
 1

Rule induction for forecasting method selection: meta-learning the 
characteristics of univariate time series 

 
Xiaozhe Wang¹*, Kate Smith-Miles¹, Rob Hyndman² 

 
¹Faculty of Information Technology, ²Depatment of Econometrics and Business Statistics,  

Monash University, Clayton, Victoria 3800, Australia 
 
Abstract 

 
For univariate forecasting, there are various statistical models and computational algorithms available. In 

real-world exercises, too many choices can create difficulties in selecting the most appropriate technique, 

especially for users lacking sufficient knowledge of forecasting. This paper provides evidence, in the form of an 

empirical study on forecasting accuracy, to show that there is no best single method that can perform well for 

any given forecasting situation.  This study focuses on rule induction for forecasting method selection by 

understanding the nature of historical forecasting data. A novel approach for selecting a forecasting method for 

univariate time series based on measurable data characteristics is presented that combines elements of data-

mining, meta-learning, clustering, classification and statistical measurement.  Over 300 datasets are selected for 

the empirical study from diverse fields. Four popular forecasting methods are used in this study to demonstrate 

prototype knowledge rules.  In order to provide a rich portrait of the global characteristics of the time series, we 

measure: trend, seasonality, periodicity, serial correlation, skewness, kurtosis, non-linearity, self-similarity, and 

chaos. The derived rules for selecting the most suitable forecasting method based on these novel characteristic 

measures can provide references and recommendations for forecasters.  

 
Keywords: Rule induction, forecasting methods selection, univariate time series, data characteristics, clustering, 

classification 

1. Introduction 

There are various methods to forecast time series, including traditional statistical models and data 

mining algorithms, providing many options for forecasters. However, these options can create some 

drawbacks in real-world applications. In general practice, the forecast is obtained through a trial-and-

error procedure, which is inefficient. Due to lack of expert knowledge, it is difficult for forecasters to 

obtain the best solution. To overcome these problems, guidelines for forecast practitioners are 

                                                 
* Corresponding author. Email: xiaozhe.wang@gmail.com 



 2

necessary.  In the literature on forecasting method selection, there are two topics that attract the 

highest priority. They are: 1) comparing the track record of various approaches to select forecasting 

methods, and 2) using different types of data to estimate a relationship between data features and 

model performance (quantitative models with explanatory variables) [5]. Time series data analysis 

and forecasting has been a traditional research topic for decades, and various models and algorithms 

have been developed to improve forecasting accuracy. Many research efforts have focused on 

developing a ‘super universal model’ for time series forecasting, whereas the No Free Lunch theorem 

[80] raises the question of how to select the most suitable forecasting method for a certain type of 

dataset.  About a decade ago, the research community drew their attention to attempting to provide 

rules to recommend certain forecasting methods. Most of the outcomes, from the existing research on 

selection of forecasting method, are restricted however to judgmental recommendative rules for 

statistical models. In this research, we also focus our interest on the selection of forecasting methods 

instead of developing a single new forecasting model. In general, selection of an appropriate 

technique can be guided by four key components: 1) forecasting horizon, 2) technique specialty, 3) 

domain knowledge, and 4) pattern of past data. In real-world applications, users need to select the 

most suitable method according to the forecasting tasks [26]. Considering these given factors, many 

expert systems have been developed to provide expert knowledge as guidelines.  

However, with the continuous emergence of business domains and the rapid increase of data 

volume, the traditional expert systems have become impractical. In situations where both expertise 

and domain knowledge are limited, we constrain our focus to a rule induction system based on the 

performance of each forecasting method and an understanding of the nature of the data. As a result, 

the decision rules generated from such a system can provide forecasters with recommendations on 

how to select forecasting methods based on time series data characteristics. The recommended 

knowledge rules are generated without requiring expert or domain knowledge.  The main aims of this 

research can be specified as: 

 Identifying characteristics of univariate time series, and extracting their corresponding metrics, 

these continuous measures represent the global characteristics of time series data in various 

domains.  
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 Evaluating the performance of major and popular forecasting methods. A large collection of 

real-world time series datasets is used to provide reliable evidence as support for method 

selection rule generation. 

 Designing a meta-learning framework which integrates the above two components into an 

approach which automatically discovers the relations between forecasting methods and data 

characteristics.  The rules generated from this approach can assist forecasters in method 

selection (decision making process).  

High time consumption and low accuracy are problems that often occur in practice. To overcome 

these, we propose a new forecasting selection decision support system based on a data-driven 

approach. Categorical and quantitative rules are induced from the proposed system to provide 

recommendations for forecasting method selection. A meta-learning architecture is adopted in our 

research framework to conduct the rule induction in a systematic, data-driven, and automatic way. 

Time series characteristics are used as meta-features to learn the forecasting methods based on their 

performance classifications. Eventually the relationships between forecasting methods and data 

characteristics are discovered and detailed rules are produced for knowledge representation through 

learning. In our proposed system, ‘Characteristic-based Rules for Forecasting Selection’ (CRFS), we 

have initially investigated the rules for one-step-ahead forecasting on univariate time series data. We 

have induced both categorical and quantitative rules, to provide references and recommendations for 

forecasters, about how to select the suitable forecasting method for time series based on data 

characteristics in various situations. 

Global characteristics and corresponding metrics of the time series data are calibrated by applying 

statistical operations that best capture characteristics of the time series. After extracting the time series 

global characteristic metrics, samples in the dataset used in the empirical study can be categorized 

according to data characteristics via a clustering procedure. We include both traditional statistical 

models and advanced computational algorithms in the forecasting study. The four most popular and 

widely used forecasting methods include Exponential Smoothing (ES), Auto-Regressive Integrated 

Moving Average (ARIMA), Random Walk (RW), and Neural Networks (NNs).  We measure the 

forecasting performance improvement of ES, ARIMA and NNs compared with RW on large time 
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series datasets in wide ranges of application domains. An extensive comparative evaluation is 

provided with statistical analysis, ranking and summary. Finally, the forecasting evaluation and 

analysis results are combined with the outcome from time series clustering based on data 

characteristics to form a meta-level dataset. Time series including synthetic and real-world data 

coming from diverse domains are used in this study. The findings from this work fill a gap in the 

available literature by comparing various forecasting methods, understanding different characteristics 

of the data, and integrating these two outcomes into a cohesive meta-learning framework to provide 

recommendative rules for forecast practitioners. 

This paper first outlines the background knowledge on forecasting methods selection including the 

basic introduction of the four candidate forecasting methods included in our research. Section 3 

briefly describes the research methodology, which is the meta-learning framework for rule induction. 

Identified global characteristics for univariate time series data are introduced in Section 4. Several 

machine learning techniques used in this study are discussed in Section 5 before reporting the 

empirical results in Section 6.  Conclusions are drawn and future research directions are determined in 

the last section.  

2. Overview of forecasting methods selection 

2.1 Forecasting methods selection 

To select a forecasting method, Armstrong has published some general guidelines [5] consisting of 

many factors: convenience, market popularity, structured judgment, statistical criteria, relative track 

records and guidelines from prior research. In the research literature on the selection of forecasting 

method, based on experts’ practical experience, some checklists for selecting the best forecasting 

method in a given situation are presented as guidelines for managers to use in selecting forecasting 

methods [13, 25]. Reid was among the first to argue that data features provide useful information to 

assist in the choice of forecasting methods [60]. Later, the expert system was recommended by many 

researchers for its potential to aid forecasting in formulating the model and selecting the forecasting 

method [4, 50, 55]. For example, Rule-based Forecasting (RBF) formalized knowledge for model 
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selection using rules generated by expert systems [18]. In this work, five human experts used ninety-

nine rules to weight their four candidate models using eighteen features based on their experience. 

Their test results obtained from one-year-ahead forecasts on ninety annual series demonstrated that 

using explicit rules on different methods can provide more accurate forecasts than applying an equal–

weight combination of the candidate methods.  

In recent research, Shah used discriminant analysis on a subset of 203 of the M-competition time 

series with three methods to demonstrate that summary statistics of univariate time series can help to 

improve the choice of forecasting methods [65]. All the time series in his research have a single 

characteristic (e.g. yearly data) and known preferred appropriate forecasting method. The summary 

statistics (e.g. autocorrelation functions) are variables (statistical features) for model estimation in 

forecasting.  With an extended objective to discover the extent to which these summary statistical 

features of time series model are useful in predicting which forecasting method will perform better, 

Meade evaluated more datasets with more forecasting methods [54]. Twenty-five statistical features, 

sourced from the features (variables) proposed by Reid and RBF [18, 60], are examined on three 

groups of forecasting methods (naïve methods, ES models, and Autoregressive Moving Average 

(ARMA)  models) on M-competition and Telecommunications data.  The performance ranking index 

is used to determine the usefulness of the summary statistics in selecting an effective forecasting 

method. These research outcomes improved the correctness and appropriateness of the 

recommendations for the method selection addressed previously. 

Although expert systems are much better than trial-and-error methods in developing the selection 

rules, they are still very expensive to implement. Machine learning algorithms (for example, 

classification algorithms) can be used to automatically acquire knowledge for model selection, and to 

reduce the need for experts [3]. A more automated approach is required for solving this problem. The 

solution has not been advanced until meta-learning techniques were proposed in a recent study on 

selecting forecasting models [57].  This research showed that a quantitative analysis on selecting 

forecasting models can be achieved through an automatic approach. Although this research extended 

the selection of forecasting methods into a stage of precise (quantitative) recommendations through 
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automatic approaches, there are still obvious limitations existing in the current research that need to 

be addressed. 

We aim to extend the research focus from the selection of suitable forecasting methods for time 

series with simple or single characteristics to more broad and general datasets or time series having 

complex or multiple characteristics. In the meantime, it will also be very important to explore and 

recognize the abilities of various available forecasting methods, in order to produce reliable rules for 

forecasting methods selection.     

2.2 Forecasting methods overview 

Forecasting is designed to predict possible future alternatives and helps current planning and 

decision making. For example, the forecasting of annual student enrollment is critical information for 

a university to determine financial plans and design strategies. Time series analysis provides 

foundations for forecasting model construction and selection based on historical data. Modeling the 

time series is a complex problem, because the difference in characteristics of time series data can 

make the variable estimation and model selection more complicated.  

A variety of means to categorize forecasting methods have been proposed over the last decade. In 

the methodology tree [51], judgmental and statistical forecasting are the two main categories of 

forecasting methods. In the category of statistical forecasting (the quantitative and data-driven 

forecasting method), two subclasses are further identified with the recent advances in computational 

algorithms [23]. They are ‘traditional statistics methods’ and ‘data mining methods’. The forecasting 

methods can be briefly reviewed and organized in the architecture shown in Figure 1. Readers who 

are interested in extensive coverage and details of each forecasting methods, can refer to [31, 51]. The 

highlighted methods are the forecasting methods used as candidate methods to compare with RW 

model in this research, and details are presented in the next section. 
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Figure 1 Forecasting methods overview 

2.3 Four time series forecasting methods investigated in this study 

In this research, four popular and widely used time series forecasting methods are chosen as 

representatives of the collection of methods. These four candidate forecasting methods include three 

selected from traditional statistical models (RW, ES, ARIMA), and one from data mining algorithms 

(NNs).  

(a) Random walk forecasting 

A time series is a sequence of observations 1 1,..., ,t tY Y Y− , where the observation at time t  is 

denoted by tY .  The random walk model has been a basis for comparison in some prior studies and 

sometimes it has been a strong competitor which can be as accurate as others [18]. The RW model can 

be denoted as: 1t t tY Y e−= + , where te  is white noise, which is a random error and uncorrelated from 

time to time. Thus, the random walk forecast is simply 1t̂ tY Y −= . It is easy to compute and 

inexpensive, and has been widely used for non-stationary time series such as stock price data.  
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(b) Exponential smoothing forecasting based on Pegels’ classification 

Exponential smoothing models are among the most popular statistical forecasting methods for their 

simplicity and low cost [51]. They require less data memory storage and have fast computational 

speed. Since the late 1950s, various exponential smoothing models have been developed to cope with 

various types of time series data. For example, time series data with trend, seasonality, and other 

underlying patterns.  

In this research, we use ES forecasting based on Pegels’ classification [56]. Pegels proposed a 

classification framework for ES methods in which trend and seasonal components are considered for 

each method. It was later extended by Gardner [24]. Based on Pegels’ classification, a fully automatic 

methodology using state space models is developed by Hyndman et al. [37]. If not specified, the ES 

models are chosen automatically, and the only requirement is the time series to be predicted. This 

methodology has been empirically proven to perform extremely well on the M3-competition data. For 

the twelve methods in Pegels’ classification framework, Hyndman et al. [37] describe each method 

using two models, a model with additive errors and a model with multiplicative errors. All the 

methods can be summarized by the following equations:  

1 1( ) ( )t t t tY h x k x ε− −= +  and 1 1( ) ( )t t t tx f x g x ε− −= + ,  

where 1 ( 1)( , , , ,..., )t t t t t t mx l b s s s− − −=  is a state vector,{ }tε  is a Gaussian white noise process with 

mean zero, variance 2σ  and 1
ˆ ( )t tY h x −=  is the one-step-ahead forecast. The model with additive 

errors has 1( ) 1tk x − =  while 1 1( ) ( )t tk x h x− −=  in the model with multiplicative errors.  

For the detailed equations, and a procedure of estimation and model selection, readers can refer to 

[37, 38]. This forecasting methodology based on state space models for ES, can obtain forecasts 

automatically and without any data pre-processing, such as outliers and level shifts identification.  It 

has been implemented easily on M-competition data, and the results show that this method 

particularly performs well for short term forecasts up to about six-steps-ahead [37].  In the M3-

competition, it has shown exceptional results for seasonal short-term time series compared with all 

other methods in the competition. The major advantages of ES methods are simplicity and low cost 
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[51]. When the time series is very long, the ES methods are usually the only choices which are fast 

enough if the computational time is considered in implementation. However, the accuracy from ES is 

not necessarily the best, when compared to more sophisticated methods such as ARIMA models or 

neural network models.  

(c) ARIMA forecasting 

Autoregressive integrated Moving Average models were developed in the early 1970s, popularized 

by Box and Jenkins [7], and further discussed by Box, Jenkins, and Reinsell [9]. Until now, the 

ARIMA models have been extensively studied and popularly used for forecasting univariate time 

series. Among the variety of ARIMA models, some particular models are equivalent to some ES 

models [14, 53, 82]. 

There are many variations of ARIMA models, but the general non-seasonal model is written as 

( , , )ARIMA p d q , where p  is the order of Autoregresson (AR), d  is the degree of first differencing 

involved, and q  is the order of Moving Average (MA). The seasonal model is an extension written as 

( , , )( , , )sARIMA p d q P D Q  where s denotes the number of periods per season and P, D and Q are 

seasonal equivalents of p, d and q. 

In practice, the parameters are to be estimated and many possible models could be obtained. It is 

usual to begin with a pure AR or a pure MA model before mixing into ARIMA by adding more 

variables. To find the best fitting ARIMA model, penalized likelihood is used to determine whether 

adding another variable improves the model. Akaike’s Information Criterion (AIC) [2] is the most 

common penalized likelihood procedure. In practical computing or coding, a useful approximation to 

the AIC is: 2(1 log(2 )) log 2AIC n n mπ σ≈ + + + , where 2σ  is the variance of the residuals, n  is 

the number of observations, and m p q P Q= + + + , which is the number of terms estimated in the 

model.  
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(d) Feedforward Neural Networks 

Forecasting with artificial neural networks has received increasing interest in various research and 

application domains, and it has been given special attention in forecasting methodology [22]. 

Multilayered Feedforward Neural networks (MFNNs) with back-propagation learning rules are the 

most widely used models for applications such as prediction, and classification.  
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Figure 2 Architecture of MFNN (note: not all weights are shown) 

The architecture of MFNN is shown in Figure 2. This is a single hidden layer MFNN in which 

there is only one hidden layer between the input and output layer, and where the layers are connected 

by weights. jiw  are the weights between the input layer and hidden layer, and kjv  are the weights 

between hidden layer and output layer. Based on the given input vector x , the neuron’s net input is 

calculated as the weighted sum of its inputs, and the output of the neuron, jy , is based on a sigmoidal 

function indicating the magnitude of this net input.  

For the jth hidden neuron, calculation for the net input and output are: 
1

n
h
j ji i

i
net w x

=

= ∑ and 

( )h
j jy f net= . For the kth output neuron: 

1
0

1

J

k kj j
j

net v y
+

=

=∑ and 0( )k ko f net= ,  where the 

sigmoidal function ( )f net is a well-known logistic function: 
1( )

1 netf net
e λ−=

+
, and λ is a 

parameter used to control the gradient of the function which in the range of (0,1). The learning rule for 

MFNN is called backpropagation learning rule first proposed by Werbos in 1974 [76]. The 
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backpropagation learning algorithm is the most commonly used technique in NNs because it enabled 

the relationships between any sets of input patterns and desired response to be modeled. In the 

updating error step, the effect of these weight updates minimizes the total average-squared 

error: 2

1 1

1 ( )
2

P K

pk pk
p k

E d o
P = =

= −∑∑ , where pkd  is the desired output of neuron k  for input pattern p , 

and pko  is the actual network output of neuron k  for input pattern p . The weights are continually 

modified below some pre-defined tolerance level or the network has started to “overtrain” as 

measured by deteriorating performance on the test set [83]. The structure of a neural network is also 

affected by the setting of the number of neurons in the hidden layer. We adopt the common formula 

( )
2

i jh d+
= + , for selecting the number of hidden neurons, where i  is the number of input ix , j  

is the number of output jy , and d  denotes the number of i  training patterns in the input ix . 

3. Meta-learning framework for rule induction 

Meta-learning has been proposed to support data mining tasks, and it is used to understand the 

conditions for the most appropriate learning to use in the tasks by studying the relations between tasks 

and learning strategies [72]. In the research of forecasting method selection, the concept of meta-

learning has already proposed in two case studies [57]. Although only two simple meta-learning 

techniques have been applied in their research, and a more limited set of features were measured, the 

advantage of meta-learning enlightens us and provides the impetus for a thorough and systematic 

exploration.  

The meta-learning approach focuses on discovering the relation between tasks (or domains) and 

learning strategies. The idea was first described by Aha [1] who proposed to construct parameterized 

variants of datasets and to study the behavior of algorithms on artificial datasets, in order to obtain 

more knowledge about algorithms’ behavior under different circumstances than would be possible 

with a single experiment [1]. Meta-learning research has seen continuous growth in the past years 

with interesting new developments in the construction of practical model selection assistants, task 
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assistants, task adaptive learners, and a solid conceptual framework [72]. The central property of the 

meta-learning approach is to understand the nature of data, and to select the method which performs 

best for certain types of data. 

In this research, we have adapted a meta-learning architecture from Vilata’s meta-learning 

architecture called ‘knowledge acquisition mode’, for data mining tasks [72]. The outlined framework 

of the meta-learning architecture adapted for forecasting methods selection is shown in Figure 3. In 

this ‘knowledge acquisition mode’, the major components are: examples used as inputs in two 

processes, forecasting methods evaluation and data characteristics extraction. From these two 

analyses, two sets of data are obtained as ‘base-level methods prediction results’ and ‘meta-level 

attributes’ which are used to combine and form another dataset called ‘meta-level dataset’. Then a 

learning process (or rule generation) is performed on this meta-level dataset to discover the 

relationships between forecasting methods (base-level predictions) and data characteristics (meta-

level attributes). Eventually, a knowledge base containing forecasting methods recommendation rules 

is produced as research findings. 

 

Time series forecasting
methods evaluation

Time series
characteristics extraction

Time series
examples

Meta-level
attributes

Base-level
methods

(prediction results) Meta-level
dataset

Rule generation

Recommendation rules
(knowledge base)  

Figure 3 The meta-learning framework (‘knowledge acquisition mode’) in CRFS 
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As a critical component in this research, time series characteristics should be represented in an 

extensive and measurable scheme. Therefore, a group of characteristics need to be identified as time 

series descriptors to represent the time series global characteristics.   

4. Global characteristics of univariate time series data 

In this study, we investigated various data characteristics from diverse perspectives related to data 

characteristic identification and extraction. Under the research scope, we aim to identify a 

concentrated set of data characteristics which are highly informative, representative and measurable, 

which can be used as global feature descriptors for univariate time series data. The extracted data 

characteristics and corresponding metrics are mapped to forecasting performance evaluation results to 

construct rules for forecasting method selection. As a benefit, the measurable metrics of data 

characteristics can provide us the quantitative rules in addition to normal categorical rules.  They also 

serve in a dimension reduction capacity, since they summarise the global characteristics of the entire 

time series. 

4.1 Time series characteristics overview 

There are two basic steps involved in general forecasting tasks: analysis of data and selection of 

the forecasting model that best fits the data. Analyzing the statistical properties of data can help 

forecasters gain insight as to what kind of forecasting model might be appropriate [51]. As such, we 

aim to perform a meaningful data analysis, including identification of time series characteristics and 

extraction of metrics, to provide a suitable and comprehensive knowledge foundation for the future 

step of selecting an appropriate forecasting method.  

Identifying features (or characteristics) has been used in different contexts for different tasks. The 

existing and popular techniques used to identify characteristics in machine learning tasks (or domains) 

include meta-learning, time series clustering and classification, and time series forecasting analysis. 

Data characterization methods include i) statistical and information-theoretic characterization, ii) 

model-based characterization, and iii) landmarking concept. Among various techniques, only the 

statistical characterization has been applied by the related work in forecasting studies. Inspired by 
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feature extraction idea, we take the path of using statistical measures to identify time series 

characteristics to assist the forecasting methods selection and analysis. To overcome the drawbacks in 

the existing work, including the high cost of judgmental coding to extract characteristics, we aim to 

build the extraction process with automatic coding which only requires time series as inputs. The 

characteristics metrics can be extracted without involving human experts and requiring domain 

knowledge.  

The characteristics (features) to be identified should carry summarized information of the time 

series, which capture the ‘global picture’ of the data. The types of characteristics identified in our 

research are different from other related work. By investigating a thorough literature review on time 

series quantitative statistical features, we propose a novel set of characteristic measures that can best 

represent the global characteristics of the time series. Both classical statistical and advanced 

characteristic measures are included. The features of trend, seasonality, periodicity, serial correlation, 

skewness, and kurtosis have been widely used as exemplary measures in many time series feature-

based research [5]. Some advanced features including non-linearity structure, self-similarity, and 

chaos, are derived from the research on new phenomena.  

4.2 Identified global characteristics for univariate time series data 

A univariate time series is the simplest form of temporal data and is a sequence of real numbers 

collected regularly in time, where each number represents a value. We represent a time series as an 

ordered set of n real-valued variables 1,..., nY Y . Time series can be described using a variety of 

qualitative terms such as seasonal, trending, noisy, non-linear, chaotic, etc. As mentioned in the last 

section of our research motivation, there are nine classical and advanced statistical features describing 

the global characteristics of a time series. Our characteristics are: trend, seasonality, periodicity, serial 

correlation, skewness, kurtosis, non-linearity, self-similarity, and chaos. This collection of measures 

provides quantified descriptors and can help provide a rich portrait of the nature of a time series.  

In time series analysis, decomposition is a critical step to transform the series into a format for 

statistical measuring [29]. Therefore, to obtain a precise and comprehensive calibration, some 

measures are calculated on both the raw time series data tY  (referred to as ‘RAW’ data), as well as the 
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remaining time series, '
tY , after de-trending and de-seasonalizing (referred to as “Trend and 

Seasonally Adjusted (TSA)” data). But some features can only be calculated on raw data to obtain 

meaningful measures, such as periodicity, etc. As exhibited in Table 1, a total of thirteen measures 

are extracted (marked with “√”) from each time series including seven on the RAW data and six on 

the TSA data. Detailed explanation of the choice of extracting features from RAW or TSA data is 

discussed later under each characteristic section. These measures later become inputs to the clustering 

process. The thirteen measures are a finite set used to quantify the global characteristics of any time 

series, regardless of its length and missing values. 

Table 1 Summary of identified feature measures 

Feature RAW data TSA data 
Trend √  
Seasonality √  
Serial Correlation √ √ 
Non-linearity  √ √ 
Skewness √ √ 
Kurtosis √ √ 
Self-similarity √  
Chaotic √  
Periodicity (frequency) √  

 
For each of the features described below, we have attempted to find the most appropriate way to 

measure the presence of the feature, and ultimately normalize the metric to [0,1] to indicate the degree 

of presence of the feature. A measurement near 0 for a certain time series indicates an absence of the 

feature, while a measurement near 1 indicates a strong presence of the feature.  

(1 & 2)  Trend and Seasonality 

Trend and seasonality are common features of time series, and it is natural to characterize a time 

series by its degree of trend and seasonality. In addition, once the trend and seasonality of a time 

series has been measured, we can de-trend and de-seasonalize the time series to enable additional 

features such as noise or chaos to be more easily detectable. A trend pattern exists when there is a 

long-term change in the mean level [51]. To estimate the trend, we can use a smooth nonparametric 

method, such as the penalized regression spline.  



 16

A seasonal pattern exists when a time series is influenced by seasonal factors, such as month of the 

year or day of the week. The seasonality of a time series is defined as a pattern that repeats itself over 

fixed intervals of time [51]. In general, the seasonality can be found by identifying a large 

autocorrelation coefficient or a large partial autocorrelation coefficient at the seasonal lag. 

There are three main reasons for making a transformation after plotting the data: a) to stabilize the 

variance, b) to make the seasonal effect additive, and c) to make the data normally distributed [15]. 

The two most popularly used transformations, logarithms and square-roots, are special cases of the 

class of Box-Cox transformation [6], which is used for the ‘normal distribution’ purpose. Given a time 

series tY  and a transformation parameterλ , the transformed series *
tY  is * ( 1) /     0t tY Y λ λ λ= − ≠  

and * log ( )    0t e tY Y λ= = . This transformation applies to situations in which the dependent variable 

is known to be positive. We have used the basic decomposition model in Chapter 3 of [51]: 

*
t t t tY T S E= + + , where *

tY  denotes the series after Box-Cox transformation, at time t , tT  denotes 

the trend, tS  denotes the seasonal component, and tE is the irregular (or remainder) component. For a 

given transformation parameter λ , if the data are seasonal, which is identified when a known 

parameter f (frequency or periodicity which is discussed in Section 3.2) from input data is greater than 

one, the decomposition is carried out using the STL (a Seasonal-Trend decomposition procedure 

based on Loess) procedure [16], which is a filtering procedure for decomposing a time series into 

trend, seasonal, and remainder components with fixed seasonality. The amount of smoothing for the 

trend is taken to be the default in the R implementation of the stl function. Otherwise, if the data is 

nonseasonal, the tS  term is set to 0, and the estimation of tT  is carried out using a penalized 

regression spline [81] with smoothing parameter chosen using cross validation. The transformation 

parameter λ  is chosen to make the residuals from the decomposition as normal as possible in 

distribution. We choose ( 1,1)λ∈ −  to minimize the Shapiro-Wilk statistic [63]. We only consider a 

transformation if the minimum of { }tY is non-negative. If the minimum of tY is zero, we add a small 

positive constant (equal to 0.001 of the maximum of tY ) to all values to avoid undefined results. 
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Let tY  denote the original data, tX be de-trended data after transformation *
t t tX Y T= − , tZ be de-

seasonalized data after transformation *
t t tZ Y S= − , and the remainder series be defined as 

' *
t t t tY Y T S= − − , which is the time series after trend and seasonality adjustment. As such, the trend 

and seasonality measures are extracted from the TSA data. Then a suitable measure of trend is 

'( )1
( )

t

t

Var Y
Var Z

− , and a measure of seasonality is 
'( )1

( )
t

t

Var Y
Var X

− .     

(3) Periodicity 

Since the periodicity is very important for determining the seasonality and examining the cyclic 

pattern of the time series, the periodicity feature extraction becomes a necessity. Unfortunately, many 

time series available from the dataset in different domains do not always come with known frequency 

or regular periodicity (unlike the 1001 time series used in the M competition). Therefore, we propose 

a new algorithm to measure the periodicity in univariate time series. Seasonal time series are 

sometimes also called cyclic series although there is a major distinction between them. Cyclic data 

have varying frequency length, but seasonality is of fixed length over each period. For time series 

with no seasonal pattern, the frequency is set to 1. We measure the periodicity using the following 

algorithm:  

▪ Detrend time series using a regression spline with 3 knots 

▪ Find ( , )k t t kr Corr Y Y −= (autocorrelation function) for all lags up to 1/3 of series length, then look for peaks and 

troughs in autocorrelation function. 

▪ Frequency is the first peak satisfying the following conditions: a) there is also a trough before it; b) the difference 

between peak and trough is at least 0.1; c) the peak corresponds to positive correlation. 

▪ If no such peak is found, frequency is set to 1 (equivalent to non-seasonal).  

 

(4) Serial Correlation 

We have used Box-Pierce statistics in our approach to estimate the serial correlation measure, and 

to extract the measures from both RAW and TSA data. The Box-Pierce statistic [51] was designed by 
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Box and Pierce in 1970 for testing residuals from a forecast model [8]. It is a common portmanteau 

test for computing the measure. The Box-Pierce statistic is 2

1

h

h k
k

Q n r
=

= ∑ , where n is the length of the 

time series, and h is the maximum lag being considered (usually 20h ≈ ). 

 

(5) Non-linear Autoregressive Structure 

Nonlinear time series models have been used extensively in recent years to model complex 

dynamics not adequately represented by linear models [32]. For example, the well-known ‘sunspot’ 

datasets [17] and ‘lynx’ dataset [30] have identical non-linearity structure. Many economic time series 

are nonlinear when a recession happens [27]. Therefore, non-linearity is one important time series 

characteristic to determine the selection of appropriate forecasting method.  

There are many approaches to test the nonlinearity in time series models including a nonparametric 

kernel test and a Neural Network test. In the comparative studies between these two approaches, the 

Neural Network test has been reported with better reliability [47]. In this research, we used 

Teräsvirta’s neural network test [69] for measuring time series data nonlinearity. It has been widely 

accepted and reported that it can correctly model the nonlinear structure of the data [61]. It is a test for 

neglected nonlinearity, likely to have power against a range of alternatives based on the NN model 

(augmented single-hidden-layer feedforward neural network model). The test is based on a test 

function chosen as the activations of ‘phantom’ hidden units. Refer to [70] for a detailed discussion on 

the testing procedures and formulas.  We used Teräsvirta’s neural network test for nonlinearity [69]. 

(6) Skewness 

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or 

dataset, is symmetric if it looks the same to the left and to the right of the center point. A skewness 

measure is used to characterize the degree of asymmetry of values around the mean value. For  

univariate data tY , the skewness coefficient is 3
3

1

1 ( )
n

t
t

S Y Y
nσ

−

=

= −∑ , where Y
−

is the mean, σ is the 

standard deviation, and n is the number of data points. The skewness for a normal distribution is zero, 
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and any symmetric data should have the skewness near zero. Negative values for the skewness 

indicate data that are skewed left, and positive values for the skewness indicate data that are skewed 

right. In other words, left skewness means that the left tail is heavier than the right tail. Similarly, 

right skewness means the right tail is heavier than the left tail.  

(7) Kurtosis (Heavy-tails) 

Kurtosis is a measure of whether the data are peaked or flat, relative to a normal distribution. A 

dataset with high kurtosis tends to have a distinct peak near the mean, decline rather rapidly, and have 

heavy tails. Datasets with low kurtosis tend to have a flat top near the mean rather than a sharp peak. 

For a univariate time series tY , the kurtosis coefficient is 4
4

1

1 ( )
n

t
t

Y Y
nσ

−

=

−∑ . A uniform distribution 

would be the extreme case. The kurtosis for a standard normal distribution is 3. Therefore, the excess 

kurtosis is defined as 4
4

1

1 ( ) 3
n

t
t

K Y Y
nσ

−

=

= − −∑ . So, the standard normal distribution has an excess 

kurtosis of zero. Positive kurtosis indicates a "peaked" distribution and negative kurtosis indicates a 

"flat" distribution. 

(8) Self-similarity (Long-range Dependence) 

Processes with long-range dependence have attracted a good deal of attention from probabilists 

and theoretical physicists. In 1984, Cox first presented a review of second-order statistical time series 

analysis [20] and the subject of self-similarity and the estimation of statistical parameters of time 

series in the presence of long-range dependence are becoming more common in several fields of 

science [62], to which time series analysis and forecasting on a recent research topic of network 

traffic, has drawn a particular attention. With such increasing importance of the ‘self similarity (or 

long-range dependence)’ as one of time series characteristics, we decide to include this feature into 

the group of data characteristics although it is not widely used or is almost neglected in time series 

feature identification. The definition of self-similarity most related to the properties of time series is 

the self-similarity parameter Hurst exponent (H) [77].  The details of the formulations is given in [62]. 
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The class of autoregressive fractionally integrated moving-average (ARFIMA) processes [35] is a 

good estimation method for computing H . In a ARIMA(p,d,q), p is the order of AR, d is the degree 

first differencing involved, and q is the order of MA. If the time series is suspected to exhibit long-

range dependency, parameter d may be replaced by certain non-integer values in the ARFIMA model. 

We fit a ARFIMA (0,d,0) to maximum likelihood which is approximated by using the fast and 

accurate method of Haslett and Raftery [33]. We then estimate the Hurst parameter using the relation 

0.5H d= + . The self-similarity feature can only be detected in the RAW data of the time series.   

(9) Chaos (Dynamic Systems) 

Many systems in nature that were previously considered random processes are now categorized as 

chaotic systems. Nonlinear dynamical systems often exhibit chaos, which is characterized by sensitive 

dependence on initial values, or more precisely by a positive Lyapunov Exponent (LE).  Recognizing 

and quantifying chaos in time series are important steps toward understanding the nature of random 

behavior, and revealing the extent to which short-term forecasts may be improved [49]. LE as a 

measure of the divergence of nearby trajectories has been used to qualifying chaos by giving a 

quantitative value. The first algorithm of computing LE from time series was proposed by [78]. It 

applies to continuous dynamical systems in an n-dimensional phase space. For a one-dimensional 

discrete time series, we used the method demonstrated by [34] to calculate LE of a one-dimensional 

time series (RAW data): 

 Let tY denote the time series; 

 We consider the rate of divergence of nearby points in the series by looking at the trajectories of n periods ahead. 

Suppose jY  and iY  are two points in tY such that j| |iY Y−  is small. Then we define 

| |1( , ) log
| |
j n i n

i j
j i

Y Y
LE Y Y

n Y Y
+ +−

=
−

; 

 We estimate the LE of the series by averaging these values over all i values, choosing jY  as the closest point to iY , 

where i j≠ . Thus, *

1

1 ( , )
N

i i
i

LE Y Y
N

λ
=

= ∑  where *
iY is the nearest point to iY . 
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4.3 Scaling Transformations 

The ranges of each of the above measures can vary significantly. In order to present the clustering 

algorithm with data rescaled in the [0,1] range, so that certain features do not dominate the clustering, 

we perform a statistical transformation of the data. It is convenient to normalize variable ranges across 

a span of [0,1]. Using anything less than the most convenient methods hardly contributes to easy and 

efficient completion of a task [58].  While we have experimented with linear and logistic 

transformations of the measures, we prefer the following more statistical approach. Three 

transformations (f1, f2, and f3) are used to rescale the raw measure Q of different ranges to a value q 

in the [0,1] range.  

In order to map the raw measure Q of [0, )∞ range to a rescaled value q in the [0,1] range, we use 

the transformation: 
( 1)
( )

aQ

aQ

eq
b e

−
=

+
 (referred to as 1f ), where a  and b are constants to be chosen.  

Similarly, for raw measure Q in the range [0,1], we use a transformation: 
( 1)( )
( )( 1)

aQ a

aQ a

e b eq
b e e

− +
=

+ −
 

(referred to as 2f ) to map to [0,1], where a and b are constants to be chosen. In both cases, we choose 

a and b such that q satisfies the conditions: q has 90th percentile of 0.10 when tY  is standard normal 

white noise, and q has value of 0.9 for a well-known benchmark dataset with the required feature. For 

example, for measuring serial correlation, we use the Canadian Lynx dataset.  

With raw measure Q in the (1, )∞ range, (the periodicity measure), we use another statistical 

transformation 

( )

( )
( 1)

(1 )

Q a
b

Q a
b

eq
e

−

−

−
=

+
 (referred to as 3f ), where a and b are constants to be chosen, with q 

satisfying the conditions: q=0.1 for Q=12 and q=0.9 for Q=150. These frequencies (Q=12 and Q=150) 

were chosen as they allow the frequency range for real-world time series to fill the [0,1] space. 

For the measures that need rescaling, the transformation method and a and b values used in our 

measures extraction are listed in Table 2 below: 
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Table 2 Transformation parameters (transformation function, a,b) used in feature measures 

Feature RAW data TSA data 
Serial Correlation f2, 7.53,0.103 f2,7.53,0.103 
Non-linearity  f1,0.069,2.304 f1,0.069,2.304 
Skewness f1,1.510,5.993 f1,1.510,5.993 
Kurtosis f1,2.273,11567 f1,2.273,11567 
Periodicity f3,1,50 N/A 

 
Now that the global characteristic features have been defined, we then have a means of extracting 

the basic measures from a time series. Using this finite set of measures to characterize the time series, 

regardless of their domain information, the time series datasets can be analyzed using any appropriate 

clustering algorithms.  

5. Machine learning techniques used in meta-learning 

The mining of time series data has attracted great attention in the data mining community in recent 

years [10, 28, 40, 44, 73]. Many clustering algorithms have been applied to the raw time series data, 

and different measures have been used for measuring the similarity between series. K-means 

clustering is the most commonly used clustering algorithm [10, 28], with the number of clusters, k, 

specified by the user. Hierarchical Clustering (HC) generates a nested hierarchy of similar groups of 

time series, according to a pairwise distance matrix of the series [44]. One advantage of HC is that the 

number of clusters is not required as a parameter. Inspired by the concept of time series data feature 

extraction for data mining tasks, for the confined task of understanding the nature of forecasting 

historic data patterns, we apply the clustering procedure in our research investigation. Two popular 

clustering algorithms, HC and Self-organizing Map (SOM), are used with extracted data 

characteristics measures, as input information to group the time series examples into clusters. The 

time series in each cluster have similar features/characteristics.  

To generate rules on how to select the most suitable forecasting method based on time series data 

characteristics, we have made use of both mapping methods and combining techniques in our 

research. Unsupervised clustering inference analysis (as mapping method) and supervised 

classification (as combining technique) are implemented empirically to obtain the categorical and 

quantitative rules. In rule mining using an unsupervised method, the input for the mining algorithm is 
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only the time series itself without targeting a known outcome of certain rules, such as expected or 

known classes for the time series. In our research, the unsupervised clustering process has been 

applied to the time series to identify different groups of datasets which have both similar and 

distinguished data characteristics.  

There are three major methods that have been proposed in the meta-learning field as mapping 

methods: i) Manual Matching [12], ii) Best Winner [11], and iii) Ranking Models [72].  If the 

recommendation with only one method as suggestion is not a satisfactory answer for a certain 

problem for users, a list of choices including many methods with ranking could be a better alternative 

to solving real problems. To identify the suitable forecasting methods based on the data 

characteristics, we have made use of all three mapping methods. The best performed forecasting 

method among the four candidates is identified and a ranking index for all available methods are 

labeled based on their forecasting performance results. To conduct the clustering inference analysis, 

time series are first grouped into the clusters obtained from unsupervised clustering process based on 

data characteristics only, then the forecasting methods are ready to map with the data characteristics 

based on the same series with their best winner and ranking labels in each cluster. In this way, the 

forecasting methods are matched with the data characteristics on the cluster basis and summarized 

statistic reports are produced. Consequently, categorical rules as recommendations for forecasting 

methods selection are constructed through a semi-manual matching procedure. 

Compared to the mapping method, a combining technique is another approach to generate rules in 

meta-learning. The explicit information on learners and performance of learning algorithms are 

combined as a training set and fed into computational techniques to produce learning rules. Among 

many techniques available in machine learning research, there are also three major techniques that are 

recognized for meta-learning purposes: i) Decision Tree [21], ii) Boosting [64], and iii) Stacked 

Generalization [79]. In our research, we adapted the Meta DTs method proposed by Todorovski and 

Dzeroski [71] for combining classifiers to identify the recommendation rules on selecting forecasting 

methods based on specific data characteristics, which can be called as “Characteristic-based Meta DT 

(CMDT)”.  
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(i) Hierarchical clustering 

Hierarchical clustering algorithm is a well-known clustering method which has been applied in 

many applications.  In visualizing the result, a dendrogram is generated from the clustering process, 

representing the nested grouping of patterns and similarity levels at which groupings change. There 

are three major variants of hierarchical clustering algorithms. They are Single-link [68], complete-link 

[45], and minimum-variance [75] algorithms. Of these three, the single-link and complete-link 

algorithms are most popular; more details can be found in [39].  

Graphically the goal of the HC is to produce a hierarchy (dendrogram) in which nodes (or 

branches) can represent (or simulate) the structure found in the input dataset. Hierarchical clustering 

has been popularly used in many clustering tasks and also applied for time series clustering. It has 

been widely used to cluster time series data due to its great visualization power offered by a 

hierarchical tree presentation [43, 52] and its generality because it does not require parameters as 

input [44].  

(ii) Self-organizing map clustering  

The Self Organizing Map is a class of unsupervised NN algorithm, originally proposed by 

Kohonen in 1981-1982. The central property of SOM is that it forms a nonlinear projection of a high-

dimensional data manifold on a regular, low-dimensional (usually 2-D) grid [46]. The clustered 

results can show the data clustering and metric-topological relations of the data items. It has a very 

powerful visualization output and is useful to understand the mutual dependencies between the 

variables and data set structure. SOM involves adapting the weights to reflect learning which is like 

the MFNN with backpropagation, but the learning is unsupervised since the desired network outputs 

are unknown. The architecture and the role of neuron locations in the learning process are another 

important difference between SOM and other NN models [67]. Like other neural network models, the 

learning algorithm for the SOM follows the basic steps of presenting input patterns, calculating 

neuron output, and updating weights. The only difference between the SOM and the more well-known 

(supervised) neural network algorithms lies in the method used to calculate the neuron output (a 

similarity measure), and the concept of a neighborhood of weight updates [66].  
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The learning for each neuron i  within the neighborhood (size of ( )Nm t ) of the winning neuron 

m  at time t  is [67]: 2( ) exp( || || / ( ))i mc t r r tα σ= − − where || ||i mr r−  is the physical distance 

between neuron i  and the winning neuron m . ( )tα  and 2 ( )tσ  are the two functions used to control 

the amount of learning each neuron receives in relation to the winning neuron. 

We have chosen to use the SOM for clustering in our approach due to its robustness in parameter 

selection, natural clustering results, and superior visualization compared to other clustering methods, 

such as hierarchical and K-means. In our approach, a data set containing summarized features of 

many time series has been mapped onto a 2-D map, with each time series (originally described by a 

vector of inputs ( ) nx t R∈ , where t  is the index of the data set) described as a set of thirteen inputs 

using the features discussed in the previous section.  The output from the training process is the 

clustering of the time series data into groups visualized on a 2-D map. 

(iii) Characteristic-based Meta Decision trees for rule induction using C4.5 algorithm 

The detailed algorithm of CMDT, which is used to introduce rules via learning the Meta DT based 

on data characteristics using C4.5, has the following steps: 

1. Data characteristics metrics are extracted as meta-level attributes of each time series; 

2. Each forecasting method is ranked based on its performance on each time series, and identified by the 

prediction of the base-level methods (or algorithms); 

3. Combine both meta-level attributes and prediction results of the base-level methods to form the meta-

level dataset; 

4. Feed the meta-level dataset into decision tree algorithm, C4.5; 

5. Same procedures as original C4.5 algorithm. 

 

C4.5 is a greedy divide and conquer algorithm for building classification trees [59]. The best split 

is chosen based on the gain ratio criterion from all possible splits for all attributes. This split chosen 

can maximize the decrease of the impurity of the subsets obtained after the split compared to the 

impurity of the current subset of examples. The entropy of the class probability distribution of the 

examples in the current subset S  of training examples is used as impurity criterion [71]:  
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2( ) ( , )*log ( , )
k

i i
i

info S p c S p c S= −∑ ( , )ip c S  denotes the relative frequency of examples in S  that 

belong to class ic . The gain criterion selects the split that maximizes the decrement of the info  

measures.  

6. Experimentation 

6.1 Data used in the investigation 

In forecasting sample datasets, we included various types of data consisting of synthetic and real-

world time series from different application domains such as economics, medical, and engineering. 

We included 46 datasets from the UCR Time Series Data Mining Archive [42] which covers datasets 

of time series from diverse fields, including finance, medicine, biometrics, chemistry, astronomy, 

robotics, and networking industry. These datasets cover the complete spectrum of stationary, non-

stationary, noisy, smooth, cyclical, non-cyclical, symmetric, and asymmetric, etc. The dimensionality 

of the datasets varies from low to high. We also used five datasets from the Time Series Data Library 

[36] which included time series from many different fields, such as agriculture, chemistry, crime, 

ecology and finance. These datasets consist of time series in different domains with a range of 

characteristics, and they have been often used for forecasting tasks. To obtain full coverage of popular 

time series characteristics, we also used datasets sourced from [19] which are used to analyze the self-

similarity feature of time series [48]. They are traces that contain a million packet arrivals seen on an 

Ethernet at the Bellcore Morristown Research and Engineering facility. Two of the traces are LAN 

traffic (with a small portion of transit WAN traffic), and two are WAN traffic. We also included one 

dataset with known Hurst parameter value from [41] as an example for time series data with self-

similarity characteristics. In addition to the real-world datasets, to facilitate the detailed analysis of 

forecasting association with data characteristics, we created several synthetic datasets by statistical 

simulation. These artificial datasets contain time series with known certain characteristics, for 

example, perfect and strong trend, perfect seasonality, chaos, noise. The six datasets are available 

from Characteristic-based Archived Time Series [74].  
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For each time series, the data was transformed into samples of length 1000. If the original series is 

less than 1000 data points, it remains unchanged, but if it is less than 100 data points, it is discarded 

from the datasets. Within each series, two datasets are extracted as the training set (in sample) and the 

testing set (out of sample) by an ‘80%/20% rule’ (the first 80% of the time series in the dataset are 

used for training and last 20% used for testing). A total of 315 time series are employed in the 

forecasting experiments.   

6.2 Clustering results 

To group the time series into clusters (or groups) with similar characteristics, the SOM is used in 

clustering experiments. For all time series in our experimental data, their thirteen characteristic 

metrics are extracted and used, as inputs to feed into SOM. For the generality of clustering analysis, 

each cluster should have at least ten records. Finally, six clusters are formed and the overview is 

exhibited in Table 3. Cluster number is assigned in the descending order of number of records (size) 

in the clusters, and Cluster 6 is the smallest cluster with 11 records only.  

Table 3 Cluster records distribution in six clusters 

 C 1 C 2 C 3 C 4 C 5 C 6 
Records 112 88 38 37 29 11 
Percentage (%) 35.56% 27.94% 12.06% 11.75% 9.21% 3.49% 

 
Table 4 Data characteristics summary on cluster basis 

 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 

Serial correlation 
extremely 
high 

extremely 
low 

extremely 
high 

extremely 
high high 

extremely 
high 

Non-linearity 
extremely 
low 

low to 
medium 

Extremely 
low low high 

Extremely 
high 

Skewness very low 
extremely 
low 

extremely 
low high high Low 

Kurtosis 
extremely 
low 

low to 
medium 

Extremely 
low  high  high  Low 

Self-similarity 
extremely 
high low 

Extremely 
high 

Extremely 
high 

Extremely 
high 

Extremely 
high 

Chaotic 
extremely 
high 

extremely 
high low high high low 

Periodicity No no high 
Extremely 
low 

Extremely 
low low 

Trend 
Strong 
(high) no high medium low high 

Seasonality no no high 
Extremely 
low 

Extremely 
low 

Low to 
medium 
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To identify the data characteristics of the time series in each cluster, we have analyzed the basic 

statistics on the original characteristics metrics of all the time series based on six clusters. Because all 

the characteristics are in the range [0,1], we recognized the degree of their characteristics’ presence in 

a categorical format including five levels/categories, and they are ‘extremely high’, ‘high’, ‘medium’, 

‘low’, and ‘extremely low’. Then the categorized data characteristics for each cluster’s time series are 

presented in Table 4.  

 

6.3 Rule induction results using decision trees 

In this research, the development of the recommendation rule system drew upon protocol analyses 

of the four most popular and major forecasting methods and nine time series global features. In the 

Meta-learning context, we used all the characteristics as meta level attributes to learning the rules for 

selecting base algorithms. Categorical rules are constructed via an unsupervised clustering inference 

analysis (the mapping process): 

▪ Give each forecasting method a ranking index (or label) based on its forecasting performance for each time series 

example in the datasets; 

▪ Label the ‘best performed (winner)’ method as top ranking method; 

▪ Since RW forecasting is used as a benchmarking method (or the default choice) for selection, each method is given a 

classification of ‘capable’ or ‘incapable’ by comparing the forecasting performance with RW only; 

▪ The examples in the experimental datasets have been grouped into six clusters based on their similarity of global data 

characteristics obtained through an unsupervised clustering process; 

▪ Use summarized statistical analysis to generate the conceptive rules for forecasting methods selection by matching 

the statistical analysis of the ranking index and classification of data characteristics on all clustered sub datasets.  

 

Compared to the mapping process, quantitative rules are generated automatically by applying the 

combining technique, CMDT using C4.5 classifier in our experimentation:  
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1. 13 data characteristics metrics for each of time series are used as meta level attributes (inputs to C4.5); 

2. The classification for each forecasting method is classified as ‘1’ if it is the ‘best performed (winner)’, otherwise 

class ‘0’, the results are considered as base level algorithms’ prediction class (outputs to C4.5); 

3. Combine the metrics of meta level attributes obtained in Step 1 and the base level prediction classification from Step 

2 for each method to form the meta level dataset in order to learn the relationship between data characteristics and 

forecasting method performance; 

4. Train a rule-based classifier, C4.5, to generate quantitative rules for each studied forecasting methods based on 

measurable data characteristics.  

We have trained the C4.5 algorithm with different parameter settings for pruning confidence factor 

c  and minimum cases m , in order to obtain the best rules. From the tuning process, a suitable value 

of 85 for c  in the testing range 60 to 90 and number of 2 for m  in the testing range 2 to 10 are used 

in the experimentation. We also used 10-fold cross validation to generate more trees before selecting 

the best results as final rules.  

Therefore, the forecasting methods recommendation rules are produced which provide information 

on whether a particular forecasting method is a suitable selection in certain circumstance. Both 

categorical and quantitative rules are obtained from our investigation and also can be treated as 

prototypes to be used directly by forecasters in real practices as recommendation knowledge.  

IF the time series has characteristics  
Strong trend, long range dependency, low fractal, no noise, no non-linearity, no skewness or kurtosis, no seasonal or periodic 
THEN ARIMA (√) > ES (√) > NN (√) ≥ RW (√)† 
 
IF the time series has characteristics  
Strong noise, short range dependency, low fractal, little non-linearity, no trend, no seasonal or periodic, no skewness or 
kurtosis THEN ARIMA (√) ≥ ES (√) > NN (×) ≥ RW (×) 
 
IF the time series has characteristics  
Strong trend, strong seasonal and periodic, long range dependency, low lyapunov, no noise, no non-linearity, no skewness or 
kurtosis THEN NN (√) > ARIMA (√) ≥ ES (√) > RW (×) 
 
IF the time series has characteristics  
High skewness and kurtosis, long range dependency, low fractal, medium trend, no seasonal or periodic, no noise, no non-
linearity THEN ARIMA (√) ≥ NN (√) > ES (√) > RW (×) 
 
IF the time series has characteristics  
High non-linearity, high skewness and kurtosis, long range dependency, high lyapunov, little trend, no seasonal or periodic, 
no noise THEN NN (√) > ARIMA (√) > ES (×) > RW (×) 
 
IF the time series has characteristics  
Strong trend, high non-linearity, long range dependency, low seasonal and periodic, low skewness and kurtosis, low 
lyapunov, no noise THEN NN (√) > ARIMA (√) > ES (√) > RW (×) 
 

                                                 
† The forecasting methods are ordered from highest level to lowest level of performance, ‘√’ and ‘×’ stand for 
whether they are recommended or not 
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Rules for ARIMA: 
IF kurtosis <= 0.0044899 & lyapunov > 0.9731 THEN don’t choose ARIMA 
IF non-linear-dc > 0.15016 THEN don’t choose ARIMA 
IF skewness <= 0.69502 & lyapunov <= 0.9731 THEN don’t choose ARIMA 
IF skewness > 0.69502 & non-linear-dc <= 0.15016 THEN choose ARIMA 
IF kurtosis > 0.0044899 & lyapunov > 0.9731 & non-linear-dc <= 0.15016 THEN choose ARIMA 
 
Rules for ES: 
IF trend-dc <= 0.0021056 THEN don’t choose ES 
IF non-linear-dc > 0.73718 THEN don’t choose ES 
IF seasonal-dc > 0.0076633 THEN don’t choose ES 
IF serial-correlation > 0.052817 THEN don’t choose  
IF serial-correlation <= 0.052817 & non-linear-dc <= 0.73718 THEN choose 
 
Rules for NN: 
IF non-linear <= 0.12243 & hurst > 0.99977 & trend-dc > 0.1965 & serial-correlation-dc > 0.64859 THEN don’t choose NN 
IF lyapunov > 0.60628 & non-linear-dc <= 0.73718 & kurtosis-dc <= 0.99993 THEN don’t choose NN 
IF non-linear > 0.01616 & non-linear <= 0.12243 & serial-correlation-dc > 0.64859 THEN don’t choose NN 
IF serial-correlation > 0.78658 & lyapunov > 0.60628 THEN don’t choose NN 
IF serial-correlation-dc <= 0.64859 & non-linear-dc <= 0.3298 THEN don’t choose NN 
IF serial-correlation <= 0.78658 & hurst > 0.55017 & lyapunov > 0.60628 & skewness-dc <= 0.99501& kurtosis-dc > 
0.99993 THEN choose NN 
IF lyapunov <= 0.53421& frequency <= 0.10956 & serial-correlation-dc <= 0.64859 THEN choose NN 
IF lyapunov > 0.60628 & non-linear-dc > 0.73718 & kurtosis-dc <= 0.99993 THEN choose NN 
IF lyapunov <= 0.60628 THEN choose NN 
 
Rules for RW: 
IF serial-correlation-dc > 0.98201 THEN don’t choose RW 
IF serial-correlation-dc <= 0.99178 THEN don’t choose RW 
IF trend-dc > 0.65349 & trend-dc <= 0.90673 & serial-correlation-dc > 0.67687 & serial-correlation-dc <= 0.98201 THEN 
choose RW 
IF trend-dc > 0.96965 & serial-correlation-dc > 0.67687 & serial-correlation-dc <= 0.98201 THEN choose RW 
IF trend-dc > 0.65349 & serial-correlation-dc > 0.67687 & serial-correlation-dc <= 0.98201 THEN choose RW 

 

7. Conclusions and future research 

In this research, we have focused on analyzing the nature of the time series data and developing a 

novel approach to generate recommendation rules for selection of forecasting methods based on data 

characteristics of the time series. The research work presented in this paper has not only extended the 

study on forecasting rules generation with a wider range of forecasting methods and algorithms, but 

has also deepened the research into a more specific or quantitative manner rather than merely 

judgmental suggestions. We have presented a more systematic approach including both mapping and 

combining methods to generate the knowledge and rules.  We are able to draw some 

recommendations on the conceptive rules and provide detailed suggestions on the quantitative rules. 

From the empirical study, categorical rules were generated via an unsupervised clustering inference 

analysis using mapping methods. These rules form a knowledge rule base with judgmental and 

conceptive recommendations for selecting appropriate forecasting methods based on global data 
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characteristics. Compared to the summarized rules in RBF [18], our results have revealed similar rules 

(especially for the data characteristic of ‘long range/short range dependence’ and ‘trend’ and for 

forecasting methods of ARIMA and ES). Furthermore, by adapting decision tree learning techniques, 

quantitative rules are constructed automatically. These quantitative rules could be used in other 

programs directly as selecting criteria for forecasting methods selection, which will benefit forecasters 

in their real-world applications. 

Considering the scope of this study, to gain more insight for a further understanding of the 

relationship between data and forecasting methods, and due to the limitation of our study and the 

maturity of various forecasting methods, only finite sets of characteristics have been identified for 

univariate time series data. No other forecasting methods are included in the comparison apart from 

the four candidate methods. In future research, larger collections of time series samples and 

forecasting methods will be included to extend the recommendation rules and generalize the current 

findings.  
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