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How does the visual cortex represent and process color? Experimental evidence
from macaque monkey suggests that cells selective for color are organized into small,
spatially separated blobs in V1, and stripes in V2. This organization is strikingly
different from that of orientation and ocular dominance maps, which consist of large,
spatially contiguous patterns. In this dissertation, a self-organizing model of the
early visual cortex is constructed using natural color image input. The modeled V1
develops realistic color-selective receptive fields, ocular dominance stripes, orientation
maps, and color-selective regions, while the modeled V2 also creates realistic color-
selective and orientation-selective neurons. V1 color-selective regions are generally
located in the center of ocular dominance stripes as they are in biological maps; the
model predicts that color-selective regions become more widespread in both cortical
regions when the amount of color in the training images is increased. The model also
predicts that in V1 there are three types of color-selective regions (red-selective, green-
selective, and blue-selective), and that a unique cortical activation pattern exists for
each of the HSV colors. In both V1 and V2, when regions of different color-selectivity
are located nearby, bands of color form with gradually changing color preferences.
The model also develops lateral connections between cells that are selective for similar
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orientations, matching previous experimental results, and predicts that cells selective
for color primarily connect to other cells with similar chromatic preferences. Thus the
model replicates the known data on the organization of color preferences in V1 and
V2, provides a detailed explanation for how this structure develops and functions,
and leads to concrete predictions to test in future experiments.
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Chapter 1

Introduction

Color is a vital and integral part of human experience. For instance, color vision
allows us to effortlessly tell the difference between a ripe yellow banana and an unripe
green one. Without color vision we could still tell the difference by taking a bite, but
seeing green prevents an unpleasant experience. Or, imagine that we need to collect
a medicinal plant that has a purple flower. The color of the flower will help us
quickly identify the plant in a large field. To illustrate, Figures 1.1 and 1.2 show
an unimpressive hillside that reveals an impressive variety of foliage—but only when
seen in color.

1.1 Motivation

Although color is a physical property of the environment, it is perceived through a
complex neural and cognitive process. The mind filters, processes, and organizes the
information in the world so that we see color. This dissertation is a study of how the
brain uses the activity pattern of neurons in the eye to develop color-selective cortical
neurons that the higher regions of the brain can then use for color perception.

Most computational vision simulations to date have been monochromatic, i.e.,
they have not included color information. Lower animals do not have color vision,
so a monochrome simulation is an appropriate model of these animals. However, in
higher animals such as humans there are a large number of color-sensitive cells, and
they convey important information about the visual environment. In order to build
artificial vision systems with human-like processing of color stimuli it is necessary to
understand how the brain represents and processes color.

Optical imaging of cortical activity in mammals shows that there are overlap-
ping retinotopic feature maps in the primary visual cortex (Blasdel and Campbell,
2001; Issa, Trepel, and Stryker, 2001; Tootell, Silverman, and De Valois, 1981; Tootell,
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Figure 1.1: California hillside 1: Monochrome. This figure is a black and white
photograph of a hillside near Bakersfield, California. A monochromatic world provides
nearly all necessary information to interact with the environment, such as slopes of
the hills and textures in the vegetation. But without color, vital features of the world
are not apparent. This image is in color in Figure 1.2 on page 5. Before turning
the page, try to estimate how many different types of vegetation are growing here.
(Photograph by Kee, 2005; reprinted with permission.)

Silverman, Hamilton, Switkes, and De Valois, 1988; Vanduffel, Tootell, Schoups, and
Orban, 2002). That is, the brain displays systematic and spatially organized neuronal
activity when the retina is presented with stimuli such as colors and bars of light.
Feature maps are constructed by recording the strength of activity in the surface of
the cortex in response to these different features. Each of the functional maps show
how cortex contains distinctive cortical patterns for visual features such as orienta-
tion, ocular dominance, or spatial frequency. However, color appears to be organized
differently from orientation and ocular dominance maps. Color-selective regions form
blob-like patches co-located with cortical regions that stain for cytochrome oxidase
(Hubener and Bolz, 1992; Landisman and Ts’o, 2002a,b; Sato, Katsuyama, Tamura,
Hata, and Tsumoto, 1994). Color blobs are primarily found within V1 ocular dom-
inance stripes (Bartfeld and Grinvald, 1992). While the maps for ocular dominance
and orientation selectivity are systematic and continuous (i.e. hierarchically organized
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patches and stripes), color maps consist of scattered clusters of selectivity, surrounded
by large regions not selective for color. Why is the functional structure for color se-
lectivity so different from the other features? Is there a computational or statistical
reason why it would be mapped differently?

It has been difficult to obtain a complete understanding of color processing
based on biological experiments. In part this is because it is impractical to character-
ize every neuron in the visual system precisely, because the numbers of neurons and
connections are many orders of magnitude larger than can be measured directly. In
addition, many of the experimental techniques required are invasive, and thus destroy
the natural behavior of the experimental subject.

Computational simulations make it possible to test color vision theories and
also provide predictions for future experiments. Simulations are an important comple-
ment to experimental approaches: all parameters of the system are known, the input
stimuli can be reproduced exactly, and measurements can be made without disturbing
the system itself. Computational simulation is therefore the approach taken in this
dissertation.

1.2 Approach

This dissertation presents a study of a computational model of the early visual cortex
that self-organizes to form color-selective regions. The underlying theory is that color
selectivity is driven by activity patterns in the retina. This model, LISSOM (Laterally
Interconnected Synergetically Self-Organizing Model; Miikkulainen et al., 2005), is a
hierarchy of two-dimensional neural networks with Hebbian modification of afferent
and lateral connections. Previous LISSOM simulations have successfully modeled
how orientation selectivity and ocular dominance develop (Bednar and Miikkulainen,
2006; Miikkulainen, Bednar, Choe, and Sirosh, 2005), but color selectivity has not
been included until now.

The color LISSOM model is trichromatic, includes both the primary and sec-
ondary visual cortex, and is validated with data from optical imaging experiments in
the macaque monkey. Macaques have trichromatic vision similar to that of humans,
and data is available about the spatial relationships among their orientation, ocular
dominance, and color maps. That is, the structural relationships among the maps
are known, even though it is unclear why they are each organized differently. By
comparing the statistics of the training stimuli to the final self-organization of the
cortex, the model can be used to explain why feature maps organize in different ways.

Before network training, the model cortex contains neurons with unorganized
connection weights, and are unselective to features in the input stimuli. As each
successive training stimulus is presented to the model retina, the neurons adapt their
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connection weights and begin to form selectivity for features in the inputs. At the
end of the training session, the simulated cortex has many of the same structures and
features as in the brain.

1.3 Results

The trichromatic LISSOM model creates color-selectivity maps, ocular dominance
maps, and orientation maps that are biologically realistic. Both in the brain and
in the model, color-selective regions form patchy blob-like structures, and orientation
maps form pinwheels, fractures, and linear zones. In addition, the interactions among
the feature maps are also similar to known physiology. For example, the model shows
color-selective regions interspersed between orientation-selective regions and within
the ocular dominance stripes. As in biology, individual neurons develop preferences
for input features such as oriented bars of light, or color (Hubel and Livingstone,
1983). Interestingly, the developed neuron preferences are not limited to colors at the
photoreceptor sensitivity peaks, but also include the perceptually created magenta
hues.

In addition to giving a computational explanation for biological observations,
the model makes concrete predictions for future experiments. First, it suggests that
proper cortical development requires that the orientation and color features in the
input must be properly balanced in relation to the left and right eye input correlation.
That is, luminosity gradients need to be a stronger feature of the stimuli than color
gradients, and the inputs must have a strong correlation between the eyes.

Second, the model suggests a mechanism by which neurons can become selec-
tive for hues such as yellow for which there are no photoreceptors. Yellow-selective
neurons have been identified experimentally, but the mechanism that gives rise to
such preferences, given the output of retinal ganglion cells, is still unknown. Cor-
responding to retinal ganglion cells, color-selective neurons in the model V1 can be
labeled red, green, or blue. Each color-selective blob primarily contains a single type
of color-selective neuron. However, neurons in areas where red and green-selective
blobs meet respond well to both red and green stimuli. As a result, they become se-
lective for yellow, a hue that activates both red and green photoreceptors. A similar
mechanism may take place in biology, giving rise to yellow-selective cortical neurons.

Third, the model predicts that neurons that are selective to similar colors
will have strong lateral connections. These connections between them reflect long-
term patterns of correlation present during self-organization, and act to create sparse
activity patterns and smooth feature maps.

This dissertation makes three major contributions. First, the computational
model helps explain how a visual hierarchy emerges in the brain, and how it con-
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Figure 1.2: California hillside 2: Color. This is the original color photograph of
the California hillside shown in black and white on page 2 in Figure 1.1. Color provides
clear separation of the multiple types of vegetation. Yellow, orange, purple and red
flowering vegetation can now be distinctly identified. Non-flowering vegetation can
also be categorized more easily with deep green grasses separated from gray-green
brush. Color provides unique information about the world that either cannot be
gained from other visual features, or can only be obtained with greater difficulty.
(Photograph by Kee, 2005; reprinted with permission.)

tributes to color processing. Second, computer science is given a biologically inspired
color vision architecture that is both robust and scalable. Third, the descriptive
power of the model provides a framework to discuss the visual system and enables
additional modeling of how biological mechanisms interact. Therefore, a computa-
tional model of color vision expands our scientific knowledge and helps us understand
the physiological basis of color perception.

1.4 Outline of the dissertation

This dissertation is organized into four parts: Background (Chapters 1 and 2),
Model (Chapter 3), Results (Chapters 4 through 7), and Discussion (Chapters 8
and 9).
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Chapter 2 surveys the vision pathway starting at the retina and moving
through the lateral geniculate nucleus and primary visual cortex to the secondary
visual cortex. Computational models are also reviewed with an emphasis on self-
organizing cortical map simulations and how they have been applied to color-selective
map modeling.

Chapter 3 presents the LISSOM model architecture and the necessary exten-
sions to the retina and lateral geniculate nucleus to make a computational model that
has realistic trichromatic photoreceptor activation.

Chapter 4 discusses five different techniques used to measure the latent statis-
tics contained within natural images from around the world and used as network
training stimuli.

Chapter 5 shows the self-organized primary visual cortex of LISSOM neurons
trained with natural images. The color, orientation, and ocular dominance feature
maps all have characteristics of biological neurons. In addition, the model makes
predictions about biology that can now be tested in animals.

Chapter 6 presents results from a secondary visual cortex region that is self-
organized using the LISSOM primary visual cortex as input. Color-selective and
orientation-selective neurons develop that have similarities with biological neurons.
The LISSOM model also makes predictions about the color-selectivity and lateral
connectivity of V2 neurons.

Chapter 7 reveals that the primary and secondary visual cortex maps will
develop additional color preferences if the natural images used as input are modified
to have different color statistics. These control simulations prove that the LISSOM
model is capable of preference maps that have all hues represented, and suggest that
the cortex may have additional homeostatic regulatory mechanisms that achieve a
desired balance among the colors in natural stimuli.

Chapter 8 discusses the predictions of the model and how they can be tested
through biological experiments. Further, future work is discussed about how the
model will be used to address additional biological questions, and applied to robotic
vision tasks.

Chapter 9 concludes the dissertation with a summary of the results covered
in the preceding chapters and the contributions made by the thesis.

Appendix A presents the algorithm to convert RGB images into simulated
long, medium, and short photoreceptor activations. This transformation is used by
the model to convert bitmap images into retinal photoreceptor activations.

Appendix B contains tables of the LISSOM parameter values used in the
self-organizing simulations making it possible to replicate the work exactly.
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Chapter 2

Background

The model presented in the following chapters simulates the structures found in the
early visual system of trichromatic primates. This chapter contains background in-
formation useful for understanding the model architecture and methodology. First,
the perceptual organization of color is presented. The second section then presents
the physiological organization of the retina, lateral geniculate nucleus, and early vi-
sual cortex, each modeled in this dissertation. Third, the biological support for an
input-driven model of cortical self-organization is presented. Finally, the fourth sec-
tion surveys other computational models of visual cortex maps, discussing how they
relate to the one in this thesis.

2.1 Color perception

In preparation for presenting results showing perceptually ordered color-selective neu-
rons, the structure of the visible wavelength spectrum and the color wheel will be
reviewed.

The visible light wavelength spectrum has red light at the long-wavelength
end of the spectrum at about 650nm (Figure 2.1a), while at the other end of the
visible spectrum is violet (Itten, 1970). A circle results from linking the ends of the
color spectrum with magenta. Curiously, the perceptual color magenta does not exist
as a single wavelength of visible light but instead is perceived when both blue and
red wavelengths are present. Physiologically, magenta is the excitation of the long
and short cone photoreceptors without a commensurate increase in activation of the
medium cone photoreceptors. The linked-end spectrum is often called a color wheel
(Figure 2.1b). Therefore, colors are a perceptual experience, while wavelengths of
light are a physical property.

As you can see on the color wheel, there are smooth transitions between ad-
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(a) Physical wavelength spectrum

(b) Perceptual color wheel

Figure 2.1: Color perception: Wavelengths and wheels. The visible light
spectrum starts next to the infra-red region at red, then proceeds through all the
colors until it smoothly transitions through blue on to violet and into the invisible
ultra-violet region. Instead of this linear continuum, the human visual system creates
a continuous wheel of color by connecting the red and blue colors with magenta.

jacent colors, such as between green and yellow. But other colors are not adjacent,
such as blue and yellow. It is not possible for blue to smoothly transition into yellow,
without passing through a different color. These intermediate colors are made up of
mixtures of different wavelengths of light, but how does the perceptual experience of
a specific secondary color come about? Later chapters will show a model that makes
significant progress at understanding this process, while the following sections explain
what is known about the neural circuitry.

The following section discusses the major vision processing regions within bi-
ology, each simulated by the model.

2.2 The visual pathway

Much of the structure and function of the retina is well understood. As we move
farther up the visual pathway, shown in Figure 2.2, the theories and data become
less certain. Information about the Lateral Geniculate Nucleus (LGN) is much less
definitive than the retina. And though much is known about the primary visual
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Figure 2.2: The visual pathway. The retinal response to light passes through
the optic nerve into the lateral geniculate nucleus (LGN), and to the primary visual
cortex. V1 then projects throughout the brain, including to V2. V2 is spatially close
to, and connected with, V1. The large size of V1 (not visible in this top view) suggests
a powerful role in vision. Figure adapted from Bednar (2002), with permission.

cortex (V1), only a few data points have been established for V2.
This section gives a short overview of the visual system starting at the retina

and moving through to the higher visual areas, with each subsection emphasizing
the physiology of color vision. Later chapters will describe how aspects of this color
processing system have been implemented in the computational model.

2.2.1 Photoreceptors in the retina

Light enters the lens of the eye and is focused upon the retina, where the photore-
ceptors respond based upon the number of photons absorbed. There are two major
classes of photoreceptors, called rods and cones. The cones are used for color and
daytime vision, and rods are used for low-light (nighttime) vision. There are three
types of cones separated into short, medium, and long based upon their relative light
sensitivity functions (Brown and Wald, 1963). Long (L) wavelength sensitive cones
are often called red-selective cones, medium (M) cones are called green-selective, and
the short (S) are called blue-selective. The peak sensitivities of these cells do not map
to what we would call pure red, green or blue, but the names are useful in describing
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Figure 2.3: Wavelength sensitivity functions. RGB images are intended for dis-
play on a computer monitor. They can also be used as input activation for a simulated
eye, but they need to be converted first, because the red and green activation for an
eye has a much higher correlation than the red and green channels in a monitor. The
top plot shows normalized long (red), medium (green), and short (blue) wavelength
human cone sensitivity functions (Stockman and Sharpe, 2000; Stockman et al., 1999).
The bottom plot shows RGB phosphor emission curves for a specific CRT monitor.
The color of the curve specifies which phosphor was measured using a Sony GDM 500
(Wilson, 2004). These curves are typical for computer monitors.

their relative behavior (Itten, 1970). See the top plot in Figure 2.3 for the normalized
sensitivity curves of L, M, and S cones as measured in humans.

Most computational vision simulations ignore color and assume an achromatic
architecture. Creating training data is much simpler when working with achro-
matic simulations. Also, many lower animals do not have color vision, so doing a
monochrome simulation is realistic. In trichromats such as macaque monkeys, achro-
matic neurons do exist, but a large fraction of cells are color selective.

The three types of cones described above are simulated by the model, as de-
scribed in Chapter 3. Since this dissertation is modeling photoreceptors exposed to
natural scenes, the model must have realistic retina activation patterns. Ideally, the
raw light from nature would be used as input in the presented model, but it is not
available. A mathematical transformation will instead be used to simulate photore-
ceptor activations using RGB images of natural scenes. The transformation simulates
how the photoreceptors in a retina would respond if looking at a CRT (cathode ray
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tube) monitor, and is presented in Appendix A (RGB to LMS transform). Alterna-
tively, digital images from a calibrated camera can be used. With such calibrated
images, the properties of the light-sensitive diodes in the camera are known precisely,
and the images can be directly converted to photoreceptor activations.

As a shortcut, models can be trained on raw RGB images, but the results are
not as biologically relevant as for models trained using the simulated photoreceptor
activations. This is because an RGB picture of a natural scene has channel correla-
tions that differ from what the biological eye sees. Figure 2.3 shows the difference
between the light that CRT phosphors emit and the cone sensitivity functions of the
human eye. The M and L cones overlap a great deal, yet there is little overlap in the
G and R guns, and so models using RGB images without LMS transformation will
not have realistic cross-channel correlations.

Simulating photoreceptor activations from RGB images can provide the major-
ity of colors in the world, but note that some colors cannot be reproduced in this way.
The color-space of a three-channel image is smaller than the color space of observable
light, and therefore RGB images cannot produce every observable color (reviewed in
Fairchild and Wyble (1998)). Even so, RGB images displayed on computer moni-
tors are easy to use in the laboratory and for most experiments the shortcomings
are negligible. The displays can be calibrated to show near lifelike images within the
limits found in the camera optics, CRT phosphors, and ambient lighting of the testing
environment. Since neuroscientists also use CRT monitors to measure brain activity,
it is reasonable to expect that a model covering this color range will be sufficiently
realistic for understanding biological data.

2.2.2 Retinal Ganglia and Lateral Geniculate Nucleus

The ganglion cells of the retina project to the Lateral Geniculate Nucleus, which in
turn projects to the visual cortex, superior colliculus, and pretectum (reviewed in
Gegenfurtner and Kiper, 2003; Kandel et al., 2000).

The response properties of retinal ganglion cells (RGC) are similar to those
of the LGN. The spatially organized pattern of retinal photoreceptor cell activations
that increases or inhibits the firing rate of a retinal ganglion cell or LGN cell is called
its receptive field (RF). There are many studies that measure the receptive fields of
cells in the retina and LGN (e.g. Conway, 2001; Gegenfurtner and Kiper, 2003; Lee,
Kremers, and Yeh, 1998; Packer and Dacey, 2002). Receptive fields of RGC/LGN
cells can be modeled using Gaussians with different variances and signs (Rodieck,
1965).

There are two main types of RGC/LGN receptive fields: center-surround, and
coextensive. The receptive field for a center-surround LGN cell can be modeled by
two Gaussians with opposite signs and different variances (Rodieck, 1965). Figure 2.4
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Figure 2.4: Center-surround receptive field. The flat surface in the 3D plot
represents a zero effect on the activation of this neuron. High areas indicate areas
where light will excite the neuron. Low areas are suppressive. The ON center-
surround receptive field shown in (c) is modeled with the summation of the narrow
positive Gaussian in (a) and the wide negative Gaussian in (b). A cell will activate
strongly if bright light shines at the center of the cell’s receptive field. If a light of
the same intensity shines slightly offset from center, the cell will be suppressed.

shows an example of the center-surround receptive field of an RGC/LGN cell. The
surface of each contour plot represents the contribution of a photoreceptor’s activity
to the excitation or inhibition of the LGN cell at that retinal location. In the figure,
an increase or decrease in height from the baseline represents a proportional increase
or decrease in activation of the RGC/LGN cell if there is illumination at that location.
Figure 2.4a shows a very narrow (center) Gaussian at the center of the field, that will
cause a very strong activation if light falls on the raised area. Meanwhile, Figure 2.4b
shows a much broader negative (surround) Gaussian that will suppress the LGN cell
if light is shown in the non-zero region. Figure 2.4c combines the excitatory and
inhibitory Gaussians into a center-surround receptive field for an RGC/LGN cell. A
bright light landing on the photoreceptors in the center of the cell’s receptive field
will activate it. If a light of the same intensity is shown slightly offset from center,
then the cell will be suppressed instead. Since the center part of the receptive field
in Figure 2.4c is excitatory, the cell is called an ON center-surround cell. There are
also OFF cells that have the inverse of the receptive field in Figure 2.4; light in the
center of the receptive field will suppress the cell, and light in the surround will excite
it. Cells with these types of receptive fields can be found in the LGN parvocellular
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Figure 2.5: Red-green ON and OFF center-surround receptive fields. Bright
red areas in the figure denote the locations where red light will excite the cells. Darker
red areas denote regions where red light will inhibit the cell. Similarly, green light
will excite the cell in areas marked as light green, and inhibit the cells in dark green
areas. Rows 1–4 show how neurons of these two types will respond to the given spots
or rings of yellow light, which activates both red and green photoreceptors. The small
yellow bars above each spike train show the onset and termination of the illumination,
and the spike train shows a typical response. Figure adapted from (Kandel et al.,
2000).
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region (Gegenfurtner and Kiper, 2003), and in the retinal ganglion cells (Kandel et al.,
2000).

Each cell can have different types of photoreceptors in its receptive field. LGN
and retinal ganglion cells that receive stimulation from multiple types of photorecep-
tors are called luminosity sensitive cells, or wide or broad-band, and are achromatic.
It is unclear whether luminosity cells only use long and medium photoreceptors in
their receptive fields, or if they also include short-cone photoreceptors (Chatterjee
and Callaway, 2002). Alternately, color opponent cells have connections to different
types of cones for the excitatory and inhibitory areas of their receptive field. For
example, an ON red-green color opponent cell will have an increase in activation if
red light is shown in the center of the receptive field and/or green light is shown in the
surround. Figure 2.5 gives further examples of how light will affect color opponent
center-surround receptive fields.

The second major type of RGC/LGN receptive fields belong to spatially co-
extensive (or spectrally opponent) cells. Spatially coextensive cells have a receptive
field that lacks surround suppression. They are modeled with two Gaussians that
have an equal variance, but with different signs and color preferences(Gegenfurtner
and Kiper, 2003; Rowe, 2002). A cell with a blue-yellow coextensive RF will be ex-
cited when blue light is presented anywhere in the receptive field, and inhibited when
yellow (red plus green) light is shown anywhere in the receptive field. Similarly, an
OFF blue-yellow coextensive cell will be excited by yellow light shown in its receptive
field and inhibited by blue light shown in its receptive field.

Red and green cones form center-surround receptive fields, while most research
reports that blue-yellow selective cells have coextensive receptive fields (Calkins, 2001;
Conway, 2001; Dacey, 2000; Rowe, 2002). However, Klug, Herr, Ngo, Sterling, and
Schein (2003) suggest that a lens blurring effect may be causing blue selective center-
surround cells to be misclassified as coextensive cells. There is also debate on whether
OFF blue-yellow opponent cells exist (Klug et al., 2003), or if all blue-yellow cells are
ON. Chatterjee and Callaway (2003) did find evidence for OFF blue-yellow cells but
their role, if any, remains unclear. The model presented in this dissertation uses both
ON and OFF blue-yellow coextensive cells, but these other possibilities have also been
tested, and produced similar results.

2.2.3 Primary visual cortex

The neural response to the retinal stimulus passes through the LGN to the primary
visual cortex (V1), located at the back of the brain (Figure 2.2). Optical imaging
studies show that there are overlapping retinotopic maps in the V1 (Blasdel, 1992a,b;
Blasdel and Campbell, 2001; Blasdel and Salama, 1986; Issa et al., 2001; Vanduffel
et al., 2002). Each of these maps select for features of the visual stimuli such as
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(a) Color selectivity map

(b) Orientation preference map

(c) Ocular dominance map

Figure 2.6: V1 feature preference
maps. The V1 cortex contains overlapping
feature maps for input properties like color,
orientation, and eye of origin. All three
plots were measured using optical imag-
ing and show the same 5.3mm by 2.3mm
section of macaque V1 (from Figure 8 in
Landisman and Ts’o (2002b); reprinted
with permission). Plot (a) is the color-
selectivity map where color-selective re-
gions are dark, and unselective regions are
light. Plot (b) is the orientation preference
map with the preferences of the each lo-
cation colored according to the key to the
plot’s right. Plot (c) is the ocular dom-
inance map with dark regions preferring
the left eye, light regions preferring the
right eye, and gray regions preferring both
equally. The yellow dots in (c) show the
location of the orientation pinwheels, and
the color-selective regions are outlined in
red. The pinwheels do not align with the
color map, but color-selective regions tend
to stay within the OD stripes.

orientation, eye of origin, spatial frequency, and color. This section first discusses
some of the feature preference maps found in V1, and then reviews how these neurons
connect to other V1 neurons. The discussion focuses on the aspects relevant to those
presented in later chapters.

Figure 2.6 shows the color selectivity, orientation preference, and ocular domi-
nance maps measured across the same 5.3mm by 2.3mm section of macaque monkey
V1 cortex (Landisman and Ts’o, 2002b). Figure 2.6a shows a color-selectivity map
where cortical regions that respond to colored retinal stimuli are dark, and light re-
gions are unselective. Color-selective areas appear as blob-like patches in V1 and are
found in the same locations that stain for cytochrome oxidase (Landisman and Ts’o,
2002b). Previous studies have suggested that color selective regions and cytochrome
oxidase blobs were one and the same (Hubel and Livingstone, 1983; Hubener and
Bolz, 1992; Sato et al., 1994). Landisman and Ts’o (2002a) showed that these cy-
tochrome oxidase blobs do correlate with the imaged color patches, but that they
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were not identical.
The same piece of V1 cortex can also be measured for orientation preferences,

shown in Figure 2.6b. To measure orientation preference maps, the cortex is presented
with oriented stimuli, and regions in the map are colored according to the orienta-
tion that causes the maximum activation. For example, in Figure 2.6b portions of
the map colored yellow respond to vertical orientations, while blue areas prefer hor-
izontal stimuli. Orientation maps have distinctive features called pinwheels, which
are locations in the map where areas selective for all orientations come together at a
single point.

A third type of feature map found in V1 (but not V2), is ocular dominance
(or eye-preference) maps. Stimuli are alternately presented to the left and right eyes,
to construct a map of how neurons in the cortex respond to stimuli in the left or
right eye. Figure 2.6c shows an ocular dominance map where the map is black if the
corresponding neurons activate to stimuli from one eye, white if the region responds
to stimuli from the other eye, and gray if the cortex responds to stimuli in both eyes
equally. Ocular dominance maps in macaque monkeys form stripes that smoothly
transition between eye preferences.

On top of the ocular dominance map, Figure 2.6c has yellow dots that show
the location of the orientation map pinwheels from Figure 2.6b, and also red outlines
marking color-selective regions from Figure 2.6a. Landisman and Ts’o (2002b) did not
find a relationship in registration or alignment between orientation column pinwheels
and the color selective regions. However, they did find that color-selective blobs were
often found in the monocular regions of ocular dominance stripes.

It may be that V1 is the first region where color selective cells begin to organize
into the perceptual color space that is observed in psychophysical experiments. Xiao,
Casti, Xiao, and Kaplan (2007) measured the color preferences of the color-selective
regions and found that the cortex makes gradual transitions between preferred colors.
For example, cortex that activates when green light is presented to the retina, is often
located near cortex that responds to cyan (green plus blue) stimuli on the retina.
Chapter 7 will present a model V1 that also has color preferences that make smooth
transitions between perceptual colors.

Orientation selective neurons within the cortex form patchy lateral connections
to other orientation selective neurons (Bosking et al., 1997; Sincich and Blasdel, 2001).
Examples of these lateral connections are in Figure 2.7, which shows two orientation
maps of tree shrew cortex.. The small white plus signs in the plots are the locations
of tracer injections, and the black dots are the axon terminals of the injected neu-
rons. In Figure 2.7a the injected neurons are colored green and prefer near-vertical
orientations. These neurons make nearby connections to areas with many different
orientation preferences, but form long range connections to other vertical preferring
neurons. In Figure 2.7B, the pattern is repeated: horizontal preferring neurons form
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Figure 2.7: Lateral connections of tree shrew V1 neurons. V1 neurons form
lateral connections to neurons with similar orientation preferences. Orientation maps
of V1 cortex in the tree shrew are shown, with white plus-signs indicating the loca-
tion of tracer injections, and black spots indicating axon terminals of the neurons.
Plot (A) injected neurons that prefer orientations near vertical. These cyan colored
neurons have connections to nearby neurons of all orientations, and have long-range
connections to neurons with similar orientation preferences. Plot (B) shows how
neurons that prefer orientations coded for red and purple (about 135°) again have
close connections to neurons with a variety of preferences, and longer connections
to neurons with similar orientation preferences. (Figure from Bosking et al. (1997).
Copyright 1997 by the Society for Neuroscience, reprinted with permission.)

local connections to neurons of all orientations, but the longest connections are to
other horizontal preferring neurons. These patterns are important because they play
a role in modulating and controlling cortical responses, representing and associating
information, and mediating development. It is not yet known how color-selective neu-
rons are connected, but this connectivity might be crucial for color perception and
the model in this thesis will make concrete predictions for lateral connections between
color-selective neurons.
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Figure 2.8: V2 schematic organization. The surface of V2 stains for cytochrome
oxidase in a thin-pale-thick-pale stripe organization. Color selectivity is found in
the thin stripes. Orientation selectivity is found in the pale and thick stripes, while
disparity selective cells are located in the thick stripes.

2.2.4 Secondary visual cortex

The neurons in the primary visual cortex also form strong connections to the sec-
ondary visual cortex area (V2). Like V1, V2 neurons also form topographically orga-
nized connections and functional maps (Landisman and Ts’o, 2002b; Levitt, Kiper,
and Movshon, 1994; Xiao, Wang, and Felleman, 2003). The surface of V2 can be
divided into stripes that stain dark or light for cytochrome oxidase. The staining
creates a repeating pattern of thin dark stripes, pale stripes (a.k.a. inter-stripes), and
thick dark stripes (Roe and Ts’o, 1995; Shipp and Zeki, 2002a; Sincich and Horton,
2002a; Vanduffel et al., 2002; Yoshioka and Dow, 1996). These striped regions also
show functional segregation, with color-selective cells appearing in the thin stripes,
and orientation-selective cells located in the pale and thick stripes (Shipp and Zeki,
2002a). Unlike V1, ocular dominance maps do not appear in V2 (Ts’o, Frostig, Lieke,
and Grinvald, 1990). These aspects of V2 physiology and functional organization are
illustrated in Figure 2.8.
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Xiao et al. (2003) used intrinsic optical imaging of V2 thin stripes to show that
some color-selective regions respond to chromatic stimuli in the same spatial order as
a standard perceptual color wheel. That is, a red-selective patch of cortex transitions
into a yellow-selective patch of cortex, which transitions into a green-selective patch
of cortex, and so on. The results presented in Chapter 7 also create perceptually
organized bands of color and suggest how perceptual color space may be constructed
from the mixing of color opponent LGN cells.

2.3 Developmental input-driven self-organization

The previous section reviewed the physiology of the human visual system. This section
will present the developmental principles found in biology that form the foundation
for the model presented in this dissertation. This section first discusses developmental
studies supporting an input-driven self-organizing model of vision, and then presents
the Hebb learning principle as a mechanism for the observed self-organization.

2.3.1 Visual cortex studies

During the 1960s Hubel and Wiesel broke new ground when they showed that maps in
cat visual cortex changed based on what the animal saw during development (Hubel
and Wiesel, 1962, 1963, 1967). If kittens had their eyes temporarily sutured closed
at an early age, later sight was permanently impaired, or even completely blinded.
If kittens were placed in environments that only contained vertical edges, then the
orientation maps in the cortex were abnormally formed and the selectivity for orien-
tations other than vertical were reduced (Blakemore and van Sluyters, 1975; Hirsch
and Spinelli, 1970). These findings proved that properly formed adult feline cortex
requires retinal stimuli with certain “natural” features during development. If ab-
normal stimuli are instead presented, then the self-organizing process will not form
normal functional structures. Hubel, Wiesel, and LeVay (1977) went on to show that
cortical self-organization in response to retinal stimuli also occurs in the higher mam-
mals such as macaque monkeys. The self-organization of maps is a complex process,
with some maps fully formed at birth, and some maps forming later. Color maps are
likely to have a post-natal development phase (Sugita, 2004).

Abnormal cortical development is usually considered brain damage or un-
healthy for the individual. Yet some abnormal variations may not be detrimental.
Jordan and Mollon (1993) report that they found women who are tetrachromats (i.e.
four types of cones), with at least one woman having superior color perception. This
findings suggests that the visual cortex is adaptable and can make use of additional
sensory information. Similarly, Jacobs, Williams, Cahill, and Nathans (2007) has
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shown that mouse cortex can also use increased photoreceptor selectivity to achieve
superior color perception. They genetically modified a mouse by replacing one pho-
topigment of mouse photoreceptors with the DNA of a human photopigment, thereby
increasing the color discrimination of the mouse. Overall, the evidence available sug-
gests that cortical color processing circuitry may develop automatically from features
of the visual environment, as processed by subcortical circuitry.

2.3.2 Synaptic plasticity and the Hebb principle

In 1949, Donald Hebb proposed a learning principle between neurons that also works
as a mechanism for the self-organization of neural networks (Hebb, 1949). The adap-
tation mechanism, later called Hebbian learning, has become a fundamental model
within neuroscience and has been used to explain long term potentiation (LTP) as
well as everything from memory (Horn, Levy, and Ruppin, 1998; Tsien, 2000) to
vision (Lee, Eglen, and Wong, 2002a) to consciousness (Miranker, 1997).

Hebbian learning is based upon the premise that connections between neurons
should be strengthened when they are active simultaneously. When a neuron is
activated, the learning will cause other neurons which are also active to play a greater
role in exciting the neuron in the future. One form of the Hebbian learning rule
(adapted from Haykin, 1999) is,

∆ωij = αcidj, (2.1)

where ∆ωij is the amount of the weight adjustment for the connection weight ωij
which connects neuron ci to the input dj, and the parameter α is the learning rate
which can be changed depending upon the need.

2.3.3 Homeostatic plasticity

If there was no balancing mechanism to temper long term potentiation then connec-
tions and firing rates would grow without bound. A number of biological mechanisms
help to regulate long-term and short-term potentiation, to keep neurons firing within
useful ranges (Bourgeois, Jastreboff, and Rakic, 1989; Pallas and Finlay, 1991; Tur-
rigiano, 1999). An effective model of these regulating mechanisms is to use weight
normalization. That is, to keep the total value of all weights to a neuron fixed,
and to change the connection weights relative to each other, so that a connection
weight can be strengthened but at the cost of another weight being proportionally
weakened. Hebbian learning with normalization is a model that encapsulates both
the LTP and regulating mechanisms within the brain, and will be used later for the
learning mechanism within the vision model.
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With this biological background in place, the next section presents computa-
tional models of self-organizing maps based upon the visual cortex.

2.4 Self-organizing models of the visual cortex

The first self-organizing computer model of the visual cortex was run in 1973, when
von der Malsburg simulated V1 neurons on a UNIVAC running at 1 MHz (von der
Malsburg, 1973). His 2D cortex represented each cortical column as a single unit, and
included fixed excitatory and inhibitory lateral connections. Inputs were oriented bars
of light represented as matrices of zeros and ones, and weights were adjusted using
Hebbian learning. The computer program created orientation-selective neurons rem-
iniscent of mammalian cortex, and revealed the promise that the fledgling computer
technology offered to brain researchers.

2.4.1 Monochrome vision models

The next step in the development of self-organizing cortex models was the develop-
ment of self-organizing feature maps (SOMs). These maps are mathematical systems
that arrange high-dimensional information into organized geometric patterns follow-
ing regularities contained within the input data and the structure of the network
(Kohonen, 1982a,b, 2001). SOMs develop features that have similarities to biological
cortex (Durbin and Mitchison, 1990; Goodhill, 1993; Obermayer, Ritter, and Schul-
ten, 1990a,b; Piepenbrock, Ritter, and Obermayer, 1997). Orientation maps tend
to be the dominant map studied, followed by ocular dominance (Miller, Erwin, and
Kayser, 1999).

These models save computer time and memory by not explicitly including indi-
vidually adjustable lateral connections, which also makes the resulting models easier
to analyze mathematically. However, explicit lateral connections increase biologi-
cal realism, and extend the predictive power of the computational model because the
model’s connections can be compared to the neuronal connections in biology (Bartsch
and van Hemmen, 2001; Kalarickal and Marshall, 1998; Sirosh and Miikkulainen,
1994).

Alternatives to SOMs include correlation-based learning models (CBLs). If the
visual system is assumed to be linear, then simple functions can be used to represent
the long-term correlations of the inputs (Miller, 1994). CBL models create reasonable
orientation maps, but fail to form some biologically common features such as linear
zones, which are found in competing models using Hebbian learning (Miikkulainen
et al., 2005; Obermayer, Sejnowski, and Blasdel, 1995).

The most complete self-organizing cortex models blend SOMs, lateral cortical
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connections, and non-linear Hebbian learning (Alexander, Bourke, Sheridan, Kon-
standatos, and Wright, 2004; Barrow and Bray, 1993; Burger and Lang, 1999, 2001).
The earliest system to include these components and show patchy lateral connections
was LISSOM (the Laterally Interconnected Synergetically Self-Organizing Map; Miik-
kulainen et al., 2005; Sirosh, 1995; Sirosh and Miikkulainen, 1994). This model showed
that patchy lateral connections help reduce redundancy within the cortex, and may
also aid in feature detection.

The LISSOM model has proven powerful, robust, and flexible, and it has been
extended to simulate properties other than the more traditional orientation and oc-
ular dominance maps. These additional features include motion, disparity, spatial
frequency, perceptual grouping, and even face-selective cortical areas (Bednar, 2002;
Bednar and Miikkulainen, 2003; Choe, 2001; Palmer and Bednar, 2006; Ramtohul,
2006). The model even explains the tilt aftereffect and the McCollough effect optical
illusion, providing further evidence that the self-organization theory accurately de-
scribes part of the biological vision system (Bednar and Miikkulainen, 2000; Ciroux,
2005).

2.4.2 Models of color selectivity

When modeling the visual pathway from the retina up to V1, few self-organizing
computational models include color stimuli. There are at least four main reasons:
First, there is much to learn about vision without needing to include color. Second,
many of the biological imaging studies being modeled are performed on animals that
do not have full trichromatic color vision. Third, memory and computer processing
power have been insufficient for the added complexity that color requires. Fourth,
color vision is complex to model and requires good software support.

Several single neuron models of color and color constancy have been published
(Courtney, Finkel, and Buchsbaum, 1995; Stanikunas, Vaitkevicius, and Kulikowski,
2004; Usui, Nakauchi, and Miyake, 1994; Usui, Nakauchi, and Miyamoto, 1992). How-
ever, these models do not work on the map level and therefore cannot be used to study
how color maps form and interact with other feature maps.

Saarinen and Kohonen (1985) applied SOMs to create color maps in a modeled
cortex years before SOMs were being routinely used to model orientation maps. These
maps formed bands of selectivity that made gradual transitions but did not resemble
the biological cortex. However these maps are still remarkable because they predated
biologically plausible color maps by a decade.

Barrow, Bray, and Budd (1996) presented a model with an architecture similar
to the one in this dissertation, with photoreceptor, lateral geniculate nucleus, and V1
sheets. Their simulation develops color blobs and is consistent with the results in this
paper, but it is dichromatic (with no blue photoreceptors), has a single eye, and has
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fixed, isotropic lateral connections. Thus it cannot address the issues studied in this
thesis, such as the interactions between ocular dominance (OD), orientation (OR),
and color maps, and how the lateral connections interact with the structure of each
map.

A V1 model by Nakagama and Tanaka (2004) develops patterns similar to
cytochrome oxidase blobs. Their cortical neurons are not orientation selective, but
they have included two retinas to create ocular dominance stripes. They find that
the cytochrome oxidase blobs remain within the ocular dominance bands, as they
do in biology (Bartfeld and Grinvald, 1992; Landisman and Ts’o, 2002b). They are
able to manipulate the position of cytochrome oxidase blobs by adjusting between-
eye correlation, but they use artificial stimuli, and do not model all three types of
photoreceptors.

Rao, Cecchi, Peck, and Kozloski (2005) have designed a model for color cate-
gorization. Similar to the model presented in this paper, their model is a trichromatic
simulation that creates a self-organized color map. However, they do not model ei-
ther the retina and LGN regions or cortical lateral connections, and do not consider
how the color map interacts with the orientation and ocular dominance maps. Thus,
their model is a more abstract simulation of color processing in general, rather than
a specific model for how color-selective neurons are organized in V1.

The LISSOM simulation presented in this paper goes beyond the Nakagama
and Tanaka model or the Barrow and Bray model to include self-organized orientation
and ocular dominance selectivity with trichromatic inputs to undifferentiated cortical
neurons. This simulation is the first to bring together each of these different input
features into a single computational model. Such a comprehensive model leads to
unique interaction results that are not possible with simpler simulations. In particu-
lar, the new model makes it clear why color is organized differently from orientation
and ocular dominance.

2.5 Conclusion

This chapter reviewed the biology and functionality of the early human visual sys-
tem. There is a feed-forward information pathway starting at the retinas and moving
up to the secondary visual cortex. Research suggests that the cortex self-organizes
topographic maps based upon the input stimuli received from the retina, and that
Hebbian learning is a useful model for this self-organizing process.

The next chapter will present the details of the trichromatic LISSOM model
that is used to generate the results presented in this dissertation.
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Chapter 3

The LISSOM model

This dissertation extends LISSOM to include trichromatic photoreceptors in the
retina and color-opponent cells in the LGN, which then allows color-selective regions
to form in V1. Adding color is a significant extension to the LISSOM model since the
color inputs add many new dimensions of complexity. In this section the architecture
of the model is presented first, with detailed descriptions of each neural region. Sec-
ond, the activation, settling, and learning equations are discussed. Third, the network
training stimuli are described. Thus, the chapter gives a complete description of the
computational platform used in later chapters.

3.1 Architecture

The model (shown in Figure 3.1) consists of 24 two-dimensional sheets of artificial
neurons representing different topographically organized sets of neurons: six sheets of
retina photoreceptors representing two eyes, each with three different cone types; 16
paired sheets of ON-center/OFF-surround or OFF-center/ON-surround LGN units,
each with a different color combination; one sheet of neurons representing V1; and
one sheet of neurons representing V2. Images of natural scenes are presented to the
simulated retinas which then activate the LGN regions, which activate V1, and in
turn activate V2.

The input to the simulation consists of a series of color bitmap images sepa-
rated into long, medium, and short photoreceptor activation values. The LGN units
represent the entire processing pathway between the photoreceptors and V1, includ-
ing the retinal ganglion cells. Four common types of ganglion cell receptive fields are
modeled: luminosity, long-center/medium-surround, medium-center/long-surround,
and short/(long and medium). Because the focus is on the two-dimensional organi-
zation of the cortex, each cortical neuron corresponds to a vertical column of cells
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Figure 3.1: LISSOM model of orientation, long/medium/short color selec-
tivity, and ocular dominance. The model is a hierarchy of sheets of neural units,
modeling the visual pathway from the retinal photoreceptors to V2. In this figure,
the model is being presented with a close-up image (by Olmos and Kingdom, 2004) of
a yellow flower with brown spots and the edge of a blue flower. For training and ac-
tivation, calibrated natural images are converted into long-, medium- and short-cone
photoreceptor activation values. These values become the bitmap activation patterns
of the photoreceptor cells in the model. The units in the LGN sheets have Difference
of Gaussian and coextensive receptive fields projecting from the retina layer. V1 and
V2 neurons also have lateral excitatory (small dotted circle) and lateral inhibitory
(large dashed circle) connections to their neighbors. Through training, neurons in the
V1 and V2 sheets develop specific feature preferences, forming into maps for color,
eye and orientation preference.
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through the six anatomical layers of the cortex.

3.1.1 Eyes

The photoreceptors described in Section 2.2.1 are modeled with three 2D matrices
of floating point numbers. Each matrix represents one type of photoreceptor, and
each floating-point number in the matrix represents the activation (i.e., graded volt-
age) of a single photoreceptor. The retina can “see” images if the matrices are filled
with the simulated activation level of photoreceptors looking at a scene. As reviewed
in Section 2.2.1, RGB images do not have the same inter-channel correlations as
photoreceptor activations but they can be used as training images if they are first
converted. Section 3.3 and Appendix A discuss how to calculate photoreceptor ac-
tivation by converting red, green, blue (RGB) image measurements into simulated
long, medium, short (LMS) activations.

3.1.2 Lateral geniculate nucleus

Each model “LGN” unit represents all of the computational processing between the
photoreceptors and V1, including the retinal ganglion cells. Each LGN unit receives
input from photoreceptor units within circular receptive fields (RFs). Figure 3.1
shows the connections for four example LGN units. All units at the same position in
the other 12 LGN sheets in the figure receive input from the same set of photorecep-
tors but with different connection weights. Electrophysiological studies have shown
that the pathway to V1 contains ganglion cells with these types of receptive fields
(Chatterjee and Callaway, 2003; Dacey, 1994; Livingstone and Hubel, 1984).

Similar to the biological naming conventions described in Section 2.2.2, if light
falling on the center of a receptive field activates a cell, then it is labeled an ON LGN
receptive field. Likewise, cells with OFF receptive fields are inhibited when light
falls on the center. LGN cells that have long and medium cone inputs are modeled
with center-surround receptive fields. Center-surround receptive fields use difference
of Gaussian (DoG) connections to the photoreceptors, as previously described in
Section 2.2.2. A DoG is composed of two Gaussian activation functions of opposite
sign, with one excitatory Gaussian and one inhibitory Gaussian. The two Gaussians
have different variances but identical centerpoints; the smaller Gaussian determines
the properties of the center, and the larger one determines those of the surround (Lee
et al., 1998; Packer and Dacey, 2002). In contrast, modeled LGN cells with short-
cone inputs have coextensive receptive fields, i.e. receptive fields that use center-sized
Gaussians for both the excitatory and inhibitory fields.

Each LGN sheet is sensitive to a different set of photoreceptors. Some LGN
cells combine input from all three types of photoreceptors to create broad-band cells.
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Figure 3.2: Sample receptive fields for units in LGN sheets in the LISSOM
model. The spatial organization of four modeled receptive fields are shown in this
plot. The model includes four more RF types identical to the above except for sign:
-(L+M+S)/(L+M+S), -L/+M, -M/+L, and -S+L+M. Using the Long, Medium,
and Short photoreceptor sensitivity functions means that LGN receptive fields are
maximally selective for colors other than the pure perceptual colors. The center and
surround receptive fields in the figure have been filled with the approximate color
that will cause the peak response of the indicated sign, in that part of the receptive
field (RF). Cells with these types of receptive fields are regularly found in macaque.

Other cells have connections to different types of cones for the ON and OFF regions of
its receptive field, thus forming color-opponent cells. For example, a red/green color-
opponent cell can be created by combining activation from an ON-center receptive
field that is selective to long wavelengths, and an OFF-surround receptive field that
is selective to medium wavelengths. Figure 3.2 shows four of the eight different
receptive field types found in the model LGN. The four not shown are identical to
the four RFs are shown except that they have opposite signs. These same cell types
have been found experimentally in the parvocellular layers of the LGN (Gegenfurtner
and Kiper, 2003), and in the ganglion cell layer of the retina (Kandel et al., 2000).
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3.1.3 Primary visual cortex

Just as LGN neurons receive input from the retina sheets, V1 neurons receive inputs
from circular connection fields on all 16 LGN sheets (Figure 3.1). Each V1 neuron
has connections to each LGN sheet, with the connection strengths chosen randomly.
Each V1 neuron also has lateral excitatory and inhibitory connections in a circular
radius around it as shown in Figure 3.3, with the weights initially having a Gaussian
distribution. The connection weights are eventually learned in a Hebbian adaptation
process as described in Section 3.2.

A single V1 neuron represents a vertical column of cells, which is a viable
approach because biological response properties tend to be similar in each vertical
penetration. The resulting model is thus a 2D sheet where the layered structure has
been collapsed into a single unit representing each column.

3.1.4 Secondary visual cortex

The secondary visual cortex is modeled with another 2D sheet of LISSOM neurons.
Each V2 neuron has a circular receptive field projecting from the V1 sheet. The
radius of the receptive field gives each V2 neuron double the retinal visual field of
V1 neurons. Like V1, each V2 neuron also has lateral excitatory and inhibitory
connections in a circular radius around it as shown in Figure 3.3. All connections are
eventually learned through a Hebbian learning process.

3.2 Running the model

In LISSOM, lateral excitatory connections have a short range and inhibitory connec-
tions connect to a much wider region. In biological cortex, the longest connections
in V1 and V2 are excitatory, but their net effect is inhibitory at high contrasts due
to strong local inhibitory interactions with a high threshold for activation (Grinvald,
Lieke, Frostig, and Hildesheim, 1994; Hata, Tsumoto, Sato, Hagihara, and Tamura,
1993; Hirsch and Gilbert, 1991; Weliky, Kandler, Fitzpatrick, and Katz, 1995). The
model uses explicit long-range inhibitory connections for simplicity, which is a valid
approximation because the high-contrast portions of each image have the largest in-
fluence on Hebbian learning (Bednar and Miikkulainen, 2000). LISSOM-like models
that use long-range excitatory connections with explicit inhibitory interneurons be-
have similarly (Law and Bednar, 2006).

For each training input image, the model units are activated and adapted in a
three-stage process:
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Figure 3.3: LISSOM model. The LISSOM model is an artificial neural network
with a 2D sheet of neurons. Each neuron has three types of connections: afferent
input projections coming from a spatially organized input surface, lateral short-range
excitatory connections, and longer-range lateral inhibitory connections. All of the
connection weights are learned through Hebbian self-organization from an initial ran-
dom starting point. For the V1 map, the Network sheet is V1 and the Input Surfaces
are the LGN sheets; for the V2 map, the network sheet is V2 and the Input Surface
is V1.

1. Feedforward Activation: Find the initial activation by summing all the incom-
ing connections.

2. Lateral Settling: Iteratively settle the initial activation using the lateral con-
nections.

3. Learning: Adjust the afferent and lateral connection weights through normalized
Hebbian learning.
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The next three subsections present the equations governing each stage.

3.2.1 Activation

For each input image, the activity level for each LGN, V1, and V2 cell is calculated.
Each LGN unit (i, j) computes its input activation sij as a scalar product of a fixed
weight vector and an input vector for each of its connection fields:

sij =
∑
ρ∈C

γρ
∑
ρab

ξρabAρab,ij, (3.1)

where ρ is an index over the set C of connection fields (e.g. C = {long-center, medium-
surround} for an on-center long/medium cell) of neuron (i, j), ξρab is the activation
of neuron (a, b) in connection field ρ, Aρab,ij is the weight value for the connection
to ξρab, and γρ is a constant scaling factor for each connection field. The LGN cell
activity is then σ(sij), where σ is a piecewise linear sigmoid activation function, with
zero output below a lower threshold δ, 1.0 output above an upper threshold β, and a
linear increase between the thresholds. Both δ and β are set at the start of training
and then adjusted according the schedule in Table B.4.

3.2.2 Cortical settling

Each V1 and V2 neuron computes its initial input activation like an LGN cell using
Equation 3.1, but then the neuron activation settles through short-range excitatory
and long-range inhibitory lateral interaction:

ηij(t) = σ

(
sij + γE

∑
kl

ηkl(t− 1)Ekl,ij − γI

∑
kl

ηkl(t− 1)Ikl,ij

)
, (3.2)

where ηkl(t−1) is the activity of another cortical neuron (k, l) during the previous time
step, Ekl,ij is the excitatory lateral connection weight on the connection from that
neuron to neuron (i, j), and Ikl,ij is the inhibitory connection weight. All connection
weights have positive values. The scaling factors γE and γI are the relative strengths of
excitatory and inhibitory lateral interactions, which determine how easily the neuron
reaches full activation.

The V1 activity pattern starts out diffuse, but within a few iterations of Equa-
tion 3.2, it converges into a small number of stable focused patches of activity bubbles.
The V1 settled activity pattern is the input used for V2.
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3.2.3 Learning

After activity in the cortex model has settled, the connection weights of all V1 and
V2 neurons are modified. All weights adapt according to the Hebb rule, normalized
so that the sum of the weights from each sheet is constant for each neuron (i, j):

w′pq,ij =
wpq,ij + αXpqηij∑
uv(wuv,ij + αXuvηij)

, (3.3)

where ηij stands for the activity of neuron (i, j) in the final activity bubble, w′pq,ij is
the new connection weight and wpq,ij the current connection weight, α is the learning
rate for each type of connection (αA for afferent weights, αE for excitatory, and αI

for inhibitory), and Xpq is the presynaptic activity. The larger the product of the
pre- and post-synaptic activity Xpqηij, the larger the weight change. Before training,
cortical neurons are connected to all nearby neurons. But at long distances, few
neurons have correlated activity and most long-range connections eventually become
weak. The weakest connections are eliminated periodically, resulting in patchy lateral
connectivity similar to that observed in biological visual cortex.

Initially, the learning rate of the connection weights and activity blobs are large
and make strong changes to the cortex. But as the simulation progresses, the learning
rate decreases so that fine details appear in the cortex and activity blobs become
smaller. The learning rate is controlled by a small number of free parameters in the
model according to a fixed parameter modification schedule. Appendix B contains
the parameter modification schedules for the results presented in this dissertation
which were empirically found through repeated experimentation.

3.3 Training stimuli

The equations from the previous section allow the connection weights to be self-
organized, given a set of input patterns. The type and order of the training stimuli
strongly affects the final organization of the neural network. In order to create re-
alistic visual cortex maps, the simulation needs realistic retinal activation patterns.
Therefore, color digital images of natural scenes were used as training input.

The training images were selected from freely available databases of foliage
and landscape images, explicitly eliminating photographs that contained man-made
objects that might have unnatural color statistics. The specific results presented
in this dissertation were based on a subset of the McGill images (Olmos and King-
dom, 2004). These images come from cameras that directly convert the responses
of the light-sensitive diodes in the camera into the long, medium, and short (LMS)
photoreceptor activation values of the retina, and are called calibrated images.
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Training the model using calibrated images is slightly more accurate than using
the RGB-to-LMS transformation reviewed in Chapter 2. The difference arises because
the camera-to-photoreceptor mapping is known for a calibrated image but the RGB-
to-LMS conversion can only estimate the original natural light. In addition, any
rounding errors in the original RGB image are further compounded. However, the
difference in accuracy is not crucial for LISSOM. The McGill corpus is used in this
thesis, but as described in Section 7.1, other image datasets using the RGB-to-LMS
transformation give similar results.

V1 regions are trained first, using 20,000 random patches of 110 × 110 pixels
sampled from the input images. Then V2 regions are trained using an additional
20,000 random patches. For each iteration of the simulation a random patch of
a random image is selected and presented to both eyes. In order to provide eye
differences that can drive ocular dominance, during V1 training the brightness of the
patch in the left eye is chosen randomly in the range 0 to 1.0, and the brightness of
the corresponding patch in the right eye is then chosen so that the total brightness
is constant. During V2 training the brightness of the left and right eyes are equal.
Other types of differences between the two eyes (such as position) can also be used to
drive ocular dominance development (Miikkulainen et al., 2005), but these have not
yet been investigated in the present model.

3.4 Conclusion

This chapter presented a trichromatic computational model of primate vision. The
model has a hierarchical organization and uses lateral connections and Hebbian learn-
ing to self-organize cortical regions. To get realistic biological cortical maps, the train-
ing input to the model consists of images of natural scenes. To help understand how
natural images affects the self-organization of the model, the next chapter presents
several statistical analyses of the training images, as well as some predictions of how
the images will affect the developed cortex.
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Chapter 4

Statistics of natural images

The previous sections have described a highly complex self-organizing biological sys-
tem that processes what is seen by the eye. So what do eyes see in the world? They
see both natural and man-made objects. Human artifacts have many more right edges
and colors than do the natural scenes from a forest or a landscape. This disserta-
tion focuses on natural objects since the eye evolved while seeing only natural scenes.
There is a large body of literature that studies natural images from a psychophysical
or psychological perspective. Unfortunately, most of the work does not study the
relationships among photoreceptor types which is most relevant to this research. To
fill that void, five numerical analyses were performed on image corpora to study the
color information within photoreceptor color channels.

If a simulation is trained on images taken of the natural world, and these images
have been characterized in some quantitative manner, then conclusions can be made
about how the statistics of the natural world affect the self-organization of the model.
Numerical analyses of image corpora are presented here in preparation for studying
how natural images affect the self-organization of a modeled cortex. These studies
resulted in five observations. First, activations of the three photoreceptor types are
extremely correlated, making unique channel information difficult to extract. Second,
simulated photoreceptor activations have between two and five bits of entropy per
pixel. Third, individual images tend to have few unique colors. Fourth, the principal
component of small image patches is typically an orientation-selective receptive field.
Fifth, natural images tend to have more luminosity transitions than color transitions.
Each of these observations, and how they affect the model, will be discussed in the
following sections.
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4.1 Correlations between photoreceptor types

As discussed in Section 3.3, the training corpora for this dissertation come from RGB
images of natural scenes that have been converted to long, medium and short (LMS)
photoreceptor activations either by using a calibrated camera or by applying the
transformation in Appendix A. Within this section, a channel refers to all the pixel
values of the red, green, or blue pixels of an RGB image, or the activation values
of the long, medium, or short photoreceptors in the LMS transformation of an RGB
image.

Simulated retinal activations are highly correlated because the long, medium,
and short photoreceptor sensitivity functions overlap. Pearson’s correlation coeffi-
cient was calculated to measure these correlations. The long, medium, and short
photoreceptors would have a correlation of 1.0 if they all had the same value for each
wavelength, and have a lower correlation if they are different. Table 4.1 shows the
source and sizes of different image sets obtained from a number of geographic loca-
tions. Though there are sets of images from Texas (De Paula, 2007a,b; Visual De-
lights, 1999), Canada (Olmos and Kingdom, 2004) and even Africa (Lovell, Tolhurst,
Párraga, Baddeley, Leonards, and Troscianko, 2005; Troscianko, Párraga, Leonards,
Baddeley, Troscianko, and Tolhurst, 2003) all images have similar correlation co-
efficient values. The different corpora mostly contain images of mountains, trees,
bushes, fruit, water, sky, flowers, snow, and rocks. The minor variations in corre-
lation come from the content of the source images. For example, the Winter image
set contains snow-covered scenery that is mostly white, whereas the Flowers corpus
contains zoomed photographs of vibrantly colored flowers. As a result, the lowest r2

correlation for Winter is 0.995, whereas the Flowers corpus is less correlated with a
minimum of 0.784. The r2 correlation values for all the image corpora are shown in
Figure 4.1.

It is remarkable that with the wide variety of sources and the selection of ob-
jects within the images, that the channel correlations are consistently so high. In each
case, the long and the medium photoreceptor activations have the highest correlation.
This relationship is not surprising given that the long and medium photoreceptor sen-
sitivity curves have such a high overlap. Chapter 8 discusses in detail how channel
correlations affect the modeled cortex.

The correlation coefficient gives a good single number to compare training
sets, but the value does not illuminate how much actual information is available in
the stimuli, and how much redundancy is found in the channels. This topic will be
presented in the next section.
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Name Arboretum Austin Vicinity Flowers Foliage Fruit Kibale, Uganda Landscapes Winter
Source Personal Visual Delights Personal McGill McGill Troscianko McGill McGill
Images 31 74 32 136 16 30 34 7

L:M r2 0.997 0.997 0.978 0.987 0.978 0.981 0.992 0.999
Std Dev 0.003 0.007 0.031 0.017 0.027 0.027 0.010 0.000
Mean Error 0.001 0.001 0.005 0.001 0.007 0.005 0.002 0.000

L:S r2 0.921 0.895 0.784 0.906 0.877 0.855 0.901 0.995
Std Dev 0.062 0.125 0.165 0.078 0.098 0.076 0.105 0.001
Mean Error 0.011 0.015 0.029 0.007 0.025 0.014 0.018 0.000

M:S r2 0.939 0.910 0.796 0.931 0.910 0.897 0.937 0.996
Std Dev 0.047 0.098 0.148 0.064 0.074 0.060 0.070 0.001
Mean Error 0.008 0.011 0.026 0.005 0.019 0.011 0.012 0.000

Table 4.1: Correlations between channels in various image corpora. This
table lists the names and sources of the primary image sets used in the dissertation.
Each image set was converted into simulated photoreceptor activations, and then
the pixel-level correlations between the three types of photoreceptors (long, medium,
and short) were measured. Each column in the table shows the number of images
in the corpus, the average pair-wise channel correlations of those images, the stan-
dard deviation, and the standard mean error. The correlation between the long and
medium channels is generally the highest in the image sets because these wavelength
sensitivities overlap significantly.

4.2 Independent and shared information between

photoreceptor types

It has been established that the individual photoreceptor channels are highly cor-
related. By using information theory it is possible to calculate exactly how much
information is unique to each long, medium and short channel, and how much infor-
mation is shared. Measuring the information in a training input will establish what
information content thresholds are necessary for the model to self-organize properly.

4.2.1 Joint entropy

The total entropy within two channels is calculated using the joint entropy equation
(Yao, 1993)

H(X, Y ) = −
∑
x,y

px,ylog(px,y), (4.1)

where x and y are the values of the channels X and Y during a single event. The
probability of the two channels taking on the specific values x and y simultaneously is
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Figure 4.1: Graphical comparison of channel correlations in Table 4.1 The
Winter corpus has the highest correlations because the images are dominated by white
snow The Flowers corpus has the lowest long:short and medium:short correlation
values, and ties Fruit for the lowest long:medium value. Bright colors in the Flowers
corpus causes the channels to have lower correlations than the other corpora. The
error bars show the standard mean error of the images within each corpus.

denoted as px,y. The joint entropy for each pair of channels is measured by assigning
X and Y first to the long and medium channels, then the long and short channels,
and finally the medium and short channels.

The joint entropy equation is an extended form of the more common single-
channel entropy equation which will be used later for the minimum unique entropy
calculation and the redundancy calculation. To calculate the entropy of a single
channel, eliminate Y from Equation 4.1, and use px instead of px,y. To calculate the
joint entropy of all three channels, add a third channel Z and use px,y,z.

In the image corpora, the joint entropy of the L, M, and S channels tend to
be between 13 and 16 bits of information per LMS pixel, as shown in Table 4.2, with
a theoretical maximum of 24 bits. The joint entropy of any two channels is between
9 and 13 bits of information per pixel. The Fruit corpus has the most entropy of all
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Corpus Name L:M L:S M:S L:M:S
Austin Arboretum 10.12 11.95 11.88 13.98
Austin Vicinity 9.77 11.72 11.74 13.81
Flowers 10.39 11.59 11.37 14.17
Foliage 11.22 12.48 12.23 15.75
Fruit 12.07 12.97 12.70 16.30
Kibale, Uganda 9.75 11.22 11.06 13.59
Landscapes 11.38 13.96 12.83 15.57
Winter 10.78 12.09 12.03 14.03

Table 4.2: Joint entropy of channels in various image corpora. Joint entropy
measures how much information is contained within pairs or triples of information
channels. The long:medium pair consistently has less information than the other
channel pairs because the long and medium sensitivity functions contain redundant
information. The Fruit corpus has the largest per-pixel entropy, which means it
contains the most information of all image sets.

Corpus Name L:M L:S M:S L:M:S
Austin Arboretum 4.35 2.22 2.30 1.44
Austin Vicinity 4.40 2.10 2.09 1.50
Flowers 1.27 1.03 0.66 −0.04
Foliage 3.50 1.96 2.11 1.57
Fruit 3.05 1.97 2.05 0.97
Kibale, Uganda 3.78 1.69 1.81 1.22
Landscapes 3.66 2.03 2.20 0.88
Winter 4.57 3.30 3.26 2.14

Table 4.3: Mutual information of channels in various image corpora. The
corpora contain widely varying levels of shared information. Austin Vicinity and
Winter have the highest mutual information between the long and medium channels.
Meanwhile the Flowers corpus has the lowest shared information among its channels.
Low mutual information and a high entropy may help a neural network to efficiently
self-organize channel-specific selectivity.

the corpora with 16.30 bits per LMS pixel. The joint entropy reveals that going from
two to three channels of information provides a mere two or three bits of additional
information.
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Corpus Name L:M L:S M:S
Austin Arboretum 2.88 4.72 4.64
Austin Vicinity 2.68 4.63 4.65
Flowers 6.43 6.40 6.77
Foliage 3.81 5.07 4.92
Fruit 4.42 5.32 5.23
Kibale, Uganda 2.96 4.44 4.32
Landscapes 3.83 5.50 5.28
Winter 3.07 4.37 4.37

Table 4.4: Minimum unique entropy of channels in various image corpora.
The minimum unique entropy is extremely variable across the image corpora. Most
corpora have two or three bits of unique entropy between the long and medium
channels, while the other channel pairs regularly contain more entropy.

4.2.2 Mutual information

Mutual information tells us how much information is shared between channels. Chan-
nels could have a high joint entropy, but there may also be high information overlap
between the two channels so that a single photoreceptor channel can provide the ma-
jority of the information. The mutual information shared between the two channels
is computed with

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y)log

(
p(x, y)

p(x)p(y)

)
, (4.2)

where x and y are values that occur within the channels X and Y . The joint prob-
ability p(x, y) is the chance that x and y occur simultaneously, while p(x) and p(y)
are the independent probabilities that x and y occur within their respective X and
Y channels (Yao, 1993).

Table 4.3 shows the mutual information for the image corpora. The mutual
information measure shows striking differences among the corpora. The Austin and
Winter images have over four bits of shared entropy in the long and medium chan-
nels, whereas the Flowers corpus has just over one bit shared between the same two
channels. Four bits of shared information is extremely high for two channels that
have nine or ten bits of joint entropy. The next section presents how to calculate the
unshared entropy within each channel.
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4.2.3 Minimum unique entropy

The amount of unique information in each channel can be measured by subtracting
the mutual information from the minimum entropy of the two photoreceptor values.
The minimum unique entropy for the channels X and Y is

M(X, Y ) = min(H(X), H(Y ))− I(X;Y ), (4.3)

where H(X) and H(Y ) are the entropy of the X and Y channels. If the joint entropy
was used instead of min(H(X), H(Y )) then the maximum unique entropy would be
calculated.

The minimum unique entropy for the corpora are shown in Table 4.4. If two
channels have a minimum unique entropy of zero then they are identical. If there is
a large minimum unique entropy, then the channels are different and it is possible
for a system, biological or artificial, to detect differences. A model that self-organizes
using corpora with low unique entropy may have trouble developing neurons that
distinguish channels. Each channel in Flowers has over six bits of entropy out of
a possible eight and so will be the most likely corpus to train a network that has
neurons selective for each channel. The Austin Vicinity corpus, with 2.68 bits of
unique information between the long and medium channels, is the most likely corpus
to cause a neural network to have trouble organizing neurons that can distinguish
between the long and medium channels.

The minimum unique entropy quantifies the observation that LMS channels
have more overlap than RGB channels as suggested previously in Figure 2.3 on
page 10. Figure 4.2 shows the corpora with the least and most minimum unique
entropy (Austin Vicinity and Flowers), and plots them alongside their original RGB
channel images. The figure shows the LMS channels have less unique entropy com-
pared to the original RGB channels. The RGB to LMS conversion (described in
Appendix A) is reducing the amount of unique channel entropy, and converting it
into mutual information.

4.2.4 Redundancy

Mutual information measures the shared entropy between channels, and minimum
unique entropy measures how much entropy is not shared. Calculating the redundancy
links the these two measures into a single ratio that does not depend upon how many
total bits of entropy are in a corpus. If two channels are identical then they are
completely redundant. If two channels have no mutual information then they have
no redundancy.
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Figure 4.2: Minimum unique entropy of RGB and LMS natural image sets.
The RGB to LMS conversion described in Appendix A simulates LMS photoreceptors
looking at an RGB image. This plot shows that the resulting LMS images have lower
minimum unique entropy than the original RGB images. A quarter to a third of the
unique channel information has become mutual information because of the overlap-
ping sensitivity functions. Unique entropy is vital to train a network to distinguish
between two channels.

The redundancy is calculated with

R(X, Y ) =
I(X;Y )

min(H(X), H(Y ))
, (4.4)

where X and Y are the long, medium, or short channels of an image. R(X, Y ) is 1.0
(100%) when the X and Y channels are completely redundant, and 0.0 (0%) when
there is no mutual information between channels (Guiasu, 1977).

Table 4.5 shows the redundancy results for the LMS corpora. There is a large
variation in redundancy, with sets like Winter having nearly 50% redundancy between
channels, yet the most redundant channel in Flowers (long:medium) is no more than
16.5%. The Winter corpus was undistinguished in the other measures but its high
redundancy predicts that a LISSOM network may have difficulty self-organizing on
it since the channels have more shared entropy than they do unique entropy.
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Corpus Name L:M L:S M:S
Austin Arboretum 60.1% 32.0% 33.2%
Austin Vicinity 62.2% 31.2% 31.0%
Flowers 16.5% 13.9% 8.9%
Foliage 47.9% 27.9% 30.0%
Fruit 40.9% 27.0% 28.2%
Kibale, Uganda 56.1% 27.6% 29.6%
Landscapes 48.8% 27.0% 29.5%
Winter 59.9% 43.0% 42.7%

Table 4.5: Channel redundancy in various image corpora. Between 25% and
50% of the information found in the photoreceptor channels tend to be redundant
information, with the highest redundancy between the long and medium photorecep-
tors.

4.2.5 Discussion

The results of this section show that out of a possible eight bits each channel value
in an LMS triple tends to have a minimum of three to five bits of entropy. These bits
represent the information content in the activation of a photoreceptor when presented
with an RGB pixel. Each activation value contains an additional two or three bits
of entropy, but it is shared with the other channels. RGB channels have only 8% to
16% redundancy, but the LMS photoreceptor activations can be over 50% redundant!
As redundancy increases and the minimum unique entropy decreases, it may become
harder for the model to detect a unique signal worth becoming selective for. The
Flowers and Fruit corpora have high joint entropy and low redundancy, and may be
the most useful for training the corpus to develop channel-selective neurons.

4.3 Color distribution

What colors are in the image corpora? To answer this question, representative images
from the datasets were converted from RGB to HSV (Hue, Saturation, Value), and
histograms of image hues were collected. Results reveal that most images have one
or two dominant hues and are extremely biased for those colors. It is hard to find
images that contain all of the major colors, and even those that do tend to have
uneven distributions. Some hues such as greens and reds occur often, whereas others
such as purple are less common.

Figure 4.3 shows three representative images, along with polar plots of the
colors found in the images. The left and right images have typical histograms with
two or three hues dominating the image. The center image, showing a garden in
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Ireland, is uncharacteristic for having many HSV hues visible, and still the histogram
is unbalanced.

Across the corpora, the dominant colors found depend upon the subject of
the images. The Landscape and Uganda images tend to have more sky visible and
thus more blue, but no purple. In contrast, the Flowers corpus contains many purple
flowers, but there is less visible sky and the corresponding blue. Landscape images
taken in the fall have lots of yellows and reds, whereas spring and summer images
have much more green. The winter images are the least chromatic since most of the
environment is covered with white snow.

The main conclusion from the histogram study is that not all corpora have the
same colors, and therefore the choice of training corpus may affect how the model
will self-organize. If a corpus does not have blue, then the modeled cortex may not
develop blue-selective regions. It is not yet clear what the most natural colors are in
natural scenes (Nascimento and Ferreira, 2002; Parraga, Brelstaff, Troscianko, and
Moorhead, 1998; Simoncelli and Olshausen, 2001), but it is reasonable to assume that
pictures of nature will capture some of the experiences of the biological eye. However,
man-made objects, colors, and environments may have very different characteristics,
and are even harder to control and are therefore beyond the scope of this study.

4.4 Principal component of image patches

The previous two sections presented the information content of LMS channels, but
they did not discuss the position of the values within the images. What kind of spatial
information is contained within the natural images? A great deal of work has already
been done in this area using a number of techniques. For example, Independent
Component Analysis (ICA) of natural scenes shows a variety of independent com-
ponents ranging from Gabor-like patches to patterns that resemble receptive fields
in the LGN (Lee, Wachtler, and Sejnowski, 2002b; Taylor, Finkel, and Buchsbaum,
2000; van Hateren and Ruderman, 1998; van Hateren and van der Schaaf, 1998).
Other studies examine the frequency and type of luminosity edges in natural images
and find that edges predominately make gradual transitions (Geisler, Perry, Super,
and Gallogly, 2001; Geisler, Thornton, Gallogly, and Perry, 2000). Neural network
modelers use grids of neurons trained on natural images and also find that the world
contains features that match the receptive fields found in the brain (Bednar, Kelkar,
and Miikkulainen, 2002; Miikkulainen et al., 2005; Oja, 1991a; Olshausen and Field,
1996; Simoncelli and Olshausen, 2001).

The goal of this section is to characterize the information in the images at a
spatial scale similar to that used by the input regions of the LISSOM model. To
achieve this, a Hebbian neuron will be trained on patches of pixels taken from larger
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(d) Foliage histogram
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(e) Flower histogram
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(f ) Landscape histogram

360

(g) Hue key

Figure 4.3: Hue histograms of natural scenes. Plots (a)–(c) show three color
images, each from a different corpus. Plots (d)–(f ) are polar plots of the colors found
in each image, and (g) is the color key for the polar histograms, starting with red at
0◦ moving through all the hues and then back to red at 360◦. Plot (a) is dominated
by orange and blue, whereas (c) is dominated by a broader band of oranges. Plot (b)
shows an Irish garden and is unusual for the large number of colors visible, but still
the histogram is uneven and far from smooth. These images are representative of the
more general finding that natural images contain few colors and have unbalanced hue
histograms.
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images of natural scenes. The procedure is not new, but the results are, in that
they describe the images used in this dissertation, and give the principal component
at a scale relevant to the dissertation model. Hebbian learning on a single neuron
has been shown to extract the first principal component from the inputs presented
to it (Haykin, 1994; Oja, 1982, 1991b). The Hebbian learning rule, implemented as
described in Section 2.3.2, has the initial connection weights randomized and the
spatially organized receptive field weights found by the network are a direct result of
the Hebbian learning.

The rest of this section will first present how the neuron is implemented. Second
it will discuss the results of the experiment. And then third, there is a discussion of
what the results mean and what they predict about how color training images will
affect the LISSOM model.

4.4.1 The simulation architecture

The neuron is implemented in MATLAB with 300 input connections representing
activation levels from natural images, and the connection weights adjusted using
Hebbian adaptation. There are four RGB images 1,000 × 1,000 × 3 pixels in size
from which the training set is generated. Each full image is a natural scene taken
with a digital camera and part of the Austin Vicinity corpus (Visual Delights, 1999).
The four photographs were chosen randomly from a pool of 75; MATLAB memory
constraints made loading more samples difficult on the machine, a 450MHz Pentium-
III with 512MB RAM. As part of the Hebbian adaptation algorithm the images were
normalized to values between 0 and 1 and then the images were shifted so that the
mean of the dataset equals 0. The simulated neuron has a 10× 10× 3 receptive field
which represents a neuron connected to a small region of the retina where there are
all three types of cones. Each training patch is a 10 × 10 × 3 subregion selected at
random from one of the full-size images. Figure 4.4 shows three example training
patches.

Each training patch is presented to the Hebbian neuron and the connection
weight adjustments (∆ωi) are calculated using Equation 2.1. After the weights are
updated they are divisively normalized to

300∑
i=1

ωi = 1.0. (4.5)

A total of 20,000 random training images are used to adapt the neuron weights.
Weight adjustments are scaled so that the adjustments are at first large, and then
they exponentially decrease during training. The exponential weight scaling factor

44



Figure 4.4: Sample training input patches. Three sample 10 × 10 × 3 input
training patches, extracted from larger images taken of natural scenes. These patches
show that at this scale, the objects in the image cannot be identified. Most patches
contain a single color, and have gradual luminosity changes like those shown here.

(α in Equation 2.1) begins at e8 and eventually decreases to 1.0. The core algorithm
can be seen in Figure 4.5.

4.4.2 Results

After training, the neuron’s weight matrix contains an orientation- and color-selective
receptive field, shown in Figure 4.6. The neuron is maximally selective to stimuli that
have an orientation of about 50◦ from vertical and a spatial frequency of about five
pixels.

It is possible to display the entire receptive field as an RGB image as shown
in the upper-left plot of Figure 4.6. The luminosity value of a pixel represents the
strength of the weight to that input, while the chromatic value specifies which color
channel is favored, in this case green. Green weights in the receptive field means that
the neuron has strong weights to the green input channels with weaker weights to
the red and blue channels. The three contour plots in Figure 4.6 are the 10 × 10
red, green, and blue channels of the single 10 × 10 × 3 receptive field. These plots
show that each channel has the same orientation preference, but the strength of the
weights to the green channel are consistently stronger and these alone make this
neuron green-selective.

4.4.3 Discussion

The receptive field of a neuron trained with natural image patches becomes primarily
orientation selective. In the neuron being studied the structure remained similar to
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1 ITERATIONS = TRAINING_SIZE * WEIGHT_ADJUSTMENTS;
2 m = ones(RF_SIZE,RF_SIZE,3) * INITIAL_WEIGHTS; % Weights of RF
3 dm = zeros(RF_SIZE,RF_SIZE,3); % Amount to change m
4 norm_dm = dm; % Normalized m
5
6 % Learning Rate Schedule
7 mu = 1 ./ exp(EXP_DECAY_START:-EXP_DECAY_START/ITERATIONS:0);
8
9 ts = TRAINING_SIZE;
10 for i = 1:ITERATIONS
11 d = squeeze(TRAINING(mod(i,ts)+1,:,:,:)); % Current Input
12 c = sum(sum(sum(d .* m))); % Total Neuron Activity
13 dm = mu(i) * (d * c); % Hebb Rule
14 norm_dm = norm_dm + normalize(dm); % Add dm for later
15
16 if mod(i,ts) == 0 % Once each image in the training
17 m = m + dm; % set has been presented, make a
18 m = normalize(m); % normalized weight adjustment.
19 norm_dm = 0; % Do this WEIGHT_ADJUSTMENT times.
20 end
21 end

Figure 4.5: MATLAB implementation of the Hebbian neuron. The for-loop shows the
weight calculation, adjustment, and normalization step for each iteration. Reprinted
so the results can be reproduced if needed.

a neuron trained with monochrome input, but there was a noticeable shift towards
green inputs which makes the neuron prefer green stimuli. A different set of source
images would make the neuron prefer a different color. The green preference of the
neuron can be explained ex post facto by studying the training data. The original
dataset was shifted so that the mean of the inputs di(x, y, c) summed to 0:

20000∑
i=1

10∑
x=1

10∑
y=1

{R,G,B}∑
c

di(x, y, c) = 0. (4.6)

If each color channel is summed separately then the hidden structure can be
seen. It shows that the green channel has a higher mean:

102
20000∑
i=1

10∑
x=1

10∑
y=1

di(x, y, R) = 1.52, (4.7)
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Figure 4.6: Learned weight function of the Hebbian neuron. The learned
receptive field of the Hebbian neuron is equivalent to the first principal component
of the input patches. The shape of the receptive fields are similar for each of the
three channels (a–d) even through each weight matrix has a different offset near 0.5.
The network learned to have the strongest connection to the green channel in plot
(c), noticeable from having the highest overall connection weights and a slight green
color in the combined plot (a). This result predicts that the LISSOM model trained
on natural images will organize orientation-selective receptive fields with color biases
towards the brightest channel.

102
20000∑
i=1

10∑
x=1

10∑
y=1

di(x, y,G) = 3.90, (4.8)

102
20000∑
i=1

10∑
x=1

10∑
y=1

di(x, y, B) = −5.31. (4.9)

The weight adjustment rule shifted the weights towards green because it was
the strongest of the three color channels. However, the luminosity information con-
tained in the input far outweighed the color information. As a result, the weight
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matrix extracted primarily orientation information with a slight bias towards the
dominant color. It is hard to detect color differences in the three channels by inspect-
ing them visually. That Hebbian learning is able to detect the green channel bias is
a remarkable example of the sensitivity of the algorithm.

In conclusion a single Hebbian neuron can become partially selective for color,
but is dominated by orientation stimuli. It becomes feature selective by aligning
the weight matrix along the strongest color while finding the principal luminosity
component in the input data. This study also predicts that the full LISSOM model
may become biased towards the strongest colors in the stimuli and the most active
photoreceptor channels.

4.5 Color and luminance gradients

Visual inspection of training images suggests that colors change less frequently in
images than orientations. This observation can be quantified in terms of a gradient
map.

A gradient map measures the change between neighboring pixels in an image.
Large changes in the source image creates large values in the gradient map, and areas
with no change in the source have a gradient of zero. Because the LGN neurons
in LISSOM have Difference of Gaussian receptive fields (which respond to contours
and changes in the inputs), a gradient map is an approximate measure of how much
LISSOM will be activated by an image.

Figure 4.7a is an HSV (Hue/Saturation/Value) image of some ground ivy.
The value component of this image was used to calculate the luminosity gradient in
Figure 4.7b, based on the Euclidean distance equation

Dij =
√
D2
x,ij +D2

y,ij, (4.10)

where Dx,ij and Dy,ij are the differences between the value of pixel (i, j) and its
respective vertical and horizontal neighbors (Miikkulainen et al., 2005).

The hue and value components were used to calculate the hue gradient map
in Figure 4.7c. Hue gradients are masked by the value pixel components since black
areas are prone to noise that can cause large gradients but little to no actual retinal
stimulation. Because Hue values in HSV have two dimensions of color (yellow/blue
and red/green), the hue distance was calculated with

D(θ1, θ2) =
1

2

√
(cosθ1 − cosθ2)2 + (sinθ1 − sinθ2)2, (4.11)

where θ1 and θ2 are the hue values being compared.
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(a) Training Image (b) Luminosity Gradient (c) Hue Gradient

Figure 4.7: Gradient maps of a single natural image. Figure (a) is an image of
some ground ivy used as a training image for the simulation. (This image is from Olmos
and Kingdom, 2004). Figure (b) is a contour gradient map of the luminosity in the image.
The amplitude is represented in gray scale from white to black (low to high). The average
luminosity gradient is 7.6%. Figure (c) is a contour gradient map of the hue channel from
the HSV decomposition of the image. The change in color is represented from white to
black (low to high). The average hue gradient is 5.2%, most of which is in dark areas of
the image that would cause little retinal activation. Natural images tend to have a larger
luminosity gradient compared to the color gradient. Having slower color changes in the
training input may be what causes V1 to form isolated color blobs instead of continuous
bands.

The average luminosity gradient for Figure 4.7a is 7.6%, and the average hue
gradient is 5.2%. This means that on average there are more luminosity contours than
there are color contours in this image. The same is true for the majority of the images
in the training sets. As suggested by the PCA study in the last section, when the
average hue gradient increases or the luminosity gradient decreases, LISSOM maps
may begin to be dominated by color selectivity. This result is interesting because it
predicts that developing biological cortex requires strong orientation stimuli to form
normal cortical maps.

Figure 4.8 shows the average luminosity and hue gradients for each of the
training sets presented in this study. The image sets have consistently higher orienta-
tion gradients compared to the hue gradients. There are a number of images within
the corpora that have greater hue gradient values than luminosity, but they are the
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Figure 4.8: Average gradients of image corpora. Average orientation and hue
gradients for the image corpora, including standard mean error bars. All image sets
have a higher average orientation gradient than hue gradient. The large variations
between corpora are due to the spatial frequencies found in the images and the quan-
tity of colors. For example, many of the Austin Arboretum images contain many
small leaves that are the same shade of green. Larger orientation gradients explain
why the principal component study organizes first for orientation, and then for color.

exception.

4.6 Conclusion

These studies reveal five characteristics about the natural image corpora:
First, the three color channels (long, medium, and short) in the retina have

highly correlated activations. Second, even with high correlations, most natural im-
ages have more unique entropy than they have shared entropy. Third, color is dis-
tributed irregularly in natural images, such that in order to represent all the possible
colors, a number of images may need to be pooled together. Fourth, oriented edges are
the dominant feature of small-scale receptive fields, with color as a secondary feature.
And finally, changes in color occur less frequently than changes in luminosity.

There are three predictions that come from the results of this chapter. First,
the information theory analysis predicts that the LISSOM model will have difficulty
organizing on corpora that have channels with a high shared entropy and low unique
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entropy. There is likely to be some minimum required entropy for the model to self-
organize correctly. Second, the Hebbian neuron study predicts that the LISSOM
model will self-organize towards the channel that has the highest mean luminance,
causing a color-selectivity bias in the cortex. And third, the contour gradient study
predicts that training a neural network on an image set that has larger hue gradients
than orientation gradients will cause the network to prefer colored stimuli over orien-
tation stimuli. Future chapters will study how the features in natural images affect
the model’s self-organization.
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Chapter 5

Modeling self-organizing feature
preferences in primary visual

cortex

In a self-organizing process based on natural image input, the LISSOM V1 model de-
velops overlapping retinotopically organized color, orientation, and ocular dominance
maps. This section analyzes this organization, including novel findings about how
color is represented structurally and functionally in V1. Map-level analysis predicts
that there are three distinct color-selective structures: red-selective regions, green-
selective regions, and blue-selective regions. Color-selective regions are found within
ocular dominance stripes, and in the parts of V1 not selective for orientation, as they
are in biology. The model further predicts that lateral connections are strong between
neurons that have similar color preferences. The model therefore both matches known
biological structures and makes further verifiable predictions for future experiments.

5.1 Map level measurements

The LISSOM architecture and training procedure have been described in Chapter 3.
After self-organization, the preferences for each neuron in V1 were measured by pre-
senting sine gratings of various colors, orientations, frequencies, and phases. As de-
scribed below, these measurements show that the model V1 develops topographically
organized maps for orientation, color and eye preference.
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5.1.1 Orientation-selectivity maps

As in previous monochromatic LISSOM models (Bednar, 2002; Sirosh, Miikkulainen,
and Bednar, 1996), most V1 neurons become strongly selective for orientation. Fig-
ure 5.1 is a view of V1 with each pixel representing a neuron, colored according to its
preferred orientation. The resulting orientation map, which is similar to those found
experimentally in animals, containing features such as pinwheels, linear zones, and
fractures (Blasdel, 1992b; Landisman and Ts’o, 2002b). The orientation-selectivity
map is similar to the monochrome LISSOM simulations, but there are also now patchy
unselective regions. As described in the next section, these unselective regions match
perfectly with the color blobs shown in Figure 5.1c.

If there are statistically more edges with a certain orientation in the input im-
ages, then the LISSOM model will self-organize more neurons to be selective to the
dominant orientation (Bednar, 2002). Indeed, a histogram that bins V1 neurons by
orientation preference (Figure 5.1d) shows that there are more neurons selective for
horizontal orientations compared to other orientations. Since natural scenes statis-
tically have more horizontally and vertically oriented edges than those of any other
angle (Switkes, Mayer, and Sloan, 1978), the model is simply following the statistics of
the natural scenes that were used as input. This overrepresentation is consistent with
experimental studies showing that monkey and ferret V1 has a larger area devoted to
the cardinal orientations (Coppola, White, Fitzpatrick, and Purves, 1998; Mansfield,
1974). The horizontal bias in the orientation map is another point of validation for
the computational model.

5.1.2 Color maps

Through self-organization, smoothly varying maps of orientation and color preferences
emerge in V1. Figure 5.2 shows that color-selective regions in the model V1 are
organized into scattered discontinuous patches, or “blobs.” There are three types of
blobs: red-selective, green-selective, and blue-selective. Blue-selective neurons also
respond to cyan and purple, and both green and red-selective areas also respond
to yellow colors. The contour map overlay in Figure 5.1b shows more clearly how
neurons selective for color are less selective for orientation, and vice versa. This
result is consistent with observations by Livingstone and Hubel (1984).

A unique combination of color-selective blobs activate for each of the six HSV
colors (red, yellow, green, cyan, blue, purple), which means that the color of the input
can be estimated accurately using only measurements of V1 activation. V1 needs to
represent input colors accurately, so that higher cortical regions can construct the full
perception of color. Regions selective for color tend to be maximally selective towards
one of three different hues as shown in Figure 5.3a, but the neurons in these blobs
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(a) Orientation preference and
selectivity map

(b) Orientation+color outlines (c) Color selectivity map

(d) Orientation histogram

Figure 5.1: Self-organized orientation and color maps. Each of the 64× 64 neurons
is colored with its preferred orientation, according to the key at left. Regions of unselective
neurons scattered through the orientation map are colored white and match the regions
selective for color, shown as black blobs in (c). Plot (b) outlines the color sensitive regions
on the orientation map to make this relationship clear. These orientation and color maps are
similar to those found experimentally in the macaque monkey (Blasdel, 1992b; Landisman
and Ts’o, 2002b). Plot (d) is a histogram of the orientation preferences for all V1 neurons.
Horizontal preferences are more common than diagonal ones, matching the natural scene
input statistics, and duplicating how biological orientation maps also prefer the cardinal
orientations (Coppola et al., 1998; Mansfield, 1974).

also respond to other colors. Figure 5.2 shows how the cortical responses to different
full-field solid colors overlap. The grayscale background of the figure (also shown in
Figure 5.1c without the color contours) shows the total overall color selectivity, black
being maximally color selective and white unselective. The three blob types seen are
red-yellow, green, and cyan-blue-purple. Thus, the model predicts that the biological
cortex will have three dominant types of color-selective regions: red-yellow selective,
green selective, and cyan-blue-purple selective.

The color-selectivity maps (Figure 5.2 and Figure 5.3a) contain a few regions
where red and green blobs touch to create a red-yellow-green hue band. The neurons
along the multi-color bands form a continuous transition between colors, mirroring the
smoothly continuous colors observed perceptually. The model predicts that smooth
transitions will exist between any directly adjacent color-selective regions in V1.

The cortex forms color-selective regions based on the colors that are presented
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(a) Hue preference and selectivity map (b) Pure hue contour selectivity map

(c) Hue preference histogram

Figure 5.2: Pure hue color-selectivity. Plot (a) shows the color preference and
selectivity of each neuron, with the histogram of hues in (c). Plot (b) shows the
responses of V1 to six HSV hues. For each color, the area that responds is encircled
in this plot with a ring drawn in that color. The background grayscale plot shows
the strength of selectivity for color in general, as in Figure 5.1c. The three blob types
seen here are red-yellow, green, and cyan-blue-purple. Thus the model predicts that
biological cortex has these types of color-selective regions. Similarly, in a few cases
blobs touch and create hue bands, which are also a prediction of the model.

to the retina during training. However, if a photoreceptor channel has less than three
bits of unique entropy per stimulus, as calculated in Section 4.2, the cortex becomes
color-blind to this channel. For instance if the cortex sees little short cone activity, it
will not become selective for colors dependent on the short cones, as will be discussed
further in Chapter 7.

5.1.3 Ocular dominance

As in the macaque (Bartfeld and Grinvald, 1992; Landisman and Ts’o, 2002b), the
model color-selective blobs are found within ocular dominance stripes. Figure 5.3a
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(a) Hue preference and
selectivity map

(b) Hue+Ocular dominance (c) Ocular dominance
preference map

Figure 5.3: Self-organized color maps and ocular dominance. Each of the 64 × 64
neurons in (a) is colored with its preferred color, with color-unselective neurons colored
white. In (b), the ocular dominance preference stripes from (c) are outlined on top of the
hue-selectivity map to show how the two maps interact. Similar to biology, color blobs are
primarily contained within the monocular regions of the simulation (Bartfeld and Grinvald,
1992). These results accurately reproduce the biological organization, further validating the
model.

illustrates this relationship. The color of each pixel shows the color preference of the
neuron, with color-unselective regions shown in white. Figure 5.3c is the same region
of cortex measured for ocular preference, and Figure 5.3b is Figure 5.3a with contour
lines drawn along the ocular dominance stripes. Most of the blobs are found within
the ocular dominance bands, i.e. most color-selective blobs have a bias toward the
left or the right eye. However, there are a few blobs that do not follow this pattern,
instead they are split between a left-eye and right-eye preference. Similar cases can
be found in biological maps (Landisman and Ts’o, 2002b).

Figure 5.4a compares the ocular dominance maps of the V1 model directly
with macaque cortex data from Landisman and Ts’o (2002b). The location of pin-
wheel centers are marked with yellow dots and color-selective patches are outlined in
red. In both maps, regions selective for color tend to be located within the ocular
dominance stripes, though the biological and modeled cortex have some color blobs
located along the transition between ocular dominance stripes. In both plots the
location of pinwheel centers do not appear to be related to either the color-selectivity
or ocular dominance maps. Overall, the V1 cortex is consistent with data from the
macaque, further validating the model.
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(a) Macaque Monkey V1 (b) Simulated V1

Figure 5.4: Comparing biological and simulated V1. Plot (a) is Figure 8e from
Landisman and Ts’o (2002b, used with permission) showing the ocular dominance
map of a 5.3mm by 2.3mm region of macaque monkey V1, with the location of
pinwheel centers marked with yellow dots and color-selective patches outlined in red.
Figure (b) shows a corresponding plot from the LISSOM model. In both maps, regions
selective for color tend to be located within the ocular dominance stripes, whereas
the locations of pinwheel centers do not appear to be related to the color-selectivity
maps.

5.2 Individual neurons

The previous section reported measurements of the model cortex at the map level.
This section analyzes the receptive fields and lateral connectivity of individual neurons
in the model V1. Nearly all neurons develop receptive fields selective for color or for
orientation, while some neurons are partially selective for both. Most neurons are
binocular, but many have a preference for the left or right eye. The subsections
below will examine each of these major types of neurons, and make predictions about
the afferent and lateral connections of biological neurons.

5.2.1 Color-selective neurons

Each of the three types of color blobs in the model V1 contains a distinct type of
color-selective neuron with a specific connectivity pattern to the LGN sheets. Fig-
ure 5.5 shows a neuron that has become selective for red stimuli. The large circles
in Figure 5.5a are the receptive field projections from each LGN sheet to the color-
selective neuron. The top two rows of receptive fields in Figure 5.7a are LGN sheets
that receive input from the left eye, and the bottom two rows receive input from
the right eye. White pixels within the receptive fields indicate a strong connection
to the receptive field, i.e. an area that will excite the neuron if it is activated, while
black denotes weak connections that do not excite the neuron. Through the process
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(a) Afferent connections (b) Lateral connections

Figure 5.5: Receptive field of a color-selective neuron (red). The large circles
in (a) are the receptive field projections from each LGN sheet to the color-selective
neuron. White pixels within the receptive fields indicate a strong connection in the
receptive field, while black denotes weak connections. The top two rows contain
receptive fields to left eye LGN sheets and the bottom two contain the LGN sheets
connected with the right eye. In (b), the lateral connections of this neuron are shown,
with the neuron’s position marked with a small white box. Strong lateral connections
in the map are dark, weak connections are gray, and the absence of a connection is
shown in white. Lateral connections are colored according to the hue preference of
the source. The histogram at the bottom of (b) bins the lateral connections by the
hue preference of the connected neurons. The neuron has strong connections to the
L/-M, -M/+L, and -S/+L+M sheets and forms lateral connections primarily with
other red-selective neurons. The model predicts that color-selective neurons will have
connectivity patterns similar to these.

of self-organization, the neuron has near-zero connection weights to all LGN sheets
except the L/-M, -M/L, and -S/+L+M sheets. Though the neuron is most selective
for red, it will also respond to yellow light, which activates those LGN sheets as well.
Intuitively, the connected receptive fields can be thought of as red but not green (long
ON/medium OFF), not green but red (medium OFF/long ON) and not blue but any-
thing else (short OFF/long ON + medium ON). These three receptive fields of the
neuron are fully connected with no fine structure, so the neuron will be stimulated by
any activity within the receptive field. Thus these neurons are not spatially center-
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surround, and respond best to large patches of the preferred color. Red-selective
neurons are maximally activated by the red-orange hue with which the red-selective
blobs are colored in Figure 5.3a. The specific color preference of red-selective neurons
is a prediction of the model.

Neurons of similar orientation or color selectivity connect laterally to other
areas with the same functional preference. For example, neurons with a preference
for vertical orientations tend to connect to other areas that prefer vertical orientations.
Likewise, neurons selective for red connect to other regions selective for red; neurons
selective for green connect to other regions selective for green; neurons selective for
blue connect to regions selective for blue. These connections reflect the patterns of
correlations during self-organization.

In Figure 5.3b, the lateral connections of the red-selective neuron (which is
marked with a small white box) are shown. Strong lateral connections in the map
are dark, weak connections are gray, and the absence of a connection is shown in
white. The darkest blob consists of short-range connections from nearby neurons.
The lighter blobs consist of long-range connections from distant patches of neurons.
Lateral connections are colored according to the hue preference of the source. The
sample neuron primarily makes strong connections with other neurons selective for
red stimuli, but in addition there are a number of connections to weakly color-selective
cells that have a green or blue hue preference but are not selective enough to form
a color blob. These weak connections show up in the histograms even though most
strong connections are to the highly color-selective regions. The histogram at the bot-
tom of Figure 5.3b bins the lateral connections by the hue preference of the connected
neurons.

This primarily red-selective cell is one of the three types of color-selective
neurons; green-selective and blue-selective cells are similar but have connections to
different sets of LGN sheets. These types of neurons arise automatically through the
self-organizing process, driven by the learning rules, LGN processing, and training
images. The lateral connectivity of the regions selective for color is not known, and
these results constitute a prediction of the model.

5.2.2 Orientation-selective neurons

Neurons outside of color-selective blobs become selective for orientation, while cells
that are on the edge of color-selective blobs tend to be partially selective for both
color and orientation. Figure 5.6 shows a neuron that is strongly selective for an
orientation of about 50°. Oriented stimuli are most effective in driving this neuron,
but the strong connections to the -S/+L+M sheet connected to the left eye cause this
neuron to have a slight preference for yellow stimuli, though it also responds robustly
to other colors and to monochrome stimuli. The receptive fields of such neurons are
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(a) Afferent connections (b) Lateral connections

Figure 5.6: Receptive field of an orientation-selective neuron. This figure
follows the same organization as described in Figure 5.5. Monochrome stimuli with
an orientation of about 50°are most effective in driving this neuron, however the re-
ceptive field to the -S/+L+M sheet connected to the left eye, creates a slight bias
towards yellow stimuli. In plot (b) the color of the weights correspond to the orienta-
tion preference of the connecting neurons (shown with the orientation key at right),
and not their color preference. The histogram at the bottom of (b) bins the lateral
connections by the orientation preference. In general, orientation-selective neurons
contact other orientation-selective neurons with similar preferences, further validating
the model (Sincich and Blasdel, 2001).

similar to those found in biology (Conway, 2001; DeAngelis, Ohzawa, and Freeman,
1995; Landisman and Ts’o, 2002b).

Within the model V1, neurons selective for similar orientations are laterally
connected to each other, reflecting long-term patterns of correlation. In Figure 5.6b,
the dark regions represent the self-organized lateral weights from each neuron in
the V1 sheet to the neuron marked by the white box. The darkest blob consists
of short-range connections from nearby neurons, which have a variety of orientation
preferences. The lighter blobs consist of long-range connections from distant patches
of neurons, which prefer similar orientations. In general, orientation-selective neurons
contact many other patches of orientation-selective neurons, but do not connect to
color-selective neurons. The histogram at the bottom of Figure 5.6b bins the lateral
connections by their orientation preference. The color of the bin corresponds to the
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Figure 5.7: Receptive field of an eye-selective neuron (blue color, right eye).
This figure follows the same organization as described in Figure 5.5. The ocular
dominance of the neuron is the result of stronger connections to LGN regions that
receive input from the right eye. The histogram at the bottom of plot (b) bins
the lateral connections by the hue preference of the connected neurons, and shows
that most strong connections are to other blue-selective regions, with a few weak
connections to green-selective neurons. These eye-selective neurons are a validation
of the model (Löwel, 1994; Löwel and Singer, 1992).

orientation preference of the connecting neuron (with the orientation key at right),
and not its color preference. The histogram reveals that the neuron is biased towards
connecting to other neurons with a similar orientation preference. These results match
previous experimental results in the tree shrew (Bosking et al., 1997) and the macaque
(Sincich and Blasdel, 2001), further validating the model.

5.2.3 Eye-selective neurons

Most neurons in the model V1 are binocular, with strong connections to both eyes.
Neurons near the centers of ocular dominance stripes, however, are often nearly
monocular, with stronger connections to one of the eyes. Many such neurons are
also selective for color or orientation. Figure 5.7 shows an example of a typical eye-
selective neuron and all of the connections to the neuron. This neuron responds best
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to a blue patch in the right eye because of strong connections to the +L/-M, +S/-
(L+M), and -M/+L sheets. The ocular dominance of this neuron is the result of
stronger connections to LGN regions that receive input from the right eye. Other
eye-selective neurons will instead be selective for other colors or specific orientations.

Figure 5.7b shows the lateral connections of this neuron, colored according to
the hue preference of the target. The histogram at the bottom of Figure 5.7b bins the
lateral connections by the hue preference of the connected neurons, and shows that
the presented neuron primarily connects with other neurons selective for blue stimuli,
and to a lesser extent green-selective and red-selective neurons. The formation of
eye-selective neurons is a validation of the model. Meanwhile, the result that blue-
selective neurons connect strongly to other blue-selective neurons, and rarely connect
to red and green neurons, is a prediction of the model.

5.3 Discussion

The results with the LISSOM model of V1 show that a biologically plausible to-
pographic organization for color, orientation, and eye preference can develop from
simple learning rules and exposure to natural scenes with oriented edges and colored
patterns. The details of this organization in the model constitute predictions for the
first stages of color processing in the cortex. For instance, the model predicts that
color-selective neurons will have lateral connections primarily to other color-selective
neurons, and that color blobs in V1 will each respond best to one of the three pho-
toreceptor cone types (long/red, medium/green, or short/blue).

The network is robust in that a wide variation in parameters and inputs will
produce a similar organization. However, some abnormal data sets will create in-
teresting results. For example, if the input images are heavily weighted towards a
certain hue, such as green, then more neurons and blobs selective for that hue will
develop. Similarly, if there are no training images that contain hues activating the
short-wavelength cones (blues and purples), then the final network will not contain
regions responsive to those hues. Later in Chapter 7, we will study why V1 organizes
feature maps in this way.

Though blue-selective blobs do respond to magenta (red plus blue) stimuli, no
V1 neurons preferred magenta over all other hues, even though some V1 neurons found
in macaque do (Xiao et al., 2007). For some artificially modified training image sets,
the modeled V1 does create neurons preferring each of the possible hues, including
magenta. These experiments and their results will be discussed in Chapter 7.

Nearly all neurons are selective for color, or for orientation, and a few are
selective for both. Moreover, color-selective neurons organize into spatially segre-
gated blobs across the cortical surface, while orientation-selective neurons form large,
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smoothly varying areas. These results hold over a wide range of parameter values
and image datasets, and reflect differences in how orientation and color information
is organized in natural images. Specifically, orientation varies quickly (over a short
spatial scale), while color changes relatively slowly, with few abrupt edges. The re-
sult is that the network organizes primarily for orientation, but also contains some
neurons sensitive to color information, at regular intervals.

5.4 Conclusion

The LISSOM model of color selectivity, orientation preference, and ocular dominance
preferences replicates the known data on the organization of color-selective neurons in
V1, and provides a detailed explanation for how this selectivity can develop through
simple learning rules. The model provides concrete and novel predictions for future
experiments about what lateral connectivity patterns will be found, and about how
the orientation, ocular dominance, and color maps interact. The model thus repre-
sents both an embodiment of our current knowledge about the organization of color
processing in the early visual system, and a platform for testing that knowledge and
generating predictions to guide experiments. In this way, the model will help us bet-
ter understand the physiological basis for color perception and visual perception in
general.

By using the V1 cortex as an input layer, it is now possible to model the V2
cortical region, which will be the topic of the next chapter.
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Chapter 6

Modeling self-organizing feature
preferences in secondary visual

cortex

The modeled V1 presented in the previous chapter makes it possible to study how
higher levels of the visual hierarchy self-organize to represent feature preferences. In
particular, this chapter focuses on V2 and presents the results of a modeled V2 cortex
that receives input from V1 and has neurons with larger visual fields compared to V1
neurons.

V2 self-organizes using the same principles as V1. The V2 neurons self-organize
their receptive fields and lateral connections like the V1 neurons, but V2 neurons are
also able to integrate over a larger area of the visual field. Like V1, the LISSOM
model of V2 self-organizes three types of color-selective blobs, each with a different
color preference for red, green, or blue hues. Similar to V1, some V2 neurons prefer
secondary colors and are located along the regions where color blobs touch. The V2
cortical map and the individual neurons contained within it model the thin-stripe
and inter-stripe regions of biological V2. Interestingly, the model does not organize
into a striped pattern, even though neurons within the artificial V2 match biological
V2. Theories as to why stripes did not appear in the model will be addressed later
in Section 6.3.

6.1 Map level measurements

V2 is trained with binocular training stimuli after V1 has fully developed. The LIS-
SOM architecture and training procedure has been described in Chapter 3. Through
self-organization, maps of orientation and color preferences emerged in V2. The pref-
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erences for each neuron in V2 were measured by presenting sine gratings of various
colors, orientations, frequencies, and phases. As described below, these measurements
show that the model V2 develops topographically organized maps for orientation and
color preference.

6.1.1 Orientation maps

Most V2 neurons become selective for orientation, though less so than V1 neurons
(Figure 6.1). The orientation-preference map has linear zones, pinwheels, and frac-
tures like V1 maps; however the V2 maps are more blob-like in appearance than the
V1 maps, which tend to be more even and continuous. As in V1, there are also large
areas of orientation unselective regions within the maps, and they correspond to color
selective regions. Figure 6.1b shows how neurons selective for color are less selective
for orientation, and vice versa. It is validation of the model that color-selective areas
within V2 are less selective for orientation (Levitt et al., 1994; Shipp and Zeki, 2002a).
As in V1, the V2 orientation-preference histogram shows a slight bias for horizontal
orientations.

The orientation-preference maps in V2 self-organize as though performing a
low-pass filter of V1 maps. Large preference patches from V1 are mirrored at the
V2 level, but small regions of selectivity in V1 for non-dominant orientations do not
appear. Also, any biases for particular orientations in V1 maps are magnified within
V2 maps so that V2 orientation-preference histograms are less balanced than the
corresponding V1 orientation-preference histograms. Similarly, it was found that the
total number of V2 neurons selective for orientation directly depended on the total
number of V1 neurons selective for orientation. Thus the model predicts that uneven
distributions of feature-selective V1 cells will be magnified in V2.

6.1.2 Color maps

Figure 6.1c and Figure 6.2a show that color-selective regions in the model V2 are
organized into scattered discontinuous patches. As in V1, there are three dominant
types: red-selective, green-selective, and blue-selective. Regions selective for color
tend to be maximally selective towards one particular hue but each of the three blob
types will also respond to other hues. Red and green blobs also respond to yellow
light, and blue blobs also react to cyan and purple light. To illustrate this property
systematically (as in Figure 5.2), Figure 6.2b shows overlapping selectivity of the
cortex when presented with different full-field solid hues. The grayscale background
of the plot, shown in color in Figure 6.2a, displays the total overall hue selectivity, with
black being maximally color selective and white being unselective. Thus the model
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(a) Orientation preference and
selectivity map

(b) Orientation preference
and selectivity with hue

selectivity outlines

(c) Hue selectivity map

(d) Orientation histogram

Figure 6.1: V2 cortex trained using natural color images. Each of the 80×80 neurons
is colored with its preferred orientation, according to the key at left. There are regions of
unselective neurons scattered through the orientation map; these are colored white. The
orientation unselective regions match regions selective for color, shown as black blobs in (c).
Plot (b) outlines the color-sensitive regions on the orientation map to make this relationship
clear. Plot (d) is a histogram of the orientation preferences for all V2 neurons. It shows a
slight bias for horizontal orientations, which reflects a similar bias found in V1.

matches biological cortex by having color-selective neurons, while also predicting that
V2 neurons organize three major types of color-selective regions.

There is one region in the lower-center of Figure 6.2b where a red and green
blob touch to create a red-yellow-green hue band. The neurons along this multi-color
band form a continuous transition between colors. The model thus predicts that
smooth transitions will exist between directly adjacent color-selective regions. The
simulation presented here has one transition, but other simulations with artificially
modified colors have a varied selection of color transitions (as will be discussed in
Chapter 7), suggesting that such organization is a reliable result of the self-organizing
process.

6.1.3 Ocular dominance maps

Unlike in V1, eye preference (ocular dominance) maps do not appear in biological
V2 cortex (Ts’o et al., 1990). When trained with binocular inputs, where the left-
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(a) Hue preference and selectivity map (b) Pure-hue selectivity contours on hue
selectivity map

(c) Hue histogram

Figure 6.2: V2 hue preference and selectivity maps. Each of the neurons in plot
(a) is colored with its preferred hue with hue-unselective neurons marked in white.
The grayscale background in plot (b) represents how selective the neurons are for
their preferred hue. Regions selective for color are maximally selective towards the
hue shown in plot (a), but the neurons also respond to other hues. To measure these
additional responses, full-field stimuli were presented using six HSV hues. The area
that responds in each case is outlined in plot (b) with the presented hue. Plot (c) is
a histogram of all color selective pixels in plot (a) binned by color preference. The
model predicts that biological cortex has distinct types of color-selective regions that
blend when they touch other color-selective regions, as shown here where a red and
a green blob form a red-yellow-green band.
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(a) Eye preference map (b) Eye selectivity map

(c) Eye preference histogram (d) Eye selectivity histogram

Figure 6.3: V2 eye preference and selectivity maps. The V2 cortex does not contain
a structured ocular dominance map, just as biological cortex does not (Ts’o et al., 1990).
Plot (a) shows each neuron coded by eye preference. White represents a neuron preferring
the left eye, black preferring the right eye, and gray preferring both eyes equally. Plot (b)
shows the selectivity for eye preference: Few neurons are selective. Plots (c) and (d) bin
the neurons of the V2 map, and reinforce the conclusion that V2 neurons are not selective
for the eye of origin. These results are similar to those in biology (Ts’o et al., 1990).

eye and right-eye stimulus is identical, the LISSOM model also does not organize a
V2 ocular dominance map, as shown in Figure 6.3. The map was measured in the
same manner as V1 ocular dominance maps, and yet no structured eye preference or
selectivity is seen. All neurons have an eye selectivity near zero and all neurons have
preferences close to 0.5. These values mean that V2 neurons do not respond strongly
to eye-selective stimuli, i.e. they are binocular.

Interestingly, it is possible to force the model V2 to develop ocular dominance
maps by presenting monocular training stimuli, that is, where the left-eye and right-
eye inputs have different strengths. It is also possible to adjust the maps by changing
the inputs from binocular to monocular during training. Such results raise an impor-
tant question: Does biological V2 develop during or after V1 self-organization? This
issue will be addressed in Section 6.3.
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6.2 Individual neurons

The previous section reported measurements of the cortex at the map level. This
section analyzes the receptive fields and lateral connectivity of individual neurons
within V2. A key difference between V2 and V1 neurons is that V2 neurons receive
input from twice the visual field radius of a V1 neuron, measured by back-projecting
the afferent connections of the neurons. The V2 receptive field radius is hardwired
into the network architecture but the final connection weights self-organize during
network training. Nearly all neurons become selective for color or orientation, while
a few neurons are selective for both. Meanwhile, all V2 neurons are binocular such
that they are stimulated by activation in their receptive field regardless of which eye
sees the input. These results are validations of the model. The subsections below
will examine the two dominant types of cells: color-selective neurons and orientation-
selective neurons.

6.2.1 Color-selective neurons

On average, V2 neurons are less selective for color than V1 neurons. A likely reason
is that larger receptive field allows V2 neurons to integrate over a wider area, but
weakens the maximum response of the neuron to any one location.

Each of the three types of color blobs found in the model V2 contains a distinct
type of color-selective neuron with a unique connectivity pattern. Since each V2
neuron has a single spatially organized receptive field projecting from V1, Figure 6.4
can show the receptive fields from multiple neurons within a single grid. The receptive
field of every fifth V2 neuron is shown, arranged according to the neuron’s position
in the cortex. A strong connection between the V2 neuron and a V1 neuron is
represented by a dark spot, whereas a weak connection is white. The color of the
connection weight is the color preference of the corresponding V1 neuron, and the
saturation represents the color selectivity of that neuron. Strong connections to color-
selective V1 neurons create color-selective V2 neurons. For example, blue-selective
V2 neurons are maximally activated by the blue-selective V1 neurons within their
receptive fields. Similarly, if a V2 neuron’s receptive field is dominated by connections
to red-selective V1 cells then the V2 neuron is red-selective. Neurons at the edge of
the color-selective regions become partially selective for color as well as orientation.

Neurons with similar color and orientation preferences connect laterally to
other neurons with similar preferences. These connections represent the patterns of
correlation during learning. The lateral connections of three representative color-
selective neurons are displayed in Figure 6.5. Each neuron has strong lateral con-
nections to other color-selective neurons in the same color blob as itself, and also
has weaker long-range connections to other color blobs with similar chromatic pref-
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Figure 6.4: Afferent receptive fields of V2 neurons encoded for hue prefer-
ence. The receptive field of every fifth neuron in V2 is shown. Connections within
the plot are colored according to the hue preference of the source V1 neuron. Weak
connections are white, and strong connections are plotted using dark or bright col-
ors. The greater the saturation of the color, the greater the selectivity of the V1
neuron for that hue. These types of receptive fields arise automatically through the
self-organization process, driven by the learning rules, LGN processing, and training
images, further validating the model.

70



(a) Color preference and
selectivity map

(b) Cell 1: Lateral connections

(c) Cell 2: Lateral connections (d) Cell 3: Lateral
connections

Figure 6.5: Lateral connections of three V2 color-selective neurons. Plot (a)
shows the hue map of V2 with color-selective neurons colored according to their
preference and selectivity. Plots (b)–(d) show the lateral inhibitory connections for
three representative color-selective neurons. Each neuron is marked by a small white
box. These neurons have strong lateral connections to neurons within the same color
blob and also form weaker connections to other color blobs that have similar spectral
preferences. These lateral connection structures are predictions of the model.

erences: Red-selective neurons connect to other red-selective neurons, green-selective
neurons connect to green-selective neurons, and blue-selective neurons connect to
blue-selective neurons. The model thus predicts that color-selective neurons in biology
will form lateral connections to other neurons that have similar chromatic preferences.
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Figure 6.6: Afferent receptive fields of V2 neurons encoded for orientation
preference. As in Figure 6.4, the plot shows the receptive field of every fifth neuron
in V2, with strong connection weights plotted using dark or bright colors, and weak
connections plotted in white. The strong weights are colored according to the orien-
tation preferences of the V1 neurons, using the color key at right. The greater the
saturation of the color, the greater the selectivity of the V1 neuron for that orienta-
tion. These types of neurons arise automatically through the self-organizing process
and further validate the model.
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6.2.2 Orientation-selective neurons

Neurons outside of color-selective blobs are selective for orientation. Figure 6.6 shows
the same grid of V2 receptive fields as those shown in Figure 6.4, the only difference
being that in Figure 6.6 the V1 neurons are color coded according to their orientation
preference. Each orientation-selective V2 neuron tends to form an irregularly shaped
receptive field and connect to a single type of orientation-selective V1 neuron. For
example, V2 neurons selective for horizontal orientations have receptive fields domi-
nated by horizontal-selective V1 neurons that are colored red. However, there are a
few neurons (e.g. neuron (4, 5) from top-left), whose receptive field appears circular
and achromatic in Figure 6.6. These are color-selective V2 neurons that connect to
color-selective V1 neurons and are a validation of the model.

6.3 Discussion

The simulation shows that LISSOM can create orientation-selective and color-selective
V2 neurons. Orientation-selective neurons prefer edges of light with no regard to the
color of the stimuli. Meanwhile, color-selective neurons are more responsive to colored
stimuli and less responsive to achromatic inputs. These modeled neurons mimic the
neurons found in the thin- and inter-stripe regions of biological V2.

However, the LISSOM V2 is conspicuously missing stripes. In biology, thin-
stripe regions containing color-selective cells are seen when biological V2 is stained for
cytochrome oxidase (Shipp and Zeki, 2002a), as previously reviewed in Chapter 2. Do
the missing stripes invalidate the model? Not necessarily. The model has constructed
V2 neurons selective for color and orientation just like biological cortex, and these
neurons do form connections to V1 neurons just as biological neurons do (Sincich and
Horton, 2005b). Individual neurons look like those found in thin-stripe and inter-
stripe regions, the only difference is that in the model the color-selective blobs do not
form stripes.

To duplicate biological cortex stripes, the color-selective blobs in the model
need to align themselves into a columnar organization. It is possible that such align-
ment did not happen because some necessary feature type was not presented to the
retinas. For example, disparity-selective neurons are found in thick stripes, and the
model was never presented with disparity stimuli. Perhaps disparity selectivity must
be included in the model before stripes will form within V2. An alternative hypothesis
is that input from the pulvinar is critical for stripes. Both the thin and thick stripes
are known to receive projections from the pulvinar but the role of these connections
is still unclear (Sincich and Horton, 2005a).

The model also raises an interesting question about the development of V2.
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In what phase of usual system development does the V2 color-selectivity map form?
Within the model, V2 can either self-organize simultaneous to the V1 map, or it
can self-organize after the V1 map has already formed. These two methods generate
similar, but not identical, results. Training V1 before V2 keeps ocular dominance
maps from forming in V2, but also causes V2 to develop weaker selectivity maps
and broader color-preference blobs. Therefore it is a prediction of the model that V1
ocular dominance maps must self-organize before V2, perhaps driven by spontaneous
retinal activity patterns that occur before V2 neurons develop selectivity (Wong,
1999).

6.4 Conclusion

In conclusion, a LISSOM model of V2 was presented that uses a simulated V1 cortex
as input and self-organizes a number of biologically plausible features such as color-
selective and orientation-selective neurons. The model also makes explicit predictions
about the lateral connectivity of neurons. It can therefore serve as a platform for fu-
ture studies of V2 function, allowing us to understand and reconcile the results from
different labs, and perhaps eventually unifying them into one consistent computa-
tional model.

The V2 simulation presented in this chapter created a hue-preference map that
contained many but not all possible hues. The next chapter will present simulations
that contain all hues in the hue-preference map, as well discuss why some colors appear
less often than others. In addition the next chapter will also analyze other variations
of the model, thereby characterizing the limits of the self-organizing process.
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Chapter 7

Experimental Analysis

The previous two chapters presented the complete two-eye trichromatic LISSOM
model. It is the most complete retina-to-V2 map model to date and provides several
insights into how color is represented in the visual system. This chapter analyzes
the model and tests the limits of color selectivity in the LISSOM cortex, to help
understand why color maps organize differently from orientation maps and ocular
dominance maps. Similarly, this chapter studies what conditions are necessary to de-
velop realistic results, because some types of training inputs self-organize biologically
realistic maps, and others do not.

The first section describes how variations in training stimuli affect the model,
and why color maps form patchy regions of selectivity. The second section shows
that simulations trained with natural images are similar to simulations trained with
randomly colored images, suggesting that color-preference maps are rarely affected by
the strong color biases in natural images. However, training a simulation with natural
images is not sufficient to get the most realistic V1 and V2 maps. The third section
shows what is necessary for LISSOM simulations to form V1 and V2 preference maps
that include all possible colors, closely matching biological data.

7.1 Sensitivity to image features

LISSOM is a robust model, and will create maps with similar features with a wide
range of training images and simulation parameters. However, a balance of ocular
dominance, orientation, and color information is necessary for the cortex to develop
normally. Too little color and no color-selective regions will form; too much color
and the cortex will be overwhelmed by color-selective regions to the detriment of the
other feature maps. Color-selective regions will only form into biologically realistic
blobs if there is the right amount of color information. Measuring the correct balance
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can be described in terms of r2 correlations and gradient maps like those presented
in Chapter 4.

7.1.1 Channel correlation

Pearson’s r2 correlation measures the correlation between two channels, while ignoring
the spatial location and the average luminosity of the individual pixels. The three pho-
toreceptor types lead to three r2 values: long:medium, long:short, and medium:short.
In all cases where each of these three r2 values for a training set was less than 0.99, the
network organized three types of color blobs. Conversely, whenever the correlation
between any two channels was greater than 0.99, the V1 and V2 regions developed a
single neuron type sensitive to both channels. In such cases, the network was unable
to differentiate between the two colors, thereby exhibiting cortical color blindness.

The correlation between the long and medium channels was almost always
higher than the others because their wavelength sensitivity functions have such a
high degree of overlap. The r2 test thus reveals that a low channel correlation in
the retinal stimuli is vital for V1 and V2 cortex to develop realistically, and suggests
that cortically caused color blindness can arise if the two channels are not distinctive
enough. Color blindness is a prediction of the model and could be tested on developing
animals by raising trichromatic animals in environments with only red and green or
monochromatic stimuli. Animals raised in this environment would not have regular
trichromatic vision, unless the cortex is able to rapidly reorganize once normal stimuli
are presented to the animal as an adult.

Conversely, if the color channels in training stimuli have too low a correlation,
then the V1 and V2 color-selective regions become larger, merge, and no longer look
like spatially separated blobs. In such cases, color-selectivity maps instead show
large bands and clusters, and V1 and V2 have more color-selective neurons than they
do orientation-selective neurons. When the number of neurons that prefer oriented
stimuli decreases, the orientation-selectivity map becomes poorly organized and does
not have as many pinwheels and linear zones as are normally found.

7.1.2 Feature map interaction

The last subsection explained that channel correlations change the preferences and
shape of color-selective blobs. Similarly, the ratio of color-selective to orientation-
selective cells in V1 and V2 also depends upon the hue gradients and orientation
gradients of the training images. Some training corpora regularly create more and
larger color-selective regions and smaller orientation-selective regions than the simu-
lation presented in Chapters 5 and 6, even though the r2 values were within normal
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ranges. The images in these corpora were consistently found to have large hue gra-
dients relative to their orientation gradients. Likewise, it was found that if an image
set has a small average color gradient then a network trained on the set will have
few or no color-selective regions. These results predict that V1 and V2 must have
oriented and colored stimuli properly balanced, with orientation stimuli stronger than
colored stimuli, for normal V1 and V2 development. Such a prediction can be tested
experimentally by modifying the environment of developing animals.

The network training stimuli also affect the location of color-selective blobs
in V1 ocular dominance maps (V2 does not have a structured OD map). In the
Chapter 5 V1, the location of color blobs in the color-selectivity maps matched the
location of the ocular dominance stripes in the eye preference map. However, this
organization can be altered by selecting different types of training inputs. If the
training images have a low correlation between channels (which increases the color),
the color blobs will often overlap the ocular dominance stripe boundaries. Similarly,
decreasing the correlation between the stimuli presented to the left and right eye
will also cause color blobs to overlap the ocular dominance boundaries. This result
suggests that either the ocular dominance or the color map can become dominant,
depending on the input statistics, just as previously found for orientation and motion
maps (Miikkulainen et al., 2005).

The model thus predicts that a species or individuals that pay more attention
to colored stimuli, or raised in more brightly colored environments, or experience fewer
salient oriented contours, will have color blobs that extend across ocular dominance
stripe boundaries. The prediction could be tested by raising animals in environments
with strong color and then measuring the location of color blobs in V1.

7.2 Random color distributions

The quantity and types of colors vary greatly in natural images. Since natural images
were used as input in Chapters 5 and 6, the results were affected by the statistical
characteristics of the images. Such an effect is desirable, since the biological cortex is
also affected by the natural environment. However it would be useful to characterize
the color-selective properties of the model with no externally introduced biases. The
following simulation reveals that natural colors in the world actually lead to very
similar organization compared to randomly generated colors.

7.2.1 Training stimuli

To create an unbiased simulation it is necessary that every variable remain constant
while the color of each individual stimulus is randomized, eliminating any individual

77



color dominance. It is also crucial that the saturation of the hues is not accidentally
increased. A training set with unbiased colors can be derived from a set of natural
images if the original biased colors in the images hues are randomized just prior to
presenting an image patch to the retina. For this simulation, 20,000 input stimuli were
used, sampled from 23 images in the McGill image database (Olmos and Kingdom,
2004), since images from the McGill corpus were also used for the results presented
in Chapters 5 and 6. For each of the 20,000 presentations, the stimuli were converted
to the HSV colorspace and then rotated on the HSV hue spectrum by a random value
between 0◦ and 360◦. Figure 7.1 shows three natural images that have had their
hues rotated in this manner. The rotation preserves the saturation of the color in
the original input stimuli so that achromatic stimuli remain achromatic, and strongly
colored stimuli remain strongly colored. In addition, the number, magnitude, and
frequency of transitions between colors are also preserved.

7.2.2 Results

As in previous simulations, color-selective and orientation-selective neurons organize
into color-selective and orientation-selective maps in V1 and V2. Most neurons are ei-
ther color or orientation-selective, and neurons between two types of feature-selective
regions are selective for both features. Maps of V2 are not shown in this section since
their color-selectivity maps are always a subset of V1 color-selectivity maps, and do
not contribute any additional results.

As in Chapters 5 and 6, there are three dominant types of neurons: blue, red,
and green-selective. Red and green-selective blobs (shown in Figure 7.2) regularly
touch each other and form yellow-selective regions. These yellow-selective regions are
slightly more pronounced than they are in the simulations from previous chapters.
The histograms of the maps, also in Figure 7.2, reveal that yellow-selective neurons
are as numerous as the red or green-selective neurons. However, they do not appear
as solitary blobs but are only found next to red and green-selective areas.

Like previous simulations, there are many more blue-selective neurons than any
other neuron type. Likewise, these neurons occasionally interact with green-selective
blobs to create cyan-selective neurons. Though red and green blobs regularly touch
each other to form yellows and oranges, it is much rarer for a blue region to create
cyan-selective and magenta-selective areas. Red and green cone sensitivities overlap
a great deal, which may be the reason why red and green-selective neurons interact
more than the blue-selective neurons. Anecdotal evidence throughout the project also
suggests that a coextensive short-cone receptive field causes red and green blobs to
be more likely to touch and form yellow-selective regions, but it is not clear under
what circumstances this property holds. In one elongated color-blob in the lower-left
quadrant of Figure 7.2b, a band of colors is seen: red to yellow to green to cyan to
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(a) Foliage image (b) Flower image (c) Landscape image
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(d) Foliage hue histogram
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(e) Flower hue histogram
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(f ) Landscape hue histogram
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(g) Hue key

Figure 7.1: Natural image training stimuli with rotated hues. Plots (a)–(c)
are three sample training images, each from a different image corpus. They have had
their hues rotated 220◦, 90◦, and 300◦, respectively. Plots (d)–(f ) are polar plots of
the colors found in each rotated hue image, and (g) is the color key for the polar
histograms, starting with red at 0◦ moving through all the colors, and then back to
red at 360◦. For comparison, these three images are also shown with their natural
colors and histograms in Figure 4.3 of Section 4.3. Each of the images retain their
original hue saturation values, quantity of color transitions, and unbalanced histogram
distributions, but a training corpus that contains these images will have randomized
and unnatural hue distributions.
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(a) Hue preference map (b) Preference and Selectivity (c) Hue selectivity map

(d) Preference histogram (e) Preference and Selectivity
histogram

(f ) Selectivity histogram

Figure 7.2: Color-selectivity maps of V1 trained with rotated hues. V1 maps
self-organized on stimuli with random hues develop color-selectivity maps similar to the
simulations presented in Chapter 5. Therefore, natural image color biases have limited
effect on the hue preferences of V1 maps. Each of the 64× 64 neurons are colored with its
preferred color in (a) and (b). Red and green blobs regularly interact to form yellow selective
neurons. Plot (c) shows the color selectivity of the V1 neurons with regions unselective for
color marked as white. The color-unselective regions match regions selective for orientation
(not shown). Plot (b) shows each neuron’s preference along with the selectivity, again
with color-unselective regions in white. Plots (d)–(f ) are histograms of the V1 neurons in
(a)–(c), and show that the map is dominated by a large number of blue-selective neurons
followed by equal numbers of red, yellow, and green-selective neurons.

blue to purple. Similar to the simulations from previous chapters, magenta selective
areas do not appear robustly.

This simulation gives three important results: First, the natural image sim-
ulations presented in previous chapters—complete with color biases—have color-
selectivity maps that are similar to maps generated with random colors. Second,
without some type of photoreceptor channel gain, brightness control, or perhaps just
fewer blue cones in the retina, blue-selective neurons will dominate the network. And
third, random-hue inputs increase the chance of secondary colors forming, such as yel-
low, cyan, and purple, bringing the model closer to biologically realistic color maps
that contain all possible hues.

Overall the results strongly resemble the Chapter 5 model trained on natural
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images. These results suggest that color-preference maps are rarely affected by the
strong color biases in natural images, and that on a continuum between color maps
with no color-selective neurons and color maps with all possible color preferences,
simulations trained on random colors and natural images fall in the middle. Therefore,
as will be discussed in Chapter 8, either the natural image corpora in this study do
not contain some aspect of the biological color experience, or something must be
added to the model if it is to develop full-hue V1 color maps from natural images.

The next section presents the most biologically realistic V1 and V2 maps which
have color-preference maps that contain all possible hues.

7.3 Self-organizing the full color spectrum

Simulations regularly create red, green, and blue color blobs, and to a lesser extent
secondary colors such as yellow, orange, and cyan. Yet one color is conspicuously
absent: magenta (blue plus red). Why is magenta missing from the model when
apparently V1 and V2 contain all possible hues (Xiao et al., 2007, 2003). The sim-
ulation in this section shows that the LISSOM model is capable of developing color
preferences for all hues in the color wheel. Magenta is missing because the simula-
tion is presented with natural images that do not contain enough magenta and color
transitions containing magenta.

7.3.1 Training stimuli

As in the previous section, the network was presented with 23 images of natural
scenes, where the colors within each image had been randomly rotated. In the last
section, the hues in the images were randomly shifted before every presentation to
the retina, for a total of 20,000 rotations. In this section, the hues in each image were
randomly rotated a single time for the entire simulation, for a total of 23 rotations.
By reducing the number of rotations, color biases introduced by the image corpus are
shifted but not so much that they disappear completely.

This process changes the distribution of colors presented to the simulation,
while simultaneously preserving the number and type of color transitions. Many
smooth color transitions before the transformation will result in many smooth tran-
sitions after the conversion, but the starting and ending colors of the transition will
be different. If some colors, like magenta, rarely appear in the image, or rarely have
transition regions, then after the transformation they appear more frequently and
share some of the transitions previously dominated by other colors.
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7.3.2 Results

Figure 7.3 shows the resulting V1 color-selectivity map, and Figure 7.4 shows the
V2 color-preference and color-selectivity maps. The V2 hue-preference map contains
the usual features such as pinwheels, linear zones resembling rainbows, and fractures,
suggesting it is properly self-organized. The hue-preference histograms for both V1
and V2 have 100% coverage of the hue spectrum, including preferences for magentas
and purples. Magenta selectivity is a new result compared to the previous simulations
presented, and is in accordance with what Xiao et al. (2007; 2003) reported.

Another new result is that the simulation generates color wheels in the color-
preference maps. In at least two locations in Figure 7.4a, all color preferences come
together at a single point and form a ring of color, analogous to pinwheels in orien-
tation maps. In further analogy to orientation pinwheels, the color wheel centers are
not in color-selective areas. Rather, color-selective blobs tend to have linear color
transitions over small pieces of the spectrum.

7.4 Discussion

This chapter first discussed how features in the input stimuli affect the self-organization
of feature maps. Color maps form patchy regions of selectivity because color is not
as strong an input feature as orientation. However, if the colors are too weak, then
no color-selective regions will form at all, or if two color channels have a correlation
greater than 99% then the model cannot differentiate between them. At the other ex-
treme, if hue gradients in the images are too strong then color-selective regions in the
color maps will become too large to be biologically realistic. Similarly, when colors
are too strong, then color blobs will also overlap ocular dominance stripe boundaries,
contrary to biology. A balance must be struck between the three types of feature
maps for biologically realistic cortex to develop.

Second, simulations trained on artificially adjusted colors reveal that a V1
cortex trained on natural images has similar color-selectivity preferences to cortex
trained on random colors. This result suggests that instead of using strictly natural
image stimuli in future work, it may be possible to substitute random color stimuli to
achieve biologically realistic maps. These simulations also suggest that blue-selective
blobs self-organize differently than the red and green-selective blobs. Most interesting,
is that as in previous simulations randomly colored stimuli did not form magenta-
selective neurons like those found in the brain.

Third, a simulation was presented that developed color-preference maps that
contained neurons preferring each of the hues in the color wheel, including magenta.
Visual inspection of the training corpus for this simulation showed that there were
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(a) Hue preference and selectivity

(b) Hue histogram

Figure 7.3: V1 hue-selectivity map self-organized using artificial-color images.
This V1 simulation is unique in that the hue-selectivity map has neurons maximally selective
for each of the possible hues. Each of the 64 × 64 neurons are colored with its preferred
hue in plot (a), with regions unselective for color marked in white. These color-unselective
regions match regions selective for orientation (not shown). Plot (b) is a histogram of the
neuron color preferences in (a), showing that the map contains neurons preferring each of
the possible hues. This V1 color-selectivity map matches the biological measurements of
Xiao et al. (2007).
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(a) Hue preference map (b) Preference and selectivity (c) Hue selectivity map

(d) Preference histogram (e) Preference and selectivity
histogram

(f ) Selectivity histogram

Figure 7.4: V2 color maps trained with artificial-color images. This V2 region is
unique since the hue-selectivity maps have neurons selective for all possible colors. Each
of the 80 × 80 neurons is colored with its preferred hue in plots (a) and (b). Plot (c)
shows the color selectivity of the V2 neurons with regions unselective for color marked
in white. Plot (b) shows each neuron’s preference along with the selectivity, again with
color-unselective regions in white. These color-unselective regions match regions selective
for orientation (not shown). Plots (d)–(f ) are histograms of the V2 neurons in (a)–(c),
showing that the maps contain neurons preferring each of the possible hues. The full-hue
color maps are a validation of the model.

many blues, purple, and magentas. The LISSOM model requires biased hues to
develop preferences containing the complete color wheel, but the biases must not be
so large as to affect the self-organization of other feature maps.

7.5 Conclusion

The results presented in this chapter show that through self-organization the LISSOM
model creates cortical maps containing preferences for all the hues in the HSV color
space, as well as bands of color selectivity that form gradual transitions between color
preferences. Since animal cortex also contains gradual color-preference transitions and
broad color preferences (Xiao et al., 2007, 2003), this chapter further validates the
accuracy of the LISSOM model. The next chapter will discuss in greater detail the
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results of the model, as well as offer some promising directions for future work.
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Chapter 8

Discussion and Future Research

The last four chapters presented the results of the LISSOM trichromatic visual cortex
model, and shows the details of the self-organized cortex both at the map and the
neuron level. This chapter evaluates the implications the results have for the fields
of computer science, neuroscience, and psychology. The chapter is divided into six
sections. The first section briefly reviews how the dissertation contributes to science
in general. The second section evaluates the LISSOM model and discusses future work
on it. Third, the natural image stimuli are discussed. The fourth section discusses the
lessons learned using natural images as input to a self-organizing system and proposes
future work in this area. The fifth and sixth sections evaluate the model V1 and V2
results and propose future extensions and biological experiments.

8.1 Contributions of the dissertation

The dissertation furthers our knowledge of computer science and contributes to both
neuroscience and psychology. First, the model provides computer science in general,
and robotics in particular, with a biologically inspired color vision architecture that
is both robust and scalable. The neural network simulation is a complex synergistic
mechanism with interesting mathematical properties in its own right; meanwhile,
having this model of color processing enables researchers to develop and study real-
world applications that depend on color.

Second, the dissertation contributes to the study of the brain. The many spe-
cific predictions presented in previous chapters and also discussed below help direct
future experiments and suggest new avenues for scientific exploration. The descrip-
tive power of the model provides a framework to discuss the vision system and how
biological mechanisms interact. In this dissertation, the theory of such processes is
embedded in a computer simulation. The theory then is not only an intellectual
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exercise but also a program that works and duplicates the processing of the visual
system.

Third, psychology now has a biological model of color vision to help study
perceptual phenomena. For example, optical illusions such as the McCullough effect
(McCollough, 1965) or shape from shading illusions (Kingdom, Rangwala, and Ham-
mamji, 2005) require a color model such as this one to test competing hypotheses.
The more biologically realistic the model becomes, the better positioned the compu-
tational model is for studying additional cortical regions that receive input from the
retina.

8.2 The trichromatic LISSOM model

The LISSOM cortex models how retinal stimuli organize the adult visual cortex dur-
ing development. The model architecture is adaptable to variations in the input
and extends well to new feature types. Below, the strengths and weaknesses of the
LISSOM model are discussed first, followed by potential directions for future work.

8.2.1 LISSOM architecture

The LISSOM model provides a useful platform on which biological hypotheses can be
tested. The input statistics and the visual system organization can be studied in ways
not possible in biological experiments or in non-developmental models. Every neuron
can be examined, and every connection measured, without disturbing the system.

The model is also a robust system that scales well and allows many overlapping
feature maps. However, as the number of feature maps in the cortex increases, there
is a systematic and gradual degradation in the feature map quality. There are a
fixed number of neurons in the cortex and as more feature maps are added neurons
become divided based on preferences for different features in the input. There is no
cataclysmic failure of the system, rather the self-organized maps begin to have fewer
well-defined structures. As an example, a one-eye achromatic model will develop
extremely strong orientation-selectivity maps. If the simulation is extended to two
eyes, then ocular dominance maps form but at the cost of the orientation-selectivity
map: neurons begin to become partially eye selective along with being orientation
selective. As additional features such as color or motion are added, the neurons
continue to be selective for even more features and the maps will continue to become
less well delineated. Therefore, the model could be extended to increase the quality
of feature maps when the retina is presented with multiple features.
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8.2.2 Future work

There are a number of possible extensions to the LISSOM model. They can be
divided into six categories: (1) increasing the realism of the model, (2) open questions
in biology, (3) visual illusions, (4) robotic vision, (5) modeling other animals, and
(6) modeling visual regions beyond V1 and V2. Each direction will be addressed
separately in this section.

There are two main ways in which the model can be made more realistic.
First, the neurons in the modeled cortex are simple cells with well-defined response
properties. In the biological cortex there are also neurons that respond in ways that
the simple cell model does not, such as activating uniformly across all phases of
stimuli in their receptive fields. Including such complex cells into the LISSOM model
will make the model more biologically realistic and make it possible to study how
complex cells form and interact with simple cells. One possible way that neurons
develop complex cell responses is through groups of simple cells linked together in
ordered patterns (Chance, Nelson, and Abbott, 1999). Sit and Miikulainen (2007)
already extended LISSOM with such a model for monochromatic complex cells, but
further work is necessary to extend it to color.

Second, to study map formation more robustly, a 3D cortex needs to be created
where the individual lamina of the cortex are implemented. With more than a single
layer of cells, each vertical penetration of the cortex measures more than one neuron,
and the average activation from all the neurons in the penetration can be used to
measure preference maps. Such layers may increase the quality of feature maps since
neurons at different layers in the cortex could self-organize selectivity for different
features, and allow the cortex to be selective for more features with less feature-map
degradation.

There are three directions of future work to help answer open questions about
biological trichromatic vision. First, as mentioned in Section 2.2.2, the shape of blue-
yellow receptive fields is still controversial. Does the short-cone vision pathway use a
coextensive or a difference-of-Gaussian receptive field architecture? Center-surround
receptive fields act as a mechanism for automatically balancing luminosity, and may
play a role in the activation-balancing mechanism reported by Klug et al. (2003). The
models presented in this dissertation are based on the coextensive model which is the
most probable given the biological evidence, but additional work should be done to
study the differences between the two competing approaches.

Second, the ratio between the long and medium photoreceptors in the retina
is known to vary widely between subjects and yet normal color vision is preserved
(Brainard, Roorda, Yamauchi, Calderone, Metha, Neitz, Neitz, Williams, and Jacobs,
2000). The mechanisms that compensate for these variations and the process through
which they affect cell ratios in the LGN and visual cortex are still not fully understood.
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Retinal Cone Mosaic

Color-opponent
receptive fields

Figure 8.1: Retinal cone geometry. How are receptive fields constructed by LGN
cells? One hypothesis is that cells randomly group cones in the retina for their RFs.
This figure shows a schematic diagram of the retina and how photoreceptors that are
spatially near to each other can be combined into receptive fields. The two patches
of light-colored photoreceptors indicate how color-opponent receptive fields can be
created by grouping together a region of photoreceptors containing different types of
cones. Future experiments will include adjusting the ratios of photoreceptor types to
examine how the random-wiring hypothesis affect cortical self-organization. Figure
adapted from Lennie (2000).

Using LISSOM, it is possible to explore the effects of changing photoreceptor ratios,
and perhaps demonstrate a self-organizing mechanism for preserving normal color
vision across subjects.

Third, there are two theories about how the receptive fields of LGN neurons
form (reviewed by Gegenfurtner and Kiper, 2003). The first is that an ordered mech-
anism exists to systematically connect photoreceptors into the achromatic and color-
opponent receptive fields of LGN cells. The second is that the receptive fields are
randomly constructed based upon spatial location. Figure 8.1 shows how receptive
fields can be constructed from a random distribution of photoreceptors in the retina
by pooling activation from photoreceptors that are spatially near each other. The or-
dered and random-wiring model can be implemented in LISSOM to make predictions
about which model creates maps that best fit the biological data.

The third main direction for future work involves studying visual illusions.
Julien Ciroux (2005) modeled the McCollough effect using a simpler dichromatic ar-
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chitecture originally developed for the early stages of this dissertation. This previous
success of LISSOM suggests that other color-based visual illusions can be modeled
using a trichromatic LISSOM model. One visual illusion in particular is a prime
candidate to be modeled: An appearance of depth results from viewing a luminance
grating and a chromatic grating when they have different orientations (Kingdom,
2003). It would be interesting to see if a linkage between depth and color selec-
tive neurons comes out of the self-organization process in LISSOM, and reproduces
this depth illusion. However, the model would first have to be extended to include
disparity selective inputs.

The fourth category of future work is robotics: Now that the model has been
shown to match animal data, it would be interesting to adapt it for use in the early
stages of vision in robots. Robotic visual systems generally work differently from
the human visual system: Fourier transforms do not process images the same way
color-opponent LGN cells respond to photoreceptors. It would be helpful for both
systems to process colors in the same way. Moreover, human vision is superior to
robotic vision, and by studying the differences between the color vision model and
current color processing in robots it may be possible to develop more robust robotic
vision algorithms.

The fifth direction is to model other animals. The simulations in this disserta-
tion focused on the macaque monkey as a model for human trichromatic vision, but
it is possible to use the model to study how color vision is implemented in various
differing species. For instance, dichromatic animals have substantially different func-
tional map structures; such structures should come out through self-organization as
well. In each case, a model of a new species can be constructed by changing the pho-
toreceptor activation functions and the LGN architecture; the V1 and V2 architecture
would remain largely similar.

In Japanese monkeys proper color perception is dependent upon the environ-
ment in which they are raised (Sugita, 2004). It would be fascinating to measure the
color-selectivity maps of these monkeys, and model their development computation-
ally. More experiments that study the color-selectivity of developing animals would
help our understanding of color map self-organization. In particular, it is not yet
clear what prenatal color maps look like, and how these maps change as the animals
mature.

The sixth direction is to extend the model to other regions. The modeled
color-selective V1 can be used as input to regions beyond V2. In particular, V4 has
for a long time been considered a part of the brain’s color processing system, and it
receives stimuli from a variety of regions including V1 and V2. An additional LISSOM
sheet can be added to simulate V4, which would help explain how a vision hierarchy
emerges, and how V4 contributes to color processing. All the future work described
in this section will help us to further understand how color selectivity develops in the
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brain, as well as how the brain integrates and uses color for perception.

8.3 Training stimuli and natural images

Natural images were originally selected for network training since it was not clear
what artificially constructed color stimuli should look like. Through the experience
gained by training the model with natural images, we now know much more about
how natural images affect the computational model. This section will first discuss the
lessons learned by using natural images, and then the most promising future work
suggested by this research.

8.3.1 Colors in the World

Oriented edges, or luminosity contours, are a nearly universal and strong feature of
the natural images. Since natural images contain objects such as foliage, mountains,
water, and rocks, regular light variations are expected. However, even natural images
do not perfectly mirror the world. The earth is full of areas with slow luminosity
transitions, like clear blue sky, or large areas of blank rock. These flat areas fail to
make interesting pictures and therefore are left out of image corpora. But the missing
blank areas may not be important since it is the distribution of what humans and
animals look at that affects self-organization of the visual cortex. Bright colors draw
the eye, so perhaps our visual experience has more colors than the world as a whole.

Images with strong luminosity transitions are best for training LISSOM, which
requires variations in the input stimuli to drive cortical learning. If images with fewer
edges are used for training, then more iterations must be done to complete the self-
organization.

The image corpora studied is this dissertation have strong color biases: greens
and reds are extremely prominent in the images, with blues, purples, and magentas
much less common. Certain hues of blue are often present when sky is seen through
the leaves of trees or reflected off the surface of water, and apparently this amount of
blue is enough to consistently self-organize three-color selectivity. But these natural
image sets do not self-organize magenta color-selectivity in the same manner that
the artificially modified stimuli does. Is this because the image corpora do not have
enough purples and magentas? Or is there another reason? It will be interesting to
try to answer these questions in future work.
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8.3.2 Future work

There are three directions for future work with natural images. First, it has not
previously been possible to come up with guidelines for constructing colored artifi-
cial stimuli that mimic natural images. Training sets that consist of actual natural
images can be difficult to work with, since the individual images selected for training
can have biases and perturbations that do not mirror the more general natural image
statistics. Also, many images contain large blank areas that do not cause network
activation. If the simulation presents patches from these blank areas then it takes
more presentations to complete the network self-organization. By guaranteeing reti-
nal stimulation, artificial stimuli will make cortical maps self-organize more quickly,
saving computer resources and allowing more complicated simulations.

The dissertation suggests a recipe for creating artificial color stimuli: Most
importantly, achromatic gradients need to dominate over hue gradients in these stim-
uli. Simultaneously, there must be enough hues to make each photoreceptor type
have a minimum unique entropy (as measured in Chapter 4) of greater than three
bits per pixel. Curiously, the actual shades of the colors presented may be relatively
unimportant. Colored Gaussians are one possible stimuli that may provide sufficient
orientation information while providing fine-grained color control. The saturation
and variety of colors in the Gaussians need to be balanced so that the size of color-
selective regions are within biologically reasonable sizes. Such a training set would
likely generate stronger selectivity maps and allow experimenters to have more con-
trol of the training inputs. Better feature maps, and training stimuli that are easier
to manipulate, will allow building models of higher cortical regions that use V1 and
V2 maps as input, such as V4.

Second, the LISSOM map measurement procedure can be converted from the
HSV colorspace into a more biologically realistic colorspace. Two such candidates are
XYZ, which has color axes based on human color perception (Vos, 1978), and LUV,
which attempts to have colors be perceptually uniform across the color space (Alman,
Berns, Snyder, and Larson, 1989). The HSV color representation used in this study
is helpful since all hues can be represented as a single real number between 0 and
1. However, the distribution of colors for the hue component of the pixel does not
match the distribution or discrimination features of the eye. For example, varieties
of yellow in the HSV space are underrepresented compared to reds. It is dangerous
to make strong claims about fine color-selectivity variations while map measurements
are performed in a color space suited more for the computer than for psychophysical
studies. Changing to other color spaces will change color representation from the
current one degree of freedom to two or three degrees of freedom. This modification
will increase the complexity of color measurements and plots, but it will also increase
the biological realism.
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The third possible direction of future work is an interdisciplinary project to
construct new image corpora that focus on colors. Many of the existing publicly
available sets focus on locations (Uganda), artistic quality (Visual Delights), or ob-
jects (McGill). The McGill corpus is the best so far in that the variety allows pooling
different types of images, but there is no emphasis on capturing the variety of colors
in the world, or studying the color statistics in different environments. The color
LISSOM project would directly benefit from more and better color corpora, and so
would disciplines such as neuroscience and psychology. Neuroscientists need to have
precise stimuli to present to experimental animals; psychologists who study human
perception need images of natural scenes that humans perceive. It would be an in-
teresting and productive venture to create an interdisciplinary project with either of
these fields to further study the natural world and the colors in it.

8.4 Primary visual cortex

It is a validation of the model when features of the simulated V1 match features
in biological V1. Similarly, newly observed features of the simulated V1 generate
predictions that can be tested in biological experiments. This section presents four
predictions of the V1 cortex, then discusses future work.

8.4.1 Predictions of the model

The V1 model generates four predictions about the biological cortex.

Prediction 1: Three types of color selectivity

The main prediction of the model is that there are three major types of color-selective
blobs: red, green, and blue. Each of these three types have neurons with a unique
arrangement of connections to the LGN regions, so that red-selective neurons are
found in red-selective blobs, green-selective neurons in green-selective blobs, and blue-
selective neurons are in blue-selective blobs. This prediction means that V1 is able to
distinguish among, and is partially selective for, colors that match the long, medium,
and short cone photoreceptors in the retina.

.

Prediction 2: Color-selective neurons for yellow, cyan and magenta

When green-selective and red-selective blobs are adjacent, the neurons between them
become selective for yellow, with a gradual transition through the color spectrum
from green to red. Similarly, when artificial stimuli are used for V1 training, a large
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number of neurons selective for magenta and cyan form in the same way between
blue and red, and blue and green blobs. This result predicts that neurons selective
for secondary colors form when color blobs are spatially adjacent in biological cortex,
and that the full range of hue preferences will develop, based on mixtures of red,
green, and blue blobs.

Prediction 3: Color affects eye-preference maps

The amount of color in training images influences where color blobs appear in the
ocular dominance maps. Increasing the amount of color in training images increases
the likelihood that the cortex develops abnormally: Color blobs are found in binocular
regions of the cortical maps and thus cross the left-eye and right-eye selectivity stripes.
The reason is that the average color gradient in such training images is greater than
the luminosity gradient. The model predicts that abnormal blobs will occur if a
developing animal is subjected to stronger colors than found in nature. Similarly, for
animals that pay more attention to color cues, the color blobs will not have the same
relationship with ocular dominance maps as they do in macaque monkey.

Prediction 4: Lateral connections of color-selective neurons

Neurons selective for color connect to other color-selective neurons with similar chro-
matic preferences. Red-selective neurons strongly connect to other red-selective neu-
rons, green-selective neurons connect to green-selective neurons, and blue-selective
neurons to blue-selective neurons. Such connection patterns constitute a prediction
of the model.

8.4.2 Future work

There are five immediate directions for future work. First, the existing V1 model can
be modified to explore photoreceptor ratios found at the fovea/periphery boundary.
Unlike the periphery, the fovea does not have short-cone photoreceptors, and it is not
clear how the missing cones change the cortical organization.

Second, color blindness can also be modeled. LISSOM is a developmental
model of color-selectivity, and color selectivity depends upon environmental stimuli
in infancy (Sugita, 2004). It may therefore be possible to build a predictive theory
about how color-blobs form abnormally by radically modifying the network training
stimuli.

Five to ten percent of the population is colorblind to some degree (Sharpe,
Stockman, Jagle, and Nathans, 1999). The most common color blindness is caused
by a genetic mutation, and results in something similar to dichromatic vision, where
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the patient cannot tell the difference between colors that normally activate the long
and medium cones. Other subjects have medium and short cone pigments that are too
similar to each other and are treated as a single cone type by the brain. Still another
type of color blindness is caused by patients having only a single cone type resulting
in monochromatic vision. All of these types of color blindness can be implemented
with the model to study their effect on cortical self-organization.

Third, the interaction between color and ocular dominance maps can be ex-
plored further. As was discussed above, the correlations between the retinal inputs
determine where the color blobs develop, but further work needs to be done to deter-
mine more specifically what drives the transition between the normal and abnormal
regimes of self-organization.

Fourth, the effect of color blob preferences on psychophysical studies can be
explored. In previous chapters the color blobs were categorized according to the color
of their maximum sensitivity, and consequently were labeled red, green, and blue.
Interestingly, these hues do not match to the peak sensitivities of the photoreceptor
cells, but are closer to the wavelengths generally considered to appear red, green,
and blue to an observer. One interpretation of this observation is that the preferred
colors of each blob correspond to the psychophysically defined primary colors of light.
Given that humans share the same sensitivity correlations among their the three types
of photoreceptors, and that the center-surround receptive fields of the LGN region
exist in red-green and blue-yellow combinations, it is likely that the three dominant
colors in V1 are a robust feature of biological cortex. That is, the color preferences
of each blob type will be the same across different individuals. Future work can
establish whether there is indeed a standard color preference for each blob type in
the cortex, and if so how it depends on the photoreceptor sensitivity functions and
ganglion-cell/LGN processing.

Fifth, it will be interesting to see which color-selective neurons activate when
the same object is presented under different illumination. Perception of color re-
mains constant under widely varying illumination conditions, and the model can be
examined to see how V1 might play a role in this process. Similarly, LISSOM can
now model the perceptual effect of color adaptation, where the cortex becomes less
sensitive to colors over time (Engel and Furmanski, 2001). Delahunt and Brainard
(2004) report that human color constancy does not map to natural daylight statistics,
so it will be useful to see if LISSOM has similar color constancy features. Each of
these directions for future work described above would increase the realism of V1,
and create a model with even more predictive power.
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8.5 Secondary visual cortex

The modeled V2 has topographically organized color-selective and orientation-selective
neurons that form specific lateral connections to other V2 neurons. The feature pref-
erences of V2 neurons match biological data, while the lateral connections of the
model are predictions. However, the behavior of the model V2 is not as clear as for
V1, as described below.

8.5.1 Inputs and color wheels

Curiously, color maps with neurons selective for all hues formed only when the colors
in the training images had been artificially adjusted. Color-preference maps con-
taining all possible hues are necessary to develop color wheels, which are important
because they are observed in biology (Xiao et al., 2003). Assuming the results from
Xiao et al. (2003) are correct, one of two things is happening in the model: Either the
natural images used in this study do not have “natural” color statistics matching the
long term visual experience of laboratory macaques, or V2 cortex requires additional
homeostatic mechanisms that are currently not included in the model. The artificial
stimuli of Chapter 7 may be simulating a developmental process that is contributing
to full-hue V2 self-organization. Anecdotally, if color-selectivity depends solely on
colors presented to the retina then one would expect more regional problems, given
the broad color variation in the world (Alaska vs. the Amazon). Color-blindness
experiments in developing animals would help settle this question.

This rest of this section will present two predictions of the model before dis-
cussing V2 future work.

8.5.2 Predictions of the model

The LISSOM V2 results generate two predictions.

Prediction 1: Color preference of V2 neurons

V2 develops color-selective blobs and is always selective for variations of the color
preferences found inside of V1. V2 color blobs tend to be less distinctly red, green,
or blue compared to V1, and V2 blobs with different color preferences will often
touch and create secondary colors (yellow, cyan, magenta). For example, when a red
blob touches a green blob, yellow-selective V2 neurons are found in the middle. The
formation of neurons selective for secondary colors through color-blob blending is a
prediction of the model.
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Prediction 2: Lateral connections of color-selective neurons

Similar to V1 neurons, color-selective neurons in V2 laterally connect to other color-
selective neurons. Red-selective neurons connect to other red-selective neurons, green-
selective neurons connect to green-selective neurons, and blue-selective neurons con-
nect to blue-selective neurons. These lateral connections constitute a prediction of
the LISSOM model.

8.5.3 Future work

Extending V2 will increase the predictive power of the model. First, if is necessary to
examine why the model V2 feature maps do not contain stripes. That is, neurons in
the model V2 organize color-selectivity and orientation-selectivity maps as expected,
but they do not form a striped pattern as in biology. One hypothesis is that V2
requires additional features like motion and disparity as input to the retinas. Without
strong orientation stimuli, color-selectivity maps do not form blobs, so it might be
that stripes will not form in V2 without some other key input feature. In the future,
motion and disparity inputs can be included to see if V2 will develop stripes as a
result.

Second, making the model more realistic and biologically detailed will increase
the predictive power of the model. For instance, the role of feedback connections
going from V2 to V1 can be analyzed this way. These recurrent connections will add
memory-like effects which may be necessary for color adaptation and color constancy
effects. Sit and Miikkulainen (2006) already extended LISSOM to include recurrent
V1/V2 networks using achromatic stimuli, and their model can be extended further
to include color inputs.

The LISSOM V2 can also be extended in other ways. Since V2 receives pro-
jections from the pulvinar region, the pulvinar needs to be modeled as well so that
V2 can have a richer set of inputs. The more biologically realistic V2 becomes, the
better positioned the computational model is for studying additional cortical regions
such as V4 that receive afferent projections from V2 neurons.

8.6 Conclusion

In conclusion, the V1 and V2 maps self-organize color-selective and orientation-
selective neurons with biologically plausible receptive fields and lateral connections.
The model performs part of the process that turns undeveloped and homogeneous
cortical neurons into structured maps that the rest of the brain can use. The self-
organizing model provides computer science with an exploratory framework for com-
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puter vision, and provides neuroscience with clear predictions about the structure of
biological cortex.

The next chapter will conclude the dissertation by reviewing the purpose and
goals of this study along with the major contributions of the model.
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Chapter 9

Conclusion

The trichromatic LISSOM model replicates the known data on the organization of
color-selective neurons in the cortex, and provides a detailed explanation for how this
selectivity can develop through simple learning rules. The model provides concrete
and novel predictions for future experiments about what lateral connectivity patterns
will be found, and about how the color, orientation, and ocular dominance maps
interact.

9.1 Summary

Chapter 2 reviewed the physiology and psychophysics of color vision, as well as the
computational models of the visual cortex. The visual pathway starts at the pho-
toreceptors in the retina, goes through the lateral geniculate nucleus, to the primary
and secondary visual cortex. The visual system is able to perceive colors that map
to single wavelengths of light (e.g. green), as well as colors that exist as products of
the visual system, such as magenta.

Chapter 3 presented a model that simulates the early visual system of trichro-
matic mammals. The modeled retinas contain three types of cells that mimic the
sensitivity functions of human photoreceptors. The simulated retina views natu-
ral scenes and generates activation values that are processed by a lateral geniculate
nucleus region that has topographically organized achromatic and color-opponent re-
ceptive fields. The lateral geniculate nucleus cells project into a V1 cortical map,
which itself has projections to a V2 cortical map.

Chapter 4 presented statistical analyses of several natural image corpora that
were used to train the model. These studies revealed that the three photoreceptor
types have extremely high inter-channel relationships. Even with the high correla-
tions, each channel usually has between three and five bits of unique information.
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Further, the study found that luminosity contours dominate over color transitions in
most natural scenes.

In Chapter 5, the simulated primary visual cortex trained on natural images
accurately reproduced the neurons and color-selective structures found in biological
cortex. Further, the cortex duplicated the relationship found between color blobs
and the orientation and ocular dominance feature maps. Along with duplicating
experimental evidence about biology, the model also makes a number of predictions
about the selectivity of color blobs and how they interact with other neurons.

In Chapter 6, the simulated secondary visual cortex self-organized much like
the primary visual cortex. However, V2 also has distinct differences, in that larger
receptive fields allow neurons to integrate over a larger region of the visual field.
The model also makes concrete predictions about the color selectivity and lateral
connectivity of V2 neurons.

Chapter 7 presented further systematic experiments where the colors of natural
images were manually modified. If any channel within a training corpus had less than
three bits of information per pixel, or if color contours dominated orientation contours,
then the map did not self-organize properly. These simulations also revealed that V1
and V2 cortex are capable of developing color preferences for all possible hues in the
HSV color-space. These results confirm that the results of the last two chapters are an
outcome of the training images and not solely a product of the network architecture.

Chapter 8 discussed the results of the model, and also listed the predictions
that the model generated. A computational model of color vision enables future
research in robotic color vision, perceptual modeling, and more advanced biological
simulations. Further, the most interesting directions for future work were presented
which including increasing biological realism, and modeling color blindness.

In summary, the model of the visual cortex created biologically realistic feature-
selective maps. In addition, the interaction among the three map types in V1, and the
interaction between the two map types in V2, also matched known physiology. The
different organizational patterns found in the feature maps are a result of orientation
inputs being a stronger feature in the stimuli than color, and the strong correlation
of the inputs to the left and right eyes.

Each color-selective blob primarily contains a single type of color-selective neu-
ron, either red, green or blue. The model also suggests how neurons can become se-
lective for other hues such as yellows, magentas, and blues. That is, neurons in areas
where two blobs meet respond equally to both blob types and as a result become
selective for additional colors. A similar mechanism may take place in biology, giving
rise to cortical neurons with a variety of color preferences. Therefore, the color LIS-
SOM model helps explain how color vision arises in the brain, and why the cortical
maps organize into different patterns.
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9.2 Conclusion

Thus the model is an embodiment of our current knowledge about the early visual sys-
tem and the self-organization mechanisms that creates color selectivity in the cortex.
This work is a platform for testing our scientific knowledge and generating predic-
tions to guide experiments. In this way, the model helps us better understand visual
perception in general, and the physiological basis for color perception in particular.
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Appendix A

Converting RGB images to LMS
cone activations

The RGB (red/green/blue) to LMS (long/medium/short) transformation described
in this appendix is used to simulate how human L, M, and S photoreceptors will
respond to RGB images displayed on a computer monitor. For biological realism,
the LISSOM model requires LMS values as input, yet most training data is available
only as RGB images. The RGB→LMS transformation allows LISSOM to use widely
available uncalibrated color bitmap images as training inputs.

The transformation is necessary because RGB triples are only a coarse ap-
proximation to what each of the photoreceptor types will see. For instance, an RGB
image containing nonzero values only in the red channel will activate both long and
medium-wavelength photoreceptors when displayed on a computer screen, because of
the overlap of the sensitivity functions for these two cone types (see Figure 2.3). The
following sections go through each of the steps in this transformation, and also shows
how computer code to do this transform can be obtained.

A.1 RGB to LMS algorithm

To convert from an RGB image where each triple represents phosphor luminance, to
an LMS image where each triple represents cone stimulation, requires three data sets:

1. The wavelength sensitivity function for each type of retina cone.

2. Phosphor photon emission functions for a specific computer monitor.

3. RGB images of natural scenes to be converted.
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The emission spectra of a specific CRT monitor must be measured because
each monitor has different energy emission functions. Even so, variations between
monitors are small enough that any display with realistic looking colors should be
sufficient to use in the conversion. The calculated LMS values simply represent one
possible high-fidelity rendering of the RGB data by a computer monitor.

The major steps that will be involved in the transformation are: (1) calcu-
lating the photon emissions for each monitor gun at every possible pixel intensity.
(2) summing the photon emissions for each monitor gun at the specified RGB pixel
intensity, and (3) calculating the final cone activity as the dot product of the cone
sensitivity function with the summed phosphor emission values.

A single monitor pixel (αR,αG,αB) will be converted to (αL,αM ,αS), where
αR is the intensity in the red channel of that pixel, αG is the intensity in the green
channel, and αB is the intensity in the blue channel. Similarly, αL is the activation
of the long cone, αM is the activation of the medium cone, and αS is the activation
of the short cone. The same steps will be repeated for each pixel within an RGB
training image.

Notation

• All uppercase letters (L, M , S, . . .) represent single dimensional numerical row-
major column vectors. Subscripts also denote separate vectors: P1 is different
from P2.

• AT means the transpose of A.

• Lowercase letters (α, i, j, . . .) are scalars or variables.

• All normalizations are∞-norms. The∞-norm of vector A is the largest element
of abs(A).

Step 1: Calculate the monitor spectrum emission functions

It is necessary to normalize the maximum spectral power distribution vectors to
use the full dynamic range of the pixel storage formats. When normalizing, the
relationship between emission functions must be preserved because the relative energy
levels affect the photoreceptors and the peak energy of each gun will rarely be the
same. Figure 2.3 shows that the red gun has a higher energy peak than the others.
Dividing all three vectors by the wavelength with largest energy will create a dataset
that has a maximum single-wavelength energy of 1.
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The normalizing factor p is

p = ‖ [‖Emax
R ‖, ‖Emax

G ‖, ‖Emax
B ‖] ‖, (A.1)

and the normalized spectral power is

Enorm
R =

Emax
R

p
, Enorm

G =
Emax
G

p
, Enorm

B =
Emax
B

p
, (A.2)

where Enorm
R , Enorm

G , and Enorm
B are the normalized spectral power distributions for

phosphors at maximum luminosity. The area under each curve will be different, and
the maximum value for each curve will be different, as they should be.

Step 2: Total spectral power emission for each image pixel

To calculate the luminance power for a particular pixel, the summation of the light
coming from each red, green, and blue phosphor is summed together. CRT monitors
emit photons as a linear function relative to the input current, but cone luminosity
sensitivity is non-linear. Monitors include an exponential function, usually called the
gamma function, to adjust the display. The exponentiation of the pixel values by the
gamma function creates a linear increase in perceptual luminosity as the RGB values
increase.

The exact gamma function may vary depending upon the monitor, but a stan-
dard equation is: γ(x) = x2.2. The top plot of Figure 2.3 on page 10 shows the emis-
sion vectors for when red, green, and blue are maximum (αR = 1, αG = 1, αB = 1).
By using the gamma function γ(x) = x2.2; x ∈ [0, 1] and the maximum spectral power
distribution vectors Emax

R , Emax
G , and Emax

B (in Figure 2.3), the emission vector for
the RGB pixel (αR,αG,αB) is calculated as

P = γ(αR)Enorm
R + γ(αG)Enorm

G + γ(αB)Enorm
B . (A.3)

Each of the three terms γ(αR)Enorm
R , γ(αG)Enorm

G , and γ(αB)Enorm
B are vectors con-

taining the strength of the phosphor emission for discrete wavelengths at the specified
phosphor intensity.

Step 3: Cone activity in the retina

The raw photoreceptor wavelength sensitivity functions L, M , and S must be nor-
malized so that the final activation values will be in ranges usable by the LISSOM
model and be able to take on the maximum possible range of values. The normaliza-
tion method used here assumes that each cone type has an independent gain control
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so that when looking at a white light, each cone type becomes fully driven. Each
cone sensitivity function is independently normalized so that white light from the
computer monitor causes an activation value of 1. If the power spectrum of a pixel
showing white light is denoted as Pmax, then the formula for the normalization is

Lnorm =
L

LT · Pmax
; Mnorm =

M

MT · Pmax
; Snorm =

S

ST · Pmax
. (A.4)

The Lnorm, Mnorm and Snorm vectors replace L, M , and S in future calculations since
the normalization allows each cone type to take all possible values, and a white light
(αR = 1, αG = 1, αB = 1) generates the maximum cone activation (αL = 1, αM = 1,
αS = 1.)

Measuring the cone activity in the retina is done by taking the dot product
of the spectral sensitivity vector of the cone (Lnorm, Mnorm, or Snorm in Figure 2.3),
with the emission power spectrum P of the pixel in the RGB image

αL = P T · Lnorm; αM = P T ·Mnorm; αS = P T · Snorm. (A.5)

Then αL, αM , and αS are the scalar long, medium, and short cone activation values
for the image pixel.

A.2 Python conversion code

Python code that performs the above transformation is freely available on the web
from the University of Texas at Austin Neural Networks Group:
http://nn.cs.utexas.edu/keyword?rgbtolms .

105



Appendix B

Simulation parameter values

Most of the variables in the LISSOM simulation have standard values derived from
a handful of free parameters, and were borrowed from the default monochromatic
simulation settings with no modification (Miikkulainen et al., 2005). However, some
free parameters within LISSOM had to be adjusted according to the inputs and
architecture for each specific model. In addition, five new parameters were added
to the LISSOM simulator to support the modeling of trichromatic photoreceptors:
Three parameters modify the retinal stimuli, and two parameters specify the start
and ending iterations for V2 training.

B.1 Overview

Three distinct simulations were presented in this dissertation. The results of the first
were presented in Chapter 5 and Chapter 6 and showed the self-organized feature
maps and neurons in V1 and V2. The second simulation studied unbiased training
images and was presented in Section 7.2. And the third simulation created color
maps with all measured hue preferences and was presented in Section 7.3. LISSOM is
robust against variations in parameter settings, and results similar to those presented
in the dissertation can be obtained within a range of values.

In this chapter, the parameter values for these three simulations are reviewed.
The majority of parameter values are the same for all three simulations, but some
parameters have different values between simulations. The first section presents the
constant parameters of the color V1 map, which do not change between simulations.
The second section presents the new parameters that were added to the retina and
V2 regions to support color vision. In the third section, the modification schedules for
both V1 and V2 parameters are shown for those parameters that change their value
during the training of the model. The fourth section presents the parameter values
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Parameter Value Description

Ndo 64 Reference value of Nd, the cortical density

Ldo 24 Reference value of Ld, the LGN density

Rdo 24 Reference value of Rd, the retinal density

rAo
Ndo

4
+ 0.5 Reference value of rA, the maximum radius of the afferent connections

rEo
Ndo

10
Reference value of rE, the maximum radius of the lateral excitatory connections

rIo Ndo Reference value of rI, the maximum radius of the lateral inhibitory connections

tf o 20,000 Reference value of tf , the number of training iterations

wdo 0.00005 Reference value of wd, the lateral inhibitory connection death threshold

Table B.1: Parameters for the LISSOM simulation. These values define the base
simulation that serves as a basis for other parameters, as specified in Table B.2. The
subscript “o” in each name stands for “original”. Adapted from Miikkulainen et al. (2005).

unique to the V2 region, and the fifth section discusses the parameters for both V1
and V2 that change when going from a monochrome to a color simulation.

B.2 V1 and V2 default parameters

Table B.1 shows the reference constants for the derived V1 and V2 parameters shown
in Table B.2. The parameter values in Table B.2 are the same for all V1 and V2
simulations presented in this dissertation, except for the modified V2 parameters
described in Section B.5. The V1 and V2 cortical regions are separate sheets of
LISSOM neurons and therefore each have their own set of parameters within the
same simulation.

Previous default monochromatic simulations use two LGN sheets (Miikkulai-
nen et al., 2005), but with trichromatic simulations, the LGN region is expanded to
contain 16 sheets, and the memory requirements of V1 neurons increase eight-fold.
The greater memory requirements of each V1 neuron necessarily limit the maximum
value the V1 Ndo can take which controls the number of neurons within V1. Sim-
ilarly, increasing the lateral inhibitory connection radius rIo also increases memory
requirements of the V1 cortex, but the increase in radius is necessary to study the
long-range correlations and connectivity of color blobs. The other values in Table B.1
are the same as the default monochromatic LISSOM simulation (Miikkulainen et al.,
2005).

The majority of the parameter values listed in Table B.2 are also inherited from
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the default monochromatic LISSOM parameter values (Miikkulainen et al., 2005). A
few free parameters in V1 and V2 had to be adjusted so that the simulation would
properly self-organize when trained with color natural images. In particular, the pa-
rameters modified were the lower threshold βi, and the neuron learning rates αiA,
αiE, and αiI . Color images of natural scenes create little LGN activation compared to
artificial stimuli, therefore the βi parameter needed to be lowered so that V1 and V2
neurons would be more likely to respond to a retinal stimulus. Meanwhile, the affer-
ent and lateral learning rates were empirically determined so that feature selectivity
regions formed smooth transitions following the parameter schedule described later.

B.3 New retina and V2 parameters

To implement trichromatic color vision five new parameters were added to the LIS-
SOM model. Table B.3 shows these new parameters, along with the values they have
for the different simulations presented in the dissertation.

The parameters γL, γM , and γS are used to change the brightness of the long,
medium, and short photoreceptor channels in the retina. These parameters were
introduced because if one type of photoreceptor had a larger average brightness than
the other two photoreceptors then the cortex will be biased toward the brighter cone
type. Values greater than 1.0 make the training stimuli brighter than the original
input bitmap and is usually required for simulated photoreceptor inputs, because the
image transformation in Appendix A reduces the average brightness of the images.
By adjusting the scaling factor of the three cone types, balanced color-selectivity
maps will form in V1 and V2.

The parameter tS2 specifies at which iteration V2 will begin training, and tf2

specifies how many iterations V2 will train. For example, the values of the simulation
parameters for Chapters 5 and 6, shown in Table B.3, will start V2 training at iteration
20,000 and continue for 20,000 iterations. In order for V2 maps to not develop
ocular dominance maps, V2 must be trained on monocular stimuli after V1 has self-
organized. If ocular dominance maps are not being modeled, then the V2 map can
be trained at the same time as the V1 map.

B.4 V1 and V2 parameter schedules

Some V1 and V2 parameters (Tables B.2 and B.3) are constant and do not change dur-
ing training. Other parameters do change according to a fixed schedule (Table B.4).
The parameter adjustments allow early training iterations to form large and broad
selectivity blobs in the feature maps, and then have later iterations form fine details
within the maps.
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Parameter Value Description

Nd Ndo Cortical density, i.e. width and height of a unit area of cortex

Ld Ldo LGN density, i.e. width and height of a unit area of the LGN (the

area that projects to Nd)

Rd Rdo Retinal density, i.e. width and height of a unit area of retina (the

area that projects to Ld)

sg 1.0 Global size scale of the model in area units Nd, Ld, and Rd

nA 16 Number of afferent RFs per cortical unit (e.g. 1 ON and 1 OFF)

rA
Ld

4
+ 0.5 Maximum radius of the cortical afferent connections

riE
Nd

10
Initial value for rE, the maximum radius of the lateral excitatory

connections, before shrinking

rEf max(2.5, Nd

44
) Minimum final value of the rE after shrinking

rI N Maximum radius of the lateral inhibitory connections

sw
rA
rAo

Scale of rA relative to the default

σA
rA
1.3

Radius of the initial Gaussian-shaped afferent connections

σE 0.78riE Radius of the initial Gaussian lateral excitatory connections

σI 2.08rI Radius of the initial Gaussian lateral inhibitory connections

σc 0.5sw
Rd

Ld
Radius of LGN DoG center Gaussian

σs 4σc Radius of LGN DoG surround Gaussian

rL 4.7σs Maximum radius of the LGN afferent connections

sb 1.0 Brightness scale of the retina (contrast of fully bright stimulus)

ob 0.5 Brightness value of the background of the retina

Rp L Width & height of the random scatter of discrete pattern centers

ss 0.0 Scale of the input pattern scatter from the calculated value

sd 1.0 Input density scale (ratio between average cortical activity for one

oriented Gaussian to the average for the actual pattern)

st
1
sd

Iteration scaling factor; can be adjusted to use fewer iterations if

input patterns are more dense at each iteration, or vice versa

np max(1, sdsr) Number of discrete input patterns per iteration (e.g. Gaussians)

(Table continues on the next page)
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(Table continued from the previous page)

Parameter Value Description

N sgNd Width and height of the cortex, in number of units

L sgLd + 2(rA − 0.5) Width and height of the LGN, in number of units

R sgRd + 2
Rd
Ld

(rA − 0.5)

+2(rL − 0.5)
Width and height of the retina, in number of units

sr

(
L

Ld+2(rA−0.5)

)2
LGN area scale relative to the reference simulation

γA 1.0 Scaling factor for the afferent weights

γiE 0.450 Scaling factor for the lateral excitatory weights

γiI 0.875 Scaling factor for the lateral inhibitory weights

γL
2.33
sb

Scaling factor for LGN’s afferent weights

tis 9 Initial value for ts, the number of settling iterations

δi 0.076 Initial value for δ, the lower threshold of the sigmoid activation

function

βi δi + 0.55 Initial value for β, the upper threshold of the sigmoid activation

function

tf tf ost Number of training iterations

αiA 2.78× 10−5
Initial value for αA, the afferent learning rate

αiE 4.64× 10−3
Initial value for αE, the lateral excitatory learning rate

αiI 2.50× 10−4
Lateral inhibitory learning rate

wd 2wdo
r2I o

r2I
Lateral inhibitory connection death threshold

td tf Iteration at which inhibitory connections are first pruned

Table B.2: Defaults for V1 and V2 constant parameters. This table specifies how
the default values for the V1 and V2 simulations are constructed, based on the reference
values from Table B.1. These parameters have constant values in each simulation and
are always the same across each of the different simulations. Those with the superscript
“i” represent the initial values for parameters without the superscript, that starts at the
initial value and then is modified over the simulation, as shown in Table B.4. The table
is organized into sections including user-defined network size, connection radius, and input
pattern parameters on the previous page, and calculated network size, connection strength,
activation, and learning parameters on this page. Adapted from Miikkulainen et al. (2005).
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Parameter Description
γL Scaling factor for long cone gain control
γM Scaling factor for medium cone gain control
γS Scaling factor for short cone gain control
tS2 First iteration of V2 training
tf2 Number of V2 training iterations

Parameter Chapter 5 and 6 Chapter 7.2 Chapter 7.3
γL 1.19 1.40 1.40
γM 1.40 1.40 1.40
γS 0.70 1.40 1.15
tS2 20,000 0 0
tf2 20,000 20,000 20,000

Table B.3: New retina and V2 parameters for color simulations. A color-
selective LISSOM model requires adding five new parameters to the simulation. These
parameters have different values for each of the simulations presented in the disser-
tation.

The α and γ parameters within Table B.4 are described in Section 3.1.3. Pa-
rameters β and δ are the upper and lower threshold values for the piecewise sigmoid
activation function σ(·), used in Equation 3.2. The variable t is the number of set-
tling rounds of Equation 3.2 at each time-step. The parameter rE is the radii of the
excitatory connections of V1 neurons as measured in neurons.

The model can properly self-organize maps under a wide range of parameter
settings. For example, similar network organizations can be obtained with more or
fewer than 20, 000 steps, if the parameter multipliers are adjusted accordingly.

B.5 Unique V2 simulation parameter values

In all the simulations, V2 regions have the same values as the V1 regions, except for
the parameters listed in Table B.5. The differences between V2 and V1 are discussed
here, and are organized into five different categories: cortex size, afferent connection
radius, connection strengths, activation thresholds, and learning rates.

First, the number of neurons in the modeled V2 can be larger than V1, because
V2 requires much less memory. Therefore sg was increased to 2.0 which doubles the
size scale of the V2 region and makes N become 80. Parameter N sets the number
of neurons in V1 to N2, and can be increased or decreased based upon CPU memory
constraints. The larger number of neurons increases the smoothness of the V2 maps
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V1 parameter schedule
Iteration γI γE αI αE αA β δ t rE

0 γiI γiE αiI 5αiE 7αiA βi δi ti riE
200 γiI γiE αiI 5αiE 7αiA βi + 0.01 δi + 0.01 ti 0.600riE
500 γiI γiE αiI 7αiE 5αiA βi + 0.02 δi + 0.02 ti 0.420riE
1000 2γiI 2γiE 2αiI 10αiE 5αiA βi + 0.03 δi + 0.05 ti 0.336riE
2000 3γiI 2γiE 3αiI 15αiE 4αiA βi + 0.05 δi + 0.08 ti + 1 0.269riE
3000 3γiI 2γiE 3αiI 15αiE 4αiA βi + 0.08 δi + 0.10 ti + 1 1.5
4000 3γiI 2γiE 3αiI 15αiE 3αiA βi + 0.11 δi + 0.10 ti + 1 1.5
5000 4γiI 2γiE 5αiI 25αiE 3αiA βi + 0.14 δi + 0.11 ti + 2 1.5
6500 4γiI 2γiE 5αiI 25αiE 3αiA βi + 0.17 δi + 0.12 ti + 3 1.5
8000 4γiI 2γiE 5αiI 25αiE 3αiA βi + 0.20 δi + 0.13 ti + 4 1.5
20000 4γiI 2γiE 5αiI 25αiE 1.5αiA βi + 0.23 δi + 0.14 ti + 4 1.5

V2 parameter schedule
Iteration γI γE αI αE αA β δ t rE
tS2 + 0 γiI γiE αiI 2αiE 9.3αiA βi δi ti riE
tS2 + 1500 γiI γiE αiI 2αiE 9.3αiA βi + 0.06 δi + 0.06 ti + 1 0.600riE
tS2 + 2500 γiI γiE 2αiI αiE 7.0αiA βi + 0.10 δi + 0.08 ti + 1 0.600riE
tS2 + 5000 2γiI 2γiE 2αiI αiE 5.6αiA βi + 0.16 δi + 0.11 ti + 2 1.5
tS2 + 6500 2γiI 2γiE 5αiI αiE 3.3αiA βi + 0.21 δi + 0.23 ti + 3 1.5
tS2 + 8000 4γiI 2γiE 5αiI αiE 2αiA βi + 0.33 δi + 0.26 ti + 4 1.5
tS2 + 10000 4γiI 2γiE 5αiI αiE 2αiA βi + 0.36 δi + 0.26 ti + 4 1.5
tS2 + 13000 4γiI 2γiE 5αiI αiE 2αiA βi + 0.37 δi + 0.26 ti + 4 1.5
tS2 + 16000 4γiI 2γiE 5αiI αiE 2αiA βi + 0.37 δi + 0.27 ti + 4 1.5
tS2 + 20000 4γiI 2γiE 5αiI αiE 1αiA βi + 0.38 δi + 0.28 ti + 4 1.5

Table B.4: V1 and V2 parameter modification schedule. The table presents
the parameters that change during the network training, and their values at different
iterations. The top half shows the parameter values for the V1 region and the bottom
half shows the parameter values for V2. Each column shows the value of a parameter
at successive iterations during training. The parameter schedule allows the cortex
to initially make large adjustments to the network, and then gradually settle toward
fine grained organization. The model can properly self-organize maps under a wide
range of parameter settings.
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Parameter Chapter 5 and 6 Chapter 7.2 Chapter 7.3
N 80 80 80
nA 1 1 1
rA 12.5 12.5 12.5
γA 3.0 2.0 2.0
γiI 0.6 0.6 0.6
γiE 1.05 0.55 0.55
αiI 5.0× 10−5 5.0× 10−5 5.0× 10−5

αiE 1.0× 10−3 1.0× 10−3 1.0× 10−3

αiA 1.5× 10−3 1.5× 10−3 1.5× 10−3

βi 0.726 0.726 0.726
δi 0.040 0.040 0.040
sg 2.0 2.0 2.0

Table B.5: V2 region parameter initialization. The values of the parameters
in Equations 3.1, 3.2, and 3.3 are changed during training according to a preset
schedule. V2 parameter values are the same as the V1 values used in Table B.2
except for a few modified values which are shown in this table. Each cortical region
has an independent set of parameters so V1 and V2 are able to have different values
for the same parameters within the same simulation.

but does not change the size of the biological cortex that the model represents.
Second, V2 neurons have a retinal receptive field double that of V1 neurons.

Given the receptive field size of LGN cells, and the afferent connection fields of V1
neurons, setting rA to 12.5 gives V2 neurons double the retinal visual field of V1
neurons.

Third, the input connection scale of V2 neurons had to be empirically found,
and were set to the values shown in Table B.5. The model self-organizes properly
with a broad range of values so these input connection scales can be considered
recommended settings for future experiments and are not necessarily required values.
Increasing γiI will cause blob edges to form faster, and at large values cause unrealistic
fractures to form. Meanwhile, increasing γiE will increase the number and size of
activity blobs in the cortical region, and generally must be balanced against the
strength of γiI . Also, γA affects the strength of the afferent stimuli, and should be
increased if the input sheet is not generating enough cortical activity, and decreased
if there is too much cortical stimulation.

Fourth, the βi and δi threshold values of the sigmoid activation function needed
to be adjusted. All V1 activity is important for training V2 so the δi for V2 can usually
have a lower value than for V1. Meanwhile, βi needs to be balanced with the input
connection scales so that the normal range of training stimuli causes smooth activity
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blobs with gradual changes in neural activity along the blob edges.
Fifth, the learning rates of the afferent and lateral connections have to be

adjusted so that learning is not so fast that neurons forget previous presentations,
but not so slow as to never become feature selective. The learning rate parameters
depend upon how often activity blobs appear in the cortex. All regions of the cortex
need to get one or two activity blobs to set initial preferences, then lower learning
rates can be used to allow the model to create smooth transitions between the different
preference regions.

B.6 Extending a monochrome LISSOM model to

color

This section describes further why certain parameters were changed from the values
already established as appropriate for the default monochrome simulation reviewed
in Miikkulainen et al. (2005).

Cortex size Ndo

Memory constraints required setting Ndo to 64. V1 then had 64× 64 neurons,
each with 16 circular afferent connection fields. Memory requirements increase
proportionally to the square of Ndo. The memory requirements for V2 are less
than for V1 since each V2 neuron has a single afferent projection.

Cortical cell inhibitory radius rIo

The default radius of monochrome simulations was not large enough to allow
color blobs with the same preferences to connect together. The lateral radius of
inhibitory connections was increased to equal Ndo so that the lateral interactions
between color-selective neurons could be established.

Number of afferent receptive fields nA

Default monochrome simulations have a value of 2, one for the ON LGN sheet,
and the other for the OFF LGN sheet. With trichromatic simulations this value
was increased to 8, or one each of the ON and OFF versions of the four types of
color-opponent receptive fields. With a two-eye simulation, the parameter was
doubled to 16.

Inhibitory connection gain γiI
The V1 inhibitory connection gain was reduced slightly to 0.076 and then ad-
justed throughout the simulation (shown in Table B.4) to keep the activity blobs
from developing fractures and sharp edges.
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Lower threshold for sigmoid activation δi

The lower threshold of the piecewise-linear sigmoid function was reduced slightly
from the default monochrome simulation setting because the training images
were generally darker than in the monochrome simulations and caused less cor-
tical stimulation. A lower δi caused neurons to respond stronger to weaker
stimuli. The starting values for δ are shown in Tables B.2 and B.5, while the
modification schedule is in Table B.4.

Learning rates αiE, αdi , α
i
A

Color natural images tend to create fewer activity bubbles than monochrome
images. To compensate, the learning rates were increased so that the model
would learn more from each presentation. Care was taken to ensure that the
maps still developed smoothly; increasing these rates too high would result
in individual patches learning too quickly, without a global, smooth ordering.
Note that the activity patterns affect all of the connection types equally. As a
result, the learning rates are tightly coupled and should be adjusted together
as a group. The starting values for these parameters are shown in Tables B.2
and B.5, while the modification schedule is in Table B.4.
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