
Safe programming of PLC using formal verification methods

O. De Smet1,2, S. Couffin1, O. Rossi1, G. Canet3,4, J.-J. Lesage1, Ph. Schnoebelen3, H. Papini4

1 Laboratoire Universitaire
de Recherche en

Production Automatisée.
Ecole Normale Supérieure
61 avenue du Pdt Wilson

94235 Cachan Cedex
France

Fax: 33 1 47 40 22 20
{de_smet, couffin, rossi,

lesage}@lurpa.ens-
cachan.fr

2 Chaire de Fabrications
Mécaniques.
CNAM Paris
2, rue Conté
75003 Paris

France

3 Laboratoire Spécification
et Vérification.

Ecole Normale Supérieure
61 avenue du Pdt Wilson

94235 Cachan Cedex
France

Fax: 33 1 47 40 24 64
{canet, phs}@lsv.ens-

cachan.fr

4 Corporate Research
Center ALCATEL.

Route de Nozay
91461 Marcoussis Cedex

France
Fax: 33 1 69 63 17 89

helene.papini@alcatel.fr

ABSTRACT
The Corporate Research Center of ALCATEL

(Marcoussis, France) and two laboratories of the Ecole
Normale Supérieure (Cachan, France) have been involved
since March 1998 in a research project in the field of formal
verification of Programmable Logic Controllers (PLC)
programs. The Sequential Function Chart (SFC), Ladder
Diagram (LD) and Structured Text (ST) languages have been
chosen among the five languages defined in the IEC 61131-3
standard. The aim of this project is the development of
methods and algorithms enabling the designer to decide if the
PLC program verifies the safety, liveness and time properties
specified in the requirements.

SAFE PROGRAMMING
Industrial Programmable Logic Controllers (PLC) are used

extensively in manufacturing industries for complex control
applications. In today’s economic context, the design of these
control applications is of a great impact in terms of
productivity and production costs. Because of those costs, of
the complexity of the control systems and of the multiple
hardware/software combinations (many programming
tools,…), the designer has to take the safety of these systems
into account. In this context it is necessary to provide the
designer with verification methods that ensure the safety and
liveness of the control system.

One way is to ensure the safety of PLC programs by using
safety “framework” while programming. For example the IEC
61131 standard improves the reusability and the quality of the
programs thanks to PLC manufacturer-independent modular
and structuring languages. Nevertheless, having common
elements for all programming languages is not sufficient to
ensure the quality of the programs and this standard lacks
practical verification methods.

The other way is to verifying the written programs. This is
the main goal of this paper.

THE IEC 61131-3 STANDARD
The IEC 61131-3 standard [1] [2] defines the syntax and,

for a lesser part, the semantics of four programming languages
for PLC, as well as a structuring one (Sequential Function
Chart).

The four programming languages are Ladder Diagram,
Function Block Diagram (graphic programming languages),
Structured Text and Instruction List (textual ones). The Ladder
Diagram language (LD), based on relay ladder logic diagrams,
permit the description of boolean functions. In the Function
Block Diagram language (FBD), the programming features are
represented as graphic blocks. The Structured Text language
(ST), close to Pascal, allows procedural, conditional and loop
statements. The Instruction List is an assembly code-like
language.

The fifth language is defined in order to structure the
internal organisation of PLC programs or function blocks.
This graphical language called SFC (Sequential Function
Chart) is an extended state machine that contains primitives to
describe sequential, parallel and alternative behaviours. It
enables the partitioning of a PLC program (or function block)
into a set of steps and transitions interconnected by directed
links. Each step is associated to a set of actions and each
transition is associated to a transition condition.

One of the aims of IEC 61131-3 is to provide PLC
programming designers with a modular and structuring tool
that will improve the reusability [3] and the quality [4] of the
programs, especially in the sense of reliability and safety.
Nevertheless, having common elements for all the
programming languages is not enough to ensure the quality of
the programs and the standard lacks practical verification
methods.

PLC PROGRAMS VERIFICATION METHOD
Research on verification methods is a quite recent activity

in the Automation field while many works have been

performed and successfully tested in Computer Science.
Moreover PLC programs verification is close to programming
languages verification. In both fields, properties to be verified
concern safety, reliability as well as system availability [5].
For these reasons, most of the PLC verifications approaches
[6] (including ours) rely on principles close to those used in
Computer Science [7], [8].

The method principle

Our method relies on two main phases:
- The behaviour of the PLC programs is modelled as

transition systems synchronised by message exchanges.
This modelling consists in the definition of the operational
semantics. It permits the clear and non-ambiguous
definition of PLC program behaviour.

- The implementation/coding in a model checking tool to
verify safety and liveness properties. It is based on the
operational semantics.

MODELLING USING SYNCHRONISED TRANSITION

SYSTEMS

Operational semantics modelling

For each language used in the PLC program, two steps
have to be done:
- definition of the semantics based on the IEC 61131-3
- definition of transitions systems representing the elements

of the language, and for the ST and LD languages,
definition of the assembly rules to compose elements as a

program. This leads to the definition of an operational
semantics.
The operational semantics consists of one transition system

modelling the PLC execution cycle, plus for each language
one transition system representing the behavioural rules of the
chosen language and several transition systems, which models
the elements of the program (see in fig. 2 this structure in the
case of an SFC program, “!” means sending and “?” means
receiving). The modelling of the behavioural rules depends on
the chosen language.

For the SFC language, the structure of the SFC is
transformed in a transition system which computes the
evolution of the program. For the LD and ST languages, the
approach is more a compiling of the program in transition
systems.

PLC execution cycle

One transition system models the PLC execution cycle, it
includes 3 phases (read inputs, compute, write outputs). This
modelling is done once for one kind of PLC (for example
cyclic or periodic): it does not depend on the studied
programs. The compute phase is used to start different sub-
programs (fig. 1). Pre-programs written in ST and/or LD are
first started. At their completion, the main program in SFC
begins. At the end of this one, the post-programs written in ST
and/or LD are processed. This finishes the compute phase.

The SFC language is used to structure the PLC program.
SFC sub-programs can be called only by another SFC
program. The ST and LD languages can be used in post/pre
part of the PLC program or used by the SFC part to describe
action or transition-condition.

Compute
phase

Pre-program

Main program

Post-program

ST program

SFC program

LD program

SFC subprogram

Figure 1: Structure of PLC program: PLC cycle, languages used

! read_
inputs

? inputs_
read

! begin_
computation

? end_
computation

! write_
outputs

? outputs_
written

! compute_
transition_clearabilities

? transition_clearabilities_
computed

! compute_
step_variables

? step_variables_
computed

! compute_
actions

? actions_
computed

! act ion_i_
com puted

! a = 0! a = 1

? p0 = 0

? compute_act ion_i

? p0 = 1

! act ion_i_
com puted

? compute_t ransit ion_k_clearability

! t ransit ion_k_
clearabilit y_computed

! t ransit ion_k_
clearability_computed

? x = 1
? x = 0

? t2 = 0? t1 = 1 ? t1 = 0

? t2 = 1

! e1 = 0

! e2 = 0

! e2 = 1! e1 = 0

! e2 = 1

! e1 = 1

! t ransit ion_k_clearability_computed

PLC execution cycle

Behavioural rules of the language
(SFC)

! act ion_j_
com puted

! b = 0! b = 1

? x = 0

? compute_act ion_ j

? x = 1

! act ion_j_
com puted

elements of the PLC program (SFC)
PLC program (SFC)

Figure 2: Modelling of the PLC cycle, SFC modelling in the compute phase

SFC language modelling

For SFC, the operational semantics in transition systems
(fig. 2) models how it computes (for example the step
variables are computed after the transition clearability
computation) the evolution of the program with regards to the
evolution rules. The program is modelled by several transition
systems: one for each step variable, one for each transition to
model the clearability, one for each action,…. The step and
transition modelling is strongly influenced by the syntax
(parallel sequences, sequence selections,…)

LD language modelling

Ladder Diagram language is based on relay ladder logic
diagrams and enables the description of boolean functions.
Furthermore, as it is a low level design language, it is difficult
to write correct LD programs. Therefore, the need of a
verification tool is important.

LD programs are usually represented with graphic
components. In order to ease LD programs parsing, a textual
form for LD is defined in [9]. After the definition of the
syntax, a mathematical interpretation for LD primitives should
be defined. A formal description of the behaviour of LD
programs is given.

To model a LD program behaviour, the interpretation of all
the LD primitives has to be mathematically defined. Contacts
allow the assignment of a value to a boolean variable. The
boolean value held by the wire between the two parts of the
rung depends upon the variables of the contacts and the
combination instruction between contacts.

When the interpretation of each primitive of the language
has been mathematically defined, the behaviour of a whole LD
program can be described using a transition system. A simple
way to build a behaviour state transition system is to model
the internal dynamics of the program i.e. the detailed
execution of the program. This internal transition system is

naturally defined from LD execution rules, the LD primitives
interpretation and the cyclic PLC execution pattern.

In the detailed internal transition system, states are labelled
with the value of all the program variables, plus lc, a control
variable (fig. 3). lc enables to store the current step of the
execution pattern. Each transition models either a rung
evaluation or the start of the program. Rungs are evaluated
sequentially, unless a jump instruction is specified in a rung.
The “end of cycle” state represent the end of the program.

lc=i lc=j

rung i+1
evaluation

lc=2lc=1

rung 2
evaluationevaluation

rung 1

lc=0

input reading

rung k evaluated

state)
(observable "end of cycle"

lc=k

Figure 3: LD transition system cycle

ST language modelling

Structured Text language is similar to Pascal computer-
programming language and enables the description of
procedural computation. Those procedures can be used as
actions or transition-condition for SFC programs. They can be
also used as autonomous program for pre/post PLC programs
or for the description of the function blocks behaviour.

For the ST language, another approach is used. After
defining a formal grammar of the language, each element of
the language can be described by a simple automata. Elements
can be grouped to form a statement which yelled a boolean
value. For the procedural part of the language, statements can
be assembled to build sequences which generally just
terminate. All the rules used to assemble elements (statements)
in a statement (sequence) in the grammar. To assemble
statements as a sequence, we use composition and reduction
rules to expand transition systems (fig. 4). The process of
building the transition system for a statement is a recursive
one.

? i

! ie

? oe = 1

! o

? oe = 0

! exit

! is1! is2

?os ?exits

?returns

!return

Figure 4: Composition reduction rule for “if-then-else”
primitive

Multi-languages modelling

For each language, the verification model has been
validated independently: the SFC language [10], the LD
language [9], [11].Work for the ST language is more recent,
former work has been done for the IL language [12] and is
extended for ST.

For a multi-languages PLC program, we must ensure:
- the transition systems modelling the program in a language

should be independent of the PLC cycle;
- one transition system modelling a part of the PLC program

in a language can be called by another which describes
another part in a possibly different language.
To do that, the PLC execution cycle must be clearly

isolated and used to separate the reading, computing, and
writing phases (as shown in fig. 2 for the SFC language).

CODING IN A MODEL-CHECKING TOOL
Among the Computer Science formal verification methods,

both structural and sequential equivalence checking, model-
checking and formal proof reasoning [13]), we have chosen
temporal model checking.

Model checking is a technique in which a finite model of
the system (a transition system) is built and the expected
properties (specification of behaviour) of the system are
checked on this model. The representation of this transition
system can either be explicit (the complete transition system is
built) or implicit (symbolic representation of the transition
system). In the temporal model checking, the system is
modelled as a finite state transition system and the properties
are expressed in a temporal logic. A search procedure
(exhaustive state space search or reachability analysis) is then
used to check whether the expected properties are verified on
the finite state transition system.

The model checker we choose is Cadence-SMV (Symbolic
Model Verifier) [14] developed by the Carnegie Mellon
University. SMV implicitly represents (using BDD) the state
automaton modelling all possible program states. Then it

checks whether properties expressed by the programmer are
satisfied or not. If they are not, it exhibits a sequence of states
leading to the contradiction of the assertion. Methods to verify
PLC programs using SMV can be found in [9] for the Ladder
Diagram language and [10] for the Sequential Function Chart
of the IEC 61131-3 standard.

Method for multi-languages programs

All the transition systems defined in the operational
semantics are coded in the SMV language. The following
paragraphs explains how it is done for each language.

Method for the SFC elements

The SFC program behaviour has to be modelled in finite
states to be coded in SMV. The states of the chosen transition
system contain all the inputs and outputs of the system, as well
as all the step variables of the SFC. The transitions express all
the possible evolutions between states. In practice, transition
computation includes the evolution rules of an SFC depending
on its inputs. As the SMV language enables to define the
transitions by giving the NEXT value of the variables, we
have chosen to use the well-known mathematical modelling of
the SFC defining the new value of a step variable from the
previous value of step variables and from the inputs of the
SFC. This modelling is described in [10].

Method for the LD elements

Once the behaviour of a LD program has been modelled
using a state transition system, it is necessary to encode it into
a model-checker to perform automatic verification of
properties. Because Cadence-SMV handles formal
expressions, and has enough expressiveness, this
implementation is made without semantic loss [9], [11].

Method for the ST elements

For ST programs, the same method is applied to code the
transition system in Cadence-SMV language.

TEMPORAL PROPERTIES VERIFICATION
Once the state transition system that corresponds to a PLC

program has been suitably described for Cadence-SMV, it is
possible to automatically check behavioural properties
expressed in linear temporal logic (LTL) [15]. This temporal
logic is tailored for linking individual properties in complex
temporal (i.e., “before-and-after”) ways, where boolean
combinations are allowed.

The global behaviour of the program must be checked only
when outputs latch. The properties should be modified to hold
only when the transition system of the PLC program reaches
this state. The properties at this stage are generally on the
behaviour of the system. A liveness property can be verified

when the output state is reached. Safety properties can be
written with same modification.

A short example

The following system has been treated with our method. It
deals with the control of a tool-holder turret (fig. 5) of a
turning-centre. The tool-holder turret is for twelve place (for
live or fixed tools), it can rotate clockwise (CW) or counter-
clockwise (CCW). The control has to minimise the time for
tool-changing.

CWCCW

PI

Figure 5: turning-centre tool-holder turret

The global architecture of the turning-centre is made of
two major components:
- the numerical controller manages the interactions with the

user and performs all the real-time computations that
require some precision

- the PLC controls the operation that requires more complex
and flexible computations. In our case, the management of
the tool-holder turret is made by a program implemented in
the PLC.
The PLC program for this system is represented in fig. 6.
The actions and transition-conditions are described in LD ,

ST or SFC .

Properties for LD actions and transition-conditions

Some properties can be tailored for the behaviour of the
LD language. One of these can be a test for the reachability of
each rung of a program. These properties express that there is
no dead code in the LD program, plus that the program
terminates avoiding infinite loops. The reachability can be
expressed the same for every LD program.

Properties for ST actions and transition-conditions

The same remark apply to the ST programs. Reachability
properties can be written to avoid dead-code and infinite
loops.

Figure 6: A PLC multi-languages program

Properties for the multi-languages program

Safety properties depend upon the physical system and
must be written globally for the complete PLC program based
on the requirements.

To verify liveness properties, we have to make
assumptions on the behaviour of the inputs variables, thus
supposing the corresponding devices work as expected. Some
properties can be verified on the example [12]:
- invariant: motor command consistency (to verify that the

motor is never ordered in both directions at the same time)
It is expressed in LTL as:
G ¬ (CW ∧ CCW)

- safety: brake-motor consistency (to verify that the motor is
always turned off before the brake is on)
It is expressed in LTL as:
G ((eoc → ¬Br) U (¬CW ∧ ¬CCW ∧ eoc)) ∨ G (eoc →
¬Br)

- liveness: non-blocking system
It is expressed in LTL as:
G ((RH ∨ RAH) → F CRM), plus the fairness assumption

on the PI (indexed position) variable:
G ((CW ∨ CCW) → F PI)
Liveness properties can be made at different levels:

- for each action, we can test the liveness of the sub-program
- for the whole program, we can test that whenever the

program start, it will finish

RESULTS
Cadence-SMV checks whether the expected properties are

verified on the multi-languages program and if not gives a
diagnosis. The result for the invariant property “motor
command consistency” is below (made on an average PC
workstation):
G ¬(CW ∧ CCW)..true

user time......................0.0300432 s
system time....................0.0100144 s

Resources used
==============
user time......................0.0300432 s
system time....................0.0100144 s

CONCLUSION
We have developed a formal verification method for PLC

programs. Sequential part is described in SFC, actions can be
described in the SFC, LD and ST languages and transition-
conditions can be described in the LD and ST languages. The
principle of our method is the modelling of the behaviour of
the whole program as synchronised transition systems: the
PLC execution cycle, as well as the languages and theirs
elements are modelled. The operational semantics enables the

formal and non-ambiguous definition of behaviour, which can
then be the base for the coding in temporal symbolic model-
checker to verify safety and liveness properties of the
program. This method seems to be very efficient to verify PLC
programs.

REFERENCES
[1] Bonfatti F., Monari P.D. and Sampieri U., “IEC 1131-3

programming methodology. Software engineering methods
for industrial automated systems”, CJ International
Editions, ISBN 2-9511585-0-5, (1997)

[2] Ohman M., Johansson S. and Arzén K.E., “Implementation
aspects of the PLC standard IEC 1131-3”, IFAC Control
Engineering Practice 123, Volume 6 n°4, pp. 547-555,
(1998)

[3] Babb M., “IEC 1131-3: A Standard Programming Resource
for PLC”, Control Engineering, (1996)

[4] Van Der Wal E., “Structuring Program Development with
IEC 1131-3”, PLCopening, Volume of October, (1998)

[5] Bowen J.P. and Stavridou V., “Safety-Critical Systems,
Formal Methods and Standards”, IEE/BCS Software
Engineering Journal, Volume 8 n°4, pp. 189-209 (1993)

[6] Lampérière-Couffin S., Rossi O., Roussel J.-M. and Lesage
J.-J., “Formal verification of plc programs: a survey”,
ECC’99, paper N°741, Germany (1999)

[7] Clarke E.M., Wing J.M., ”Formal Methods: State of the Art
and Future Directions”, ACM Strategic Directions in
Computing Research Workshop, (1996)

[8] Craigen D., Gerhart S. and Ralson T., “An International
Survey of Industrial Applications of Formal Methods”,
Volume 1 “Purpose, Approach, Analysis and Conclusions”
& Volume 2 “Case Studies”, NIST GCR 93/626 Report,
(1993)

[9] Rossi O. and Schnoebelen P., “Formal Modeling of Timed
Function Blocks for the Automatic Verification of Ladder
Diagram Programs”, 4th International Conference
Automation of Mixed Processes, ADPM, (2000)

[10] Lampérière-Couffin S., and Lesage J.-J., “Formal
Verification of the Sequential Part of PLC Programs”, 5th

Workshop on Discrete Events Systems: WODES, pp. 247-
254, (2000)

[11] Rossi O., De Smet O., Couffin S., Lesage J.-J., Papini H.
and Guennec H., “Formal verification: a tool to improve the
safety of control systems”, Safe Process 2000, pp. 885-890,
(2000)

[12] Canet G., Couffin S., Lesage J.-J., Petit A. and Schnoebelen
P., “Toward the Automatic Verification Of PLC programs
written in Instruction List”, IEEE International Conference
on Systems, Man and Cybernetics, Nashville USA, (2000)

[13] Bryant R.E. and Musgrave G., “Panel: User Experience
with High Level Formal Verification”, 35th Design
Automation Conference, pp. 327, (1998)

[14] McMillan K.L., “Symbolic Model Checking”, Kluwer
Academic Publishers, (1993)

[15] Emerson E.A., “Temporal and modal logic”, In van
Leeuwen J., editor, Handbook of Theoretical Computer
Science, vol. B, chapter 16, pp. 995-1072, Elsevier Science
Publishers, (1990)

