
STATISTICS IN MEDICINE
Statist. Med. 2006; 25:943–955
Published online 30 September 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.2240

Bias resulting from the use of ‘assay sensitivity’ as an
inclusion criterion for meta-analysis

Lois A. Gelfand1, Daniel R. Strunk1, Xin M. Tu2, Ronald E. S. Noble1 and
Robert J. DeRubeis1;∗;†

1Department of Psychology; University of Pennsylvania; Philadelphia; PA; U.S.A.
2Department of Biostatistics and Computational Biology; University of Rochester; Rochester; NY; U.S.A.

SUMMARY

Assay sensitivity has been proposed as a criterion for including psychiatric clinical outcome studies
in meta-analyses. The authors assess the performance of assay sensitivity as a method for determining
study appropriateness for meta-analysis by calculating expected standard drug vs placebo e�ect sizes
for various combinations of high quality and �awed studies. In the absence of �awed studies, expected
e�ect sizes are close to unbiased only when sample sizes are very large. In the presence of �awed
studies, expected e�ect sizes tend to be substantially biased except under simultaneous conditions of
high power, a large proportion of �awed studies, and a population standard vs placebo e�ect size
of �awed studies considerably lower than that of high quality studies. The authors conclude that this
method is not robust and can lead to serious bias. Unless it can be shown that speci�c conditions hold,
assay sensitivity should not be used to make quality judgments of studies. Copyright ? 2005 John
Wiley & Sons, Ltd.
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INTRODUCTION

The summary of information from clinical research studies is crucial for health care decisions
and public health policy. A meta-analysis combines the quantitative information reported in
completed studies into a single estimate of the e�ect size of a treatment, usually in comparison
to a control condition. (The e�ect sizes in this paper indicate comparisons between conditions,
rather than change within treatments, unless otherwise noted.) The ability of meta-analysis to
contribute to useful health care decisions rests on the ability of reviewers to assess the quality
of individual studies, in order to remove, to the extent possible, studies that would system-
atically bias the e�ect size estimate calculated [1–4]. So far, most of the methods proposed
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for assessing study quality have been labour-intensive, and potentially open to criticisms of
subjectivity. The methods of each study are scrutinized according to an individualized list of
criteria [3], a previously developed checklist [1] or a quality scale [2, 4, 5]. (The CONSORT
statements [6–8] for improving the reporting of randomized controlled trials, though profess-
edly not quality checklists, contain methodological items that could be used in these ways.)
Trials that do not meet a threshold can be excluded, analysed separately, or given a lower
weight than other studies.
‘Assay sensitivity’ (AS) is a concept used by the United States Food and Drug Administra-

tion (FDA) to interpret the results of a single three-arm study including a standard drug, an
investigational drug, and a pill placebo. A study in which the standard drug signi�cantly out-
performs the placebo demonstrates AS and is considered informative; a study lacking AS (a
‘failed’ trial) is considered uninformative. The FDA makes a dichotomous decision to approve
or not to approve a new drug. Klein and others [9, 10] have suggested using AS to determine
whether a given trial comparing a standard drug to a psychotherapy should be included in a
meta-analysis. That is, one would include those studies with AS, and exclude studies either
(a) without AS or (b) in which AS cannot be determined because of the absence of a placebo
condition. The advantages of the AS approach are obvious: A quick look at the results (the
signi�cance of the standard vs placebo di�erence, or the recognition that there is no placebo
condition) could substitute for (or serve as a decisive, objective addition to) the process of
scrutinizing individual methods of a study. Klein [9] suggested this method (which we will
call ‘the AS method’) in the context of comparisons between drugs and psychotherapies, but
the same reasoning would apply to all studies involving the comparison of a standard drug
and another treatment, including other drugs.
In this paper, we investigate the theoretical performance of the AS method by calculating

the e�ect sizes one would expect in the long run if this method were adopted. We approach
this discussion in three stages. First (Model 1), we discuss the circumstances under which the
AS method would correctly classify all or nearly all studies. If the combinations of e�ect sizes
and powers of studies required for this to occur are plausible in a psychiatric literature, the
AS method could produce unbiased results. Second (Model 2), we examine how discarding
good studies from meta-analyses biases the estimations of ‘good study’ e�ect sizes. During
this discussion, we consider the validity of sample characteristics as a methodological issue,
and brie�y touch upon the di�erence between the bias expected from an in�nite number of
trials vs the bias possible in a small number of trials. Third (Model 3), we examine how the
combination of discarding good and bad studies from meta-analysis a�ects the estimation of
the good study e�ect size.

METHOD

We consider two populations of three-arm studies: a population of ‘good’ studies, which are
well-conducted and expected to produce unbiased e�ect size estimates, and a population of
‘bad’ studies, which are poorly conducted and may be biased against the standard drug, biased
for the standard drug, or unbiased, depending on the nature of the study �aws. For example,
inadequate dosing can bias a study against the standard drug [10], and non-blind outcome
evaluation can bias a study in favour of the standard drug [3]. We assume that a study �aw
changes the location, but not the shape of the e�ect size distribution of a treatment condition.
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We consider good and bad studies with balanced designs and equal known variances for the
three conditions; standard (S), placebo (P), and other (O) treatment. In addition, we assume
that the outcome measure X has a normal distribution in all three study arms.
Let S=standard, P=placebo, and O=other treatment. XS , XP, and XO are independent.

Let XS; XP; XO ∼N(�i; �2) and n = nS = nP = nO, i ∈ {S; P;O}.
The population e�ect size is

�ij = (�i − �j)=� where i; j∈ {S; P;O}; i �= j (1)

The sample estimator of the population e�ect size is

dij = ( �X i − �X j)=� (2)

Under these assumptions, each dij follows a normal distribution with mean �ij and standard
error (2=n)1=2, where n is the cell sample size [11]. We assume that the quality of a study only
a�ects the mean response, so that the probability distributions of the standard vs placebo e�ect
size estimators from both good and bad studies can be represented by normal distributions
with standard errors of (2=n)1=2. E�ect size estimation involving the third arm of studies will
be considered later.
All statistical tests are performed using a two-sided alpha of 0.05.

RESULTS

Model 1: bad studies present; misclassi�cation absent

In order for the AS method to include all good studies and exclude all bad studies from
meta-analysis, the e�ect of the standard drug condition must be signi�cantly greater than the
e�ect of the placebo condition in all of the good studies and in none of the bad studies. Thus,
for all good studies to demonstrate AS, all standard vs placebo e�ect sizes must exceed the
critical e�ect size that cuts o� a right tail of area 0.025 on the null sampling distribution (all
good studies must be powered to 100 per cent). Similarly, for no bad study to demonstrate
AS, no standard vs placebo e�ect size from a bad study should exceed that critical e�ect size.
A situation close to this is shown in Figure 1, in which the cell sample size is 60, and 99.9
per cent of the good studies demonstrate AS while 0.1 per cent of bad studies demonstrate
AS. Achieving this degree of separation of good from bad studies requires a good e�ect size
of 0.91 and a bad e�ect size of −0:19, assumptions that are unrealistic for standard vs placebo
comparisons of treatments for psychiatric disorders. The e�ect size of 0.91 is considerably
larger than the mean e�ect size estimates that are typically calculated in meta-analyses of
treatments for mood and anxiety disorders [12, 13], and a negative e�ect size for bad studies
would mean that in those studies, placebo tends to consistently outperform standard treatment.
A substantial increase in sample size would be required to model more realistic e�ect sizes,
but larger sample sizes are not commonly found in the literature. In short, the ideal case is
unlikely to be a realistic case in the foreseeable future; AS cannot be expected to correctly
classify all (or nearly all) good and bad studies.
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Figure 1. An example of probability distributions of good and bad study standard vs placebo e�ect size
estimators in which the AS criterion correctly categorizes nearly all studies. Studies with e�ect size
estimates greater than the criterion have AS, while those in the shaded area, with e�ect size estimates
less than the criterion, do not. In this case, n=60, the criterion e�ect size is 0.36, the population
standard vs placebo e�ect size for the good studies is 0.91, that of the bad is −0:19, and 50 per cent
of all studies are bad. In this example, 99.9 per cent of good studies demonstrate AS (good studies are

powered to 99.9 per cent), while 0.1 per cent of bad studies demonstrate AS.

Figure 2. Power as a function of cell sample size and population e�ect size of a standard vs placebo
comparison (�SP). Note: two-tailed alpha equals 0.05.

Model 2: bad studies absent

In the absence of bad studies, the in�uence of AS on the expected standard vs placebo e�ect
size is determined by the power of a study. Good studies that lack AS exhibit type II error;
using the AS method in the absence of bad studies involves excluding good studies due to
chance. As power increases, the proportion of good studies that are incorrectly excluded from
meta-analysis decreases, and the bias caused by the AS method decreases. Figure 2 depicts
power curves for the standard vs placebo di�erence for three cell sample sizes that have been
commonly used in studies of mood and anxiety disorders [14–16].
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Figure 3. Left-truncated normal distribution showing that the estimate of the population
e�ect size of a standard vs placebo comparison will be biased if trials without AS are ex-
cluded. In this case, n=cell is 60, and the population e�ect size of good studies is 0:30a. The
e�ect size criterion for AS, dCRITSP , is 0:36b. Power is 0.38; the 62 per cent of studies without
AS (shaded region) are excluded and the biased e�ect size estimate calculated from the

remaining 38 per cent (unshaded) is 0:48c. Thus, the bias is 0:18d.

If all the studies under consideration are good, the biasing e�ect on the standard vs placebo
comparison of excluding non-AS studies is depicted in Figure 3, in which the normal prob-
ability distribution of e�ect size estimator dSP is left-truncated at the critical value dCRITSP ,
leaving only the e�ect size estimators with AS, dASSP , for meta-analysis. The mean of the
standard vs placebo e�ect size estimators from studies with AS, E(dASSP ), is calculated from
the left-truncated distribution as in Reference [17]:

E(dASSP )=E(dSP|dSP¿dCRITSP )= �SP +
(
2
n

)
�(dCRITSP )

1−�(dCRITSP )
(3)

where �(t) is the standard normal probability density function, �(t) is the standard normal
cumulative distribution function, dASSP is a sample estimator of the standard vs placebo e�ect
size from a study with AS.
The critical value dCRITSP is chosen so that dCRITSP =

√
2=n=Z1−(�=2) = 1:96

The mean of the left-truncated distribution is always larger than or equal to the untruncated
one, thus E(dASSP )¿�SP.
For example, as shown in Figure 3, the population e�ect size of good studies is 0.30, but

the estimate calculated from just the studies with AS is 0.48.
Figure 4 displays the biased e�ect size estimate expectations as a function of the population

e�ect size for the three sample sizes used in Figure 2. Only when power is extremely high, and
the percentage of excluded studies, therefore, extremely low, is the degree of bias negligible.
A cell sample size of 120 and a population e�ect size exceeding 0.50, and a cell sample size
of 60 and a population e�ect size exceeding 0.70, are associated with power (Figure 2) of
higher than 0.96, and therefore with negligible bias (Figure 4). A cell sample size of 60 and
an e�ect size of 0.50 is associated with a power of 0.78, the exclusion of 1− 0:78=22 per
cent of studies, and bias of 0:57− 0:50=0:07. A cell sample size of 30 and an e�ect size of
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Figure 4. Biased e�ect size expectations as a function of good study population e�ect
size and cell sample size, when only AS studies are included in meta-analysis. The thick
diagonal line represents the unbiased population e�ect size. The degree of bias caused by
excluding non-AS studies is shown by the vertical distance between a point on one of the

curved lines and the corresponding point on the thick diagonal line.

0.50 is associated with 0.47 power, the exclusion of 1− 0:47=53 per cent of studies, and a
biased e�ect size of 0.71, which is considerably (0.21) higher than the unbiased e�ect size
of 0.50.

Drug responsive subpopulations. Each combination of e�ect size and sample size is associated
with a speci�c biased e�ect size. It is widely recognized [18–20] that a population su�ering
from what is de�ned as a single psychiatric disorder can be composed of subpopulations
heterogeneous in severity, type, time course of symptoms, or responsiveness to active or
placebo treatment. A study demonstrating AS is sometimes described as having enrolled a
drug-responsive sample [21, 22], which could be assumed to represent not the population that
meets the inclusion/exclusion criteria of a trial, but a more drug-responsive subset of this
population. Drug e�ects in this ‘subpopulation’ would overestimate the e�ects in the larger
population; conversely, drug e�ects in the larger population would underestimate e�ects in
the subpopulation.
There are several problems with using a sample outcome to de�ne a subpopulation when

performing a meta-analysis. One can conceive of a subpopulation of, for example, depressed
outpatients, who are more responsive to a drug on average than are depressed outpatients
as a whole. The subpopulation might be de�ned a priori by, for example, severity criteria,
diagnostic subtype, or (lack of) comorbidity with other disorders. The subpopulation e�ect
size would be greater than the e�ect size of the entire depressed outpatient population. A
meta-analyst might be interested in estimating the e�ect size of the subpopulation and thus
would reasonably exclude studies that did not explicitly sample from the subpopulation. The
meta-analytic e�ect size would then provide an estimate of the e�ect of the treatment in the
speci�ed subpopulation.
However, combining e�ect size estimates from studies with sample characteristics that are

de�ned post hoc from statistical analysis of outcome data, such as the assessment of AS, is
another matter. In a population or subpopulation de�ned a priori, a meta-analysis averaging the
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e�ect size estimates from an in�nite number of studies sampling from the speci�ed population,
regardless of the sample size of those studies, will theoretically produce the population e�ect
size. This is the basis of meta-analysis; a meta-analysis of a �nite number of studies of
possibly varying sample sizes provides an estimate of the one true population e�ect size.
When sample characteristics are de�ned post hoc, what does a meta-analysis of studies with
AS estimate? Taking the mean of an in�nite number of studies with AS will, unlike the mean
of an a priori subpopulation, result in di�erent numerical values depending on the sample
sizes of the studies. The values shown in Figure 4 can be interpreted as the results of such
meta-analyses. Thus, a meta-analysis of studies with AS that all have the same sample size,
for example, 30=cell, will estimate the biased e�ect size depicted in Figure 4; that is, if the
population e�ect size is 0.50, the meta-analysis would estimate the biased e�ect size of 0.71. If
the meta-analysis includes only studies of sample size 60=cell, it will estimate the biased e�ect
size of 0.57. There is no one true e�ect size of a post hoc ‘population’ for a meta-analysis to
estimate. Taking the mean e�ect size estimate of AS studies of various sample sizes would
result in values that depend on the mix of the sample sizes as well as the true population
e�ect size; there is no coherent interpretation of the result of such a meta-analysis. Studies
cannot be excluded from meta-analyses on the basis of post hoc sampling characteristics such
as those de�ned by AS. Subpopulations must be de�ned a priori, and anything that might be
considered a sampling problem must be identi�able independently of outcome results.

Bias in small numbers of trials. Before we consider more complex assumptions, there is
another aspect of bias that should be elucidated. The biased e�ect sizes shown in Figure 4
were calculated for an in�nite number of trials. In a �nite number, the proportion of studies
discarded and the consequent degree of bias can be much higher. For example, for an in�nite
number of good studies powered to 0.78, 22 per cent would be discarded. For �ve such
studies, to discard one study would be already to discard 20 per cent. Using the binomial
distribution, we �nd that there is a 71 per cent chance that one or more of �ve studies would
be discarded, and a 30 per cent chance that two or more would be discarded, leading to even
more bias than shown in Figure 4. Unless very large sample sizes are employed, and medium-
to-large [11] e�ect sizes represent reality, using the AS method can lead to substantially biased
meta-analytic estimates under these circumstances.

E�ect sizes involving the third treatment condition. The AS method uses as a criterion the
standard vs placebo e�ect size, but not e�ect sizes involving the third treatment condition. In
addition, the conditions are assumed to be independent. That is, the response of any individual
in one of the conditions is assumed not to a�ect the response of any individuals in the other
two groups. For example, the response of any individual in the placebo condition does not
a�ect the response of any individual in the standard drug condition or the third condition.
Given the lack of contribution of the third treatment condition to the determination of AS,
along with the independence of the conditions, the estimate of the within-treatment mean
e�ect of the third condition is una�ected by whether or not the AS method is used. The
AS method increases the standard vs placebo e�ect size by selecting studies in which, on
an average, the within-treatment mean e�ect of the standard drug is overestimated and the
within-treatment mean e�ect of the placebo is underestimated. Under the model assumptions,
the contributions to bias come equally from the overestimate of the within-treatment mean
e�ect of the standard drug condition (from the right tail of the distribution of mean e�ects

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:943–955



950 L. A. GELFAND ET AL.

of the standard drug condition) and the underestimate of the within-treatment mean e�ect of
the placebo condition (from the left tail of the distribution of mean e�ects of the placebo
condition). That is, the degree to which the mean e�ect of the standard drug is overestimated
equals the degree to which the mean e�ect of the placebo is underestimated. Because the
estimate of the mean e�ect of the third condition is unbiased, it follows that the bias of the
standard vs other treatment equals the bias of the other treatment vs placebo. In other words,
in the absence of bad studies, the bias in the e�ect size estimates involving the third treatment
condition is equal to one-half of the bias in the standard vs placebo e�ect size (for a formal
approach to this question, see Appendix A).
For example, consider again Figure 3, in which n=cell is 60, the population standard vs

placebo e�ect size is 0.30, and the biased standard vs placebo e�ect size is 0.48 (a bias of
0.18). If the third treatment condition is equally e�ective as the standard (so that its e�ect
size compared to placebo is also 0.30), the biased e�ect size of the third condition vs placebo
is 0.39 (a bias of 0.18=2 or 0.09), and the biased e�ect size of the standard vs the third
condition is 0.09 (the unbiased e�ect size is 0.0). In all cases, the third treatment condition’s
e�ect compared to placebo is overestimated, and its e�ect compared to the standard drug is
underestimated.

Model 3: bad studies present, misclassi�cation present

We have shown in Model 2 that when all studies are good, the AS method introduces bias
into e�ect size estimates, and this bias cannot be dismissed by referring to a drug-responsive
subpopulation. If all studies are good, there is no need to eliminate studies from meta-analyses,
and no possible role for the AS method. However, if AS also excluded bad studies from meta-
analyses, the disadvantage of excluding good studies could be outweighed by the bene�ts of
excluding bad ones if certain assumptions hold. Although we do not know the population
e�ect sizes for good and bad studies, we can examine the e�ects of the AS method in a
number of circumstances, and show what kinds of conditions must be assumed for the AS
method to produce unbiased long-run estimates of standard vs placebo e�ect sizes.
Considering the presence of bad studies requires taking into account, in addition to the

sample size and population e�ect size for good studies, the population e�ect size for bad
studies and the proportion of good and bad studies in the overall population of studies. As in
the discussion of good studies alone, the two-sided alpha is 0.05. To minimize the number
of �gures in this paper, we consider only one sample size: 60=cell. When the sample size is
60=cell and the population e�ect size for good studies is 0.50, power is 0.78, close to the 0.80
typically considered adequate [23]. When good study e�ect sizes are overestimated, due to
overly optimistic estimates resulting from publication bias [23] or other factors, actual power
can be lower than nominal power. To take into account both the possibility of adequately
and inadequately powered studies, we examine cases in which the sample size is 60=cell, and
the population e�ect size for good studies is either 0.50 or 0.30 (in the latter case, power is
0.38). We vary the population e�ect size of bad studies as well as the proportion of bad and
good studies in the population of studies.
The biased estimate, E(dASSPmixture ), of the population e�ect size of the standard vs placebo

di�erence is the mean of a left-truncated mixture probability distribution that is initially com-
posed of the sum of the two normal distributions that represent the distributions of good and
bad study e�ect sizes. This biased estimate can be calculated as a weighted average of the
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Figure 5. Left-truncated mixture distribution depicting the calculation of the long-run e�ect size estimate
resulting from using the AS method in the presence of good and bad studies. In this case, the cell sample
size is 60, the e�ect size of good studies is 0:30a, the e�ect size of bad studies is 0.20, and the proportion
of bad studies is 50 per cent. The e�ect size criterion for AS, dCRITSP , is 0:36b. The shaded region shows
non-AS studies, which would be excluded from meta-analysis. The biased e�ect size calculated from

the AS studies (unshaded) is 0:47c. Thus, the bias is 0:17d.

Figure 6. (a) and (b) Standard vs Placebo e�ect size expectations of mixtures of good and bad studies
using the AS method, plotted against population e�ect sizes of bad studies. For (a) and (b), sample
size is 60=cell. For A, the e�ect size of good studies is 0.50. For B, it is 0.30 (in each case represented
by a thick horizontal line). The degree of bias expected from using the AS method is shown by the
di�erence between a point on the curved line and the corresponding point on the thick horizontal line
indicating the unbiased value. Values above the thick horizontal line re�ect upward bias, in which the
e�ectiveness of the standard drug is overestimated; values below the thick line re�ect downward bias,

in which the standard drug’s e�ectiveness is underestimated.

means of the good and bad e�ect size distributions left-truncated at the critical value dCRITSP ,
where the weights are the proportions of good and bad studies, respectively, represented in
the left-truncated (AS) mixture distribution (see Appendix B). An example of this is depicted
in Figure 5, and the biased estimates are shown in Figure 6.
In Figure 6, biased population standard vs placebo e�ect size estimates are shown based on

using the AS method to exclude studies. As the bad study e�ect size increases, more and more
bad studies are misclassi�ed as good, and the expected e�ect size of AS studies increases, in
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a concave manner. When the e�ect size of bad studies equals the e�ect size of good studies,
the biased e�ect size is the same as when all studies are good; that is, the biased e�ect sizes
include those shown in Figure 4. This is true regardless of the proportion of bad studies. For
example, when the sample size is 60=cell, and both e�ect sizes equal 0.50, the biased e�ect
size is 0.57 (a bias of 0.07); when both equal 0.30, the biased e�ect size is 0.48 (a bias of
0.18). The bias curves pivot about this point, and become steeper as the proportion of bad
studies increases. Naturally, upward bias is present when the bad study e�ect size equals or
surpasses that of the good studies. In some cases when the bad study e�ect size is lower than
that of the good studies, this bias is reduced so that it is non-existent or negligible, but in
other cases, the upward bias is not substantially counterbalanced. In general, the AS method
seems to introduce minimal bias when the studies considered for meta-analysis are highly
powered, the proportion of bad studies is substantial, and the e�ect size of the bad studies is
considerably lower than that of the good studies, simultaneously.

E�ect sizes involving the third treatment condition. A biased e�ect size estimate involving the
third treatment condition in the presence of bad studies is a weighted average (similar to that
described above) of the biased estimates from the good and bad studies, where the weights
are the proportions of good and bad studies, respectively, represented in the left-truncated
(AS) mixture distribution (see Appendix B).
Consider again Figure 5, in which n=cell is 60, the population standard vs placebo e�ect

size for good studies is 0.30, and the population standard vs placebo e�ect size for bad studies
is 0.20. Assume that the �aws in the bad studies do not a�ect the relative e�ectiveness of
the standard and third treatment conditions, and that the third treatment condition is equally
e�ective as the standard in both good and bad studies (so that its e�ect size compared to
placebo is 0.30 in good studies and 0.20 in bad studies). The biased placebo vs standard e�ect
size is 0.47 (a bias of 0.17), the biased e�ect size of the third treatment condition vs placebo
is 0.37 (a bias of 0.07), and the biased e�ect size of the standard vs the third treatment
condition is 0.10 (where the unbiased e�ect size is 0.0). Unlike the case in the absence of
bad studies, in the presence of bad studies the bias in the comparison of the third treatment
vs placebo is not necessarily equal to the bias in the comparison of the standard vs the third
treatment.

DISCUSSION

At �rst glance AS, a metaphor that has been in�uential in the context of approving new drugs
in the United States, appears to be an attractive, labour-saving alternative or additional crite-
rion to traditional methods for assessing study quality and appropriateness for meta-analysis.
However, there are several problems with the AS method. The AS method excludes good
studies that exhibit type II error, biasing meta-analytic results in favour of the standard drug.
The e�ect size estimates from these studies should be included in meta-analyses, because
excluding them biases the results. The AS method does not live up to claims that it helps to
select patients from subpopulations of interest; valid subpopulations must be de�ned a priori.
The AS method, at best, can only help to eliminate bad studies that underestimate the ef-
fectiveness of a standard drug, not bad studies that exaggerate the drug’s e�ectiveness. Even
if bad studies tend consistently to underestimate the e�ectiveness of a standard drug, under
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many circumstances using the AS method would still result in a substantially biased e�ect
size estimate that would overestimate the drug’s e�ectiveness.
Unless evidence is gathered to support the hypothesis that using the AS method reduces bias,

meta-analysts should make quality judgments that are based on study methods, and that are
independent of outcome. This means that, depending upon judgments made about each study’s
methodology, studies demonstrating AS can be excluded from meta-analyses, and studies not
demonstrating AS, or not able to demonstrate AS because they do not contain a placebo
condition, can be included. The placebo condition retains its importance in determining the
e�cacy of treatments, but the standard vs placebo comparison does not play a useful role in
judging a study’s quality.

APPENDIX A: EFFECT SIZE ESTIMATES INVOLVING THIRD TREATMENT
ARM IN LEFT-TRUNCATED NORMAL DISTRIBUTION

Let �ij and dij be de�ned as in equations (1) and (2) in Method. Let �ij=dij − �ij. Then,
it follows the model assumptions that �ij ∼N(0; 2=n). Note that although XS , XP, XO, are
stochastically independent, �ij are not. For example, consider: �SP=[( �XS − �XP)=�]− �SP and
�SO=[( �XS − �XO)=�]− �SO. Both contain �XS and are not stochastically independent. However,
�ij all have the same distribution.
Now, let �CRITSP =dCRITSP − �SP. Then, we have
E(dASSP )=E(dSP|dSP¿dCRITSP )=E(�SP+�SP|�SP+�SP¿�CRITSP +�SP)=�SP+E(�SP|�SP¿�CRITSP )

So, the bias for dASSP is given by: E(�SP|�SP¿�CRITSP ).
Because �SO and �OP have the same distribution, it follows from the properties of conditional

expectation [24] that

E(�SO|�SP¿�CRITSP )=E(�OP|�SP¿�CRITSP )

And because any measure of the SP di�erence equals the sum of the SO and OP di�erences,
�SP= �SO + �OP; it follows that

E(�SP|�SP¿�CRITSP ) = E(�SO + �OP|�SP¿�CRITSP )=E(�SO|�SP¿�CRITSP ) + E(�OP|�SP¿�CRITSP )

= 2E(�SO|�SP¿�CRITSP )=2E(�OP|�SP¿�CRITSP )

So, E(�SO|�SP¿�CRITSP )=E(�OP|�SP¿�CRITSP )= 1
2E(�SP|�SP¿�CRITSP ). Finally, since dij= �ij + �ij,

it follows that

E(dSO|�SP¿�CRITSP )= �SO + E(�SO|�SP¿�CRITSP )= �SO + 1
2E(�SP|�SP¿�CRITSP )

E(dOP|�SP¿�CRITSP )= �OP + E(�OP|�SP¿�CRITSP )= �OP + 1
2E(�SP|�SP¿�CRITSP )

Or, equivalently, from equation (3),

E(dSO|dSP¿dCRITSP ) = �SO +
(
1
n

)
�(dCRITSP )

1−�(dCRITSP )
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E(dOP|dSP¿dCRITSP )= �OP +
(
1
n

)
�(dCRITSP )

1−�(dCRITSP )

So, the bias for dASSO and d
AS
OP is one-half of that for d

AS
SP .

APPENDIX B: EFFECT SIZE ESTIMATES FROM TRUNCATED MIXTURE
DISTRIBUTION

A biased e�ect size estimate in the presence of both good and bad studies is a weighted
average of the biased estimates from the good and bad studies, where the weights are the
proportions of good and bad studies, respectively, represented in the left-truncated (AS) mix-
ture distribution of standard vs placebo e�ect size estimators. If dCRIT is the critical value,
and Pr(AS)=Pr(dSP¿dCRIT), the biased estimate E(dASijmixture ) is calculated as follows:

R =Pr(good∩AS|AS) i.e. proportion of studies with AS that are good
1− R =Pr(bad∩AS|AS) i.e. proportion of studies with AS that are bad
P =Pr(good) i.e. proportion of good studies in the mixture
(1− P) = Pr(bad) i.e. proportion of bad studies in the mixture
’good = Pr(AS|good) i.e. power of good studies to detect standard vs placebo di�erence
’bad = Pr(AS|bad) i.e. power of bad studies to detect standard vs placebo di�erence
E(dASijgood ) = (biased) e�ect size estimate for good studies using good studies with AS
E(dASijbad ) = (biased) e�ect size estimate for bad studies using bad studies with AS

E(dASijmixture )=E�(R)dASijgood + (1− R)dASijbad� = (R)E(dASijgood ) + (1− R)E(dASijbad )

R=Pr(good ∩AS|AS)= Pr(good)Pr(AS|good)
Pr(AS)

=
Pr(good)Pr(AS|good)

Pr(AS∩ good) + Pr(AS∩ bad)

=
Pr(good)Pr(AS|good)

Pr(good)Pr(AS|good) + Pr(bad)Pr(AS|bad) =
P’good

(1− P)’bad + P’good

1− R=Pr(bad ∩AS|AS)= Pr(bad)Pr(AS|bad)
Pr(AS)

=
Pr(bad)Pr(AS|bad)

Pr(AS∩ good) + Pr(AS∩ bad)

=
Pr(bad)Pr(AS|bad)

Pr(good)Pr(AS|good) + Pr(bad)Pr(AS|bad) =
(1− P)’bad

(1− P)’bad + P’good

Thus,

E(dASijmixture )=
[

P’good
(1− P)’bad + P’good

]
E(dASijgood ) +

[
(1− P)’bad

(1− P)’bad + P’good

]
E(dASijbad )
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