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Abstract—In this paper, we study the capacity of the diamond
channel. We focus on the special case where the channel between
the source node and the two relay nodess are two separate links
of finite capacity and the link from the two relay nodes to the
destination node is a Gaussian multiple access channel. We call
this model the Gaussian multiple access diamond channel. We
propose both an upper bound and a lower bound on the capacity.
Since the upper and lower bounds take on similar forms, it is
expected that they coincide for certain channel parameters. To
show this, we further focus on the symmetric case where the
separate links to the relays are of the same capacity and the power
constraints of the two relays are the same. For the symmetric
case, we give necessary and sufficient conditions that the upper
and lower bounds meet. Thus, for a Gaussian multiple access
diamond channel that satisfies these conditions, we have found
its capacity.

I. I NTRODUCTION

The diamond channel was first introduced by Schein in 2001
[1]. It models the communication from a source node to a
destination node with the help of two relay nodes. The channel
between the source node and the two relays form a broadcast
channel as the first stage and the channel between the two
relays and the destination node form a multiple access channel
as the second stage. The capacity of the diamond channel in its
most general form is open. Achievability results were proposed
in [1], while for the general diamond channel, the best known
converse results is still the cut-set bound [2]. Capacity has
been found for some special classes of diamond channels in
[3], [4].

The problem of sending correlated codes through a multiple
access channel was studied in [5]. This channel model can be
regarded as a special class of the diamond channel where the
broadcast channel between the source node and the two relay
nodes are two separate links of finite capacity. We call this
the multiple access diamond channel. Achievability results for
the discrete multiple access diamond channel were proposed
in [5], [6].

In this paper, we consider the multiple access diamond
channel where the multiple access channel from the two relay
nodes to the destination node is Gaussian, see Figure 1. We
call this channel model the Gaussian multiple access diamond
channel. We first propose an upper bound on the capacity
which is tighter than the cut-set bound. The main technique
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we use in the upper bound derivation is the introduction of
an imaginary random variable used to bound the correlation
between the two relay signals. This technique has also been
used in solving the Gaussian multiple description problem [7].
We then propose a lower bound on the capacity where the
relays send correlated codewords into the channel. Comparing
the upper and lower bounds, we find that they are of similar
forms and therefore, when the channel parameters satisfy
certain conditions, they would coincide, yielding the capacity.
To illustrate this, we focus our attention on the symmetric case,
where the power constraints of the relay nodes are the same
and the links from the source node to the two relay nodes
are of the same capacity. For the symmetric case, we give
necessary and sufficient conditions that the upper and lower
bounds meet. Thus, for a symmetric Gaussian multiple access
diamond channel that satisfies these conditions, we have found
its capacity.

II. SYSTEM MODEL

We consider the Gaussian multiple access diamond channel,
see Figure 1. The capacity of the link from the source node to
Relayk is Rk, k = 1, 2. The received signal at the destination
node is

Y = X1 +X2 + U

whereX1 and X2 are the input signals from Relay 1 and
Relay 2, respectively, andU is a zero-mean unit-variance
Gaussian random variable. It is assumed thatU is independent
to (X1, X2).

Let W be a message that the source node would like to
transmit to the destination node. Assume thatW is uniformly
distributed on{1, 2, · · · ,M}. An (M,n, ǫn) code consists of
an encoding function at the source node

fn : {1, 2, · · · ,M} → {1, 2, · · · , 2nR1} × {1, 2, · · · , 2nR2},

two encoding functions at the relays

fn
k : {1, 2, · · · , 2nRk} → R

n, k = 1, 2

which satisfy the average power constraint: for anyxn
k that

Relay k input into the Gaussian multiple access channel, it
satisfies

1

n

n
∑

i=1

x2
ki ≤ Pk, k = 1, 2
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Fig. 1. The Gaussian multiple access diamond channel

and one decoding function at the destination node

gn : Rn → {1, 2, · · · ,M}
The probability of error is defined as

ǫn =

M
∑

w=1

1

M
Pr[gn(Y n) 6= w|W = w]

RateR is said to be achievable if there exists a sequence of
(

2nR, n, ǫn
)

codes such thatǫn → 0 asn → ∞. The capacity
of the Gaussian multiple access diamond channel is supremum
of all achievable rates.

We would like the characterize the capacity of the Gaussian
multiple access diamond channel in terms of the channel
parametersR1, R2, P1 andP2.

III. A N UPPERBOUND

Theorem 1 An upper bound on the capacity of the Gaussian
multiple access diamond channel is

max(T1, T2)

where

T1 = max
0≤ρ≤ρ∗

min















R1 +
1
2 log[1 + (1 − ρ2)P2]

R2 +
1
2 log[1 + (1 − ρ2)P1]

1
2 log[1 + P1 + P2 + 2ρ

√
P1P2]

R1 +R2 − 1
2 log

1
1−ρ2















(1)

T2 = max
ρ∗≤ρ≤1

min















R1 +
1
2 log[1 + (1 − ρ2)P2]

R2 +
1
2 log[1 + (1 − ρ2)P1]

1
2 log[1 + P1 + P2 + 2ρ

√
P1P2]

R1 +R2















(2)

and

ρ∗ =

√

1 +
1

4P1P2
− 1

2
√
P1P2

Remark: The cut-set bound for the Gaussian multiple access
diamond channel is

max
0≤ρ≤1

min















R1 +
1
2 log[1 + (1− ρ2)P2]

R2 +
1
2 log[1 + (1− ρ2)P1]

1
2 log[1 + P1 + P2 + 2ρ

√
P1P2]

R1 +R2















Hence, our upper bound is tighter than the cut-set bound.

Proof: From the cut-set bound, we always have

R ≤ R1 +R2 (3)

We also have

nR = H(W ) (4)

= H(Xn
1 , X

n
2 ) +H(W |Xn

1 , X
n
2 ) (5)

≤ H(Xn
1 , X

n
2 ) +H(W |Y n) (6)

≤ H(Xn
1 , X

n
2 ) + nǫn (7)

≤ I(Xn
1 , X

n
2 ;Y

n) +H(Xn
1 , X

n
2 |Y n) + nǫn

≤ I(Xn
1 , X

n
2 ;Y

n) + 2nǫn (8)

= h(Y n)− h(Y n|Xn
1 , X

n
2 ) + 2nǫn

= h(Y n)− n

2
log(2πe) + 2nǫn (9)

where (5) is because without loss of generality, we may
consider deterministic encoders, i.e.,(Xn

1 , X
n
2 ) is a deter-

ministic function of W , (6) is because of Markov chain
W → (Xn

1 , X
n
2 ) → Y n, and (7) and (8) both follow from

Fano’s inequality. We further have

nR = H(W ) (10)

≥ H(Xn
1 , X

n
2 ) (11)

≥ I(Xn
1 , X

n
2 ;Y

n)

= h(Y n)− n

2
log(2πe) (12)

(11) is follows from the same reasoning as (5). Now, we upper
boundh(Y n) as

h(Y n) ≤
n
∑

i=1

h(Yi)

≤
n
∑

i=1

1

2
log(2πe)

(

P1i + P2i + 2ρi
√

P1iP2i + 1
)

(13)

where in (13), we have definedPki
△
= E[X2

ki], k = 1, 2 and
ρi =

E[X1iX2i]√
P1iP2i

, and used the fact that given power constraint,
the Gaussian distribution maximizes the differential entropy.
Another upper bound onR is

nR ≤ H(Xn
1 , X

n
2 ) + nǫn (14)

= H(Xn
1 |Xn

2 ) +H(Xn
2 ) + nǫn

≤ H(Xn
1 |Xn

2 ) + nR2 + nǫn

= I(Xn
1 ;Y

n|Xn
2 ) +H(Xn

1 |Y n, Xn
2 ) + nR2 + nǫn

≤ I(Xn
1 ;Y

n|Xn
2 ) + nR2 + 2nǫn

≤
n
∑

i=1

I(X1i;Yi|X2i) + nR2 + 2nǫn

≤
n
∑

i=1

1

2
log
[

(1 − ρ2i )P1i + 1
]

+ nR2 + 2nǫn (15)

where (14) is because of (7) and (15) follows from the same



reasoning as (13). Similarly,

nR ≤
n
∑

i=1

1

2
log
[

(1− ρ2i )P2i + 1
]

+ nR1 + 2nǫn

Since the inputs from Relay 1 must satisfy the average power
constraintP1, we have

0 ≤ 1

n

n
∑

i=1

ρ2iP1i ≤
1

n

n
∑

i=1

P1i ≤ P1

Therefore, there exists aρa ∈ [0, 1] such that

ρ2aP1 =
1

n

n
∑

i=1

ρ2iP1i

Due to the concavity of the logarithm function, we have

R ≤ 1

n

n
∑

i=1

1

2
log[(1− ρ2i )P1i + 1] +R2 + 2ǫn

≤ 1

2
log

(

1

n

n
∑

i=1

[

(1− ρ2i )P1i + 1
]

)

+R2 + 2ǫn

≤ 1

2
log

(

1

n

n
∑

i=1

P1i −
1

n

n
∑

i=1

ρ2iP1i + 1

)

+ R2 + 2ǫn

≤ 1

2
log
[

(1− ρ2a)P1 + 1
]

+R2 + 2ǫn (16)

By a similar argument, from (13), we have

1

n
h(Y n)

≤ 1

2
log(2πe)

(

1

n

n
∑

i=1

[

P1i + P2i + 2|ρi|
√

P1iP2i + 1
]

)

≤ 1

2
log(2πe)

(

P1 + P2 +
1

n

n
∑

i=1

2
√

ρ2iP1iP2i + 1

)

From Cauchy-Schwarz inequality, we have

1

n

n
∑

i=1

√

ρ2iP1iP2i ≤

√

√

√

√

(

1

n

n
∑

i=1

ρ2iP1i

)(

1

n

n
∑

i=1

P2i

)

≤
√

ρ2aP1P2

Thus, we have

1

n
h(Y n) ≤ 1

2
log(2πe)

(

P1 + P2 + 2ρa
√

P1P2 + 1
)

(17)

Similarly, there exists aρb ∈ [0, 1] such that

ρ2bP2 =
1

n

n
∑

i=1

ρ2iP2i

and we have

R ≤ 1

2
log
[

(1 − ρ2b)P2 + 1
]

+R1 + 2ǫn (18)

1

n
h(Y n) ≤ 1

2
log(2πe)

(

P1 + P2 + 2ρb
√

P1P2 + 1
)

(19)

Let us defineρ ∈ [0, 1], which is a function ofh(Y n) as

follows: If
1

n
h(Y n) ≤ 1

2
log(2πe)(1 + P1 + P2) (20)

thenρ = 0; otherwise,ρ is such that

1

n
h(Y n) =

1

2
log(2πe)(1 + P1 + P2 + 2ρ

√

P1P2) (21)

For the case whenρ = 0, from (16), (18), (9), (20) and (3),
and lettingn → ∞, we have

R ≤ 1

2
log
[

(1− ρ2)P1 + 1
]

+R2 (22)

R ≤ 1

2
log
[

(1− ρ2)P2 + 1
]

+R1 (23)

R ≤ 1

2
log(1 + P1 + P2 + 2ρ

√

P1P2) (24)

R ≤ R1 +R2 −
1

2
log

1

1− ρ2
(25)

which means, for the case ofρ = 0, R ≤ T1.

For the case ofρ > 0, sinceh(Y n) must satisfy (17) and
(19), we see thatρ ≤ min(ρa, ρb). This means from (16), (18),
(9) and (12), that we have

R ≤ 1

2
log
(

1 + (1− ρ2)P1

)

+R2 + 2ǫn (26)

R ≤ 1

2
log
(

1 + (1− ρ2)P2

)

+R1 + 2ǫn (27)

1

2
log
(

1 + P1 + P2 + 2ρ
√

P1P2

)

≤ R

≤ 1

2
log
(

1 + P1 + P2 + 2ρ
√

P1P2

)

+ 2ǫn (28)

If ρ further satisfy 0 < ρ ≤ ρ∗, which is equivalent to√
P1P2

(

1
ρ
− ρ
)

− 1 ≥ 0, we define additional random
variables

Zi = Yi + U ′
i i = 1, . . . , n

whereU ′n is an i.i.d. Gaussian sequence with mean zero and
variance

N =
√

P1P2

(

1

ρ
− ρ

)

− 1 (29)

and is independent to everything else. We have

2nR ≤ 2H(Xn
1 , X

n
2 ) + 2nǫn (30)

= H(Xn
1 , X

n
2 )− I(Xn

1 ;X
n
2 ) +H(Xn

1 ) +H(Xn
2 ) + 2nǫn

≤ H(Xn
1 , X

n
2 )− I(Xn

1 ;X
n
2 ) + nR1 + nR2 + 2nǫn

≤ I(Xn
1 , X

n
2 ;Y

n)− I(Xn
1 ;X

n
2 ) + nR1 + nR2 + 3nǫn

(31)

where (30) follows because of (7), and (31) follows from (8).



Note that

I(Xn
1 ;X

n
2 )

= I(Xn
1 ;Z

n)− I(Xn
1 ;Z

n|Xn
2 ) + I(Xn

1 ;X
n
2 |Zn)

≥ I(Xn
1 ;Z

n)− I(Xn
1 ;Z

n|Xn
2 )

= I(Xn
1 , X

n
2 ;Z

n)− I(Xn
2 ;Z

n|Xn
1 )− I(Xn

1 ;Z
n|Xn

2 )
(32)

We further have

I(Xn
1 ;Z

n|Xn
2 ) ≤

n
∑

i=1

1

2
log

(1 − ρ2i )P1i + 1 +N

1 +N
(33)

≤ n

2
log

(1− ρ2)P1 + 1 +N

1 +N
(34)

where (33) follows by similar arguments as (15) and (34)
follows by similar arguments as (16) and (26). Similarly, we
have

I(Xn
2 ;Z

n|Xn
1 ) ≤

n

2
log

(1− ρ2)P2 + 1 +N

1 +N
(35)

We also have

I(Xn
1 , X

n
2 ;Z

n) = h(Zn)− h(Zn|Xn
1 , X

n
2 )

= h(Zn)−
n
∑

i=1

1

2
log(2πe)(1 +N)

From Entropy Power Inequality (EPI) [8, Lemma I], we have

h(Zn) ≥ n

2
log
[

2(
2

n
h(Y n)) + 2πeN

]

Therefore,

h(Zn)− h(Y n)

≥ n

2
log

[

1 +
2πeN

2(
2

n
h(Y n))

]

=
n

2
log

[

1 +
N

P1 + P2 + 2ρ
√
P1P2 + 1

]

(36)

=
n

2
log

P1 + P2 + 2ρ
√
P1P2 + 1 +N

P1 + P2 + 2ρ
√
P1P2 + 1

where (36) follows from (21). Thus,

I(Xn
1 , X

n
2 ;Y

n)− I(Xn
1 , X

n
2 ;Z

n)

≤ n

2
log

(N + 1)(P1 + P2 + 2ρ
√
P1P2 + 1)

P1 + P2 + 2ρ
√
P1P2 + 1 +N

(37)

Using (31), (32), (34), (35) and (37), we have

2nR

≤ n

2
log(P1 + P2 + 2ρ

√

P1P2 + 1)

− n

2
log

(P1 + P2 + 2ρ
√
P1P2 + 1 +N)(1 +N)

((1 − ρ2)P1 + 1 +N)((1 − ρ2)P2 + 1 +N)

+ nR1 + nR2 + 3nǫn (38)

plugging inN in (29), we have

2R ≤ 1

2
log(P1 + P2 + 2ρ

√

P1P2 + 1)− 1

2
log

1

1− ρ2

+R1 +R2 + 3ǫn (39)

Hence, for the case of0 < ρ ≤ ρ∗, from (26), (27), (28) and
(39), and lettingn → ∞, we have provedR ≤ T1.

Finally, for the case whereρ > ρ∗, though we do not have
(39), (26), (27), (28) and (3) still hold, and by lettingn → ∞,
we have provedR ≤ T2.

Hence, for all cases ofρ ∈ [0, 1], we have proved that the
achievable rate either satisfyR ≤ T1 or R ≤ T2, and thus,
Theorem 1 is proved.

IV. A L OWER BOUND

Theorem 2 The lower bound of the capacity of the above
Gaussian multiple access diamond channel is

max
0≤ρ≤ρ◦

min















R1 +
1
2 log[1 + (1− ρ2)P2]

R2 +
1
2 log[1 + (1− ρ2)P1]

1
2 log[1 + P1 + P2 + 2ρ

√
P1P2]

R1 +R2 − 1
2 log

1
1−ρ2















(40)

where

ρ◦ =
√

1− exp(−2min(R1, R2)) (41)

Proof: Consider a pair of zero-mean jointly Gaussian
random variables(X1, X2), such that the covariance ofXk

is Pk, k = 1, 2 and the correlation coefficient betweenX1

andX2 is ρ.
The condition

0 ≤ ρ ≤ ρo

is equivalent to

min(R1, R2) ≥
1

2
log

1

1− ρ2

Codebook generation: Randomly generate2nR1 indepen-
dent codewordsxn

1 (i), i = 1, . . . , 2nR1 according top(x1)
and randomly generate2nR2 independent codewordsxn

2 (i),
i = 1, . . . , 2nR2 according top(x2). Then, with probability
1, for every codewordxn

1 (i), i = 1, . . . , 2nR1 , there are

2
n
(

R2− 1

2
log 1

1−ρ2

)

xn
2 sequences joint typical withxn

1 (i) ac-
cording to the given Gaussian distribution. Similarly, with
probability1, for every codewordxn

2 (i), i = 1, . . . , 2nR2 , there

are2
n
(

R1− 1

2
log 1

1−ρ2

)

xn
1 sequences joint typical withxn

2 (i).
We collect all the joint typical codeword pairs(xn

1 (i), x
n
2 (j))

among all the possible(i, j) combinations and index them as
(xn

1 , x
n
2 )(k), for k = 1, . . . , 2nR, where

R = R1 +R2 −
1

2
log

1

1− ρ2
(42)

Encoding: When the messageW = w, for w = 1, . . . , 2nR,
the source nodes finds the pair(i, j) that corresponds
to(xn

1 , x
n
2 )(w). It sends indexi ∈ {1, 2, · · · , 2nR1} to Relay

1 and indexj ∈ {1, 2, · · · , 2nR2} to Relay 2. Relay 1 upon



receiving indexi, sendsxn
1 (i) into the multiple access channel.

Relay 2 upon receiving indexj, sendsxn
2 (j) into the multiple

access channel.
Decoding: Upon receivingY n, the receiver declaresw

is sent if (xn
1 , x

n
2 )(w) is jointly typical with the received

codeword. If no suchw exists, or if there is more than one
such, an error is declared.

Probability of Error: By a similar argument as in [2, Sec.
14.3.1], we can show that the probability of error goes to zero
if following conditions are satisfied

R1 ≤ I(X1;Y,X2)

R2 ≤ I(X2;Y,X1)

R ≤ I(X1, X2;Y )

which means

R ≤ R2 +
1

2
log[1 + (1 − ρ2)P1] (43)

R ≤ R1 +
1

2
log[1 + (1 − ρ2)P2] (44)

R ≤ 1

2
log[1 + P1 + P2 + 2ρ

√

P1P2] (45)

Thus, based on (42), (43), (44) and (45), Theorem 2 is proved.

V. SYMMETRIC CASE AND CAPACITY

Comparing the upper and lower bounds proposed in The-
orem 1 and 2, we see that they take on similar forms, more
specifically, the four functions after the minimum in (1) is
exactly the same as that in (40). Thus, if the parameters of
the Gaussian multiple access diamond channel,R1, R2, P1

and P2, is such thatρo ≥ ρ∗ and T1 ≥ T2, the upper and
lower bounds meet providing us with the exact capacity of
the channel.

To show that there indeed exist channels such that the
upper and lower bounds meet, in this section, we focus on
the symmetric case, i.e.,P1 = P2 = P andR1 = R2 = R0.

If the channel is such that

R0 ≥ 1

2
log (1 + 4P )

it is clear that the multiple access channel in the second stage
is the bottleneck of the whole network, and thus, the capacity
is equal to1

2 log (1 + 4P ). On the other hand, if the channel
is such that

1

2
log (1 + 2P ) ≥ 2R0

it is clear that the two separate links in the first stage is the
bottleneck of the whole network, and the capacity is equal
to 2R0. Thus, we only need to focus on the nontrivial cases
where

1

4
log (1 + 2P ) < R0 <

1

2
log (1 + 4P ) (46)

To simplify presentation, let us define the following func-

tions of ρ:

f1(ρ)
△
= R0 +

1

2
log[1 + (1− ρ2)P ]

f2(ρ)
△
=

1

2
log[1 + 2(1 + ρ)P ]

f3(ρ)
△
= 2R0 −

1

2
log

1

1− ρ2

Then, for the symmetric case, Theorem 1 and Theorem 2
becomes

Corollary 1 An upper bound on the capacity of the symmetric
Gaussian multiple access diamond channel is

max(T1, T2) (47)

where

T1 = max
0≤ρ≤ρ∗

min {f1(ρ), f2(ρ), f3(ρ)}

T2 = max
ρ∗≤ρ≤1

min {f1(ρ), f2(ρ), f3(0)}

and

ρ∗ =

√

1 +
1

4P 2
− 1

2P

Corollary 2 A lower bound on the capacity of the symmetric
Gaussian multiple access diamond channel is

max
0≤ρ≤ρ∗

min {f1(ρ), f2(ρ), f3(ρ)}

where

ρ◦ =
√

1− 2(−2R0)

Comparing Corollaries 1 and 2, we obtain the following
theorem:

Theorem 3 For the symmetric Gaussian multiple access di-
amond channel, the above upper and lower bound on the
capacity meet iff the channel parameters are such that

ρo ≥ ρ̄2 (48)

ρ∗ ≥ ρ̄1 (49)

f1(ρ
∗) ≤ f3(ρ̄2) (50)

where ρ̄1 and ρ̄2 are the positive roots of the second order
equations f1(ρ) = f2(ρ) and f3(ρ) = f2(ρ), respectively. In
this case, the capacity is f3(ρ̄2).

Proof: It is straightforward to check that for channels
that satisfy (46), the second order equationsf1(ρ) = f2(ρ)
andf3(ρ) = f2(ρ) both have one and only one positive root.
Furthermore,̄ρ1, ρ̄2 ∈ (0, 1).

It can be seen that bothf1(ρ) and f3(ρ) are strictly
decreasing inρ, while f2(ρ) is strictly increasing inρ. If the
channel is such that1 − 1

22R0−P
< 0, then f1(ρ) ≥ f3(ρ)

for any ρ ∈ [0, 1], such as Figure 2. If1 − 1
22R0−P

≥ 0,

f1(ρ) < f3(ρ) for ρ <
√

1− 1
22R0−P

and f1(ρ) ≥ f3(ρ)



otherwise, such as Figure 3. In either case, it meansρ̄1 and
ρ̄2 either satisfy

ρ̄21 < ρ̄22 < 1− 1

22R0 − P
(51)

which corresponds to the dotted line representingf2(ρ) in
Figure 3 or

1− 1

22R0 − P
≤ ρ̄22 ≤ ρ̄21 (52)

which corresponds to the solid line representingf2(ρ) in
Figures 2 and 3.

Since for anyp(x1, x2), we always have

I(X1;Y |X2) + I(X2;Y |X1) ≥ I(X1, X2;Y )− I(X1;X2)

Evaluating the above equation with jointly Gaussian zero-
meanP -varianceX1, X2 with correlationρ, we obtain

2(f1(ρ)−R0) ≥ f2(ρ) + (f3(ρ)− 2R0),

∀P,R0 ≥ 0, ρ ∈ [0, 1] (53)

Based on the definition of̄ρ1 and ρ̄2, from (53), we have

f2(ρ̄1) ≥ f3(ρ̄1)

f2(ρ̄2) ≤ f1(ρ̄2)

This means only (52), i.e., the solid line in Figures 2 and 3
is possible. This also means that the lower bound is no larger
thanf2(ρ̄2), in fact, whenρ̄2 satisfyρ̄2 ≤ ρo, the lower bound
is f2(ρ̄2), otherwise, it isf2(ρo).

Fig. 2. f1(ρ) ≥ f3(ρ), ∀ρ ∈ [0, 1]

First, let us consider the case whereρ̄1 > ρ̄2. Under this
assumption, supposēρ2 satisfiesρ̄2 > ρ∗, then in the upper
bound, T1 = f2(ρ

∗) and T2 = min(f2(ρ̄1), 2R0). Since
f2(ρ

∗) < f2(ρ̄1) and f2(ρ
∗) < f2(ρ̄2) = f3(ρ̄2) < 2R0,

the upper bound ismin(f2(ρ̄1), 2R0). The lower bound is no
larger thanf2(ρ̄2), which means the lower and upper bounds
do not meet.

Supposeρ̄2 and ρ̄1 satsify ρ̄2 ≤ ρ∗ < ρ̄1, then in the

Fig. 3. f1(ρ) andf3(ρ) has a crossing point

upper bound,T1 = f2(ρ̄2) andT2 = min(f2(ρ̄1), 2R0). Since
f2(ρ̄2) < f2(ρ̄1) and f2(ρ̄2) = f3(ρ̄2) < 2R0, the upper
bound ismin(f2(ρ̄1), 2R0). The lower bound is no larger than
f2(ρ̄2), which means the lower and upper bounds do not meet.

Supposeρ̄1 satsifiesρ∗ ≥ ρ̄1, then in the upper bound,
T1 = f2(ρ̄2) andT2 = min(f1(ρ

∗), 2R0). Note thatf2(ρ̄2) =
f3(ρ̄2) ≤ 2R0. In this case, the upper and lower bounds meet
iff T2 ≤ T1 and the lower bound is equal tof2(ρ̄2). The above
two conditions are satisfied iff̄ρ2 ≤ ρo, 2R0 ≥ f1(ρ

∗) and
f1(ρ

∗) ≤ f2(ρ̄2). Finally, noting thatf1(ρ∗) ≤ f2(ρ̄2) implies
f1(ρ

∗) ≤ f3(ρ̄2) < 2R0, we have proved Theorem 3 when
ρ̄1 > ρ̄2.

Next, let us consider the special case whereρ̄1 = ρ̄2 =
√

1− 1
22R0−P

△
= ρ̄. This is equivalent to

P =
22R0(22R0 − 1)

22R0+1 − 1
(54)

In this case, sinceρo ≥ ρ̄, the lower bound isf2(ρ̄). The upper
bound is alsof2(ρ̄). Thus, when the channel parameters satisfy
(54), the upper and lower bounds meet. It is straightforwardto
check that when the channel parameters satisfy (54),ρ∗ = ρ̄

and conditions (48)-(50) satisfy also. Thus, we have proved
Theorem 3 for all possible(ρ̄1, ρ̄2).

To show that there indeed exist symmetric Gaussian mul-
tiple access diamond channels that satisfy (48)-(50), takefor
example,P = 3 andR0 = 1.2, we then have

ρo = 0.9003, ρ∗ = 0.8471, ρ̄1 = 0.7734, ρ̄2 = 0.7643,

f1(ρ
∗) = 1.6426, f3(ρ̄2) = 1.7671

Thus, forP = 3 andR0 = 1.2, (48)-(50) are satisfied and the
achievability results and the converse results coincide, yielding
the capacity, which is 1.7671.

To illustrate further, we plot the upper and lower bounds in
Corollaries 1 and 2 and depict them in Fig. 4 and Fig. 5 for



the cases ofP = 3 andP = 30, respectively. As can be seen,
the gap between the lower and upper bounds is rather small,
especially whenR0 is relatively small and/orP is relatively
large.
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Fig. 4. Comparison of upper and lower bounds withP = 3
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Fig. 5. Comparison of upper and lower bounds withP = 30

VI. CONCLUSIONS

We have studied the Gaussian multiple access diamond
channel and provided upper and lower bounds on the capacity.
Focusing on the symmetric case, we gave necessary and
sufficient conditions that the upper and lower bounds meet.
Thus, for a symmetric Gaussian multiple access diamond
channels that satisfies these conditions, we have found its
capacity.
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