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Abstract

Asymptotic linear stability is studied for stochastic differential equations (SDEs)

that incorporate Poisson-driven jumps and their numerical simulation using Euler-

type discretisations. The property is shown to have a simple explicit characterisation

for the SDE, whereas for the discretisation a condition is found that is amenable to

numerical evaluation. This allows us to evaluate the asymptotic stability behaviour

of the methods. One surprising observation is that there exist problem parameters

for which an explicit, forward Euler-based method has better stability than its trape-

zoidal and backward Euler counterparts. Other computational experiments indicate

that all Euler-type methods reproduce the correct asymptotic stability for sufficiently

small step sizes. By using a recent result of Appleby, Berkolaiko and Rodkina, we

give a rigorous verification that both stability and instability are reproduced for small

step sizes. This property is known not to hold for general, nonlinear problems.
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1 Introduction

Stability is an important property in any timestepping scenario. For stochastic differential

equations (SDEs), two very natural, but distinct, concepts are mean-square and asymptotic

stability. Mean-square stability is more amenable to analysis, and hence this property

dominates in the literature [3, 13, 21]. Asymptotic stability has received some attention

in the case of non-jump SDEs [2, 13, 16, 20]. However, in the jump-SDE context, which

is becoming increasingly important in mathematical finance [4, 8, 6, 7, 11, 12, 17, 19, 22],

we are only aware of mean-square results [14, 15]. This motivates the work in this article,

where asymptotic stability is studied for jump-SDEs.

Our test model has the linear, scalar form

dX(t) = µX(t−) dt+ σX(t−) dW (t) + γX(t−) dN(t), X(0) = X0, (1.1)

for t > 0, where X0 6= 0 with probability one. We use X(t−) to denote lims↑t− X(s). Here

W (t) is a scalar Brownian motion and N(t) is a scalar Poisson process with jump intensity

λ [4, 6]. In addition to λ, this model involves three other constants:

µ is the drift coefficient,

σ is the diffusion constant,

γ is the jump coefficient.

We assume throughout that λ > 0 and γ 6= 0 (otherwise the problem reduces to a non-

jump SDE). We may view the problem (1.1) in terms of the exponentially distributed jump

times of the Poisson process. Between each jump, the solution evolves according to the

non-jump version, dX(t) = µX(t) dt+σX(t) dW (t). At a jump time, the solution gets an

instantaneous kick and X(t) is replaced by (1 + γ)X(t). For γ > 0 or γ < −2 this has the

effect of increasing the solution size, and for −2 < γ < 0 the solution size is decreased.

The class (1.1) is important in its own right as a model in mathematical finance [4, 6, 19],

but here we are using it as a natural extension to the linear test problem that has proved

valuable in the analysis of numerical methods for ODEs [10] and SDEs [2, 3, 13, 20, 21].

It is known that (1.1) has the solution

X(t) = X0 (1 + γ)N(t) exp

[(
µ− 1

2
σ2

)
t + σW (t)

]
; (1.2)

see, for example,[4, 5, 6].
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2 Model Stability

Following the standard definition for non-jump SDEs [18], given parameters µ, σ, γ and λ,

we will say that the problem (1.1) is asymptotically stable (sometimes called asymptotically

stable in the large) if

lim
t→∞

|X(t)| = 0, with probability 1, (2.1)

for any X0.

We now give a lemma that characterises asymptotic stability in terms of the problem

parameters.

Lemma 2.1 Suppose γ 6= −1 in (1.1), then

lim
t→∞

|X(t)| = 0, with prob. 1 ⇐⇒ µ− 1

2
σ2 + λ log |1 + γ| < 0. (2.2)

Proof:

Taking logarithms in (1.2) gives

log |X(t)| = log |X0| +
(
µ− 1

2
σ2

)
t+ σW (t) +N(t) log |1 + γ|. (2.3)

We know that

lim
t→∞

W (t)

t
= 0, and lim

t→∞

N(t)

t
= λ,

with probability one, by the Law of the Iterated Logarithm [18] and the Strong Law of

Large Numbers [9]. Hence,

lim
t→∞

1

t
log |X(t)| = µ− 1

2
σ2 + λ log |1 + γ|, with prob. one. (2.4)

We consider separately the cases where µ− 1
2
σ2 + λ log |1 + γ| is positive, negative and

zero.

Case 1: For µ− 1
2
σ2 + λ log |1 + γ| < 0, it follows from (2.4) that we can find a random

variable ξ ≡ ξ(X0, ε), where 0 < ε < 1
2
σ2 − µ− λ log |1 + γ|, such that

|X(t)| ≤ ξ exp

((
µ− 1

2
σ2 + λ log |1 + γ| + ε

)
t

)
, t ≥ 0,

and hence limt→∞ |X(t)| = 0, with probability one.
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Case 2: Similarly, for µ − 1
2
σ2 + λ log |1 + γ| > 0, we can find a random variable

ξ = ξ(X0, ε), where 0 < ε < µ− 1
2
σ2 + λ log |1 + γ|, such that

|X(t)| ≥ ξ exp

((
µ− 1

2
σ2 + λ log |1 + γ| + ε

)
t

)
, t ≥ 0,

and hence |X(t)| → ∞ as t→ ∞, with probability one.

Case 3: For µ− 1
2
σ2 + λ log |1 + γ| = 0, we return to equation (2.3) and introduce the

compensated Poisson process Ñ(t) := N(t) − λt, so that (2.3) simplifies to

log |X(t)| = log |X0| + σW (t) + Ñ(t) log |1 + γ|.

We note that W (t) and Ñ(t) are independent and that E

[
σW (t) + Ñ(t) log |1 + γ|

]
= 0,

but

Var
[
σW (t) + Ñ(t) log |1 + γ|

]
=
(
σ2 + λ

(
log |1 + γ|

)2)
t→ ∞, as t→ ∞.

So, |X(t)| certainly does not converge to zero in this case. �

In the exceptional case where γ = −1, a jump kills the solution, so we have

X(t) = X0 exp

[(
µ− 1

2
σ2

)
t + σW (t)

]
· 1{N(t)=0}, t ≥ 0,

where 1A denotes the indicator function for A. So P [X(t) = 0] ≥ 1−e−λt and we conclude

that, for any µ, σ and λ, limt→∞ |X(t)| = 0, with probability one. We note that the

condition (2.2) in Lemma 2.1 could be regarded as applying in the γ = −1 case if we view

log(0) as −∞.

We also note that the jump coefficient γ appears in (2.2) in the form |1 + γ|, a term

which is symmetric about γ = −1. This follows from the fact that the stability definition

(2.1) involves only the modulus of the solution, and, in this sense, the effect of a jump with

γ = −1 + a is the same as for a jump with γ = −1 − a.

The stability characterisation µ − 1
2
σ2 + λ log |1 + γ| < 0 involves four parameters, and

hence is difficult to visualize. In Figure 1 we focus on the effect of the jump parameters,

λ and γ. Here, we have contoured the function λ log |1 + γ|. So, for a fixed drift µ and

diffusion σ, the contour at height 1
2
σ2−µ gives the boundary between asymptotic stability

and instability. The broad features of the plot are intuitively reasonable. For γ > 0,

increasing either the jump coefficient γ or the jump intensity λ makes the problem less

stable. On the other hand, for −1 < γ < 0, where a jump reduces the solution magnitude,
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Figure 1: Contour plot of λ log |1 + γ| illustrating asymptotic stability of solutions of (1.1).

increasing the jump frequency λ makes the problem more stable. For γ = 0 we revert to

the condition µ − 1
2
σ2 < 0 for the non-jump SDE. Figure 1 only shows the case γ ≥ −1,

because of the underlying symmetry that we mentioned earlier.

3 Theta Method Stability

A generalisation of the theta method to jump-SDEs was introduced in [15] and studied

in terms of strong convergence and linear mean-square stability, with further results for

nonlinear problems appearing in [14]. Applied to the test equation (1.1) the method takes

the form

Yn+1 = Yn + (1 − θ)µYn ∆t+ θµYn+1 ∆t + σYn ∆Wn + γYn ∆Nn, (3.1)

with Y0 = X0. Here Yn ≈ X(tn), with tn = n∆t, ∆Wn = W (tn+1)−W (tn) is the Brownian

increment, ∆Nn = N(tn+1)−N(tn) is the Poisson increment and θ ∈ [0, 1] is a parameter.

5



We suppose that the stepsize ∆t is fixed. For the implicit case, θ > 0, we require θ µ∆t 6= 1

in order for the method to be well defined. Given θ and ∆t, we may write the recurrence

(3.1) in the form

(1 − θµ∆t)Yn+1 =
(
1 + (1 − θ)µ∆t+ σ

√
∆t ξn + γ∆Nn

)
Yn, (3.2)

where the ξn are independent standard Normal random variables and the ∆Nn are inde-

pendent Poisson random variables with mean λ∆t and variance λ∆t.

By analogy with the SDE definition (2.1), given parameters µ, σ, λ and γ and values for

θ and ∆t, we say that the theta method is asymptotically stable if

lim
n→∞

|Yn| = 0, with probability 1, (3.3)

for any X0.

Lemma 2.1 characterises those parameters in the underlying continuous problem that

give asymptotic stability/instability and our aim is therefore to study whether the discrete

approximation can produce the same long time behaviour.

The following lemma will be useful.

Lemma 3.1 (Higham [13])

Given a sequence of real-valued, non-negative, independent and identically distributed ran-

dom variables {ζk}k≥0, consider the sequence of random variables {ηk}k≥1 defined by

ηk =

(
k−1∏

i=0

ζi

)
η0,

where η0 ≥ 0 and η0 6= 1 with probability 1. Suppose that the random variables log (ζi) are

square integrable. Then

lim
k→∞

ηk = 0, with probability 1 ⇐⇒ E
[
log (ζi)

]
< 0.

Proof: See [13]. �

In order to apply Lemma 3.1 to (3.2), we take

ηk := |Yk| and ζi :=

∣∣∣∣
1

1 − θµ∆t

(
1 + (1 − θ)µ∆t+ σ

√
∆t ξi + γ∆Ni

)∣∣∣∣.

A necessary and sufficient condition for asymptotic stability of the numerical method is

thus

E

[
log

∣∣∣∣
1

1 − θµ∆t

(
1 + (1 − θ)µ∆t+ σ

√
∆t ξi + γ∆Ni

)∣∣∣∣

]
< 0. (3.4)
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Hence, the stability issue involves the expected value of the logarithm of a linear combina-

tion of independent normal and Poisson random variables. We are not aware of any useful

analytical expression for this quantity.

To gain some computational insight, we may rearrange (3.4) into the form

E

[
log
∣∣1 + (1 − θ)µ∆t+ σ

√
∆t ξ + γ∆N

∣∣
]
− log

∣∣1 − θµ∆t
∣∣

and expand over the possible values of ∆N to get

E

[
log
∣∣1 + (1 − θ)µ∆t+ σ

√
∆t ξ + γ∆N

∣∣
]

=
∞∑

k=0

P
(
∆Ni = k

)
E

[
log
∣∣1 + (1 − θ)µ∆t+ σ

√
∆t ξ + γk

∣∣
]

=
e−λ∆t

√
2π

∞∑

k=0

(λ∆t)k

k!

∫

R

log
∣∣1 + (1 − θ)µ∆t+ σ

√
∆t x + γk

∣∣e−x2/2 dx

'e
−λ∆t

√
2π

K∑

k=0

(λ∆t)k

k!

∫ R

−R

log
∣∣1 + (1 − θ)µ∆t+ σ

√
∆t x+ γk

∣∣e−x2/2 dx

'e
−λ∆t

√
2π

∆x
K∑

k=0

(λ∆t)k

k!

( J∑

j=0

log
∣∣1 + (1 − θ)µ∆t+ σ

√
∆t xj + γk

∣∣ exp
(
−x2

j/2
))

.

Here, we truncated the infinite sum to the range 0 ≤ k ≤ K, truncated each infinite

integral to the range −R ≤ x ≤ R, and then applied a simple quadrature approximation

to each integral, using a spacing ∆x, with J = 2R
∆x

− 1, x0 = −R and xj+1 = xj + ∆x.

The plots in Figure 2 were produced with K = 10, R = 10 and ∆x = 0.0004. In each

case, for fixed values of µ = 0.25 and σ = 0.5, we show the range of γ and λ values for

which the theta method is stable. Computations are given for θ = 0, 0.25, 0.5, 0.75 and

1. For reference the contour for the underlying test problem (as given in Figure 1) is also

shown. The three pictures correspond to stepsizes ∆t = 0.1, 0.01 and 0.001. The pictures

suggest that varying theta has little effect on the asymptotic stability properties, and also

that all theta methods will reproduce the correct asymptotic stability for sufficiently small

∆t. In section 4 we give a rigorous proof of the latter property.

The surface plot in Figure 3 gives another view, showing the expected value on the left

hand side of (3.4) for the fixed values µ = 1, σ = 2, λ = 1.5 and γ = 0.25, as a function of

θ and ∆t. Here, µ− 1
2
σ2 + λ log |1 + γ| = −0.66, so, by Lemma 2.1, the problem is stable.

The black contour line, highlighted underneath the surface, shows where the expected

value in (3.4) is zero. This is the critical value where the method moves from instability to
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Figure 2: Asymptotic stability boundaries for the theta methods and the underlying jump-

SDE, with µ = 0.25 and σ = 0.5.
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Figure 3: Left hand side of (3.4) as a function of θ and ∆t, illustrating conditions for

asymptotic stability of the theta-method (3.1).

stability. The contour indicates that, for these problem parameters, the stability behaviour,

measured as the range of ∆t values that reproduce asymptotic stability, is best for θ = 0

and gets uniformly worse as θ increases. This effect is at odds with the behaviour seen

for deterministic problems [10] and for mean-square stability on SDEs and jump-SDEs

[13, 15, 21]. To confirm this visual observation, Table 1 computes the expected value in

(3.4) two different ways, one by the quadrature technique and the other by Monte Carlo

(with 95% confidence intervals shown), for θ = 0, 0.5 and 1 with ∆t = 0.18. We see that

the expected value increases with θ, and that θ = 0 is stable whereas θ = 1 is unstable.

As a final check, Figure 4 show one path for each of the three methods, with the vertical

axis scaled logarithmically. The behaviour for θ = 0 and θ = 0.5 is clearly consistent with

asymptotic stability. For θ = 1, the lower picture, which covers a longer time scale, reveals

the asymptotic instability.
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∆t = 0.18 θ = 0 θ = 0.5 θ = 1

Quadrature −0.0203 −0.0043 0.0188

−0.0156 −0.0027 0.0163
Monte Carlo ±0.0082 ±0.0086 ±0.0090

Table 1: Comparison of expected value approximations computed by quadrature and Monte

Carlo simulation
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4 Euler-Maruyama for Small Step Size

In [16] it was shown that on the nonlinear SDE dX(t) = (X(t)−X(t)3) dt+2X(t) dW (t),

the basic Euler–Maruyama method does not preserve asymptotic stability for any ∆t > 0.

This motivated a study of small step size asymptotic stability. It was shown in [16] that on

linear, scalar, SDEs, the theta method will preserve asymptotic stability for all sufficiently

small ∆t. In this section we extend this result to the case of the jump-SDE (1.1). Further,

we simultaneously cover both the stable and unstable regimes, obtaining positive results

in both cases. The analysis makes use of a recent result by Appleby, Berkolaiko and

Rodkina [1].

For convenience, we focus on the θ = 0 or extended Euler–Maruyama method for jump-

SDEs. As we show in Corollary 5.1, the result then extends readily to general θ.

With θ = 0 the recurrence (3.1) reduces to

Yn+1 = Yn(1 + µ∆t+ σ
√

∆t ξn + γ∆Nn). (4.1)

Lemma 3.1 then gives a necessary and sufficient condition for asymptotic stability of the

form

E

[
log |1 + µ∆t + σ

√
∆t ξ + γ∆N |

]
< 0, (4.2)

where ξ is standard normal and ∆N is Poisson with parameter λ∆t, respectively.

Theorem 4.1 Given µ, σ, γ and λ such that µ − 1
2
σ2 + λ log |1 + γ| < 0, so that, by

Lemma 2.1, the jump-SDE (1.1) is asymptotically stable, there exists a ∆t? = ∆t?(µ, σ, γ, λ)

such that the Euler–Maruyama method (4.1) is asymptotically stable for all 0 < ∆t < ∆t?.

Conversely, given µ, σ, γ and λ such that µ − 1
2
σ2 + λ log |1 + γ| > 0, so that, by

Lemma 2.1, the jump-SDE (1.1) is not asymptotically stable, there exists a ∆t? = ∆t?(µ, σ, γ, λ)

such that the Euler–Maruyama method (4.1) is not asymptotically stable for any 0 < ∆t <

∆t?.

Proof:
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Multiplying the expected value in (4.2) by eλ∆t for convenience, and expanding, we get

eλ∆t
E

[
log
∣∣1 + µ∆t+ σ

√
∆tξ + γ∆N

∣∣
]

=

∞∑

k=0

(λ∆t)k

k!
E

[
log
∣∣1 + γk + µ∆t+ σ

√
∆t ξ

∣∣
]

= E

[
log
∣∣1 + µ∆t+ σ

√
∆t ξ

∣∣
]

+ λ∆tE
[
log
∣∣1 + γ + µ∆t+ σ

√
∆t ξ

∣∣
]

+

∞∑

k=2

(λ∆t)k

k!
E

[
log
∣∣1 + γk + µ∆t+ σ

√
∆t ξ

∣∣
]
.

(4.3)

We now consider three distinct cases, depending on the value of γ.

Case 1: γ 6= −1/k:

First, we deal with the generic case where γ 6= −1/k for any integer k ≥ 1. In this case,

we may write (4.3) as

eλ∆t
E

[
log |1 + µ∆t+ σ

√
∆t ξ + γ∆N |

]
= E

[
log |1 + µ∆t+ σ

√
∆t ξ|

]

+ λ∆t

(
log |1 + γ| + E

[
log |1 + µ̂∆t + σ̂

√
∆t ξ|

])

+

∞∑

k=2

(λ∆t)k

k!
log |1 + µ∆t + γk|

+
∞∑

k=2

(λ∆t)k

k!
E

[
log |1 + rk ξ|

]
, (4.4)

where µ̂ = µ
1+γ

, σ̂ = σ
1+γ

and rk = σ
√

∆t
1+µ∆t+γk

, for k = 2, 3, . . ., and, for sufficiently small ∆t,

there is no issue of ‘division by zero’ or ‘log of zero’.

Now, using [1, Theorem 5] with ψ(·) ≡ log(·), we find that

E

[
log |1 + µ∆t+ σ

√
∆t ξ|

]
=

(
µ− 1

2
σ2

)
∆t+ o(∆t) (4.5)

and

λ∆t

(
log |1 + γ| + E

[
log |1 + µ̂∆t + σ̂

√
∆t ξ|

])
= λ∆t log |1 + γ| +O(∆t2). (4.6)

Now, restricting ∆t to, say, ∆t ≤ 1/2, we may choose a constant K1 such that |γK1| ≥
1 + µ∆t, and hence |1 + µ∆t + γk| ≤ |2γkK1|. Then log |1 + µ∆t + γk| ≤ log |2γkK1| =
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log |2γK1|+log k, for k ≥ 2. Furthermore, there exists some k̂ ≥ 2 such that |1+µ∆t+γk| >
1 for k > k̂. We then have

∣∣∣∣
∞∑

k=2

(λ∆t)k

k!
log |1 + µ∆t+ γk|

∣∣∣∣

≤
∣∣∣∣

bk∑

k=2

(λ∆t)k

k!
log |1 + µ∆t+ γk|

∣∣∣∣+
∣∣∣∣

∞∑

k=bk+1

(λ∆t)k

k!
log |1 + µ∆t+ γk|

∣∣∣∣

≤
bk∑

k=2

(λ∆t)k

k!

∣∣∣log |1 + µ∆t + γk|
∣∣∣+

∞∑

k=bk+1

(λ∆t)k

k!
log |1 + µ∆t+ γk|

≤ (λ∆t)2

(
bk∑

k=2

(λ∆t)k−2

k!

∣∣∣log |1 + µ∆t+ γk|
∣∣∣

+

∞∑

k=bk+1

(λ∆t)k−2

k!
log |1 + µ∆t + γk|

)

= (λ∆t)2

(
K2 k̂ +

∞∑

k=bk+1

(λ∆t)k−2

k!

(
log |2γK1| + log k

))

≤ λ2∆t2

(
K2 k̂ + log |2γK1|

∞∑

k=bk+1

(λ∆t)k−2

k!
+

∞∑

k=bk+1

(λ∆t)k−2

k!
log k

)
(4.7)

=
(
K2 k̂ + log |2γK1|K3 +K4

)
λ2∆t2,

= O(∆t2). (4.8)

Here, K2 = max
∆t≤ 1

2
, 2≤k≤bk

∣∣∣log |1+µ∆t+γk|
∣∣∣(λ∆t)k−2/(k!), and, taking ∆t to satisfy λ∆t < 1,

constants K3, K4 are bounds (uniform in ∆t) for the two convergent infinite series in (4.7).

To bound the final term in (4.4), we note that

∣∣∣∣∣

∞∑

k=2

(λ∆t)k

k!
E

[
log |1 + rk ξ|

]∣∣∣∣∣ =

∣∣∣∣∣

∞∑

k=2

(λ∆t)k

k!
· 1√

2π

∫

R

log |1 + rk x| e−x2/2 dx

∣∣∣∣∣

=
1√
2π

(λ∆t)2

∣∣∣∣∣

∞∑

k=2

(λ∆t)k−2

k!
F (rk)

∣∣∣∣∣ , (4.9)

where F (rk) =
∫

R
log |1 + rk x| e−x2/2 dx. Making the substitution rk+1 x = rk y, we have

F (rk+1) =

∫

R

log |1 + rk y| exp

(
−
(

rk

rk+1

)2
y2

2

)
· rk

rk+1

dy.

13



Noting that rk/rk+1 > 1 and taking absolute values, we find

|F (rk+1)| =

∣∣∣∣
rk

rk+1

∣∣∣∣

∣∣∣∣∣

∫

R

log |1 + rk y| exp

(
−
(

rk

rk+1

)2
y2

2

)
dy

∣∣∣∣∣

≤
∣∣∣∣
rk

rk+1

∣∣∣∣
∣∣∣∣
∫

R

log |1 + rk y| exp

(
−y

2

2

)
dy

∣∣∣∣

=

∣∣∣∣
rk

rk+1

∣∣∣∣ |F (rk)|.

Hence,
|F (rk+1)|
|F (rk)|

≤
∣∣∣∣
rk

rk+1

∣∣∣∣ .

We can now examine the convergence of the infinite series in equation (4.9). If we set,

ak =

∣∣∣∣
(λ∆t)k−2F (rk)

k!

∣∣∣∣ ,

then

ak+1

ak

=

∣∣∣∣
λ∆t F (rk+1)

(k + 1)F (rk)

∣∣∣∣

≤
∣∣∣∣
λ∆t

k + 1
· rk

rk+1

∣∣∣∣

=

∣∣∣∣
λ∆t (1 + µ∆t + γ(k + 1))

(k + 1)(1 + µ∆t + γk)

∣∣∣∣ → 0 as k → ∞.

Hence, the series in (4.9) is absolutely convergent, and we have

∣∣∣∣∣

∞∑

k=2

(λ∆t)k

k!
E

[
log |1 + rk ξ|

]∣∣∣∣∣ = O(∆t2). (4.10)

Using (4.5), (4.6), (4.8) and (4.10) in (4.4) gives

eλ∆t
E

[
log |1 + µ∆t+ σ

√
∆t ξ + γ∆N |

]
=

(
µ− 1

2
σ2 + λ log |1 + γ|

)
∆t + o(∆t).

It follows that for sufficiently small ∆t and µ− 1
2
σ2 +λ log |1+γ| 6= 0, the sign of E

[
log |1+

µ∆t+ σ
√

∆t ξ + γ∆N |
]

matches the sign of µ− 1
2
σ2 + λ log |1 + γ|; so by Lemma 2.1 and

(4.2) the result follows.

Case 2: γ = −1:

When γ = −1, we know that the problem (1.1) is asymptotically stable for all values of µ,

14



σ and λ. Hence, we must show that the numerical method has the same property for all

sufficiently small ∆t.

In this case, (4.3) becomes

eλ∆t
E
[
log |1 + µ∆t + σ

√
∆t ξ − ∆N |

]
= E

[
log |1 + µ∆t + σ

√
∆t ξ|

]

+ λ∆tE
[
log |µ∆t+ σ

√
∆t ξ|

]

+
∞∑

k=2

(λ∆t)k

k!
E
[
log |1 − k + µ∆t+ σ

√
∆t ξ|

]
.

(4.11)

To analyse the second term in the expansion of (4.11), we write

E
[
log |µ∆t+ σ

√
∆tξ|

]
= log(

√
∆t) + E

[
log |µ

√
∆t + σξ|

]
,

and so

E
[
log |µ∆t+ σ

√
∆tξ|

]
− 1

2
log ∆t =

1√
2π

∫ ∞

−∞
log |µ

√
∆t + σx|e−x2/2 dx. (4.12)

Now choosing some constantKδ = σ(1+δ), 0 < δ < 1, we have log |Kδ x| ≥ log |µ
√

∆t + σx|
for x ∈

(
−∞, c1

√
∆t
]
∪
[
c2
√

∆t,∞
)
, where

(c1, c2) =





(
−µ/(σ −Kδ),−µ/(σ +Kδ)

)
, µ < 0

(
−µ/(σ +Kδ),−µ/(σ −Kδ)

)
, µ > 0.

Note that as Kδ > σ, we have c1 ≤ 0, c2 ≥ 0, ∀µ ∈ R. So, splitting the integral up in the

natural way, taking absolute values and applying the triangle inequality, we have

∣∣∣∣
∫ ∞

−∞
log |µ

√
∆t + σx|e−x2/2 dx

∣∣∣∣ ≤
∣∣∣∣
∫ c1

√
∆t

−∞
log |Kδ x|e−x2/2 dx

∣∣∣∣ +
∣∣∣∣
∫ ∞

c2
√
∆t

log |Kδ x|e−x2/2 dx

∣∣∣∣

+

∣∣∣∣
∫ c2

√
∆t

c1
√
∆t

log |µ
√

∆t + σx|e−x2/2 dx

∣∣∣∣.

(4.13)

We deal with the first two integrals in (4.13) in the same manner. Using the triangle

inequality we have

∣∣∣∣
∫ c1

√
∆t

−∞
log |Kδ x|e−x2/2 dx

∣∣∣∣ ≤
∣∣∣∣
∫ 0

−∞
log |Kδ x|e−x2/2 dx

∣∣∣∣ +
∣∣∣∣
∫ 0

c1
√
∆t

log |Kδ x|e−x2/2 dx

∣∣∣∣.
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The first term on the right-hand side has an analytical expression. For the second term,

we use e−x2/2 ≤ 1, so that
∣∣∣∣
∫ 0

c1
√
∆t

log |Kδ x|e−x2/2 dx

∣∣∣∣ ≤
∣∣∣∣
∫ 0

c1
√
∆t

log |Kδ x| dx
∣∣∣∣

=

∣∣∣∣
∫ 0

c1
√
∆t

log(−Kδ x) dx

∣∣∣∣

=
∣∣c1

√
∆t
(
1 − log(−Kδ c1

√
∆t)
)
|

≤
√

∆t|c1|
(
1 + | logKδ| + | log(−c1)| +

1

2
| log ∆t|

)
.

So we have,
∣∣∣∣
∫ c1

√
∆t

−∞
log |Kδ x|e−x2/2 dx

∣∣∣∣ ≤
√

2π

4

(
ε + | log

2

K2
δ

|
)

+
√

∆t|c1|
(
1 + | logKδ| + | log(−c1)| +

1

2
| log ∆t|

)
,

where ε = −
∫∞

0
e−t log t dt = limn→∞

(∑n
k=1

1
k
− logn

)
is Euler’s constant. Similarly,

∣∣∣∣
∫ ∞

c2
√
∆t

log |Kδ x|e−x2/2 dx

∣∣∣∣ ≤
√

2π

4

(
ε + | log

2

K2
δ

|
)

+
√

∆t c2
(
1 + | logKδ| + | log c2| +

1

2
| log ∆t|

)
.

Taking c3 = max (|c1|, c2), both integrals may therefore bounded by

max

(∣∣∣∣
∫ c1

√
∆t

−∞
log |Kδ x|e−x2/2 dx

∣∣∣∣,
∣∣∣∣
∫ ∞

c2
√
∆t

log |Kδ x|e−x2/2 dx

∣∣∣∣

)
≤

√
2π

4

(
ε + | log

2

K2
δ

|
)

+
√

∆t c3
(
1 + | logKδ| + | log c3| +

1

2
| log ∆t|

)
. (4.14)

For the third component of (4.13), we note that our choice of Kδ means we avoid a “log

of zero” over the interval [c1
√

∆t,c2
√

∆t] and therefore we may bound this definite integral

in modulus as
∣∣∣∣
∫ c2

√
∆t

c1
√
∆t

log |µ
√

∆t + σx|e−x2/2 dx

∣∣∣∣ ≤
∣∣∣∣
∫ c2

√
∆t

c1
√
∆t

log |µ
√

∆t + σx| dx
∣∣∣∣

=
∣∣∣K5

√
∆t +K6

√
∆t log ∆t

∣∣∣,

where

K5 =
1

σ

(
(µ+ σc2)

(
log |µ+ σc2| − 1

)
− (µ+ σc1)

(
log |µ+ σc1| − 1

))

K6 = − Kδ|µ|
σ2 −K2

δ

,
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independent of ∆t.

Since ∆t < 1, we have | log ∆t| = − log ∆t and so, using the bounds (4.14) in (4.13) and

(4.12) we find that ∣∣∣∣E
[
log |µ∆t+ σ

√
∆tξ|

]
− 1

2
log ∆t

∣∣∣∣ ≤ K7,

for some constant K7 independent of ∆t. Now the first term on the right-hand side of (4.11)

was shown to be O(∆t) in (4.5) and the third term can be shown to be O(∆t2) using the

same technique that we used for the infinite series in Case 1. Hence, we conclude that

for all small ∆t,
∣∣∣eλ∆t

E[log |1 + µ∆t+ σ
√

∆tξ − ∆N |] − 1
2
log ∆t

∣∣∣ is uniformly bounded,

showing that E[1 + log |µ∆t+ σ
√

∆tξ − δN |] is negative for small ∆t, as required.

Case 3: γ = −1/k?, for 1 < k? ∈ N

In this third case, (4.3) can be expanded as

eλ∆t
E

[
log
∣∣1 + µ∆t+ σ

√
∆t ξ − ∆N

k?

∣∣
]

= E
[
log |1 + µ∆t + σ

√
∆t ξ|

]

+ λ∆tE
[
log
∣∣1 − 1

k?
+ µ∆t+ σ

√
∆t ξ

∣∣
]

+
(λ∆t)k?

(k?)!
E
[
log |µ∆t+ σ

√
∆t ξ|

]

+
∑

k 6=k?

(λ∆t)k

k!
E

[
log
∣∣1 − k

k?
+ µ∆t + σ

√
∆t ξ

∣∣
]
.

The first term on the right-hand side is dealt with by (4.5). The remaining terms can be

analysed using the arguments developed for Cases 1 and 2 in order to show that

eλ∆t
E

[
log |1 + µ∆t + σ

√
∆t ξ − ∆N

k?
|
]

=
(
µ− 1

2
σ2 + λ log

∣∣1 − 1

k?

∣∣
)
∆t+ o(∆t),

and so the asymptotic stability result follows from Lemma 2.1 and (4.2). �

5 Theta Method for Small Step Size

Using an idea from [16, section 4.3], we may extend Theorem 4.1 to the case of the general

theta method.

Corollary 5.1 The statements in Theorem 4.1 for the Euler–Maruyama method (4.1) also

apply to the general theta method (3.1).
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Proof:

The result follows from Theorem 4.1 when we observe that the theta method (3.1) is

equivalent to the Euler–Maruyama method (4.1) applied to the perturbed problem

dX(t) =
µ

1 − θµ∆t
X(t−) dt+

σ

1 − θµ∆t
X(t−) dW (t)+

γ

1 − θµ∆t
X(t−) dN(t), X(0) = X0.

�

6 Discussion

The main conclusions of this work are that (a) a standard theta method discretisation for

jump-SDEs will correctly preserve asymptotic stability for sufficiently small stepsizes, but

(b) in general there is no benefit to using implicitness. This raises the open question of

whether new methods can be devised that guarantee ∆t-independent stability preservation,

and hence offer efficiency gains on stiff problems.

Acknowledgement We thank Gregory Berkolaiko for bringing [1, Theorem 5] to our

attention.
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