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Abstract. Feed-forward neural networks (Multi-Layered Perceptrons) are used
widely in real-world regression or classification tasks. A reliable and practical
measure of prediction “confidence” is essential in real-world tasks. This paper
compares three approaches to prediction confidence estimation, using both artificial
and real data. The three methods are maximum likelihood, approximate Bayesian
and bootstrap. Both noise inherent to the data and model uncertainty are considered.

1. Introduction

Truly reliable neural prediction systems require the prediction to be qualified by a
confidence measure. This important issue has, surprisingly, received little systematic
study and most references to confidence measures take an ad hoc approach. This paper
offers a systematic comparison of three commonly-used confidence estimation methods
for neural networks and takes a first step towards a better understanding of the practical
issues involving prediction uncertainty.

Neural network predictions suffer uncertainty due to (a) inaccuracies in the train-
ing data and (b) the limitations of the model. The training set is typically noisy and
incomplete (not all possible input-output examples are available). Noise is inherent
to all real data and contributes to the total prediction variance as data noise variance
�2
�. Moreover, the limitations of the model and the training algorithm introduce further

uncertainty to the network’s prediction. Neural networks are trained using an iterat-
ive optimisation algorithm (e.g. steepest descent). The resultant weight values often
correspond, therefore, to a local rather than the global minimum of the error function.
Additionally, as the optimisation algorithm can only “use” the information available in
the training set, the solution is likely to be valid only for regions sufficiently represented
by the training data [1]. We call this model uncertainty and its contribution to the total
prediction variance model uncertainty variance �2

m.
These two uncertainty sources are assumed to be independent and the total predic-

tion variance is given by the sum of their variances: �2
TOTAL = �2

�
+ �2

m
. Confidence

estimation must take into account both sources. Some researchers ignore model un-
certainty assuming that the regression model is correct (e.g. [8]). However, in reality
a system can be presented with novel inputs that differ from the training data. For this
reason, the inclusion of model uncertainty estimation is crucial. Finally, we do not make
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the oversimplification that the data noise variance, �2
�, is constant for all input data, as

this is unlikely in complex real-world problems.

2. Methods for Neural Network prediction uncertainty estimation

In regression tasks, the problem is to estimate an unknown function f(x) given a set of
input-target pairs D = fxn; tng; n = 1; :::; N . The targets are assumed to be corrupted
by additive noise tn = f(xn) + en. The errors e are modelled as Gaussian i.i.d. with
zero mean and variance �2

�
(x).

Several approaches to prediction confidence estimation have been reported in the
literature. In [8] a method for obtaining an input-dependent�2

� estimate using maximum
likelihood (ML) is presented. The traditional network architecture is extended and a
new set of hidden units is used to compute �2

�
(x; û), the network estimate for data noise

variance. The variance output unit has exponential activation function so that �2
�

can
only take positive values. The network is trained by joint minimisation of the total error:

C =
1
2

NX
n=1

(�
tn � y(xn;w)

�2
�2
�
(xn;u)

+ ln�2
�(x

n;u)

)
+
�w
2

WX
i=1

w2
i +

�u
2

UX
i=1

u2
i (1)

where�w and�u are the regularisation parameters for weightsw (the regression hidden
layer connections) andu (the variance connections) respectively. The main disadvantage
of ML is that, as the estimate of the regression fits some of the data noise, the obtained
data noise variance estimate is biased.

The Bayesian approach with Gaussian approximation to the posterior can be used to
obtain regression and variance estimates, allowing �2

�
to be a function of the inputs [9].

The exact Bayesian approach requires time-consuming Monte-Carlo integration over
weight space. It is therefore inappropriate for multi-dimensional,real-world applications
for which computing power and run-time must be kept to a minimum. The network is
trained in two phases by minimising Cr(w) and Cv(u) alternately:

Cr(w) =
1
2

NX
n=1

[tn � y(xn;w)]2

�2
�(x

n;u)
+
�w
2

WX
i=1

w2
i (2)

Cv(u) =
1
2

NX
n=1

�
[tn � y(xn;w)]2

�2
�(x

n;u)
+ ln�2

�(x
n;u)

�
+

1
2

ln jHj+
�u
2

UX
i=1

u2
i (3)

whereH is the exact Hessian of errorCr(w). The term 1
2 ln jHj is due to marginalization

over weights w. This removes the dependence of the variance weights estimate û on
the regression estimate ŷ resulting in an unbiased data noise variance estimate.

If either ML or the approximate Bayesian approach is used, �2
m can be estimated

using the delta estimator, a variant of the linearization method [2]:

�2
m(x) = gT (x)V�1g(x) (4)

where g(x) is a vector whose k-th element is @ŷ(x)=@ŵk andV is the covariance matrix
of weights w. The covariance matrix is usually estimated by the exact Hessian matrix
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H or the outer product approximation to the Hessian H̃:

H =
NX
n=1

1
�2
�
(xn; û)

@2En

@w2 + �wI (5)

H̃ =
NX
n=1

1
�2
�
(xn; û)

g(xn)gT (xn) + �wI (6)

where In is the unitary matrix and En = 1=2(tn � ŷn)2 is the least-square error for
data point n. All quantities are evaluated at the estimated weight values.

Finally, the bootstrap technique offers an altogether different approach to network
training and uncertainty estimation [4]. The bootstrap algorithm is given below.

1. Generate B “bootstrap replicates” D�
i

of the original set using resampling with
replacement. Remove multiple occurrences of the same pair.

2. For each i train a network of the same architecture on D�
i

. If required, the
remaining out-of-sample set D �D�

i can be used for validation.
3. Obtain the bootstrap committee’s regression and �2

m
estimates by:

ŷ(x) =
BX
i=1

ŷi(x)=B (7)

�̂2
m(x) =

BX
i=1

[ŷi(x) � ŷ(x)]2=(B � 1) (8)

respectively, where ŷi(x) is the prediction of network i.
After the models are trained, �2

�
can be estimated by training an additional network

using the model residuals as targets [6]. The residuals are computed using the less
biased, out-of-sample regression estimate ŷunbiased instead of ŷ:

ŷunbiased(x) =

PB

i=1 vi(x) � ŷi(x)PB

i=1 vi(x)
(9)

where vi(x) is one for patterns in the out-of-sample set and zero in all other cases.
Moreover, the model uncertainty variance estimate �̂2

m
is subtracted from the model

residual so that it does not influence �2
� estimation. The network is trained using error

function (1). As the regression estimate is now known, optimisation is performed over
weights u only.

3. Simulation results

We assess confidence estimation performance by evaluating the Prediction Interval
Coverage Probability (PICP) (see e.g. [7]). PICP is the probability that the target of an
input pattern lies within the prediction interval (PI). This probabilityhas a nominal value
of 95% for 2�TOTAL PI. For each method the coverage probability (CP) is evaluated by
calculating the percentage of test points for which the target lies within the 2�TOTAL PI.
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An optimal method will yield coverage consistently close to 95%, the nominal value.
All the networks were trained using steepest descent with line search and weight decay
with the same (constant) regularisation parameter.

The methods were tested on both artificial and real tasks. The artificial tasks are
variations of the problem proposed by Freidman in [5]. The input is five-dimensional
xi, i = 1; :::; 5 and the targets are given by:

t = 10 sin(�x1x2) + 20(x3 � 0:5)2 + 10x4 + 5x5 + e (10)

Each xi is randomly sampled from (0; 1). The errors have Gaussian distribution
N (0; ��(x)). The standard deviation is given by:

��(x) = 2g(x1 + x2 � 2x3 � 5x4 + 2x5) + 0:05 (11)

where g is the sigmoidal function. Three artificial data sets were constructed to in-
vestigate performance under different input data density situations. The three data sets,
marked L, H and A, have a data density that is approximately double than elsewhere, in
the Low, High and Average data noise variance region respectively. In other words, set
L for example, contains less training data originating from the input space region of high
�� values and more data from the region of low �� values. Of course, in a 5-dimensional
input space, points from regions not represented in the training set may have similar
standard deviation. This situation may occur in real-world, multi-dimensional problems
for which the available data are typically quite sparse. Each training set contained 120
examples and a separate set of 10000 examples was used for testing. The regression and
variance hidden layers contained five and one units respectively and the regularisation
parameter was set to 0:01.

The real data set is the “paper curl” data set described in [3]. Curl is a paper
quality parameter whose value can only be measured after manufacture. The curl data
set contains 554 examples of which 369 are used for training and the remaining 185
for testing. The input vector is eight-dimensional. Curl prediction was performed
in [3] using a committee of networks, under the assumption of constant �2

�
. Here

we investigate the effect of allowing �2
�

to be a function of the input. The constant
variance approach serves as the baseline. The constant �2

� estimate is computed by
�2
� =

PN

n=1[t
n� ŷ(xn)]2=(N �1). After experimentation it was found that one hidden

unit is enough to model �2
� while eight units are used for the regression model. The

regularisation parameter was set to 0:01.
To reduce bias in the results, 100 networks were trained and the reported results are

the average over 100 committees formed by choosing networks at random from the pool.
The committee size was set to 20 networks. This is a reasonable number for real-world
applications where training and prediction run-times must be taken under consideration.
The prediction of the ML and Bayesian committees is the mean prediction y = <yi>
while the committee total variance is given by �2 = <�2

i>+(<y2
i>�<yi>

2) where
�2
i

and yi are the total variance and prediction of net i respectively.
The results are summarised in fig. 1. The PICP mean and standard deviation over

the 100 simulations are shown for each data set and method. The PICP is expressed
as difference from the nominal value (95%). The bootstrap and the Bayesian with
approximate Hessian techniques appear to perform better for sets L and A, although the
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Figure 1: Prediction Interval Coverage (mean and standard deviation) for the simulated
and real problems, expressed as difference from the nominal value (95%).

bootstrap overestimates coverage consistently for all sets. A larger bootstrap committee
is likely to produce better results, but we chose to restrict committee size to a realistic
minimum. ML and Bayes perform best for sets H and the curl set.

The approximate Bayesian approach gives consistently better coverage than ML
especially for sets L and A. In these sets, data density is low in the high noise variance
region and the bias in the ML prediction becomes more apparent (see [9] for a more
detailed explanation). ML and Bayes perform similarly for sets H and the curl set. Set
H has larger input data density in the high variance region, thus the bias in the ML �2

�

estimate is reduced and ML performs almost as well as the Bayesian method.
Substituting the exact Hessian with the approximate in the delta estimator results

in a small increase of the coverage. There is no significant deterioration when the
approximate Hessian is used. This result agrees with previous findings using non-linear
models [2].

For the real “curl” data set, using constant or input-dependent�2
� does not appear to

have a great impact on the coverage. However, using ML and Bayes committees results
in a 2 and 2.5% improvement in the test error over the constant �2

� committee. As the
test set for the paper curl task contains only 185 examples, it is possible that the results
are biased. However, there is strong indication that the flexible �2

�
models represent the

data better than the constant �2
�

model.

4. Discussion and further work

Three popular and trusted methods for confidence estimation in neural networks have
been tested using three artificial and one real data set. This selective set of exemplars
are all representative of a very common category of real world applications, namely
regression using sparse, multi-dimensional and noisy data. Unlike previous studies,
both data noise and model uncertainty have been considered. Moreover, data noise
variance has been treated as a function of the inputs and it has been shown that this
leads to better results for the paper curl estimation task. The training time required
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for the approximate Bayesian approach is significantly larger than the times for either
ML or the bootstrap technique. Since the curl estimator has to be retrained regularly
to ensure that the model represents the current conditions in the paper plant, it may be
more realistic to use one of the latter (faster) approaches. In terms of test error, the
bootstrap technique is better than ML by an average of 2.5%. It may be preferable to use
a bootstrap committee for the curl estimator, even though the obtained PICP is slightly
larger than the nominal value.

To our knowledge, the approximate Bayesian approach with input-dependent �2
�

has not been tested previously using neural networks. The results indicate that the
Gaussian approximation works satisfactorily at least for the problems presented here.
The disadvantage of this method is the long training times required due to evaluation of
the Hessian matrix. This method yields unbiased �2

�
estimates and it outperforms ML

especially when the training set contains regions of high noise-low input data density.
However, ML still performs satisfactorily and is a possible candidate for applications
where training times are crucial.

The methods have been compared using the prediction interval coverage probability.
The PICP is only sensitive to the average size of the interval and in particular, whether
or not the interval includes the target. However, from a practical point of view the ideal
confidence measure should associate high confidence with accurate predictions and low
confidence with inaccurate ones. The PICP can not be used to assess this since it does
not take into account the local quality of the total variance estimate. The development
of such a method is the subject of ongoing work.
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