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Abstract— Dynamics of multi-link manipulators with flexible 
links include complex high-order equations which make their 
control problem very challenging. This paper presents a new 
method for simultaneous motion and vibration control of a two-
link flexible manipulator using H2/H∞ control. A multi-element 
finite element model of the manipulator is casted into the 
generalized plant model, and H2 and H∞ controllers are 
synthesised employing the LMI-based optimization algorithm of 
MATLAB. Finally, a mixed sensitivity H2/H∞ control is proposed 
based on an H2 norm constrained H∞ control design. It is shown 
that the method of control design can be used successfully for the 
control of the joint parameters as well as suppression of vibration 
at the tip (end-effector) of the manipulator. 

Index Term--  Flexible manipulators; motion and vibration 

control ; mixed H2/H∞ control ; finite element modelling 

I.  INTRODUCTION 

    Flexible-link manipulators (FLMs) originally were 
developed to achieve advantages such as lightness, high 
payload capacity, accessibility to wider workspaces, and so 
on. These advantages are of particular importance in space 
robots [1]. In order to achieve the advantages, robotic arms 
can be designed with long and slender links; which in turn 
introduce flexibility to the system due to the elastic behavior 
such as bending and torsion of the links. Abundant research 
has been done to cope with modeling and control of the FLMs; 
and it is yet an open field.  

    Many methods have been proposed for modelling the 
dynamics of FLMs. Some famous examples include the 
assumed mode method (AMM), finite element method (FEM), 
perturbation methods, and Ritz expansion. Some researchers 
have reported studies on the dynamics of FLMs, without 
proposing a controller for the manipulator; while others 
propose methods for control, because most researchers are 
interested in models that can be used in control design [2]. 
Dwivedy and Eberhard [3] represented modeling of a two-link 
FLM using AMM with four modes. Supriyono and Tokhi [4] 
proposed a model of a single-link FLM based on biologically-
inspired optimization technique of bacterial foraging 
algorithms.  

    The dynamics of a FLM has challenging complexities for 
control engineers. Many research were carried out attacking 
the complexities in the control of the FLMs. Chapnik, et al. [5] 
proposed an open-loop control system using frequency-
domain techniques to compute a desired hub torque profile. 
Khorrami, et al. [6] studied a feedback linearization method 
for control of a two-link FLM. Bai, et al. [7] studied 
identification of friction in a two-link FLM. An inversion 
based controller that cancels the effect of the unstable zeros in 

a single-link FLM was presented in [8]. Cole and  
Wongratanaphisan [9], suggested an adaptive method for feed-
forward control of a two-link FLM to achieve zero residual 
vibration in rest-to-rest motion. Shawky et al. [10], studied 
nonlinear control using end-point position feedback for a 
single-link FLM. Feliu et al. [11], studied passivity-based 
control of a single-link FLM considering robustness against 
payload variations and friction of the joints. 

    Perhaps the most important control problem in the FLMs is 
vibration suppression during or after a maneuver of the 
manipulator. In order to control the vibrations, we will need to 
have a standard norm that shows the severity of vibration. 
Depending on how such ‘norm’ is defined, the objectives and 
methods of control synthesis will vary. Two common tools to 
quantify vibration levels are the H2 and H∞ norms. Then, a 
controller that minimizes the H2 (H∞) norm of an output signal 
is known as H2 (H∞) controller. It is known that noise or 
random disturbances are more naturally expressed in H2 or 
RMS terms. An LQR/LQG controller in fact attacks the H2 
performance aspects, and therefore is a good candidate for 
controlling the seemingly random vibrations of flexible 
systems. Konno and Uchiyama [12] studied LQR control of a 
two-link manipulator. Milford and Asokanthan [13] also used 
an LQG controller. 

 

    Due to uncertainties of the dynamic model, robust control of 
the FLMs has received particular attention in the literature. 
Along with various robust control methodologies, H∞ control 
provides methods to deal with the stability and performance 
robustness. As some examples, Hisseine and Lohmann [14] 
considered sliding mode as well as nonlinear H∞ control of a 
single-link FLM. Ming-Tzu and Yi-Wei [15], employed the 
H∞ framework for achieving good performance of PID control 
for a single-link FLM. 

    In practical applications, sometimes standard H∞ synthesis 
methods are not adequate to capture all design specifications. 
Therefore imposing an additional H2 performance requirement 
to the H∞ synthesis may include the advantages of an LQG 
design. Likewise, including an H∞ performance requirement 
can improve LQG design [16]. Banavar [17] added an H∞ 
controller to an LQG to improve stability of the LQG control 
of a single-link FLM. [18] designed a mixed-sensitivity H∞ 

controller for a single-link FLM including gravity terms. 

    The Mixed-Sensitivity H2/H∞ Control has been used 
successfully for various control engineering applications. 
Safonov, et al. [19] used a mixed-sensitivity H∞ control for 
robust control of a large scale space structure. Ohishi, et al. 
[20]  proposed a force control technique for a manipulator 
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realized by an acceleration controller and a force observer, 
both designed by the mixed-sensitivity H∞ design method. 
Toker and Ozbay [21] presented a method for H∞ optimal and 
suboptimal controllers for a class of infinite-dimensional 
distributed SISO systems. Chaudhuri, et al. [22] designed a 
decentralized H∞ damping control based on the mixed-
sensitivity formulation in the LMI framework for power 
system damping control problem. Khosrowjerdi, et al. [23] 
formulated the problem of simultaneous fault detection and 
control as a mixed H2/H∞ optimization problem and proposed 
a solution using Riccati equations. Sheng, et al. [24] used an 
H∞-based mixed sensitivity analysis method for improving the 
dynamics and robustness of a flexible plate. Jingjun, et al. [25] 
simulated active vibration control of a cantilevered beam. Yi, 
et al. [26] applied the mixed-sensitivity method on a 
pneumatic actuator. Guo, et al. [27] used mixed-H∞ norm 
sensitivity minimization for designing insensitive output 
feedback controllers for linear continuous-time systems. 

In this work, the problem of H2/H∞ control design for a 
planar two-link manipulator with flexible links is investigated. 
For this aim, first two controllers, i.e. one H2 and one H∞ 

controller, are designed and compared in terms of speed 
(settling time) and level of vibration of the tip of the 
manipulator. Then, the final mixed H2/H∞ controller is 
achieved by solving the H∞ optimization problem under H2 
constrains. The model used in this work is a multi-element 
FEM model of the manipulator. The dynamic equations of 
FEM models with multiple elements have big matrices which 
make the feedback control design more complex. The 
numerical method for H2/H∞ control design using linear matrix 
inequality LMI which is provided in MATLAB, was 
employed successfully for the control design. 

    The remainder of this paper is organized as follow. First, in 
section 2, the model of the two-link FLM is introduced. In 
section3, the methodology of the H2/H∞ LMI optimization is 
represented. Section 4 is devoted to H2 control design which 
will be used as the first cut or reference to evaluate the 
performance of control system in terms of suppression of 
vibration. Then in section 5, an H∞ controller is presented. In 
section 6 the mixed H2/H∞ controller is proposed to make a 
trade-off between the advantages of the H2 and the H∞ control. 
Finally, the conclusions will be summarized. 

II. THE MODEL OF THE FLEXIBLE MANIPULATOR  
    In this paper, similar to [28], FEM is used for modeling the 
two-link FLM. For this reason each link is divided into ten 
Euler-Bernoulli beam elements. The FEM model of the 
manipulator is shown in Figure 1. Denoting the degrees of 

freedom of each node i by iiv , , which show the linear and 

angular displacements of the node; and showing the joint 

angles with 21, , the vector of generalized coordinates can 

be written as 
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The superscript 
T
 stands for transpose of the vector. The 

partitioning line in equation (1) separates the coordinates of 
the first and the second links. 

 

Fig. 1.    Model of the flexible arm 

In order to derive the dynamic equations, the potential and 
kinetic energy of the system is measured by summation of 
energies of all the Euler-Bernoulli elements. For this aim, the 
elemental values of the kinetic and strain energies of each 
element are measured using integration over Hermite shape 
functions. The kinetic energy will be then 

dxRRdxRRT
elementLinkelementLink

22

2

11

1

.
2

1
.

2

1 
  

                  (2) 

 

where   is the mass per unit length, and 
1R
 , and 

2R
 are the 

time derivatives of the vector of position of a particle on the 
first and the second link, as shown in Figure 1. Next, 
supposing EI1, and EI2 are the flexural rigidity of the first and 
the second link, the potential energy of the system can be 
obtained as 
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In order to fulfill the integration, according to the Euler-
Bernoulli beam theory, a matrix of Hermite shape functions, 
N(x), is adopted which relates the continuous function v(x) of 
an arbitrary element i to the nodal coordinates as follow 

T

iiii vvxNtxv },,,)]{([),( 11                        (4) 

Now, using equation (4) in equations (2) and (3), and 
considering the physical parameters of the system as given in 
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Table I, the overall energies are obtained in terms of the 
generalized coordinate vector of equation (1).  

 
TABLE I. 

 PHYSICAL PARAMETERS OF THE MANIPULATOR 

Parameter Upper arm Forearm Unit 

Length 300 300 mm 

Thickness 1.5 1 mm 

Width  30 25 mm 

Mas per unit length 1.993 1.107 g/cm 

Elasticity Modulus  113.8 113.8 GPa 

Initial angle 6/
 

3/  Rad 

 
    Defining the inertia and stiffness matrices M and K, the 
overall kinetic and potential energies can be rearranged in a 
matrix form as 
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Having measured the system energies, the Lagrange’s 
equations may be used to yield the relation between 
k=1,2,3,…,n generalized coordinates and the generalized 
forces Qk as 
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In which L=T-U is the Lagrangian of the system. With a ‘n 
by 2’ matrix F known as the input matrix given by 
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The generalized forces Qk are related to the virtual work 
done by non-conservative forces and the torques applied by 

the first and the second motors ( 21, ). Then, the linearized 
form of the dynamic equations is represented in the following 
matrix equation 

 

TFqKqM },{ 21 
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              (8) 

 

Equation (8) needs to be supplemented with the relevant 
boundary conditions (BCs). For the manipulator, the BCs 
include pinned BC at the joints, and free BC at the tip. 
Therefore, for the first node of each link just rotational DOF 
are possible; and so some of the columns and rows of M, K, 
and F can be eliminated, and the matrices are reduced to 

,
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,
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~

and equation (8) is rewritten as follow 
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Then, with zero and identity matrices O and I, a state space 
representation of the system is obtained as  
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The transfer matrix of the system is also achieved by 
selecting the proper output vector of the joint angles and 
displacement of the tip. Then, the system is represented as  
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where 
1  and 

2  are angular motion of the shoulder and 

elbow joints, and Tipv is the deflection of the tip. 

III. THE METHOD OF H2/H∞ CONTROLLER DEIGN USING 

LMI SOLVER 

The method of mixed H2/H∞ synthesis using Linear Matrix 
Inequality (LMI) [29] (also developed in [30], and [31]) 
performs multi-objective output-feedback synthesis to design a 
suboptimal LTI controller K(s) that minimizes a mixed H2/H∞ 
criterion using convex optimization. First, the system equation 
is rearranged in the form of a generalized plant, P(s), with 
state vector x, exogenous input w, and control input u as 
follow  
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Here y is the feedback signal, and z2 and z∞ are the output 
signals used as performance index. The matrices A, B, C, and 
D are the system matrices. Then, a linear controller is 
considered as  

 

   







yDCu

yBA
sK

KK

KK




:)(

                              (13) 

 

Note that K(s) has the measured outputs of the plant as its 
input, and the input vector of the plant as its output. The 
corresponding closed-loop system can be measured and 
rearranged in the form of an LTI system as 
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The general form of the closed-loop system is sketched in 
Figure (2)  

 

 

Fig. 2.   General representation of the control problem 

Note that with this configuration, the system has two 
output and one exogenous input vector. Therefore, two 
transfer functions are required to relate the outputs to the 
input. The closed-loop transfer functions from w to z∞ and z2 

are denoted by T∞(s) and T2(s) respectively.  
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22 ,,   . Then, denoting by ∥.∥∞ and ∥.∥2 
the H∞ norm, and H2 norm of the transfer functions, the 
control objective of the H2/H∞ is to minimize  ,  so that 
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The mixed H2/H∞ method [31], seeks for a common 

Lyapunov matrix 
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The second theorem, for satisfying the H2 performance 
requirement, states the transfer function from w to z2 does not 
exceed   if and only if Dcl2=0 and there exist symmetric 

matrices 2  and Q such that 
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In this work, first one H2 control and one H∞ control are 
designed using the algorithm. Then, the final mixed H2/H∞ 

controller is achieved by solving a constrained H∞ optimization 
problem to make a trade-off between the H2 and the H∞ control.  

The architecture of the control system and the outputs 
considered for optimization is shown in Figure 3. In order to 
conform to the standard format given in Figure 2, the 
configuration of the controlled system is rearranged to the 
linear fractional transformation (LFT) as shown in Figure 4. 
These figures will be referred to in the next sections, to show 
the performance criterion. 

 

Fig. 3.    Mixed sensitivity control configuration 

 

 

Fig. 4.    Rearrangement of the feedback controlled system as LFT 

 

IV. H2 OPTIMAL DESIGN  

    One measure for vibration level is provided by the H2 norm. 
The H2 norm of a stable continuous system is related to the 
root-mean-square (RMS) of its impulse response. The H2 
norm also represents the steady-state covariance (or power) of 
the output response to unit white noise inputs. Therefore the 
objective of vibration suppression can be translated to 
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minimizing the H2 norm of the output signals of a mechanical 
system. The controller design method with the objective of 
minimizing a H2 norm is known as the H2 optimal design. In 
this section an H2 control design is performed for the two-link 
FLM. The design will be used as a reference for evaluation of 
the next H2/H∞ controllers. 

    Let T2 be the transfer function from the vector of desired 
joint angles to the output vector, including the actual joint 
angles as well as the transversal displacement of the tip due to 
elastic deformation.  
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The H2 controller is designed targeting at the following 
optimization problem 

 

Minimize: 
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    The step response of the closed-loop system is shown in 
Figure 5. As the system has two inputs, two unit step 
commands are applied separately; and the response of three 
outputs are plotted. Note that the time range of the third 
output, that is the normal acceleration of the tip due to 
deflection, is different. The simulation result shows that the 
response of the joint angles is very slow; and the overshoot is 
more than 20%. However, the vibration of the tip of the 
manipulator has a very small value, in better words an optimal 
value in the sense of H2 norm. The achieved optimal value for 
Equation 21 was: 3930.00  . This value will be used in next 

sections, as a reference point in our H2/H∞ controller design. 
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Fig. 5.   Step response of the H2 optimal design 

V. THE MIXED SENSITIVITY H∞ OPTIMAL DESIGN 

    In addition to the H2 norm, a well-known standard measure 
for evaluation of vibration levels is provided by the H∞ norm 
which can be thought of as a measure for the peak amplitude 
of the FRF of the system. This norm is even more common in 
vibration measurement and control as it shows the resonant 
characteristics of vibration modes. The controller design 
methodology targeting at the minimization of the H∞ norm is 
known as H∞ optimization design.  

    As mentioned before, different performance requirements of 
the controlled system can be translated to conditions on the H∞ 
norm of the S, T, and KS, where S and T are the sensitivity and 
complementary sensitivity transfer matrices, and K is the 
controller. For example good tracking, noise attenuation and 
robust stability (with respect to multiplicative output 
uncertainties) can be achieved by small T(s). On the other 
hand, the performance of the system in terms of command 
tracking and disturbance attenuation can be translated to 
requirements for S(s) since it relates the error signals with 
references and disturbances. Additionally, the optimization of 
the control effort within a limited bandwidth (constraining 
actuator saturation) is equivalent to minimizing KS(s). Thus, 
all in all, the optimization problem is summarized as a mixed-
sensitivity synthesis aiming at minimization of the H∞ norm of  
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With weighting filters w1,2,3 , this objective is known as the 
weighted S/KS/T (read S over KS over T) mixed-sensitivity. In 
this section the pure H∞ optimal design of the controller is 
considered. The controller is designed to 

 

 Minimize: 


T
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    The step response of the resulting closed-loop system with 
the H∞ controller is represented in Figure 6. It is obsered that 
the H∞ provides better performance in terms of the rise time 
and overshoot of the step response, compared with the H2 
controller.  
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Fig. 6.    Step response of the H∞ optimal design 

        Comparison of Figure 5 with Figure 6 reveals that the H2 
control results in less vibration at the tip. Therefore, it is 
inferred that including an H2 condition in the H∞ norm 
optimization may provide better vibration suppression. The 
method of designing controllers with minimizing both the H2 
and H∞ norms are known as mixed H2/H∞ design. 

VI. THE MIXED H2/H∞ DESIGN 

In this section, a mixed H2/H∞ design is proposed through 
the following optimization problem: 

 

Minimize: 





T

KS

S


,        (24) 

Subject to: 
02

nT  . 

The design parameter n is used as a tool for tuning the 
controller. By increasing n the controller performs similar to 
the H∞ controller; and decreasing n will result a performance 
like the H2 controller. Recall that H2 controller was slower but 
had less vibration. Figure 7 shows the response of the 
controlled system with different values of n. The results show 
that with increasing the n, the response of the joint angles 
become more desirable. Particularly in an approximate range of 
2<n<10 the mixed control method is effective. With higher 
values of n, more overshoot and more vibration of the end-
effector is resulted. Therefore, the final design is selected with 
n=5. Figure 8 show the step response of the closed-loop system 
with the final controller.  
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Fig. 7.   Step response of the mixed H2/H∞ design 
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Fig. 8.    Step response of the mixed H2/H∞ design (with n=5) 

VII. CONCLUSION 

In this paper a set of H2/H∞ controllers was developed for 
simultaneous motion and vibration control of a two-link 
manipulator with flexible links. A multi-element FEM model 
of the manipulator was considered and the control problem was 
casted into standard configuration of linear fractional 
transformation. The simulation results showed that although 
the response of the closed-loop system under the H2 control 
was very slow compared with that of the H∞ controller; the H2 
controller was more successful in vibration suppression. It was 
inferred that attacking at the H2 norm is very effective in 
vibration control of the manipulator. Therefore, a mixed H2/H∞ 
control was designed to include the advantage of the H2 control 
in the H∞ design. It was shown that the mixed H2/H∞ method 
provides a trade-off among the advantages of the H2 and H∞ 
control for the complex dynamic system. 
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