
On the Exploitation of the Android OS for the
Design of a Wireless Mesh Network Testbed

Matteo Danieletto⋆,⋄, Giorgio Quer⋄, Ramesh R. Rao⋄, Michele Zorzi⋆,⋄

⋆DEI, University of Padova, via Gradenigo 6/B – 35131, Padova, Italy
⋄University of California, San Diego – La Jolla, CA 92093, USA

Abstract—Wireless devices running the Android operating
system offer a novel opportunity to study network behaviors and
to observe and modify in real time key networking parameters.
This opens up an unprecedented opportunity to study, test and
evaluate the performance of techniques operating at different
layers of the protocol stack and adopting the cognitive networking
paradigm. In this paper, we describe our novel IEEE 802.11 mesh
network testbed that integrates Android based devices. The aim
is to build a flexible testbed to observe in-stack and out-stack
parameters of interest, that can be used to test many networking
techniques in both civilian and tactical and hostile scenarios. We
provide the implementation details to create an ad hoc network
among these inexpensive commercial devices, and specify how
to observe and modify the networking parameters at different
layers of the protocol stack. Through some examples we show the
stability of the network and discuss the time evolution of some
parameters of interest.

I. INTRODUCTION AND RELATED WORK

Novel MAC, routing, transport and application layer tech-

niques for tactical and civilian wireless mesh networks have

been proposed by the networking community. However, it is

difficult to find appropriate tools to compare the performance

of such techniques in a realistic scenario, thus most of the

comparative analyses are performed in very specific scenarios.

In the literature, there are two approaches to compare the

network performance that are recognized to be sufficiently

realistic. The former is based on a discrete event network

simulator, and the different versions of the Network Simulator

(NS) [1] have proved to be a realistic simulation tool in most

cases. The advantage of this approach is that the software

developed to test a specific network scenario can be easily

adapted and reused by the networking community to test other

techniques in slightly different scenarios. The main problem is

that it is never completely clear how realistic such simulations

are, as it is not possible to predict and simulate all the factors

that play an important role in a real network scenario.

The latter approach includes most of the network testbeds

presented in the literature, which are based on specific and

often expensive hardware. Among them, CalRadio [2] is

an open and reprogrammable IEEE 802.11b-compatible de-

velopment platform for experimental purposes at the Data

Link layer, designed and developed at the California Institute

for Telecommunication and Information Technology, UC San

Diego. Another interesting testbed is presented in [3], where a

mobile node communicates to a fixed infrastructure composed

of wireless sensors via IEEE 802.15.4 in order to locate its

position as a function of the Received Signal Strength Indicator

(RSSI). Another testbed solution is Roofnet [4], an exper-

imental 802.11b/g mesh network at the Computer Science

and Artificial Intelligence Laboratory of the Massachusetts

Institute of Technology (MIT). In Roofnet there are 50 nodes

deployed on the MIT campus with the purpose of testing

different routing protocols. However, such network includes

only fixed nodes, and there is no mobility involved.

The main advantage of developing a real testbed is that it

allows to test the networking techniques in a real scenario, pos-

sibly very similar to the tactical or civilian scenario in which

the networking techniques will be adopted. The drawback is

that the nodes in such testbeds are realized with specific and

often expensive hardware, making them very hard to be reused

by other members of the networking community without a

considerable investment of time and resources in order to

replicate such testbed. Two examples of civilian testbeds can

be found in [5] and [6]. The first one is the Virginia Tech

Cognitive Radio Network (VT-CoRNET), developed using ad

hoc hardware, i.e., 48 software-defined radio nodes and the

Universal Software Radio Peripheral (USRP2). The second

one is the Open-access Radio Testbed for next-generation

wireless network (ORBIT), developed at WINLAB, Rutgers

University, using 400 programmable radio nodes and 28
USRP2 radios.

These testbeds can enable the cognitive networking

paradigm [7], according to which it is possible to learn in an

automated fashion the behavior of the network by observing

some key networking parameters, and to exploit this knowl-

edge to predict the future performance of the network and

act accordingly. On the other side, in a tactical environment,

there are specific constraints, e.g., due to hierarchical and

heterogeneous radio communication, which are typical of such

networks [8] and should be kept into account when applying

the cognitive network paradigm.

In our testbed we want to allow the testing of cognitive

networking techniques, but at the same time we want to create

a tool that is flexible enough to be used in different tactical

and civilian scenarios, easy to manage, based on relatively

inexpensive hardware, and that can be easily recreated by

other researchers around the world. To meet these goals,

we have chosen to use tablets and smartphones running the

Android Operating System (OS), since these devices are

commercially available, relatively inexpensive, mobile, and

highly customizable. With these devices, we have realized the

Android Wireless Mesh Network (AWMN) testbed, based on

the IEEE 802.11 standard.

Using commercial devices in tactical networks may cre-

ate some issues, since the communication should follow

the National Security Agency standards for data encryption.

However, [9] details how to create an architecture where



commercial and tactical networks can interact by using a

specific gateway.

We stress the fact that the possibility to observe and

modify in-stack parameters (i.e., those parameters that can be

directly observed from the protocol stack) at different layers

is the basis to implement the cognitive network paradigm

beyond the physical layer [10], e.g., see how this paradigm

has been adopted in a tactical multi–hop wireless network

in [11]. Furthermore, since the commercial devices used to

implement this testbed are equipped with other sensors like

a GPS, a gyroscope and an accelerometer, it is possible to

observe with such devices also out-stack parameters (i.e., those

parameters that are not directly related to the protocol stack,

e.g., environmental or positioning data), that can be exploited

to design and test novel cognitive networking protocols using

this additional out-stack information. For all these reasons, this

work opens up a very promising research opportunity, since

with the proposed network testbed it will be possible to test

in a real and mobile scenario a vast variety of single–hop and

multi–hop networking protocols.

In a nutshell, the main contributions of this paper are:

• a qualitative comparison among different networking

testbeds and a description of the main advantages of a

testbed based on Android;

• the realization of a wireless mesh network among An-

droid devices with the description of the software modifi-

cations needed to enable such network using commercial

devices;

• a study on how to observe and modify key TCP/IP in-

stack parameters in an Android based system;

• some preliminary results to show the realistic time evo-

lution of such parameters in our system.

The rest of the paper is organized as follows. In Sec. II we

overview the main features of the Android OS. In Sec. III

we describe the software changes needed to enable mesh

networking in an Android device, while in Sec. IV we detail

how to modify the Android OS in order to measure some

key networking parameters. Then, in Sec. V we describe the

testbed deployment and provide some preliminary results on

the time evolution of such parameters. Sec. VI concludes the

paper and presents some future work.

II. ANDROID-BASED NETWORKS

In this section we give an overview of the Android-based

network ecosystem and describe some preliminary Android-

based network implementations currently available. We dis-

cuss the major drawbacks of such implementations, and inves-

tigate the challenges to design a more flexible Android-based

mesh network, like the one proposed in this paper.

A. The Android ecosystem

In the last few years, Android has rapidly become the most

popular Operating System for smartphones and tablets, since it

is running on about 70% of the smartphones in the world. An-

droid is a very flexible OS for mainly two reasons. The former

is that the Software Development Kit (SDK) for Android, i.e.,

the toolkit needed to develop an Application (APP), is released

for all the three main commercial OSs for personal computers:

Microsoft Windows, GNU/Linux, and Apple OSX. As a result

of this open source philosophy, there exists a huge software

community that uses Android and shares key information

to develop new APPs. A developer can use the Application

Programming Interface (API) released with the SDK to design

a new APP, independently of the specific device used, since

the APIs are common to every Android device. Furthermore,

such software community shares also information on how to

modify the Android system to improve the performance of

the mobile devices. The latter reason is that the Android OS is

based on the Linux kernel. Such kernel is released and publicly

available, and it is possible to modify and compile it with the

Native Development Kit (NDK), a free toolset released by the

Android team. Indeed, developers with programming skills on

Linux kernel module can design, write and enable new features

in a relatively simple way.

The Android OS structure is divided into layers, where each

layer provides different services to the corresponding upper

layer. In our work we modify the software at the Application

framework layer to manage the network, and the Linux Kernel,

where the TCP/IP protocol stack is implemented, and from

where we can observe and modify the network parameters of

interest.

B. Android: advantages and challenges

In a standard Android OS, the only node to node com-

munication mode allowed is a high level mode based on a

client/server architecture. This communication mode basically

exploits a standard protocol stack, where the transport layer is

redesigned to create a direct communication between devices.

This mode is named Wi-Fi Direct [12]. An advantage of Wi-

Fi Direct is that it implements over the data link layer the

Wi-Fi Protected Access (WPA2) to encrypt the messages and

to ensure a secure communication. The main disadvantage is

that, despite the fact that this communication mode allows

the direct connection between two devices, the routing can be

implemented only as an application over the transport layer.

Thus, with Wi-Fi Direct it is not possible to create an efficient

multi-hop network among devices.

An important advantage of the Android OS over similar OSs

for mobile devices is that it is a very flexible platform that can

be easily modified by an expert developer. Thus, we exploit

this characteristic of the Android OS to enable a more realistic

and efficient ad hoc communication mode. By modifying the

Linux kernel source code, it is indeed possible to modify also

the communication mode of the mobile device and to enable

the pure ad hoc communication mode.

Another important advantage of the Android platform is

that it is flexible enough to allow the observation and the

possibility to modify network parameters at different layers

of the protocol stack, thus allowing a real implementation

of cross-layer techniques that follows a cognitive network

paradigm. Furthermore, it is also possible to observe other

out-stack parameters, that can also be integrated in a cognitive

network technique.

C. Existing Android-based mesh networks

The main advantage of an Android based testbed over other

networking testbeds is that it is composed of inexpensive



commercial devices and is relatively easy to replicate. Such

testbed should be able to monitor and to modify some TCP/IP

in-stack parameters in order to test novel cognitive networking

protocols. In the literature, to the best of our knowledge, there

does not exist a testbed with such characteristics. The few

Android based testbeds available do not allow the possibility

to observe and modify in-stack parameters, but are instead

designed for a more specific application.

An interesting Android based testbed is named Serval [13].

In Serval, an Android–based multi–hop ad hoc network is

implemented among smartphones running the Android OS. In

this testbed, the mobile phones can communicate even in the

absence of a fixed infrastructure via the ad hoc network mode.

Another interesting open source software to create a mesh

network among wireless devices is named Commotion [14].

In this project, Android devices and Linux based laptops can

communicate in an ad hoc mode.

Both these approaches are based on an ad hoc communi-

cation mode that can be extremely helpful (1) after a sudden

failure of the mobile network infrastructure, e.g., in the case of

a natural disaster, (2) when the cellular network is overloaded,

e.g., in an overcrowded public event, or (3) in the absence of a

network infrastructure, e.g., in a hostile tactical environment.

However, in Serval as well as in Commotion, only the ad hoc

network mode is implemented, and the focus of such testbeds

is not on the observation of the network parameters to allow

the implementation of cognitive network techniques.

III. ANDROID WIRELESS MESH NETWORK

In this section we present the Android Wireless Mesh

Network (AWMN) and we describe the software changes

needed to enable the Mobile Ad hoc NETwork (MANET) by

which we connect the devices in our testbed. In the following

we first show how to create an ad hoc network among Android

devices, and then we describe the multi–hop routing protocol

chosen.

A. Ad hoc network

There exist different modes, named service sets, in which

an IEEE 802.11 wireless local area network can be set up.

The standard one is the Basic Service Set (BSS), in which a

central controller (the access point) manages the connections

among the devices, organized in a star topology. Another

mode is named Independent Basic Service Set (IBSS), also

known as ad hoc mode, in which each device manages its

own connections without a central controller. If we activate

this mode, we can create a mesh network that allows multi–

hop communications.

By default, the IBSS mode is disabled in the most recent

versions of Android. Depending on the specific device, the

IBSS mode is disabled either at the Application Framework

or in the Linux kernel. In the first case, in order to connect a

device in IBSS mode to a network we use the iw tool, i.e., a

tool to configure the IEEE 802.11 driver. In other words, the

iw can force the device to connect to an ad hoc network. This

is the case of, e.g., a Samsung Galaxy Tab 7.0 device with

Atheros AR6003 chipset and ath6kl driver.

In the second case, when the IBSS mode is disabled in

the Linux kernel, it is necessary to act directly on the Linux

APPLICATION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

CFG 80211

DRIVER

MAC

80211

USERSPACE

KERNELSPACE

HARDWARE

NL80211

CFG80211 

API

Fig. 1: TCP/IP protocol stack in an Android device.

kernel and to modify the driver source code to activate the

IBSS mode and create an ad hoc network. This is the case

of, e.g., a Nexus 7 device with BCM4330 chipset and bcmdhd

Linux driver. We used the following patch:

+++ b/drivers/net/wireless/bcmdhd/wl_cfg80211.c

- BIT(NL80211_IFTYPE_STATION)

+ BIT(NL80211_IFTYPE_STATION) |

BIT(NL80211_IFTYPE_ADHOC)

In most devices, in order to perform these operations, it

is necessary to log in as a root user and to flash the ROM

memory.

B. Multi–hop network

Once the ad hoc network is set up, it is necessary to manage

the multi–hop routing at the network layer. We have adopted

the Optimized Link State Routing protocol (OLSR) [15].

OLSR works over the Datalink layer and is a proactive

routing protocol for MANETs. OLSR sends control packets

to exchange regularly topology information with other nodes

of the network.

IV. NETWORK PARAMETERS: OBSERVATION AND ACTION

In this section we report the list of observable TCP/IP

protocol stack parameter, and we detail how to observe and

store them by modifying the Android software at different

layers.

The TCP/IP protocol stack for the Android OS is depicted

in Fig. 1. Our task is to observe and possibly modify some key

parameters at different layers of this protocol stack, as well as

to observe out-stack parameters of interest. In the following,

we give a brief description of the key parameters observed.

A. Transport layer

Regarding the transport layer, there exist different ways

to observe the parameters of interest. One of them is to

read the values measured by debugfs, a filesystem designed



for debugging purposes. However, with this method it is not

possible to read all the parameters of interest, nor to modify

in real time some key parameters like the congestion window.

Therefore, we have chosen to write a new kernel module

in order to observe the C structure struct tcp sock, i.e., a

data structure with a new record written by the congestion

avoidance algorithm every time a new TCP ack is received.

Since struct tcp sock is in the kernel space, we have to copy

its values in the user space to process them and go back to

the kernel space to modify it, e.g., in order to directly modify

the value of the congestion window.

For this reason, we need to create a communication channel

between the kernel space and the user space, i.e., an Inter-

Process Communication (IPC), created via a Netlink socket,

that provides full-duplex communication between a user-space

process and a kernel module. In this way the application

can observe and modify the parameters of interest in an

asynchronous way.

The observed parameters are:

• Congestion Window (CWND): the congestion window

value at the sender;

• Slow Start Threshold (SSTHR): the slow start threshold

used by the congestion avoidance algorithm;

• Packets outstanding: the number of packets transmitted

but not yet acked;

• Packets acked: the number of packets acked by the last

ack packet received;

• Packets in flight: the number of packets outstanding plus

the number of packets retransmitted. This number is a

function of the size of the CWND (the larger the CWND

the more packets in flight, and consequently the higher

the probability to have a timeout or a packet loss);

• Round Trip Time (RTT) [ms]: the time interval from

when a packet is sent to when the sender receives the

corresponding ack;

• Smoothed Round Trip Time (SRTT): a weighted average

of the past RTT. SRTT [i] = (1− β) · (SRTT [i− 1]) +
β ·RTT [i], with 0 < β ≤ 1;

• RTO: the retransmission timeout which is equal to twice

the SRTT and varies between 200 ms and 2 s. A wrong

setting of the RTO can induce a high rate of packet

dropping.

The above parameters are readable inside the struct tcp sock

whenever the TCP congestion avoidance algorithm receives an

acknowledgement.

B. Data Link layer

At the Data Link Layer (DLL) we can observe for each

device the following parameters:

• the number of frames transmitted (TX) and received

(RX), as well as the number of bytes TX and RX; these

parameters are recorded in the file /proc/net/dev;

• the transmission channel, the transmission power and the

Received Signal Strength Indicator (RSSI); these parame-

ters can be observed with the specific driver Input/Output

Ctrl function, named ioctl.

Since the implementation of the DLL depends on the

specific driver of the device, the other parameters listed in

Tab. I can be observed only for some specific drivers. For

the drivers b45 and ath5kl, that are used by the Broadcom

bdcm4331 chipset and by the Atheros AR5413 chipset, respec-

tively, we can observe also the number of fragmented packets

transmitted and received (# Fragments TX/RX) , the number of

frames dropped (# Frames RX dropped), the number of frames

retransmitted (# Frames TX retry count) and the number of

frames whose retransmission failed (# Frames TX retry failed).

There are also other important parameters that can be used

to estimate the Quality of Service of 802.11e [16]. These

parameters can be observed and changed only in the presence

of some specific drivers. These parameters are the Arbitration

Inter-Frame Spacing (AIFS) time and the Contention Window

range, specified by the minimum value CWmin and by the

maximum value CWmax allowed. The whole set of parameters

are observable because inside the driver there are some access

points (hooks) to gather these quantities.

C. Out-stack

By exploiting the Android APIs we can observe also other

out-stack parameters of interest, i.e., parameters that do not

belong to a specific layer of the TCP/IP protocol stack. In

general, a commercial tablet is already equipped with the

following sensors:

• accelerometer: it can measure the value of the accelera-

tion, in m/s2, and its direction in the three axes;

• gyroscope: it is used to measure the orientation of the

device in the three axes;

• Global Position System (GPS): if outdoor, it provides the

geographical position of the device.

V. TESTBED: EXPERIMENTAL RESULTS

The software solutions presented in the previous sections

have been integrated in the deployment of the AWNM testbed,

and have been tested through several experiments reported in

this section. In the first experiment we tested the stability of

the software that manages the ad hoc network, then in another

experiment we tested the collection of the TCP/IP parameters

in a single–hop network, and finally in another experiment we

extended this experiment to a multi–hop network.

For each experiment, we report the time evolution of some

measured network parameters.

We have deployed a wireless mesh network with the follow-

ing devices: a laptop with chipset Broadcom bdcm4331 and

driver b43; a Nexus 7 tablet with chipset Broadcom bdcm4330

and driver bdcmhd; a Galaxy Tab 7.0 (P6210) tablet with

chipset Atheros AR6003 and driver ath6kl; an Alix board 3d2

with chipset Atheros AR5413 and driver ath5kl. The Alix 3d2

board is an inexpensive board with low power consumption

and limited capabilities, equipped with a 500 MHz (LX800)

AMD Geode LX CPU, which can be exploited as a router or

a firewall.

A. Experimental setup

We performed the networking experiments in our laboratory

(indoor scenario). Due to the limited size of the laboratory, all

nodes were in line of sight of each others (the indoor range for



TABLE I: TCP/IP stack parameters observed and modified for different devices integrated into our network testbed.

Observable/Writable Layer Parameters Laptop Alix 3d2 Tab-7 P6210 Nexus 7
b43 ath5kl ath6kl bdcmhd

(bdcm4331) (ar5413) (ar6003) (bdcm4330)

TCP CWND r/w r/w r/w r/w
TCP SSTHR r/w r/w r/w r/w

Observable TCP RTO r/w r/w r/w r/w
Writable MAC CWmin r/w r/w NO NO

MAC CWmax r/w r/w NO NO
MAC AIFS r/w r/w NO NO
MAC TX power r/w r/w r r/w

TCP IP address r r r r
TCP Port r r r r
TCP # lost packets r r r r
TCP # Packets in flight r r r r
TCP # Packets outstanding r r r r
TCP # Packets acked r r r r
TCP # Packets lost r r r r
TCP Throughput r r r r
TCP RTTvar r r r r
TCP SRTT r r r r

Observable MAC Transmission Channel r r r r
MAC RSSI r r r r
MAC Bytes RX r r r r
MAC # Frames RX r r r r
MAC # Frames RX duplicate r r r tbi
MAC # Frames RX fragments r r r tbi
MAC # Frames RX dropped r r tbi tbi
MAC Bytes TX r r r r
MAC # Frames TX r r r r
MAC # Fragments TX r r r r
MAC # Frames TX retry count r r r tbi
MAC # Frames TX retry failed r r tbi tbi
MAC Inactive station r r tbi tbi

r = observable, w = writable, tbi = to be implemented, TX= transmitted, RX= received, # = number.

A B

C

(a) All nodes are
within coverage.

A B

C

(b) iptables forces
node C to drop all
packets from A.

A B

C

(c) OLSR updates the
routing table.

Fig. 2: Changes in the network topology with iptables.

such devices is approximately 40 meters), as shown in Fig. 2-

(a) for a simple case with 3 nodes. In the figure, node A is

the source of traffic and node C is the intended receiver. In

order to create a multi–hop network, we have used iptables,

a tool available in every Linux distribution to set up different

rules inside the firewall. In particular, we forced node C to

drop all packets coming from node A, see Fig. 2-(b). In this

way, according to the OLSR routing protocol, since node A

is not receiving any acknowledge message from node C, its

routing table is updated and node A sends packets to node C

via node B, as shown in Fig. 2-(c), and the multi–hop network

is set up.

The iptables commands to drop or to accept the incoming

packets are:

iptables -A INPUT -m mac --mac-source MAC -j DROP

iptables -A INPUT -m mac --mac-source MAC -j ACCEPT

iptables flush

The data traffic is synthetically generated at node A using

iperf [17], a common testing tool in the networking commu-

nity.

B. Experimental results

In the first experiment, there are four nodes that communi-

cate through a multi–hop network, i.e., a Nexus 7, a Galaxy

Tab 7.0, an Alix 3d2, and a laptop. The data is generated by

iperf, and a stream of data is generated every 60 seconds and

lasts for 10 seconds. The experiment is three days long, and

during this period the topology of the network is changed

dynamically every 6 minutes using the iptables tool. The

purposes of this experiment are to test if the network testbed

is stable and to figure out if there is any problem in updating

the routing table with the OLSR protocol. We have verified

that the routing protocol works correctly and that the network

testbed can easily handle dynamic changes in the topology.

In the second experiment, we have tested the software tools

to observe the parameters, in order to check the reliability of

such software and to observe the TCP and MAC parameters

as a function of time. The list of all the parameters observed

is reported in Tab. I, where we detail for each device which

parameters are observable, and which can also be modified.

For this experiment, which lasted a total of 8 hours, a single–

hop topology has been created. In the figures we report a time

interval of 30 seconds only, since we want to focus on a single

stream of data generated by iperf.

In Fig. 3 we can observe the two phases of the TCP Reno

congestion control, i.e., the slow start mode, and the Additive

Increase/ Multiplicative Decrease (AIMD) mode. In Fig. 3-(a)



0 5000 10000 15000
0

50

100

150

200

250

Event ack received

N
u

m
b

e
r 

o
f 

S
e

g
m

e
n

ts

 

 

CWND
SSTHR

AIMD AIMD AIMD

Fast RecoverySlow Start

(a) Fast recovery mode with TCP Reno congestion avoidance algorithm.

0 2000 4000 6000
0

20

40

60

80

100

120

Event ack received

N
u

m
b

e
r 

o
f 

S
e

g
m

e
n

ts

 

 

CWND
SSTHR
PKT LOST

AIMD

SlowStart

(b) Slow start mode with TCP Reno congestion avoidance algorithm.

Fig. 3: Behavior of TCP RENO showing both fast recovery and slow start mode.

TABLE II: Parameters observed at the receiver node.

Average RSSI [dBm] Average RTT [ms] RX packets RX fragments RX duplicates RX Dropped TX retry count Data RX [MBytes]

-62.1 65.7 15104 261 14 12 1035 ∼ 22

we show the values of the CWND and SSTHR during the slow

start mechanism that occurs when a new TCP connection is

opened. In this case we set manually the CWND to 10 packets.

The values of CWND and SSTHR are updated at every ack

packet received, so we represent their value as a function of the

number of acks received in a temporal window of 10 seconds1

. Initially, the CWND exponentially increases until it reaches

the current value of SSTHR, then the AIMD mode starts. We

can also observe the fast recovery event that occurs after three

duplicate acks are received. In this case CWND and SSTHR

are both set to a value equal to half of the previous value of

the CWND.

Instead, in Fig. 3-(b) a packet is lost and the TCP Reno

protocol goes into slow start mode with the CWND set

equal to 1 packet. In this experiment we have also verified

that the CWND value is equal to the sum of the packets

in flight and packets acked parameters when there are no

retransmissions. In Fig. 4 we show the number of packets

per second transmitted and received by the receiver node as

a function of time. The total data received corresponds to a

stream with bitrate of 17 Mbps generated at the source node

by iperf, lasting for 10 seconds for a total of approximately

22 MB of data. We notice that the number of packets sent

from the receiver are half of the number of packets received.

This is due to the TCP delayed acknowledgment, a technique

used to improve network performance in which the receiver

combines together into a single response two acks, reducing

the protocol overhead.

For this experiment in Tab. II we report a summary of the

observed data during the 30 seconds of the experiment. Finally,

1Note that the fact that the value of the SSTHR observed is not constant
between consecutive timeout events is due to an implementation detail of the
corresponding TCP counter in the Linux kernel.

0 10 20 30 40
0

500

1000

1500

Time [s]

N
u

m
b

e
r 

o
f 

p
a

c
k
e

ts

 

 

Packets RX
Packets TX

Fig. 4: Packets transmitted and received by the receiver node

C.

in the last experiment we tested the software reliability and

observed some TCP and MAC parameters as a function of

time in a multi–hop scenario. The network topology is shown

in Fig. 2-(c), where node A is the source node, node C is the

destination node and node B is the relay node. In Fig. 5 we

show the number of MAC packets sent by node A to node B,

and the corresponding number of MAC packets sent by node

B to node C. As expected, these two numbers are very close,

since B is just a relay for the communication from A to C. In

the same figure, we also show the number of MAC packets

sent from node B to node A, which correspond to the TCP

acks sent by C to A and forwarded by B. We also notice that

after 28 seconds node C becomes congested due to a timeout



0 10 20 30 40 50 60
0

200

400

600

800

1000

Time [s]

P
a

c
k
e

ts

 

 

TX BY A TO B
TX BY B TO C
TX BY B TO A

Fig. 5: Packets transmitted by the source node A and the relay

node B.

event, thus the number of packets transmitted and received

rapidly goes to zero.

VI. CONCLUSIONS

In this paper we described an IEEE 802.11 mesh net-

work testbed, which is scalable and integrates relatively non-

expensive Android based devices. We have provided the

software details to create an ad hoc network among these

inexpensive commercial devices, and specified how to observe

and modify the networking parameters at different layers of the

protocol stack. The software developed to observe and manage

the TCP and IP layers is fully re-usable on any GNU/Linux

device. Instead, the implementation of the MAC layer depends

on the specific chipset of the device. The proposed testbed

can be an important tool for future performance comparisons

among cognitive networking techniques.

In future works, we plan to extend the current set of capa-

bilities of the proposed network testbed to the observation of

other out-stack parameters, and to integrate such observations

into a novel cognitive networking framework that can exploit

both in-stack and out-stack parameters. Also, we are planning

to develop an Android APP to display in real time the node

networking status in terms of traffic data generated, congestion

of the node and number of hops needed to reach the other

nodes. Such APP can allow the user to select a cognitive

networking technique among a set of techniques implemented

in the device and to test in real time the performance of

such techniques, thus opening up new opportunities to switch

in real time among different cognitive networking techniques

depending on the specific networking scenario and on the user

needs.

ACKNOWLEDGMENTS

This work was partially supported by the U.S. Army

Research Office, under Grants No. W911NF-11-1-0538 and

W911NF-11-1-0336, and by Fondazione Cariparo through the

program “Progetti di Eccellenza 2011-2012.”

REFERENCES

[1] “The ns-3 network simulator,” Last time accessed: Sept. 2013. [Online].
Available: http://www.nsnam.org/

[2] A. Jow, C. Schurgers, and D. Palmer, “Calradio: a portable, flexible
802.11 wireless research platform,” in 1st International Workshop on
System Evaluation for Mobile Platforms, ser. MobiEval ’07, New York,
NY, USA, 2007, pp. 49–54.

[3] A. Bardella, M. Danieletto, E. Menegatti, A. Zanella, A. Pretto,
and P. Zanuttigh, “Autonomous robot exploration in smart environ-
ments exploiting wireless sensors and visual features,” Annales des
Télécommunications, vol. 67, no. 7-8, pp. 297–311, 2012.

[4] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-
level measurements from an 802.11b mesh network,” ACM SIGCOMM
Comput. Commun. Rev., vol. 34, no. 4, pp. 121–132, Aug. 2004.

[5] T. Newman, A. He, J. Gaeddert, B. Hilburn, T. Bose, and J. Reed,
“Virginia tech cognitive radio network testbed and open source cogni-
tive radio framework,” in Proc. 5th Int. Conf. Testbeds and Research
Infrastructures for the Development of Networks and Communities and
Workshops, 2009.

[6] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the orbit
radio grid testbed for evaluation of next-generation wireless network pro-
tocols,” in IEEE Wireless Communications and Networking Conference,
vol. 3, 2005, pp. 1664–1669.

[7] J. Mitola and G. Q. Maguire Jr., “Cognitive radio: making software
radios more personal,” IEEE Personal Communications, vol. 6, no. 4,
pp. 13–18, 1999.

[8] O. Younis, L. Kant, A. Mcauley, K. Manousakis, D. Shallcross,
K. Sinkar, K. Chang, K. Young, C. Graff, and M. Patel, “Cognitive
tactical network models,” IEEE Communications Magazine, vol. 48,
no. 10, pp. 70–77, Oct. 2010.

[9] G. Elmasry, R. Welsh, M. Jain, B. Hoe, K. Jakubowski, K. Whittaker,
and G. Oddo, “The role of network operations in bringing commercial
wireless to tactical networks,” in IEEE MILCOM, Baltimore, MD, US,
Nov. 2011.

[10] R. W. Thomas, D. H. Friend, L. A. DaSilva, and A. B. MacKenzie,
“Cognitive Networks: Adaptation and Learning to Achieve End-to End
Performance Objectives,” IEEE Commun. Mag., vol. 44, no. 12, Dec.
2006.

[11] G. Quer, H. Meenakshisundaram, B. Tamma, B. S. Manoj, R. Rao, and
M. Zorzi, “Using Bayesian Networks for Cognitive Control of Multi-
hop Wireless Networks,” in IEEE MILCOM, San Jose, CA, US, Nov.
2010.

[12] Wi-Fi Alliance, “Mobile Ad-Hoc Networking: Wi-Fi certified IBSS
with Wi-Fi Protected Setup,” Dec. 2012. [Online]. Available:
http://www.wi-fi.org/

[13] P. Gardner-Stephen and S. Palaniswamy, “Serval mesh software-wifi
multi model management,” in 1st International Conference on Wireless
Technologies for Humanitarian Relief, ser. ACWR ’11. New York, NY,
USA: ACM, 2011, pp. 71–77.

[14] “Commotion Project,” Last time accessed: Sept. 2013. [Online].
Available: https://code.commotionwireless.net/projects/commotion

[15] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Vi-
ennot, “Optimized Link State Routing protocol for ad hoc networks,” in
IEEE International Multi Topic Conference (INMIC), 2001.

[16] “IEEE standard for information technology - telecommunications and
information exchange between systems - local and metropolitan area
networks - specific requirements - part 11: Wireless LAN medium
access control (MAC) and physical layer (PHY) specifications,” IEEE
Std 802.11-2007 (Revision of IEEE Std 802.11-1999), pp. 1–1076, 2007.

[17] “Iperf website,” Last time accessed: Sept. 2013. [Online]. Available:
http://iperf.sourceforge.net/


