
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.10, November 2013

21

Investigating the Strength of Relationships among

Software Metrics

Mandeep K. Chawla
Assistant Professor

Department of Computer Science

MCM DAV College for Women, Chandigarh.

Indu Chhabra, Ph.D
Associate Professor

Department of Computer Science

Panjab University, Chandigarh.

ABSTRACT
Software metrics provide desirable means to measure design

traits of an application under development as well as quality

of end product. These are beneficial at various stages to

enhance developer productivity and to make the software

more manageable post-deployment. Investigating the strength

of relationships among these metrics can offer more

meaningful insights than analyzing them in isolation. This

paper carries out a case study on an open source java based

web server to identify correlations between several metrics

from well known OO metrics suites. Quantitative distributions

of classes over different metric values have also been

observed. Results have been compared with similar past

studies to verify the findings.

Keywords
Software Quality, CK metrics, Apache Tomcat, ckjm, data

distribution, correlation.

1. INTRODUCTION
Incorporating software metrics for measurement purposes

promise better supervision and handling of project

complexities, and a potential improvement in target product

quality. Projects are measured so as to quantify structural

properties of source code and to recognize interdependencies

of attributes of interest. The IEEE Standard Glossary of

Software Engineering Terms [1] defines a metric as “a

quantitative measure of the degree to which a system,

component, or process possesses a given attribute.” According

to authors of CK metrics suite [2], these measures can identify

areas of application which may require more rigorous testing,

potential flaws, and areas that are candidates for redesign.

However, for enhanced understanding of these quality

determinants, investigating the relationship among them can

offer more meaningful insights than analyzing them in

isolation. We calculate correlations among each set of metrics

chosen to determine which pairs hold strong connections than

others, indicating positive or negative influence on each other.

Also, quantitative distributions of classes over different

metrics’ ranges have been established to observe the statistical

trends of each metric domain.

The objects of this study are source code of an open source

popular web server and, some software metrics from CK suite

[2] and a few others which are computed through a freeware

robust metric calculation tool. Rest of the paper is organized

as follows. Section 2 discusses prior research and related work

in OO metrics. Section 3 identifies the tool, software to be

analyzed and metrics under consideration. Section 4

implements the chosen tool on selected software to compute

metrics, results are produced and correlation coefficients are

calculated for each pair of metrics. Section 5 deals with

analysis and interpretation of results. Section 6 pinpoints the

threats to validity of results. Concluding remarks are given in

Section 7.

2. RELATED WORK
Evaluating internal structure of the products through metrics

provides objective and economical solution to quality

assessment. Researchers have used them widely to gain clarity

in software design and to attain stability and maturity in

software engineering processes. Nagappan [3] empirically

studied five Microsoft systems to find that failure prone

software entities are statistically correlated with code

complexity measures. Jiang [4] found that source code metrics

perform better than design level metrics and combination of

them performs the best. Y Ma [5] proposed a hybrid set of

complexity metrics for large scale object oriented systems.

Authors [6] suggested new software metrics based on coding

standards violations to capture latent faults in a development.

Authors [7] carried out an experiment to evaluate the practical

use of the proposed thresholds for some OO metrics including

DIT, coupling, NPM etc. A. Meneely et al. [8] provided a

comparative analysis of the metrics validation criteria found

in the academic literature. Authors [9] performed

measurements on the source code using CK and LOC metrics

which are proven to be correlated with software quality for

various phases of an agile project. Based on search-based

refactoring [10], five cohesion metrics were assessed to

explore relationships between them using java systems. In

their analytical study [11], managers rated data and metrics as

the most important factor to their decision making and

developers are also more interested in source code metrics. In

their Industrial Experience Report [12], usefulness of two

architecture level metrics were evaluated to quantify the

analyzability and encapsulation within a software system. In a

comprehensive literature review [13], OO and process metrics

were reported to be more successful in finding faults

compared to traditional size and complexity metrics. A set of

extended OO metrics were proposed in [14] to quantify and

measure difficulty in implementing changes during

maintenance, as well as the possible effects.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.10, November 2013

22

Table 1. Description of metrics under consideration according to CKJM2

Metric Full Name Category of

Metric-suite

Description

WMC Weighted

methods per class

CK [2] It is equal to the number of methods in the class, assuming the complexity

value of 1 for each method.

DIT Depth of

Inheritance Tree

CK [2] It provides for each class a measure of the inheritance levels from the object

hierarchy top.

CBO Coupling

between object

classes

CK [2] It represents the number of classes coupled to a given class.

RFC Response for a

Class

CK [2] It measures the number of different methods that can be executed when an

object of that class receives a message.

LOC Lines of Code Size metric It is the sum of number of fields, number of methods and number of

instructions in every method of given class.

MFA Measure of

Functional

Abstraction

QMOOD [16] This metric is the ratio of the number of methods inherited by a class to the

total number of methods accessible by member methods of the class.

IC Inheritance

Coupling

Coupling

metric

This metric provides the number of parent classes to which a given class is

coupled.

CBM Coupling

Between Methods

Coupling

metric

The metric measure the total number of new/redefined methods to which all

the inherited methods are coupled.

3. SELECTION OF DATA SOURCE,

TOOL AND METRICS ANALYZED
In this paper, the measurements and observations have been

conducted on the source code of Apache Tomcat1 web server

(version 7.0.39). It is an open source software implementation

of the Java Servlet and Java Server Pages technologies, and

coded in pure java. Apache Tomcat powers numerous large-

scale, mission-critical web applications across a diverse range

of industries and organizations.

To calculate the metric values for the software selected,

CKJM-extended 2.02 has been used which is an enhanced

version of the original ckjm tool [15] for calculating CK and

many other metrics. It is freely downloadable command line

tool which processes the bytecode of compiled Java files and

delivers the results in plain text or .XML form. Optionally, an

XSL transformation may be used to convert the output to

html. Since it is further needed to analyze the outcomes of the

tool, hence in this case, metric values would be captured in

XML file. Moreover, for the tool, a command line batch script

had to be written to specify all the directories containing .class

files to be measured.

The chosen tool is capable of computing 19 size and structure

metrics for each class; however following 8 metrics have been

shortlisted for this study. Table 1 records a brief description of

them, as given in tool’s manual. Since the tool takes java

bytecode as input, it is one of the prerequisite that the project

compiles successfully to be able to start analysis. To meet this

requirement, Apache Tomcat source code was compiled with

Apache Ant3 (version 1.9.0) which is a Java library and

command-line utility that helps building software.

4. SOFTWARE MEASUREMENTS
Once this comprehensive groundwork is accomplished, the

batch script is invoked from command line to run CKJM for

Tomcat. Metrics are computed and collected in XML format

for all java classes. At this point, it is straightforward to

import the XML file in any spreadsheet program to make it

1 http://tomcat.apache.org/
2http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
3http://ant.apache.org/

ready for further examination. Table 2 shows the descriptive

statistics for metrics under consideration.

Table 2. Descriptive statistics of metrics

Metric MIN MAX AVG STD-DEV

WMC 0 319 9.32 17.04

DIT 1 6 1.77 1.01

CBO 0 72 3.34 5.94

RFC 0 639 22.86 39.04

LOC 0 8986 206.50 521.45

MFA 0 1 0.352 0.41

IC 0 4 0.325 0.61

CBM 0 26 0.832 2.35

Though these statistics provide a good overview of the nature

of data one is dealing with, yet some interesting facts are

inhibited. For instance, one would like to know how many

values fall within a certain range to have an idea of

distribution of data in each metric domain. This information is

revealed in Fig. 1 which illustrates the histograms for each

metric of interest having count of classes on y-axis and

corresponding metric values on x-axis.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.10, November 2013

23

Fig 1: Histograms

One may notice in Fig. 1 that most of metrics are right-

skewed and none of the metrics are normally distributed. This

guides the next step where key goal is to find out

interdependence among all by calculating correlation

coefficient for each pair of metrics. To achieve this,

Spearman’s rank correlation [17] test has been applied which

is not sensitive to non-normally distributed data. The

correlation coefficient calculated takes value from +1 to -1. A

value close to -1 indicates negative correlation, 0 implies no

relation and +1 is designated as positive correlation.

Correlations are obtained in Table 3 to show entities which

signify the strength of relationship among their counterparts.

Table 3. Correlation values between OO metrics

 WMC DIT CBO RFC LOC MFA IC CBM

WMC 1

DIT 0.035 1

CBO 0.418 0.110 1

RFC 0.850* 0.065 0.597 1

LOC 0.747 0.064 0.551 0.918* 1

MFA -0.249 0.819* -0.048 -0.174 -0.160 1

IC 0.195 0.568 0.188 0.259 0.263 0.407 1

CBM 0.242 0.571 0.227 0.295 0.285 0.375 0.955* 1

* indicates strong relationships

5. ANALYSIS AND RESULT

INTERPRETATION
Histograms, in addition, might allow us to have an

understanding of realistic metric thresholds. Thresholds are

highly important in interpreting values of a metric. Knowing

reference values of software metrics might strongly contribute

to make them useful in practice [7]. Thresholds for software

metrics are often used in the context of fault-proneness. This

means that a measured entity is more fault-prone, if it violates

a threshold [18]. Hence, they can act as guidelines for

developers to keep them at optimum levels to reduce potential

risks.

In Fig. 1, for instance, DIT values are 1 for 54% of the classes

and 99.8% classes lie between 0 to 5 which is also an

acceptable limit according to NASA technical report SATC

[19]. In case of CBO, upper limit for 83% of classes is 5,

again in agreement with SATC thresholds.

It is observed in Table 3 that (RFC, WMC), (LOC, RFC),

(DIT, MFA), (IC, CBM) hold strong connections having

correlation coefficient greater than 0.80. RFC inspects method

calls within the class's method bodies and WMC implies

number of methods in a class. It is apparent that both are

significantly associated because if the count of method

increases, logically it will have a positive influence on number

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.10, November 2013

24

of different methods that can be executed in response to a

message. For similar reasons, RFC and LOC are also fairly

correlated to a higher degree.

DIT is a measure of how many ancestor classes can

potentially affect a certain class [2]; while MFA is the ratio of

the number of methods inherited by a class to the total number

of methods accessible. Consequently, more the number of

inheritance levels in object hierarchy, more the likelihood of

having higher MFA ratio.

IC carries highest degree of relationship with CBM as sound

as 0.95. This makes sense because a class is coupled to its

parent class (in case of IC) if one of its inherited methods are

functionally dependent on the new or redefined methods;

while CBM is the total number of new/redefined methods as

mentioned earlier in Table 1.

In an endeavor to verify these findings, outcomes produced

have been compared with results of [20][21][22][23][24]

which carried out similar studies in the past on different set of

software and various other metrics along with subset of

metrics undertaken by us. Results are motivating as RFC,

WMC, LOC have been found quite significant in their case

studies as well, along with CBO. Interestingly, CBO showed

off no significant association with any of the metrics in our

case. DIT is found to be weak in relation with other

significant threesome stated above and results are in

accordance with [20][21][22][23][24] as well.

6. THREATS TO VALIDITY AND

FUTURE WORK
Like any empirical study, there are number of issues which

should be addressed in future to build more confidence in the

results:

a) Software as data set was randomly chosen based on their

huge customer base and usage in previous research studies.

Our conclusions may be biased according to what

representative data set (source code) was used to produce

them. Also, data extracted and employed is from a single

version of a project. Future research might lead us to verify

the results across multiple versions and similar other projects.

b) Our findings are subject to set of metrics undertaken by us.

There exist many other which may have crucial influence on

inferences drawn. Moreover, pairs of metrics show strong

association in one case, but it may not be the same with

different set of software. Change of software may indicate the

same metrics pair to have weak connection as shown in

various past studies also. So without taking into consideration

other factors such as type, platform and size of software,

generalizations to other research settings is questionable.

Metrics that were either insignificant or were not mentioned

here require further study. Their measured values may be low

as a result of the distinct nature of the software.

c) There are many tools that can measure quality metrics for

the Java code base. This study is limited by the assumptions

and accuracy of the CKJM in producing metrics values.

Comparison of results with other measurement tools is an

additional future course of action.

7. CONCLUSION
In this paper, a set of metrics for Apache Tomcat server have

been calculated with the aid of CKJM, a metrics measurement

tool, after building the source code (generating java byte

code) with Apache ant. Degree of strength of relationship

between each pair of metrics was derived using spearman

correlation technique. Histograms were generated to show

trends of distribution of values in each metric domain. Results

reveal that (RFC, WMC), (LOC, RFC), (DIT, MFA), (IC,

CBM) have strong connections having correlation coefficient

greater than 0.80. Nevertheless, the relationship established

here may be valid for only a specific population of systems.

There are various ways in which metrics can be interpreted

that is why metrics should be placed in a context in order to

maximize their benefits [25]. It would be beneficial for project

managers to use metrics to identify extreme values, isolate

problem areas, and stay well-versed about the trade-off

between various software attributes of interest. As

significance of metrics is related to nature of projects and

goals of the organization, so these should be appropriately

chosen with the aim to reduce cost and foster ease of

development, implementation and maintenance over the life

cycle of project.

8. REFERENCES
[1] Institute of Electrical and Electronics Engineers. IEEE

Standard Glossary of Software Engineering

Terminology. IEEE Std 610.12-1990.

[2] Chidamber S. and Kemerer C. 1994. A Metrics Suite for

Object Oriented Design. IEEE Transactions on Software

Engineering, vol. 2O, no. 6, pp. 476-493.

[3] Nagappan, N., Ball, T., Zeller, A. 2006. Mining metrics

to predict component failures. In ICSE, 452-461.

[4] Y. Jiang, B. Cukic, T. Menzies, N. Bartlow 2008.

Comparing Design and Code Metrics for Software

Quality Prediction. In Proceedings of the Workshop on

Predictive Models in Software Engineering

(PROMISE'08), Leipzig, Germany.

[5] Yutao Ma, Keqing He, Bing Li, Jing Liu, Xiao-Yan

Zhou 2010. A Hybrid Set of Complexity Metrics for

Large-Scale Object-Oriented Software Systems. J.

Comput. Sci. Technol. 25(6): 1184-1201.

[6] Yasunari Takai, Takashi Kobayashi, Kiyoshi Agusa.

2011. Software Metrics based on Coding Standards

Violations. In Proc. the Joint Conference of the 21th

International Workshop on Software Measurement and

the 6th International Conference on Software Process

and Product Measurement (IWSM/MENSURA2011)

pp.273-278, Nara, Japan.

[7] K. A. M. Ferreira, M. A. S. Bigonha, R. S. Bigonha, L.

F. O. Mendes, and H. C. Almeida 2012. Identifying

thresholds for object oriented software metrics. The

Journal of Systems and Software, vol. 85, no. 2, pp. 244–

257.

[8] A. Meneely, B. Smith, and L. Williams 2012. Validating

software metrics: A spectrum of philosophies. ACM

Transactions on Software Engineering and Methodology

(TOSEM).

[9] Giulio Concas, Michele Marchesi, Giuseppe Destefanis,

Roberto Tonelli 2012. An Empirical Study of Software

Metrics for Assessing the Phases of an Agile Project.

International Journal of Software Engineering and

Knowledge Engineering 22(4): 525-548.

[10] Mel Ó Cinnéide, Laurence Tratt, Mark Harman, Steve

Counsell, Iman Hemati Moghadam 2012. Experimental

assessment of software metrics using automated

refactoring. ESEM, 49-58, ACM.

http://www.informatik.uni-trier.de/~ley/pers/hd/c/Concas:Giulio.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Marchesi:Michele.html
http://www.informatik.uni-trier.de/~ley/pers/hd/d/Destefanis:Giuseppe.html
http://www.informatik.uni-trier.de/~ley/db/journals/ijseke/ijseke22.html#ConcasMDT12
http://www.informatik.uni-trier.de/~ley/db/journals/ijseke/ijseke22.html#ConcasMDT12

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.10, November 2013

25

[11] Raymond P. L. Buse, Thomas Zimmermann 2012.

Information needs for software development analytics..

ICSE, 987-996, ACM.

[12] Eric Bouwers, Arie van Deursen, and Joost Visser, 2013.

Evaluating Usefulness of Software Metrics – an

Industrial Experience Report. In Proceedings

International Conference on Software Engineering

(ICSE), Software Engineering in Practice (SEIP) track,

ACM/IEEE.

[13] D Radjenovic, M Hericko, Richard Torkar, Ales

Zivkovic, 2013. Software Fault Prediction Metrics: A

Systematic Literature Review. Information & Software

Technology 55(8): 1397-1418.

[14] John Michura, Miriam A. M. Capretz, and Shuying

Wang, 2013. Extension of Object-Oriented Metrics Suite

for Software Maintenance. ISRN Software Engineering,

[15] D. Spinellis 2005. Tool Writing: A Forgotten Art?, IEEE

Software, Vol. 22, No. 4, pp 9-11.

[16] Jagdish Bansiya and Carl G. Davis 2002. A hierarchical

model for object-oriented design quality assessment.

Software Engineering, IEEE Transactions on, 28(1):4–

17.

[17] C. Spearman 1987. The proof and measurement of

association between two things. The American Journal of

Psychology, 100(3/4):441–471.

[18] S. Herbold, J. Grabowski, and S. Waack 2011.

Calculation and optimization of thresholds for sets of

software metrics”, Journal of Empirical Software

Engineering, vol. 16, no. 6, pp. 812–841.

[19] L. Rosenberg and L. Hyatt 2001. Software Quality

Metrics for Object-Oriented System Environments.

NASA Technical Report SATC no. 1, pp 11-58.

[20] Olague, H., Etzkorn, L., Gholston, S., & Quattlebaum, S.

2007. Empirical validation of three software metrics

suites to predict fault-proneness of object-oriented

classes developed using highly iterative or agile software

development processes. IEEE Transactions on Software

Engineering, 33(8), pp.402–419.

[21] Jie Xu, Danny, Ho and Luiz, Fernando Capretz. 2008.

An empirical validation of object-oriented design metrics

for fault prediction. J. of Comp. Science 4, 7, 571—577.

[22] Jureczko M. 2011. Significance of Different Software

Metrics in Defect Prediction. Software Engineering: An

International Journal. No 1(1), 86-95.

[23] Okutan, A., O. T. Yildiz 2012. Software Defect

Prediction using Bayesian Networks. Empirical Software

Engineering, doi: 10.1007/s10664-012-9218-8.

[24] M. Badri and F. Toure 2012. Empirical Analysis of

Object-Oriented Design Metrics for Predicting Unit

Testing Effort of Classes. Journal of Software

Engineering and Applications, Vol. 5 No. 7, pp. 513-526.

[25] Eric Bouwers, Arie van Deursen, Joost Visser 2013.

Software metrics: pitfalls and best practices. ICSE 1491-

1492.

IJCATM : www.ijcaonline.org

http://www.informatik.uni-trier.de/~ley/pers/hd/b/Buse:Raymond_P=_L=.html
http://www.informatik.uni-trier.de/~ley/db/conf/icse/icse2012.html#BuseZ12
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2013-003.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2013-003.pdf
http://2013.icse-conferences.org/content/accepted-papers-software-engineering-practice-track

