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THEIEC 61131-3STANDARD

ALCATEL The IEC 61131-3 standard [1] [2] defines the syrdax,

(Marcoussis, France) and two laboratories of theoldc for a lesser part, the semantics of four prograngnémguages
Normale Supérieure (Cachan, France) have been viegolfor PLC, as well as a structuring one (Sequentiahdtion

since March 1998 in a research project in the fafldormal

verification of Programmable Logic Controllers (PLC The four programming languages are Ladder Diagram,

Chart).

programs. The Sequential Function Chart (SFC), kaddrunction Block Diagram (graphic programming langes)y

Diagram (LD) and Structured Text (ST) languagesehbagen
chosen among the five languages defined in the@ET31-3
standard. The aim of this project is the developmeh
methods and algorithms enabling the designer taddet the
PLC program verifies the safety, liveness and tpneperties
specified in the requirements.

SAFE PROGRAMMING
Industrial Programmable Logic Controllers (PLC) ased
extensively in manufacturing industries for compleontrol
applications. In today’s economic context, the giesif these
control applications is of a great impact in terno$
productivity and production costs. Because of thossts, of
the complexity of the control systems and of theltiple
hardware/software  combinations (many

Structured Text and Instruction List (textual ondd)e Ladder
Diagram language (LD), based on relay ladder ldgagrams,
permit the description of boolean functions. In thenction
Block Diagram language (FBD), the programming fezdLare
represented as graphic blocks. The Structured Temguage
(ST), close to Pascal, allows procedural, condéiaand loop
statements. The Instruction List is an assemblyedi@
language.

The fifth language is defined in order to structuhe
internal organisation of PLC programs or functiolodis.
This graphical language called SFC (Sequential tamc
Chart) is an extended state machine that containstiyes to
describe sequential, parallel and alternative biehas. It
enables the partitioning of a PLC program (or fiorctolock)

programmingto a set of steps and transitions interconnetiedlirected

tools,...), the designer has to take the safety cfettsystems links. Each step is associated to a set of actams each

into account. In this context it is necessary tovjae the
designer with verification methods that ensure shéety and
liveness of the control system.

One way is to ensure the safety of PLC programadiyg
safety “framework” while programming. For exampleetiEC
61131 standard improves the reusability and thditguz the

transition is associated to a transition condition.
One of the aims of IEC 61131-3 is to provide PLC
programming designers with a modular and structutiool
that will improve the reusability [3] and the quwl{4] of the
programs, especially in the sense of reliabilityd esafety.
Nevertheless, having common elements for all

programs thanks to PLC manufacturer-independentutaod pProgramming languages is not enough to ensure ubétyj of

and structuring languages. Nevertheless, having ntmm
elements for all programming languages is not ecigffit to
ensure the quality of the programs and this stahdacks
practical verification methods.

The other way is to verifying the written prograriis is
the main goal of this paper.

the programs and the standard lacks practical igatibn
methods.

PLC PROGRAMS VERIFICATION METHOD
Research on verification methods is a quite reeetivity
in the Automation field while many works have been

the



performed and successfully tested in Computer $eien program. This leads to the definition of an openasi
Moreover PLC programs verification is close to peogming semantics.

languages verification. In both fields, propertiese verified The operational semantics consists of one tramsgystem
concern safety, reliability as well as system alality [5]. modelling the PLC execution cycle, plus for eachglzage
For these reasons, most of the PLC verificationsr@xches one transition system representing the behavigutat of the
[6] (including ours) rely on principles close tooe used in chosen language and several transition systemshwhodels

Computer Science [7], [8]. the elements of the program (see in fig. 2 thiscstire in the

case of an SFC program,”™means sending ant®®™ means

The method principle receiving). The modelling of the behavioural rutispends on
the chosen language.

Our method relies on two main phases: For the SFC language, the structure of the SFC

- The behaviour of the PLC programs is modelled &@nsformed in a transition system which computes t
transition systems synchronised by message exchang¥olution of the program. For the LD and ST langsghe
This modelling consists in the definition of theeoptional approach is more a compiling of the program in siéon
semantics. It permits the clear and non-ambiguo8¥stems.
definition of PLC program behaviour.

- The implementation/coding in a model checking taml PLC execution cycle
verify safety and liveness properties. It is basedthe
operational semantics. One transition system models the PLC executionegyitl

includes 3 phases (read inputs, compute, write utsitp This
MODELLING USING SYNCHRONISED TRANSITION modelling is done once for one kind of PLC (for mxde

SYSTEMS cyclic or periodic): it does not depend on the &dd
programs. The compute phase is used to start eliffesub-
Operational semantics modelling programs (fig. 1). Pre-programs written in ST amnd/D® are

first started. At their completion, the main progran SFC
gins. At the end of this one, the post-programgem in ST
d/or LD are processed. This finishes the comphsse.

The SFC language is used to structure the PLC anogr

For each language used in the PLC program, twosst%?
have to be done: n
- definition of the semantics based on the IEC 61331-

- definition of transitions systems representing ¢hements
of the language, and for the ST and LD languag

definition of the assembly rules to compose elesast a

Qprogram. The ST and LD languages can be used itipp®s
part of the PLC program or used by the SFC padescribe
action or transition-condition.

Pre-program ST program
Compute | Main program SFC program [<—=>| SFC subprogram
phase

Post-program LD program

Figure 1: Structure of PLC program: PLC cycle, larages used

is

SFC sub-programs can be called only by another SFC
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Figure 2: Modelling of the PLC cycle, SFC modellinghe compute phase

SFC language modelling

For SFC, the operational semantics in transitiostesps

naturally defined from LD execution rules, the LBnpitives
interpretation and the cyclic PLC execution pattern

In the detailed internal transition system, stateslabelled
with the value of all the program variables, plasa control

(fig. 2) models how it computes (for example thepstVvariable (fig. 3).Ic enables to store the current step of the

variables are computed after the transition -clainab
computation) the evolution of the program with neigato the
evolution rules. The program is modelled by sevaeaisition
systems: one for each step variable, one for eactsition to
model the clearability, one for each action,.... Tkepsand
transition modelling is strongly influenced by thleyntax
(parallel sequences, sequence selections,...)

LD language modelling

Ladder Diagram language is based on relay laddgic lo

diagrams and enables the description of booleawtifurs.
Furthermore, as it is a low level design languéts, difficult

to write correct LD programs. Therefore, the neefd ao
verification tool is important.

execution pattern. Each transition models eitherruag
evaluation or the start of the program. Rungs amuated
sequentially, unless a jump instruction is spedifie a rung.
The “end of cycle” state represent the end of tog@mm.

rung k evaluated

rung 1 rung 2 rung i+1 (observable "end of cycle”
| evaluation I evaluation ! I evaltation I! state)

input reading

Figure 3: LD transition system cycle

ST language modelling

LD programs are usually represented with graphic Structured Text language is similar to Pascal cdeipu

components. In order to ease LD programs parsirtgxtal
form for LD is defined in [9]. After the definitiorof the
syntax, a mathematical interpretation for LD primés should
be defined. A formal description of the behaviour Ld

programs is given.

To model a LD program behaviour, the interpretatiball
the LD primitives has to be mathematically defin€dntacts
allow the assignment of a value to a boolean vlgiabhe
boolean value held by the wire between the twospaftthe
rung depends upon the variables of the contacts thad
combination instruction between contacts.

When the interpretation of each primitive of thedaage
has been mathematically defined, the behaviounwfiale LD
program can be described using a transition sysfesimple
way to build a behaviour state transition systentoisnodel
the internal dynamics of the program i.e. the dedai
execution of the program. This internal transitigystem is

programming language and enables the description of
procedural computation. Those procedures can be ase
actions or transition-condition for SFC programbey can be
also used as autonomous program for pre/post PbGrams
or for the description of the function blocks beioav.

For the ST language, another approach is used.r Afte
defining a formal grammar of the language, eacimelg of
the language can be described by a simple autofBments
can be grouped to form a statement which yellecbaldan
value. For the procedural part of the languagdestiants can
be assembled to build sequences which generally jus
terminate. All the rules used to assemble elem@tdsements)
in a statement (sequence) in the grammar. To ad$semb
statements as a sequence, we use composition duactiom
rules to expand transition systems (fig. 4). Thecpss of
building the transition system for a statement iseeursive
one.



checks whether properties expressed by the progeaname
satisfied or not. If they are not, it exhibits ajgence of states
leading to the contradiction of the assertion. Methto verify
PLC programs using SMV can be found in [9] for ttelder
Diagram language and [10] for the Sequential Fonc€hart
of the IEC 61131-3 standard.

Ireturn

Method for multi-languages programs

All the transition systems defined in the operation
semantics are coded in the SMV language. The fatlgw
paragraphs explains how it is done for each languag

Method for the SFC elements

Figure 4: Comp05|tlog:ie;ﬂzsgon rule for “if-therlse The SFC program behaviour has to be modelled iitefin
states to be coded in SMV. The states of the chtyaesition
system contain all the inputs and outputs of trstesy, as well
as all the step variables of the SFC. The tramstexpress all
the possible evolutions between states. In practie@sition
For each language, the verification model has beeomputation includes the evolution rules of an S@ending
validated independently: the SFC language [10], Lz on its inputs. As the SMV language enables to defime
language [9], [11].Work for the ST language is mogeent, transitions by giving the NEXT value of the varieb| we
former work has been done for the IL language [42§ is have chosen to use the well-known mathematical itiogef
extended for ST. the SFC defining the new value of a step variabtenfthe
For a multi-languages PLC program, we must ensure: previous value of step variables and from the ispoft the
the transition systems modelling the program iarguage SFC. This modelling is described in [10].
should be independent of the PLC cycle;
one transition system modelling a part of the Pl@ypam
in a language can be called by another which dessri
another part in a possibly different language. Once the behaviour of a LD program has been matlelle
To do that, the PLC execution cycle must be clearliging a state transition system, it is necessagnamde it into
isolated and used to separate the reading, congpuind a model-checker to perform automatic verificatiorf o
writing phases (as shown in fig. 2 for the SFC lzagg). properties. Because Cadence-SMV  handles  formal
expressions, and has enough expressiveness, this
implementation is made without semantic loss [9]]]

Multi-languages modelling

Method for the LD elements

CODING IN A MODEL-CHECKING TOOL
Among the Computer Science formal verification noeit)
both structural and sequential equivalence chec¢kingdel-
checking and formal proof reasoning [13]), we hav®sen

Method for the ST elements

temporal model checking.

Model checking is a technique in which a finite rabdf
the system (a transition system) is built and thpeeted
properties (specification of behaviour) of the syst are
checked on this model. The representation of ttassition

For ST programs, the same method is applied to thele
transition system in Cadence-SMV language.

TEMPORAL PROPERTIES VERIFICATION
Once the state transition system that correspandsRLC

system can either be explicit (the complete trasisystem is program has been suitably described for Cadence-SM¥
built) or implicit (symbolic representation of theansition possible to automatically check behavioural prdpsrt
system). In the temporal model checking, the sysiem gypressed in linear temporal logic (LTL) [15]. Thmporal
modelled as a finite state transition system ardptitoperties |ogic is tailored for linking individual properties complex

are expressed in a temporal logic. A search prmdﬂemporal (i.e., “before-and-after’) ways, where Isam
(exhaustive state space search or reachabilitysisglis then ombpinations are allowed.

used to check whether the expected properties eréed on The global behaviour of the program must be checkey
the finite state transition system. when outputs latch. The properties should be mediifo hold

The model checker we choose is Cadence-SMV (Symbodpy when the transition system of the PLC prograsmches
Model Verifier) [14] developed by the Carnegie Mell ihis state. The properties at this stage are giyieva the

University. SMV implicitly represents (using BDDhé state pehaviour of the system. A liveness property carvésgfied
automaton modelling all possible program statesenTlit



when the output state is reached. Safety proped#s be
written with same modification.

A short example

The following system has been treated with our wetht
deals with the control of a tool-holder turret (fi§) of a
turning-centre. The tool-holder turret is for twelplace (for
live or fixed tools), it can rotate clockwise (CW) counter-
clockwise (CCW). The control has to minimise thedi for
tool-changing.

PI

Figure 5: turning-centre tool-holder turret

The global architecture of the turning-centre isdmaof
two major components:
the numerical controller manages the interactioiib tne
user and performs all the real-time computationat tt
require some precision
the PLC controls the operation that requires mompmex
and flexible computations. In our case, the managyraf
the tool-holder turret is made by a program implatad in
the PLC.
The PLC program for this system is representedhin6f
The actions and transition-conditions are describdd |,
ST or SFC.

Properties for LD actions and transition-conditions

Some properties can be tailored for the behaviduthe
LD language. One of these can be a test for thehedmlity of
each rung of a program. These properties expredghbre is
no dead code in the LD program, plus that the nogr
terminates avoiding infinite loops. The reachapiltan be
expressed the same for every LD program.

Properties for ST actions and transition-conditions
The same remark apply to the ST programs. Readtyabi

properties can be written to avoid dead-code arfahite
loops.

1 |me
&

[

ACTION [P) :
E:=PP-PC;
case E of
0 : RAH:=FALSE ; RH:=FALSE;
-5,-4,-3,-2,-1.7.8.9.10.11,12 : RAH:=TRUE ;

-11,-10,-9,-8,-7,-6,1,2.3,4,5,6 : RAH:=FALSE ; RH:=TRUE;

end_case;
END_ACTION;

RH:=FALSE:

l5

TRUE

Lo}

[ Action A2 (Calcul de P A (H);

L f

ACTION [N :

if not(RAH] & not[RH]
then PL.=FALSE;
else if RH
then H:=PP-1;
else H:i=PP+1;
end_if;

G:=MOD([PC-H)12];

ACTION [P) :
CRM:=FALSE;
F:=FALSE;
if RH then CW:=TRUE; CCW:=FALSE:
end_if;
it RAH then CCW!:=TRUE: C\W'=FALSE;
end_if;

END_ACTION;

if [G=0]
then PL.=TRUE;
else Pl:=FALSE;
end_if;
end_if;
END_ACTION;

strobe F_TRIG
CLk  Qf——>—H

[acTiON Py
EAI=TRUE;
END_ACTION;

el
— —

R_TRIG

CLk  af—>——-

ACTION [P) :
if RH then CCW:=TRUE; CW:=FALSE;
end_if;
if RAH then CW:=TRUE; CCW:=FALSE;
end_if;

END_ACTION;

cca
——

R_TRIG

Clk Qf—<>—

ACTION [N] :
if gs7.t > T2 then EAL:=FALSE;
end_if;

END_ACTION;

ACTION [P) :
F:=TRUE;
END_ACTION;

ccl F_TRIG
— oK af——

[acTION Py
CRM=TRUE:
EAl=FALSE;

M

END_ACTION;

g

FALSE

Figure 6: A PLC multi-|

anguages program




formal and non-ambiguous definition of behaviouhiet can
then be the base for the coding in temporal symbwmiodel-

Safety properties depend upon the physical systach ghecker to verify safety and liveness properties thé
must be written globally for the complete PLC progrbased program. This method seems to be very efficieetafy PLC

Properties for the multi-languages program

on the requirements. programs.

To verify liveness properties, we have to make

assumptions on the behaviour of the inputs varigblbus

supposing the corresponding devices work as expe&eme

properties can be verified on the example [12]:

- invariant: motor command consistency (to verifytthze
motor is never ordered in both directions at theesgéime)
Itis expressed in LTL as:

G- (CwOCCW)

- safety: brake-motor consistency (to verify that thetor is

always turned off before the brake is on)

Itis expressed in LTL as:

G ((eoc - =Br) U (-=CW O-CCW Oeoc))0G (eoc -
-Br)

- liveness: non-blocking system
Itis expressed in LTL as:

G ((RH ORAH) - F CRM), plus the fairness assumption

on the PI (indexed position) variable:
G ((CwDOcCCw) - F PI)
Liveness properties can be made at different levels
- for each action, we can test the liveness of tihemogram

- for the whole program, we can test that whenever th

program start, it will finish

RESULTS

Cadence-SMV checks whether the expected propextes

verified on the multi-languages program and if igdtes a
diagnosis. The result for the invariant property otor

command consistency” is below (made on an avera@e P

workstation):

G-(CWDOCOW .. e true
user time................ 0. 0300432 s
systemtine.................... 0.0100144 s

Resour ces used

user time.................... 0. 0300432 s
systemtime.................... 0. 0100144 s
CONCLUSION

We have developed a formal verification method PuC
programs. Sequential part is described in SFComastcan be
described in the SFC, LD and ST languages and iti@ms
conditions can be described in the LD and ST laggsaThe
principle of our method is the modelling of the helour of
the whole program as synchronised transition systetime
PLC execution cycle, as well as the languages &edtst
elements are modelled. The operational semantiables the
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