high-level programming
language for data manipulation and graphics.

iv) Presentation of Monitoring Information in SIMPLE
• LIST: generates a simple textual list of events and permits the specification of which event

record fields are to be printed and their format.

Monitoring Distributed Systems 34 April 1, 1993

• SMART (Slow Motion Animated Review of Traces): is used for simple display on any
ASCII-terminal.

• VISMON: permits graphical display and animation of monitoring information. It is based on
X-Windows.

7.2 Meta

The Meta system is a collection of tools for constructing distributed application management
software [Marzullo et al. 91]. It enables the management functions to monitor and control the
behaviour of the underlying application. It runs on UNIX and uses the ISIS distributed
programming toolkit.

In the Meta model of a distributed application (figure 7.5), the management and functional
aspects are separated by a well defined interface. The management layer is called the control
program and is programmed in a rule-based control language called Lomita.

Control Program

Meta
System Actuators

Sensors
Application

Hardware and Operating System

Other
Communication

Figure 7.5 Meta Application Structure

Policy layer

when SigProGroup.load > 5 do
 create SigPro(...)

Data Model

Structure of controlled system

Sensors and actuators

Figure 7.6 Meta function Layers

The Meta system presents the control program with an abstract view of the application and the
environment in which it is run. Figure 7.6 shows the functional layering in the Meta system.
Using Meta to manage a distributed application takes three steps: instrumenting the application,
structure description and expressing policy rules.

7.2.1 Instrumenting the Application

The programmer uses a set of sensors and actuators to instrument the application and its
environment. Sensors are functions that return values of the application's state and its

Monitoring Distributed Systems 35 April 1, 1993

environment. A sensor can be polled, at intervals defined by the programmer, to obtain its
current value or a watch can be set up that alerts the client when the sensor value satisfies
some predicate. Built-in sensors obtain information directly from the run-time environment
e.g., CPU and memory utilisation. Meta provides the read-var sensor for reading the
values of certain kinds of global variables in an active process. There are also user-defined
sensors which are implemented by the programmer and registered with Meta at run-time
e.g., application throughput, or a queue length.

Built-in actuators can be used to change a process's priority, a global variable (using write-
var actuator) and user-defined actuators can be used to change the application's behaviour.

7.2.2 Structure Description

The programmer describes the structure of the application using Lomita's object-oriented
data modelling facilities. Meta provides an object-oriented temporal database in which the
application and environment provide the data values. Components in the application and the
environment are modelled by entities, following entity-relationship database terminology.
The resulting model is used by the control program at the Policy Layer.

To provide higher level views of the behaviour of the program Meta allows the
combination of multiple sensors, or values of one sensor over a period of time in the form
of derived sensors. Lomita provides simple arithmetic operations, and also functions for
min, max, size and median etc. that operate over sets of values e.g.

sensor load_ratio: real:= SigPro.load / Machine.load

sensor high_load: integer := max(history(load, 600))

where load_ratio is the derived sensor calculated from primitive sensors SigPro.load and
Machine.load and high_load is a derived sensor representing the maximum load over the
last 10 minutes (600 seconds)1.

7.2.3 Expressing Policy Rules

Using the data model, the programmer defines of a set of Lomita policy rules which
describes the intended behaviour of the system and can make direct calls on sensors and
actuators and other functions in the data model. e.g.when condition do action

where condition is a predicate expressed on the underlying data model and the action
component is a sequence of actuator invocations and data model operations (e.g., create or
delete). The condition may contain interval temporal logic expressions, in which case they are
converted to finite state automata. The following temporal operators are used in Lomita:

During I always P: true if and only if predicate P is true throughout time interval I.

During I occurs P: true if and only if predicate P is true at some point within time
interval I.

P until Q: Expresses the time interval beginning when predicate P next
becomes true, until predicate Q subsequently becomes true.

P for T: Expresses the time interval beginning when predicate P next
becomes true, until T seconds have passed.

7.3 Demon

Demon [Demon 93] is primarily a flexible visualisation tool (based on UNIXTM and X
Window SystemTM) which allows observation of the behaviour of a (possibly distributed)
system at different levels of abstraction. It is a centralised tool that could receive messages,

Monitoring Distributed Systems 36 April 1, 1993

from various sources such as a live network, or previously recorded files and could perform
various monitoring functionalities such as filtering, correlation, analysis and presentation.

To perform these functionalities, Demon follows a set of rules written in the Demon rules
language (also called configuration language) which is similar to a traditional procedural
language. These rules are contained in a rules file which is compiled by a special rules
processor. They control the three main stages of Demon's operation: recognition, interpretation
and depiction. At recognition stage incoming messages are used to detect events. At
interpretation stage, these events are used to update an internal model of the monitored system
or send out messages to various places. The selected parts of the internal model are displayed at
depiction stage.

Demon has no knowledge of the distribution of the system under scrutiny. It merely traps
messages (i.e., monitoring reports) entered manually by the user in a file, or those generated
by a live network through the use of specially instrumented communication routines. Certain
routines have been provided to handle a range of communication protocols.

Demon expects messages in a predefined format, each message carrying with it type
information of its data fields. To collect these messages from a network, a separate (external)
network handling process must be used which is connected to Demon via a pipe. This external
process communicates with the monitored system using TCP/IP protocol.

Demon can save the incoming messages in a specified file, for later analysis (i.e., trace
generation). Various options are provided for the user to select a new file or open, close or
append to a specified file. Recording is a rather simplistic operation. It is performed before any
filtering can take place (i.e., record all the messages that are coming in!) and only one file can
be specified for recording. A more sophisticated recording mechanism which incorporates its
own filtering and other capabilities such as merging and trace splitting, would be more useful.

A recording file may be created from customised messages entered manually by a user in a text
file and processed by special message handling utilities. Therefore messages may be injected
and Demon can operate stand-alone. This is particularly important for simulation and
demonstration purposes. Manually entered messages must start with the number of fields
followed by a list of (field type, value) pairs. The field types may be unsigned long, long,
bool, char, float and strings. The stored messages can be processed automatically at a preset
rate or stepped through manually.

7.3.1 Event Recognition

An event is recognised by the Demon when the contents of an incoming message satisfy certain
predicate, as defined in the rules file. An explicit filtering is performed here, where messages
which do not satisfy those predicated are discarded.

7.3.2 Interpretation

This stage includes two important activities. Updating the internal model and sending out
messages to various destinations such as the monitored system or another system. The first
functionality corresponds to the database updating stage in our model. The second could
correspond to the dissemination stage in our model and control activities which are not
considered in the model.

(i) Updating the Internal Model

The internal model is a directed graph whose basic components are nodes and arcs. The nodes
and arcs can represent anything and are provided as a basic template to which any meaning can
be attached. For example, nodes could be components on a network and arcs could be
messages between them. Various attributes and parameters can be associated with nodes and
arcs.

Monitoring Distributed Systems 37 April 1, 1993

Information about the events can be used to update Demon's internal model to reflect the
changes or send out messages (i.e. active demon). This is entirely under the control of the
user. Events could cause arcs and nodes to be created, examined, modified or destroyed.

The nodes in the internal model are hierarchical, with parent-child relationships. A node may
have a number of children and a single parent node. The topmost node is called the ROOT.
This hierarchical structure permits a wide range of views of system to be constructed.

(ii) Active Demon

Demon can send string-type messages to the monitored system, to another system, to a file or
any other UNIX output device. These messages may be sent automatically in response to
events, or they can be initiated by the user (e.g., provided as an option in a pop-up menu
associated with a displayed node).

7.3.3 Graphical Presentation

Demon allows users to define their own graphical presentations, in a flexible manner. It has
facilities for customising and implementing iconised presentations of the behaviour of the
system.

Every node (icon) displayed on the screen has a number of attributes and a pop-up menu
associated with it, which can be displayed using the mouse. An In option on this menu can be
used to zoom in on the node. An Info option allows the user to see the general attributes, and
any explanation texts associated with it. Also, various options associated with active demon
can be provided so messages can be sent under the control of the user.

For an arc similar options could exist but they are associated with its label, if it has one.
Therefore, if an arc represents a communication link, messages on that link can be displayed,
in addition to other relevant information.

A view shows part of the information contained in the internal model. The configuration
language allows the user to create many different and simultaneous views of the system, each
shown in a separate window. For each view the user must define:

• the section of the internal model to consider

• the conditions under which this section is shown

• the appearance of the nodes and arcs when they are drawn (possibly depending on
certain conditions)

The section is defined by two parameters - a node position in the model, and a number of levels
down. The conditions for display may depend on many factors such as message contents,
global variables, etc. The appearance of the nodes and arcs is flexible and various colours and
shapes, including bitmaps, may be specified.

The user can select one or more of the available views. This is the second stage of filtering.
Within one view in a window various options (buttons) are provided:

• Views: used to switch to alternative views

• Zoom-out: to zoom out one level

• Magnify: to increase the size by 10%

• Shrink: to decrease the size by 10%

• kill : to close the current view window

Monitoring Distributed Systems 38 April 1, 1993

Also a button called visual step is provided, which allows the user to step through the
messages until one affects the current view.

A Flow Control Panel is provided to allow the user to control the way Demon steps through
messages it receives. Options provided on this panel are:

• Recognised step: When this button is pressed, Demon reads and processes the
messages until one causes an event. (This may or may not affect the current views.)

• Visual step: Messages are read and processed until one affects the current views.

• Play: Demon automatically steps through the messages. A Delay Control slider has
been provided to control the delay between two steps. The delay could be from
hundredths of a second to a maximum of (about) one second.

• Stop: Stops Demon automatically stepping through the messages.

• Clear: This button destroys the internal model and clears the current views.

• Reset: Demon is reinitialised. It includes resetting the source file to the beginning,
destroying the internal model and clearing the screen.

A rewind option would have been useful to re-display the same sequence without having to
reset and start the whole thing again. Such an option is not provided.

7.3.4 Programming Demon

The rules program describe how Demon is to recognise events, how it is to interpret them and
how it is to present its model of the system. It consists of four sections: declaration, event
definitions, action definitions, view definitions.

(i) Declaration section

The declaration section starts with the keyword DECLARATIONS. In this section the
following items are declared: message fields, node and arc types, constants, types, variables,
tables and sets. Apart from the first two items, the rest are optional.

The message declaration section starts with the keyword MESSAGES. A message field
declaration consists of a name which is used to refer to the data field, a location which is the
position of the field in the Demon's standard message, and the type of the data field.

e.g., ObjectID PARTITION 0 SELECTOR 1 TYPE WORD;

A node or arc is declared by using the keywords NODE or ARC, a name, and the details of its
description fields (i.e., its attributes). The description fields of a node or an arc could contain
anything.

e.g., NODE Object (STRING Name, Type; LONG Desig, CreateTime);

Constant, type and variable declarations are similar to those of other procedural languages.

A table provides a simple database structure. It stores a value against a key. You are free to
store any type of data. The table declaration section starts with the keyword TABLES. A table
is declared by giving its name, the type of its key and the type of the value stored against the
key.

e.g., Designator LONG NODEID;

Monitoring Distributed Systems 39 April 1, 1993

 A set is an unordered collection of items, stored for future reference. The set declaration
section starts with the keyword SETS. Each set declaration consists of a name and the type of
its elements.

e.g., Loads LONG;

Some useful set-oriented operators seem to be missing from the language (e.g., max, min,
average, etc.)

(ii) Event Definition

The event definition section begins with the keyword EVENTS. Events are defined based on
messages that are received. Each event definition consists of an event name followed by the
condition. A condition refers to message fields and a combination of conditions may be
specified using various logical and relational operators.

e.g., CREATEOBJ: MessageType = 'c' AND ObjectType!= 2 OR Field3 <6;

A special predefined initialisation event (INITIAL) is generated as soon as Demon has read the
rules file, and used for setting up initial conditions before any messages arrive. Any actions
may be defined for this event.

Although it is claimed that the user may refer to other events when defining a particular event,
this feature is not presented in the documentation. No temporal operators seem to have been
provided (e.g., e1 : e 2 -> e3).

Currently in event definitions no reference can be made to the information stored in the internal
model of the system maintained by Demon. However, at presentation stage references can be
made to the internal model when specifying the conditions under which a particular section of
the model is to be displayed. It would be better to allow it at event recognition stage as well to
provide earlier filtering.

A defined event is activated by default. It would be better to separate event definition and
activation. This will allow dynamic filtering of events, while presenting the user with a set of
potential events that may be reported.

(iii) Action Definition

For each defined event a set of actions may be specified, with the following format:

ACTION event :<actions> ENDACTION

When event occurs the sequence of actions is performed. This part of the program is similar to
a conventional procedural language program. Usual flow control operations, basic
mathematical operations, and operations to manipulate the internal model, tables and sets are
available. Also using a SEND function it can send messages to the monitored system, to
another system, to a file, or to any UNIX output device.

(iv) Defining Views

This is the final section of the Demon rules program. It describes how to build the various
views of system behaviour. Each view is defined by a template, which specifies:

• which part of the internal model to consider for displaying

• under what conditions those nodes and arcs will be drawn

• what is their appearance (e.g., colour, shape, scale)

Monitoring Distributed Systems 40 April 1, 1993

• which template is adopted on zooming out a level

• which other templates are to be available to change to from the current view

The view definition section starts by the keyword VIEW followed by the region definition (if
any), and then all the view templates. Facilities are provided to incorporate bitmaps in X bitmap
format. Grids can be defined for automatically positioning nodes on the screen.

7.3.5 Start-up Options and Operations

Various start-up options can be defined from the control line or from a resource file. They
specify the rules files, source files, output channels and display lists to be used by Demon.
Once Demon has been started, operations are controlled through a Motif-based GUI. This
presents a main control panel incorporating iconised buttons to operate and to modify Demon.
These select:

• source Where Demon's messages are coming from

• output Where the "Active Demon" messages are sent to

• Rules Which rules to use in processing the messages

• Views Which views of the internal model are to be displayed

• Flow How demon will process the messages (step by step, continuous, etc.)

• Record Where network messages are to be stored

Pressing these icons brings up appropriate dialogue boxes. With source and output options, it
is possible to view the messages as they are received or sent, but it seems that only one source
and destination may be selected at any time. An improvement would be to allow Demon to
receive messages from multiple sources or send them to several output destinations
simultaneously (e.g., to monitor two separate networks at the same time). A similar criticism
applies to recording option, where only one file can be specified and all the incoming
messages are stored in that file with no filtering.

7.3.6 Conclusions

Demon provides a lot of flexibility in the way various monitoring functionalities are specified,
particularly with respect to visualisation. There are however a number of major criticism that
makes it unsuitable as a tool for monitoring large and complex distributed systems.

Demon is essentially a centralised tool, and therefore as far as monitoring large and complex
distributed systems is concerned, it is not scalable. In fact it has no knowledge of the
distribution of the system under scrutiny and therefore important issues related to distribution
such as ordering of events, consistency of the global state, validation of monitoring data,
instrumentation, activation and intrusiveness are not addressed.

Another major criticism of Demon is that various monitoring functionalities (e.g., event
recognition, interpretation or correlation and presentation) can only be specified statically.
These activities are specified in a fairly low-level language, in the rules file, which has to be
compiled before it is used. For managing large, complex and evolving distributed systems,
monitoring domains and requirements may change frequently and therefore the managers
should be able to specify these activities in a dynamic fashion.

To specify events no reference can be made to the information maintained in the internal model
and events are defined using only the contents of the messages that are received. No temporal
operators has been provided and therefore using the current language, temporal specification of
events is either not possible or difficult. Also, event definition and activation have been
combined. A better policy is to separate these to allow dynamic activation / deactivation of

Monitoring Distributed Systems 41 April 1, 1993

events. This makes dynamic and implicit filtering possible, which further reduces intrusion and
overheads.

With respect to "Active demon" issues such as consistency and atomicity of actions are not
considered. For dissemination of monitoring information to a number of managers more
powerful mechanisms are required (e.g., a subscription and dissemination mechanism).

Rather than the static specification of graphical presentations, a graphical editor may be used to
allow users to create and store their own views in a dynamic fashion. Also, a set of predefined
graphical representations (e.g., icons, lines, etc.) could be provided as options in a pop-down
menu for the user to select using a mouse.

7.4 Monitoring Databases

A data-oriented approach to network management in which monitoring and control are
specified as data manipulation statements on a network database, is presented in [Wolfson et
al. 91]. In their approach a conceptual data-base model of the network is constructed and
continuously updated to represent the current status of the network. Monitoring is done by
"watching" for certain important events to occur. An event is represented by a data pattern, and
watching for it means the continuous retrieval of this data-pattern from the database.

They have extended the SQL data manipulation language to include new features which allow
real-time and temporal monitoring of database changes. Two types of data are stored in the
network database. The configuration data gives the current status of the network and history
data consists of trace information about the evolution of the network and its status over time.

7.4.1 Events

For a primitive or correlated event to occur it has to be specified and then activated. After the
occurrence the specification has to be reactivated in order for the event to occur again. Basic
events consist of:

(i) Data-pattern events occur when a certain data-pattern appears in the data-base. This is
equivalent to the data flow events in our model. Such an event is specified using a
data-retrieval operation which is executed if only one of the retrieved objects
changes. One of the parameters of such an event is PERSISTANCE. If
PERSISTANCE >= “time-interval” is associated with an event it indicates that the
event is to occur only if the data-pattern persists in the data-base at least for the
specified time-interval. Therefore transient events can be ignored.

(ii) Data manipulation events occur when a data manipulation operation is invoked in the
system (e.g., a retrieve, add, delete, replace or update). This is equivalent to the
control flow events in our model. Such an event is specified by a data manipulation
operation. For example, the following defines an event which occurs when a tuple
is deleted from the relation LINKS which has a DELAY > 5.

DELETE LINKS DELAY > 5

(iii) Calendar-time events are specified using a date and time. e.g., "12 A.M. January 8",
says the event occurs every year on January 8th at 12 A.M.

7.4.2 Trace Collection Service

The trace parameters which can be specified include trace identifier, the class of objects being
monitored, the attribute whose change is being tracked, the event to activate a collection and the
duration. The user can specify a selection predicate for an attribute which results in its old
value being appended to the trace after a change or a separate trace for one or more objects can
be requested (e.g., all the ones with COLOUR = “yellow”).

Monitoring Distributed Systems 42 April 1, 1993

7.4.3 Combination

Combined or correlated events are specified using correlation rules. For example the rule,

OVERLOAD-AT-12 :- OVERLOAD, 12 A.M.

means that the combined event OVERLOAD-AT-12 occurs if the data-pattern event
OVERLOAD occurs at the same time as the calendar-time event 12 A.M. The operator “~” is
used to denote negation, e.g., ~EV1 means that event EV1 did not occur. The definition of a
combined event could also consist of a disjunction of two events. E.g.,

OVERLOAD-OR-12 :- OVERLOAD.

OVERLOAD-OR-12 :- 12am.

specifies that the event OVERLOAD-OR-12 will occur when OVERLOAD occurs or at 12
A.M., whichever is first.

For each rule it is also possible to specify a temporal order for events (e.g., E1->E2), and
temporal constraints (e.g., {OVERLOAD, 12 A.M.} = 5 s, says that OVERLOAD-AT-12 will
occur only if OVERLOAD and 12 A.M. are at most 5 s apart).

Combined events are specified using correlation rules. For example the rule,

OVERLOAD-AT-12 :- OVERLOAD, 12 A.M.

means that the combined event OVERLOAD-AT-12 occurs if the data-pattern event
OVERLOAD occurs at the same time as the calendar-time event 12 A.M. The operator "~" is
used to denote negation, e.g., ~EV1 means that event EV1 did not occur.

The definition of a correlated event could consist of a disjunction of two events. e.g.,

OVERLOAD-OR-12 :- OVERLOAD.

OVERLOAD-OR-12 :- 12am.

specifies that the event OVERLOAD-OR-12 will occur when OVERLOAD occurs or at 12
A.M., whichever is first.

For each rule it is also possible to specify a temporal order for events (e.g., E1->E2), and
temporal constraints (e.g., {OVERLOAD, 12 A.M.} = 5 s, says that OVERLOAD-AT-12 will
occur only if OVERLOAD and 12 A.M. are at most 5 s apart).

Monitoring Distributed Systems 43 April 1, 1993

7.5 Summary of Existing Monitoring Systems

The following figure presents a brief comparison between the approaches described in sections
7.1 to 7.4, against the functionalities identified in the model.

ZM4/ SIMPLE META DEMON
MONITORING
DATABASES

Status
Reporting

Event
Detection &
Reporting

Trace
Generation

Merging &
Multiple
Trace
Generation

Purpose of
Monitoring

Validation

Database
Updating

Combination

Filtering

Presentation

Debugging & Performance
Tuning

No.
Event driven monitoring
used.

H/w & Hybrid Monitoring.
Automatic S/w
instrumentation supported.
Internal and external
detection of process level
& control flow events.

Yes.
Trace format specified
using TDL language.

Yes.
Merging supported using
the tool MERGE

Yes.
Supported using CHECK
TRACE & VARUS Tools

No

Supported using
ADAR tool

Yes.
Explicit filtering supported
using FILTER tool based
on event attributes.
FDL language used.

Textual, time-process &
animation display tools.
User specified display rate.
Graphical display.

Management of
Distributed
Applications

Yes.
Polling object state.
Sampling period set at
instrumentation time.

Software Monitoring.
Manual
instrumentation.
External detection of
data flow events.

No.

No.

Visualisation
Debugging & simulation
Control

Managing
Communication Systems

Software monitoring
using pre-instrumented
comms. protocols.
External detection by
static specification of
coditions on filelds of
any incoming messages.

S/W monitoring.
Changes to data in
network database
detected.

No.

Yes.
User-specified trace
generation. Part of a
history database.

Yes.
User specified merging
and multiple traces.

No.
Valid event orderings
guaranteed by ISIS
OS.

Lamports event ordering
algorithm implemented.
Users may specify their
own validation conditions
in a rules file.

No.

Yes.
A system data model
is maintained and
referenced.

Yes.
An internal data model (a
directed graph) is built &
referenced.

Yes.
A network database is
continuously updated and
referenced.

Supported using
LOMITA language

Supported using a
language called the
configuration language.

Supported using an
SQL-like language

Yes.
Implicitly by setting
polling periods at
instrumentation time.

Yes.
Done explicitly on
incoming messges and
implicitly by selecting
certain display views.
Specified in rules file.

Not specified Flexible, user specified
views and a simple
replay mechanism with
user controlled display
rates provided.

Yes.
Done explicitly by
specifying conditions at
event recognition and
implicitly through
activation / deactivated.

Not specified

Yes.
All incoming / outgoing
messages can be stored
in or appended to a
specified file.

No.
Event driven monitoring
used.

Dissemination
Monitoring information
sent to a fixed central
station.

Possible to specify
multiple destinations
statically, using Demon's
control functionality.

Not specifiedUsing a subsctiption
mechanism status data
is distributed to other
monitoring objects.

No.
Comms. messages are
trapped.

Figure 7.9 Comparison of Features of Example Systems

Monitoring Distributed Systems 44 April 1, 1993

8 OSI MANAGEMENT STANDARDS

8.1 OSI Management Approach

The International Standards Organisation (ISO) have defined a series of standards for the
management of the communication system for Open Systems Interconnection (OSI). These
define managed objects as a representation of a managed resource, but managers do not directly
invoke operations on managed objects as we have assumed in figure 1.2. Instead, managers
interact with a management agent which is local to the managed objects, using the Common
Management Information Protocol (CMIP) as shown in figure 8.1. CMIP provides the
primitives for supporting management operations to permit the managers to control remote
managed objects, query state and notifications can be used by the agent to send status and event
reports from the managed objects to the manager.

Manager
Agent

Local System
 Environment

Managed
Objects

Notifications
Emitted

Performing
Management
Operations

Management
 Operations

Notifications

Communications
using CMIP

Protocols

Managed Open System

Fig. 8.1 OSI Interaction Model

Managed objects may also be used to implement elements within a monitoring system to
perform processing or dissemination functions as explained below. Managed objects may be
created and deleted dynamically, in response to changes in the managed system or to change
the monitoring system. Managed objects constitute the Management Information Base (MIB).

The OSI standards define a set of management functions relating to configuration
management, fault management, performance management, accounting and security
management for communications systems, but there is no monitoring as a specific management
functions. However the specifications relating to the above 5 functions and in particular fault
and performance management, define elements which could be used as a generic monitoring
service for distributed systems. A summary of monitoring and event reporting in OSI can be
found in [LaBarre 1991]. The OSI Guidelines for the Definition of Managed Objects (GDMO)
define a set of techniques and a notation for specifying managed objects [ISO 10165-4].

8.2 Generation of Monitoring Information

The state variables which are made visible by objects are called attributes. A generic set of
states and the changes which can take place between those state are defined in [ISO 10164-2].
These states are reflected in a set of attributes which are common to all managed objects.
Additional attributes may be provided to represent the applications specific status vector of the
object. The typical information which would be generated in a state change event report sent
to a manager includes:

• Managed object class & instance identifiers

• Event time

• Old and new values for all state attributes.

• Application specific status attributes

Monitoring Distributed Systems 45 April 1, 1993

Objects often generate notifications to their local agent as event or status reports. The agent
performs filtering and dissemination of this monitoring information using event discriminator
objects as explained in section 8.3 below. An alternative, for very simple objects, is to use a
metric object to periodically poll the managed object to read the attributes and then generate the
notifications [ISO 10164-11].

The predefined event reports include

i) Object Management reports are generated whenever a managed object is created /deleted, an
operational / administrative state change occurs, changes occur in non-state attributes
e.g., names or important operational parameters [ISO 10164-2]

ii) Alarm Reports have been defined for the following alarm classes [ISO 101064-4]:

• communication faults e.g., call set up errors, signal distortion

• quality of service degradation e.g., problems with throughput or response time

• processing errors e.g., buffer overflow, file access error, memory violation.

• equipment alarms e.g., cable cut detected, locked ports or power problems

• environment problems e.g., high/low temperature, smoke detection or excess
humidity.

An alarm message can include probable cause, specific problem code, additional problem
data, perceived severity, severity trend, back up status, back up object instance, threshold
information, proposed repair, additional textual information actions as well as state
attribute values.

8.3 Event Reporting Service

The OSI Event Reporting Service performs both the processing and dissemination functions of
our monitoring model in that it is responsible for both filtering of event reports and
dissemination of the selected reports to chosen destinations [ISO 10164-5]. The components
which constitute the service are shown in figure 8.2

Event
detection &
processing

• • •

Managed
Objects

Noifications

Potential Event Reports

Management
Operations

Management
Responses

Event
Forwarding

Discriminators
(EFDs)

Event Reports
EFD Notifications

Figure 8.2 OSI Event Reporting Service

Notifications are received by a local event detection and processing component which adds the
event time, originating object class and instance to the notification message to form a potential
event report. These are conceptually sent to all local Event Forwarding Discriminators (EFDs).
An EFD holds a discriminator construct which defines the criteria used to select which of the
potential event reports are forwarded to the destination address stored in the EFD. An EFD
sends reports to a single destination at any time. The EFD is a managed object and so itself can
generate notifications which are forwarded by another local EFD. The EFD's specify the
following information:

EFD Identifier: unique identifier for the EFD

Discriminator Construct: A logical expression on attributes within the potential event reports,

Monitoring Distributed Systems 46 April 1, 1993

e.g., {{(dest=fred) and (count >50)} or {(source=xyz) and (size <100)}}

Only those potential reports which meet the criteria specified are forwarded.

Administrative, operational, and availability state information which indicates whether or not it
is actually forwarding events.

Destination: primary destination to which events should be forwarded

Backup destination: a list of alternative destinations to which events reports are to be sent if the
primary is unavailable.

The scheduling of event reports can be achieved by internal or external scheduling packages

Daily schedule: a list of times within a 24 hour period when forwarding is enabled

Weekly Schedule: start/ stop operating date and time, and periodic weekly schedule for
enabling the event forwarding.

EFDs can be created and deleted dynamically to accomplish the registration of subscribers to a
dissemination services, as described in section 4. A manager can also enable/disable the
operation of an EFD and so over-ride the predefined scheduling. It is not clear whether EFDs
can be used to combine lower level events to form higher level events as described in section
3.4

8.3 Log Service

Trace generation is by means of log records which can be stored in log managed objects [ISO
10164-5]. The structure of the Log service is shown in figure 8.3. The collection process
receives event reports from local or remote managed objects and formats them into potential log
records by adding a log record identifier and logging timestamp. A set of criteria for selecting
which of these potential records are actually stored, can be specified in terms of comparison
operations on data within the event reports, daily or weekly time schedules etc.

Collection
Process

• • •
Log

FilteringManaged
Objects

Event
Noifications

Potential Log records

Filtered
Log
Records

Log
Records

Log
Record
Requests

Management
Operations

Notifications
&
Management
Responses

LOG MANAGED OBJECT Storage

Current state
Daily & weekly
schedules
Selection
disciminators etc.

Attributes

Figure 8.3 OSI Log Service

Two options are available if the log reaches maximum capacity. Either the log activity is
halted, with new records being discarded or the log wraps, with the oldest records being
discarded. An event report must be generated for a log halt condition and optionally to indicate
a wrap condition. A capacity threshold event may be generated to warn a manager before the
log is actually full. Every log must support the halt behaviour, but support of the wrap
behaviour is optional.

Monitoring Distributed Systems 47 April 1, 1993

Logs are themselves managed objects and can have their state controlled by managers for
enabling/disabling the logging function. Internally defined time schedules may also change
their operational state. Log attributes specify the logID, maximum number of log records,
current size in bytes, number of records, log full action, the threshold for generating nearly full
warning events and attributes to control the log record selection criteria. This logging service is
very flexible in that managers can change the filtering criteria by changing the relevant log
attributes.

8.4 Processing of Management Information

There are a number of OSI standards which specify managed objects which can be used for
performing the monitoring information processing functions defined in section 3.

The OSI standard on Workload Monitoring [ISO 10164-11] defines metric objects as a means
of processing monitoring information with the emphasis on statistical measurement of the
performance of resources.

The simplest metric objects are counters and gauges. Counters increase until they reach a
maximum value then wrap to zero. There may be 3 thresholds, associated with a counter.
When the counter reaches the threshold value, a notification is emitted. Gauges can both
increase and decrease in value. Two thresholds are associated with a gauge. A notification is
emitted when the gauge crosses the high-level threshold (when the gauge is increasing) and
similarly a notification is emitted when the gauge crosses the low level threshold (when
decreasing). Only one notification will be emitted from a particular threshold until the gauge
crosses the other threshold to give a hysteresis effect and stop multiple notifications being
emitted if the gauge oscillates about a threshold level. As mentioned above, metric objects may
periodically sample a particular attribute in a managed object in order to implement a counter or
gauge with threshold notifications.

Other metric objects which have been defined include:

Mean monitor to calculate a mean value of an attribute

Moving Average mean monitor which uses an exponentially weighted moving average
algorithm

Mean and Variance monitor

Mean and percentile monitor

Mean and min-max monitor

Scanner Summarisation Objects which provide a report on a list of attributes values of the
same or different types which have been read as a single scan.

Buffered Scanner provides a report of a list of different types of attribute values over
multiple scans.

8.5 Discussion

Considerable international effort is being put into defining the comprehensive set of OSI
management standards. These will support a very sophisticated monitoring service, but very
few products which comply with these standards are available as yet. In addition, the number
of options available and the sophistication of the service leads to some doubts as to the cost and
performance capabilities of an OSI based monitoring service. The OSI standards do not define
anything about the presentation of management information as this is considered an
implementation issue.

Monitoring Distributed Systems 48 April 1, 1993

9 SUMMARY

There is a need for a generic service for monitoring distributed systems as an underlying
service to support all aspects of management. A monitoring service is also essential for
debugging during system development and it may be needed as part of the application itself
e.g., process control and factory automation.

This paper has defined a monitoring model in terms of a set of monitoring functions. This has
been used as a reference model for explaining the alternative approaches to monitoring
distributed systems described in the literature.

The main monitoring functions described are:

Generation of monitored information which includes status and event reports and traces.

Processing of the monitored information to validate, combine and filter so that only
relevant information is provided to clients.

The required information must be disseminated to those clients who have subscribed to
the service and specified the particular information they require

Flexible graphical facilities are needed for the presentation of monitored information to
human users in a form which aids comprehension and meets specific application
requirements.

The emphasis of the paper has been on a survey of the current approaches to monitoring of
parallel and distributed systems. However the monitoring model could be used as a framework
for specifying and designing a generalised monitoring service. This is work which we intend
to undertake in the future as part of a European collaborative project.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the SERC and HP Laboratory, Bristol for a CASE
studentship. We also acknowledge the support of our colleagues in the Distributed Software
Engineering Section at Imperial College for comments on the concepts described in this paper.

Monitoring Distributed Systems 49 April 1, 1993

REFERENCES
[Bates 88] Bates, P., Distributed Debugging Tools for Heterogeneous Distributed Systems,

Proc. 8th International Conference on Distributed Computing Systems, IEEE, June
1988, pp. 308-316.

[Bemmerl et al. 90] Bemmerl, T., Lindhof, R., Treml, T., The Distributed Monitor
System of TOPSYS, Proceedings CONPAR 1990 - VAPP IV, Sep. 1990, Springer-
Verlag, pp. 756-765.

[Bemmerl et al. 91] Bemmerl, T., Bode, A., An Integrated Environment for Programming
Distributed Memory Multiprocessors, Proc. 2nd European Dist. Memory Comp. Conf.,
April 1991, pp. 130-142.

[Chandy & Lamport 85] Chandy, K. M., Lamport, L., Distributed Snapshots:
Determining Global States of Distributed Systems, ACM Trans. on Comp. Syst., Vol. 3,
no. 7, pp. 63-75, February 1985.

[Christian 89] Christian, F., Probabilistic Clock Synchronisation, Distributed
Computing 3, 1989, pp. 146-158.

[Dasgupta 86] Dasgupta, P., A Probe-based Monitoring Scheme for an Object-oriented,
Distributed Operating System, ACM Proceedings of the Conference on Object Oriented
Programming Systems, Languages and Applications, 1986, pp. 57-66.

[Demon 93] MARI Computer Systems Ltd, "Demon: Distributed Environment Monitoring
tool", User's Guide and Reference Manual.

[Duda et al 87] Duda, A., Harrus, H., Haddad, Y., Bernard, G., Estimating Global Time
in Distributed Systems, ISEM Universite de Paris-Sud, 91405 Orsey, France, IEEE
1987, pp.299-306.

[Feldkuhn & Erickson 89] Feldkuhn, L., Erickson, J., Event Management as a Common
Functional Area of Open Systems Management, Proc. IFIP Sym. on Integrated Network
Management, Boston 1989, pp. 365-376, North-Holland.

[Fidge 88] Fidge, C., J., Partial Orders for Parallel Debugging, In Proceedings of
Workshop on Parallel and Distributed Debugging, ACM, 1988, pp.183-194.

[Haban & Wybranietz 90] Haban, D., Wybranietz, D., A Hybrid Monitor for Behaviour
and Performance Analysis of Distributed Systems, IEEE Trans. on Software Eng., Vol.
16, No. 2, February 1990.

[Harter et al. 85] Harter, P. K., Heimbigner, D. M., King, R., IDD: An Interactive
Distributed Debugger, Proc. 5th Int. Conf. on Distributed Computing Systems, Denver,
IEEE, pp. 498-506, May 1985.

[Hofmann, et al. 92] Hofmann, R., Klar, R., Mohr, B., Quick, A., Siegle, M.,
Distributed Performance Monitoring: Methods, Tools, and Applications, University of
Erlangen-Nurnberg, IMMD VII, Martensstrabe 3, D-8520 Erlangen, Germany.

[Holden 88] Holden, D., et al., An Approach to Monitoring in Distributed Systems, Proc.
Eur. Teleinformatics Conf., Vienna 1988, pp. 811-823, North-Holland 1988.

[Holden 89a] Holden, D., Langsford, A., MANDIS: Management of Distributed Systems,
Harwell Laboratory, U.K., Lecture Notes in Computer Science, Vol. 433, Progress in
Distributed Operating Systems and Distributed Systems Management, April 1989, pp.
162-173.

[Holden 89b] Holden, D., Predictive Languages for Management, Proc. IFIP Sym. on
Integrated Network Management, Boston 1989, 585-596, North-Holland 1989.

[Holden 91] Holden, D. B., A Tutorial to Writing Programs in SESL, Internal Report
DMP/55, Sys. & S/W Eng. Grp., AEA Industrial Technology, Harwell, Jan. 1991.

[ISO 10164-1] ISO/IEC DIS 10164-1 Information Technology - Open Systems
Interconnection - Systems Management Part 1: Object Management Function, Oct. 1990.

Monitoring Distributed Systems 50 April 1, 1993

[ISO 10164-2] ISO/IEC DIS 10164-2 Information Technology - Open Systems
Interconnection - Systems Management Part 2: State Management Function, Oct. 1990.

[ISO 10164-4] ISO/IEC DIS 10164-4 Information Technology - Open Systems
Interconnection - Systems Management Part 4: Alarm Reporting Function, Oct. 1990.

[ISO 10164-5] ISO/IEC DIS 10164-5 Information Technology - Open Systems
Interconnection - Systems Management Part 5: Event Report Management Function, Oct.
1990.

[ISO 10164-6] ISO/IEC DIS 10164-6 Information Technology - Open Systems
Interconnection - Systems Management Part 6: Log Control Function, Oct. 1990.

[ISO 10164-11] ISO/IEC DIS 10164-11 Information Technology - Open Systems
Interconnection - Systems Management Part 11: Workload Monitoring Function, April
1992.

[ISO 10165-4] ISO/IEC DIS 10165-4 Information Technology - Open Systems
Interconnection - Structure of Management Information: Guidelines for the Definition of
Managed Objects, 1992.

[Joyce et al. 87] Joyce, J., Lomow, G., Slind, K., Unger, B., Monitoring Distributed
Systems, ACM Trans. Comput. Syst., Vol. 5, No. 2, May 1987, pp. 121-150.

[Klar et al. 92] Klar, R., Quick, A., Soetz, F., Tools for a Model-driven Instrumentation
for Monitoring, In G. Balbo, editor, Proc. of the 5th Int. Conf. on Modelling Techniques
and Tools for Computer Performance Evaluation, Torino, Italy, pages 165-180. Elsevier
Science Publisher B.V., 1992.

[Kramer et al. 89] Kramer, J., Magee, J., Ng, K., Graphical Configuration
Programming, IEEE Computing, October 1989, pp. 53-65.

[LaBarre 91] LaBarre, L., Management By Exception: OSI Event Generation, Reporting,
and Logging, The MITRE Corporation, 2nd IFIP Symposium on Integrated Network
Management, Washington, April 1991.

[LeBlanc & Robbins 85] LeBlanc, R. J., Robbins, A. D., Event-Driven Monitoring of
Distributed Programs, Proc., 5th International Conference on Distributed Computing
Systems, May 1985, pp. 515-522.

[Lamport 78] Lamport L, Time, Clocks and the Ordering of Events in Distributed Systems,
CACM Vol 21., July. 1978, pp. 558-564.

[Lumpp et al. 90] Lumpp, J. E., Jr., Casavant, T. L., Seigle, H. J., Marinescu, D. C.,
Specification and Identification of Events for Debugging and Performance Monitoring of
Distributed Multiprocessor Systems, Proc. 10th International Conference on Distributed
Systems, June 1990, pp. 476-483.

[Magee, et al. 89] Magee, J., Kramer, J., Sloman, M., Constructing Distributed Systems
in Conic, In IEEE Transactions on Software Engineering, Vol. 15, No. 6, June 1989,
pp.663-675.

[Malony et al. 89] Malony, A. D., Reed, D. A., Arendt, J. W., Grabas, D., Aydt, R. A.,
Totty, B. K., An Integrated Performance Data Collection Analysis and Visualisation
System, Proceedings of the 4th Conference on Hypercube Concurrent Computers and
Applications, 1989, pp.229-236.

[Manning 87] Manning, C. R., Traveler: The Apiary Observatory, Proceedings of
European Conference on Object Oriented Programming, pp. 97-105, 1987.

[Marinescu et al. 90] Marinescu, D., C., Lump, J. E., Casavant, T. L., Siegel, H. J.,
Models for Monitoring and Debugging Tools for Parallel and Distributed Software,
Journal of Parallel Distributed Computing 9, 2, June 1990, pp. 171-184.

[Marzullo et al. 91] Marzullo, K., Cooper, R., Wood, M. D., Birman, K. P., Tools for
Distributed Application Management, Cornell University, IEEE Computer, August 1991,
pp. 42-51.

Monitoring Distributed Systems 51 April 1, 1993

[McDowell & Helmbold 89] McDowell, C. E., Helmbold, D. P., Debugging Concurrent
Programs, ACM Computing Surveys, Vol. 21, No. 4, December 1989.

[Mohr 90] Mohr, B., Performance Evaluation of Parallel Programs in Parallel and
Distributed Systems, Proceedings CONPAR 1990 - VAPP IV, Sep. 1990, Springer-
Verlag, pp. 176-187.

[Mohr 91] Mohr, B., SIMPLE: a Performance Evaluation Tool Environment for Parallel
and Distributed Systems, In A. Bode, editor, Proc. of the 2nd European Distributed
Memory Computing Conference, EDMCC2, pages 80-89, Munich, Germany, April
1991. Springer, Berlin, LNCS 487.

[Schwarz & Mattern 92] Schwarz, R., Mattern, F., Detecting Causal Relationships in
Distributed Computations: In Search of the Holy Grail, Department of Computer Science,
University of Kaiserslautern, D-6750 Kaiserslautern, Germany (1992).

[Shim & Ramamoorthy 90] Shim, Y. C., Ramamoorthy, C. V., Monitoring and
Control of Distributed Systems, Proceeding of First International Conference on Systems
Integration, Morristown, NJ, IEEE Computing Press, April 23-26, 1990, pp. 672-681.

[Sloman 87] Sloman, M., Distributed Systems Management, Imperial College Research
Report, DOC 87/6, 1 April 1987.

[Snodgrass 88] Snodgrass, R., A relational Approach to Monitoring Complex Systems,
ACM Trans. on Computer Systems, vol., 6, no. 2, pp. 157-196, May 1988.

[Socha et al. 89] Socha, D., Bailey, M., L., Notkin, D., Voyeur: Graphical Views of
Parallel Programs, In Proceedings of Workshop on Parallel and Distributed Debugging,
May 5-6, 1988, SIGPLAN NOTICES, Vol. 24, Number 1, Jan. 89, pp. 206-215.

[Spezialetti & Kearns 89] Spezialetti, M., Kearns, J. P., Simultaneous Regions: A
Framework for Consistent Monitoring of Distributed Systems, Proc. 9th Intl. Conference
on Distributed Computing Systems, pp. 61-68, 1989.

[Stone 88] Stone, J. M., A Graphical Representation of Concurrent Processes, Proceedings
of Workshop on Parallel and Distributed Debugging, ACM Published as SIGPLAN
Notices 24, 1, January 1989, pp. 226-235.

[Tsai et al. 90] Tsai, J. J.-P., Fang, K.-Y., Chen, H.-Y., A Non-intvasive
Architecture to Monitor Real-Time Distributed Systems, IEEE Computer 23, 3, March
1990, pp. 11-23.

[Van Riek & Tourancheau 91] Van Riek, M., Tourancheau, B., A General Approach to
the Monitoring of Distributed Memory Machines - A Survey, Laboratoire de
l'Informatique du Parallelisme, Ecole Normale Superieure de Lyon, Institut des Sciences
de la Matiere de l'Universite Claude Bernard de Lyon, Institut IMAG, Unite de
Recherche Associee au CNRS No. 1398, Research Report No. 91/28, September 1991.

[Wybranietz & Haban 90] Wybranietz, D., Haban, D., Monitoring and Measuring
Distributed Systems, Performance Instrumentation and Visualisation, ACM Press, ISBN
0-201-50937-7 - 1990, pp. 27-45.

[Wolfson et al. 91] Wolfson, O., Sengupta, S., Yemini, Y., Managing Communication
Networks by Monitoring Databases, IEEE Trans. on S/W Eng., Vol. 17, No. 9, Sept.
1991.

