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Abstract—In this paper, we study the capacity of the diamond we use in the upper bound derivation is the introduction of
channel. We focus on the special case where the channel beeme an imaginary random variable used to bound the correlation
the source node and the two relay nodess are two separate liak between the two relay signals. This technique has also been

of finite capacity and the link from the two relay nodes to the - - : . S
destination node is a Gaussian multiple access channel. Wallc used in solving the Gaussian multiple description probf@n [

this model the Gaussian multiple access diamond channel. We WWe then propose a lower bound on the capacity where the
propose both an upper bound and a lower bound on the capacity. relays send correlated codewords into the channel. Congpari

Since the upper and lower bounds take on similar forms, it is the upper and lower bounds, we find that they are of similar
expected that they coincide for certain channel parametersTo forms and therefore, when the channel parameters satisfy

show this, we further focus on the symmetric case where the tai diti th Id coincid ielding th .
separate links to the relays are of the same capacity and theoper ~ C€MtaIN conditions, they would coincide, yielding the azipa

constraints of the two relays are the same. For the symmetric 10 illustrate this, we focus our attention on the symmetases
case, we give necessary and sufficient conditions that the pr ~ where the power constraints of the relay nodes are the same
and lower bounds meet. Thus, for a Gaussian multiple access and the links from the source node to the two relay nodes
Q|amond .channel that satisfies these conditions, we have fod are of the same capacity. For the symmetric case, we give
its capacity. - .
necessary and sufficient conditions that the upper and lower
. INTRODUCTION bounds meet. Thus, for a symmetric Gaussian multiple access

The diamond channel was first introduced by Schein in 20§42mond channel that satisfies these conditions, we havelfou
[1]. It models the communication from a source node to /& capacity.
destination node with the help of two relay nodes. The chianne
between the source node and the two relays form a broadcast Il. SYSTEM MODEL

channel as the first stage and the channel between the WQye consider the Gaussian multiple access diamond channel,

relays and the destination node form a mu!tiple access ceﬂa_ngl_ee Figur&ll. The capacity of the link from the source node to
as the second stage. The capacity of the diamond channsl IRElayk is Ry, k = 1,2. The received signal at the destination
most general form is open. Achievability results were psgmb node is

in [1], while for the general diamond channel, the best known
converse results is still the cut-set bound [2]. Capacitg ha Y=X1+Xo+U

been found for some special classes of diamond channeI%\)’Here X, and X, are the input signals from Relay 1 and

(31, [4]. _ . Relay 2, respectively, and/ is a zero-mean unit-variance
The problem of sending correlated codes through a multlp%;
i

S : aussian random variable. It is assumed thas independent
access channel was studied|in [5]. This channel model can thas P
. . t0 (X1, Xo).
regarded as a special class of the diamond channel where

et W be a message that the source node would like to
broadcast channel between the source node and the two r?}% smit to the destination node. Assume tHafis uniformly

nodes are two separ_ate links of finite capacny_._We call thtllslstributed on{1,2, -+, M}. An (M, n, ¢,) code consists of
the multiple access diamond channel. Achievability residt : .
an encoding function at the source node

the discrete multiple access diamond channel were proposed

in [5], [6]. {12, My —{1,2,--- 27} {1,2,... 2nf2)
In this paper, we consider the multiple access diamond _ )

channel where the multiple access channel from the two refj® encoding functions at the relays

nodes to the destination node is Gaussian, see Figure 1. We {12,020y SR E=1,2

call this channel model the Gaussian multiple access didmon

channel. We first propose an upper bound on the capadipich satisfy the average power constraint: for arfy that

which is tighter than the cut-set bound. The main technigielay % input into the Gaussian multiple access channel, it
satisfies
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Proof: From the cut-set bound, we always have

R<Ri+ Ry 3)
W We also have
nR=H(W) (4)
U~N1(0.1) n oyn n ymn

Power P, = H(X{, Xy) + HWI[XT, X3) ®)
Relay 2 < H(X{ZvX;l) —|—H(W|Y") (6)
Fig. 1. The Gaussian multiple access diamond channel < H(Xl ’X2 ) T nen (7)

SI(XT, X35 Y") + H(XT, X3 [Y™) + ney
< I(XT,X55Y") + 2ne, (8)

and one decoding function at the destination node — h(Y™) — R(Y"|XT, X2) + 2ne,

9" :R" = {1,2,--- , M} =h(Y") - glog(27re)+2nen 9)

The probability of error is defined as

Mo
en =) 7P (V") # wlW = w]
wZ_IM g w w

where [B) is because without loss of generality, we may
consider deterministic encoders, i.€ X7, X7) is a deter-
ministic function of W, (@) is because of Markov chain
W — (X, X») — Y™, and [T) and[{8) both follow from

Rate R is said to be achievable if there exists a sequence ledno’s inequality. We further have

(2"#,n,e,) codes such that, — 0 asn — co. The capacity

of the Gaussian multiple access diamond channel is supremum nlt = H(W2 . (10)

of all achievable rates. > H(X{, X3) (11)
We would like the characterize the capacity of the Gaussian > I( X7, X2 7™

multiple access diamond channel in terms of the channel _ ny T

parametersR;, Ry, P and Ps. =h(¥Y") 2 log(2me) (12)

(@2) is follows from the same reasoning @k (5). Now, we upper

I1l. AN UPPERBOUND boundh(Y™) as

Theorem 1 An upper bound on the capacity of the Gaussian

multiple access diamond channel is h(Y™) < Z h(Y;)
maX(Tl, Tg) izl 1
where < Z B log(2me) (Pli + Py + 2pi0/ P1i Po; + 1)
i=1
Ry + élog[l + (1= p*) P (13)
T e mind B2t zlosll+ (1—p?)P] .
e o?};é* i 2log[l + Py + P2 + 2pv/Pi P%] where in [IB), we have definell,, = E[X?],k = 1,2 and
Ry + Ry — 5log = p; = ZXuXa] and ysed the fact that given power constraint,
P VP Py P T . . .
(1) the Gaussian distribution maximizes the differential epyt
Ry + %log[l + (1= pAPy) Another upper bound o is
. Ry + 5 log[l + (1 — p?)Py] n yn
To = max min{ 2 nk < H(X{, X3) + ne, (14)
< p<l slog[l + Py + P2 + 2p/P1 P] nlon n
o 2t Ry = H(X}|X3) + H(X3) + ney
2) < H(X7|X3')+nRy + ne,
and =I(XYMXY) + HXTY™, X5) + nRa + ney,

< I(X{H5Y"XS) + nRa + 2ne,

1 1
P =N\N""1p P, o0/Dh

Remark: The cut-set bound for the Gaussian multiple access
diamond channel is "
Ry + %log[l + (1 = p?)Ps] < Z 3 log [(1 = p7)Pri + 1] + nRy + 2ne,,  (15)

Ry + 3 log[l + (1 — p?)Py] i=1

Llog[l + P + P, + 2p/ P P where [I#) is because dfl(7) arild{15) follows from the same
Ry + Ry

Hence, our upper bound is tighter than the cut-set bound.

<Y I(X1i;Yi|X2:) + nRy + 2ne,
=1

max min
0<p<1



reasoning ad (13). Similarly, follows: If

n 1 1
1 - n Z
nRk < Z 3 log [(1 — pi)Pai + 1] +nRy + 2ne, nh(Y ) < 2 log(2me)(1+ Py + P) (20)
=1 thenp = 0; otherwise,p is such that
Since the inputs from Relay 1 must satisfy the average power
constraintP;, we have —h(Y") = log(%e)(l +Pi+ P +2py/P1P)  (21)
1< IR For the case Whep = 0, from (8), [I8), [(9),[(20) and13)
<= 2P, < = ;< . ' ' PRED :
0= nZ;plP“— n2P“—P1 and lettingn — oo, we have
1 2
Therefore, there exists @, € [0, 1] such that R< 5 log [(1=p")Pr+1] + Ry (22)
1
1 — R<Zlog[(1—p*)Pa+1] + R 23
piPlz—prPu _2og[( p)z-i—]-i— ! (23)
n 1
R< -log(l1+ P+ P, +2p\/ P P) (24)
Due to the concavity of the logarithm function, we have 2 1 1
R< =" Slog(1 - p?)Pyi + 1] + Ra + 2e, _ p
n= 2 which means, for the case pf=0, R < T1.

IN
3}—!

1 n
§log< Zl 1—pZ P11+1}>+R2+26n

1 1 )
< S log (E;Ph——Zp P11+1> + Ry + 26,
1
< 51og [(1—p2)PL+1] + Ra + 26y, (16)

For the case op > 0, sinceh(Y™) must satisfy[(1l7) and

By a similar argument, fron{_(13), we have ] .
y g ) (19), we see that < min(p,, pp). This means fron{16)_(18),

lh(yn) (@ and [(I2), that we have
n
1
1 1 & R<Zlog(1+(1=p*)P)) + Ry + 26, 26
< 5 g(2me) <EZ {Pu+P2i+2|pi|\/P1¢P2i—|—1}> % g(1+(1—p*)h) 2 (26)
=1 R< 3 log (1+ (1= p*)P2) + Ry + 2¢n (27)
1 1« 5
Z il Py 1
< 5 log(2me) (Pl TR n22\/piphp%+1> slog (14 P+ P+ 20V/PiPy) < R
From Cauchy-Schwarz inequality, we have < %bg (1 + P, + Py + 2pn /P1P2) +26, (28)
1 <& 1 <& 1 << If p further satisfy0 < p < p*, which is equivalent to
2p P - 2p - : ) "
n z; piP1ile < \J <n z;pi P“) <n 2P21> VP P, (— — p) — 1 > 0, we define additional random
= = = variables
< p2P P,

Zi=Y,+ U i=1,...,n
Thus, we have . N . .
whereU’" is an i.i.d. Gaussian sequence with mean zero and

—h(Y") log(27re) (P1 + P+ 2p\/ PP+ 1) (17) variance

Similarly, there exists a; € [0,1] such that N=+PP (l - p> -1 (29)
P
pEP, = 1 Zpgp% and is independent to everything else. We have
n 4

=t 2nR < 2H(XT, XJ) + 2ne, (30)

and we have = H(X},X7) = I(X75 X5) + H(XP) + H(XF) + 2ne,

R< 51og [(1—pp)P2+ 1] + Ry + 26, (18) < H(X], XJ) —I(X]; X3) +nRy +nRy + 2ne,
1 < I(XP,XZY™) — I(X™ X)) + nRy +nRy + 3ne,

_h(yn) 5 log(2me) (P1 Py +20,/P Py + 1) (19) (XF, X35 1) = I(XT5 X5) + B + nRy 31)

Let us deflnep € [0,1], which is a function of2(Y") as where [3D) follows because dfl(7), aid](31) follows frdrh (8).



Note that plugging in N in (29), we have

- 1 1 1
I(XT5 X3) 2R < S log(Pr+ P+ 20V/PiPy +1) = S log 7
=I(XT;Z") = (X7 2" | X3) + [(XT; X3 | Z™) P
+ R1 4+ R + 3¢, (39)

> I(X1; 2") — I(X{; 2" X3)

= I(X], XJ, 2" — (X3 2™ XT) — I(XT; 2™ XD) Hence, for the case df < p < p*, from (26), [2T), [(2B) and
(32) (39), and lettingn — oo, we have proved? < T.

Finally, for the case wherg > p*, though we do not have

We further have (39), (26), (27),[(28) and13) still hold, and by letting— oo,
S = L) l—pl )Pii+1+ N we have proved? < Tb.
I(XT5 27|X3) < Z 5° 1+ N (33) Hence, for all cases g € [0, 1], we have proved that the

achievable rate either satisf§ < 77 or R < T», and thus,
34) Theorem 1 is proved.
1+ N (34) -
where [338) follows by similar arguments ds (15) and] (34)

follows by similar arguments a§ (1L6) arld(26). Similarly, we IV. AL OWERBOUND
have Theorem 2 The lower bound of the capacity of the above

Gaussian multiple access diamond channel is

IN

Pi+1+N
glog( PP+ 1+

n n, (1-=pHPa+1+N

I(X3; Z"XT) < 9 log 1+ N (35) Ry + Llog[l + (1 — p?)Py]

We also have : Ry + 5 log[l+ (1 — p*) 1]
. . . R . ngg;o i % 10g[1 + P+ Py + 2p+/ P1P2] (40)

I(XT,X552™) = WZ") — MZ"|XT, X3) R1+R2—%10g1,1p2
"1
=nz") - 5 log(2me) (1 + N) where

= p° = /1 — exp(—2min(Ry, Ry)) (41)

From Entropy Power Inequality (EPI)I[8, Lemma 1], we have ] ) o )
Proof: Consider a pair of zero-mean jointly Gaussian

hZ™) > glog {2(%}1(’/”)) + 27reN] random variableg X, X»), such that the covariance of}
is P, k = 1,2 and the correlation coefficient betweexy
Therefore, and X is p.
h(Z™) = h(Y™) The condition )
>n10 14 2meN 0<p<p
=398 o(2h(y™)) is equivalent to
n N 1
= —log |1+ 36 i > Z
2 g[ P1+P2+2p\/P1P2+1] (36) min(fy, B2) = 5 log 37—
- P+P+20vPR+1+ N Codebook generation: Randomly generat@™’: indepen-
Pr+ Py +2p/ PPy + 1 dent codewords:? (i), i = 1,...,2"% according top(z;)
where [36) follows from[(21). Thus, and randomly generatg"2 independent codewords} (i),
R, " on o i = 1,...,2"% according top(x;). Then, with probability
IXT, X5 Y") = I(XT, X553 27) 1, for every codewordz? (i), i = 1,...,2"% there are
<2 (N A+ D1+ P+ 2pV PP+ 1) (37) 2"(R27% log =z x} sequences joint typlcal with? (i) ac-
2 Pr+ Py +2pv PPy + 14+ N cording to the given Gaussian distribution. Similarly, wit
Using [31), [(3R),[(3K),[(35) and_(B7), we have probability 1, for every codeword3 (i), i = 1,.. ., 2"F2 there
2nR are2" ("F“% 1|c|>g;11p2 ay sequlencgzs joir:jt typ(ica|( V)Vithl((i)))-
We collect all the joint typical codeword paits} (i), z5 (5
n 1 s 2
< glog(Pr+ P2+ 2oy PLPs +1) among all the possiblé, j) combinations and index them as
n oe (P1+P2+2pm+1+N)(l+N) (CL‘?,CL‘?)(/C), fOI’k:l,...,2nR, where
9 —p? —p? 1 1
+nRy +nRy + 3ne, (38) 2 1—p
Encoding: When the messagd’ = w, forw = 1,...,2"%,
the source nodes finds the paii,j) that corresponds
to(z?, 2%)(w). It sends index € {1,2,---,2"f1} to Relay

1 and indexj € {1,2,---,2"%2} to Relay 2. Relay 1 upon



receiving index, sendsc} (¢) into the multiple access channeltions of p:

Relay 2 upon receiving index sendse?(j) into the multiple A 1

access channel. fi(p) = Ro + 5 log[t + (1 — p°)P]
Decoding: Upon receivingY™, the receiver declarew

is sent if (7, 2%)(w) is jointly typical with the received

codeword. If no suchw exists, or if there is more than one A 1 1

such, an error is declared. f3(p) = 2Ro — Jlog T 02
Probability of Error: By a similar argument as in |2, SeC-Then, for the symmetric case, Theoréin 1 and Theokém 2

14.3.1], we can show that the probability of error goes t®zefacomes

if following conditions are satisfied

falp) £ % log[1 +2(1 + p) P

R < I(X1;Y, X5) Corollary 1 An upper bound on the capacity of the symmetric
Ry < I(X2,Y, X1) Gaussian multiple access diamond channel is
R < I(X1,X2;Y) max(T1, %) (47)
which means where
R < Ry + 3 logll + (1 — )P 3) 7= max_min {fi(p). f2(0). fo(0)}
R<R; + %mgu +(1 - p?)P] (44) Ty = max min{fi(p), f2(p), /5(0)}
R< %10g[1 + P, + P>+ 2p\/P P] (45) and * : .
Thus, based of (#2),_ (¥3), (44) andl(45), Thedrém 2 is proved. T 4P 2P
[

Corollary 2 A lower bound on the capacity of the symmetric
Gaussian multiple access diamond channel is

max, min { f1(p), f2(p), f(p)}

V. SYMMETRIC CASE AND CAPACITY

Comparing the upper and lower bounds proposed in The- 0

orem[1 and R, we see that they take on similar forms, moydere

specifically, the four functions after the minimum il (1) is p° = /1 — 2(~2Ro)
exactly the same as that in_{40). Thus, if the parameters of
the Gaussian multiple access diamond chanfgl, Rs, P Comparing Corollarie§]1 and 2, we obtain the following

and P, is such thatp® > p* andT; > T», the upper and theorem:
lower bounds meet providing us with the exact capacity of

the channel. Theorem 3 For the symmetric Gaussian multiple access di-
To show that there indeed exist channels such that taﬁnnd ChanneI, the above upper and lower bound on the

upper and lower bounds meet, in this section, we focus @gpacity meet iff the channel parameters are such that
the symmetric case, i.eRy = P, = P andR; = Ry = Ry.

If the channel is such that p° = p2 (48)
Ro > Llog (1 + 4P) P> (49)
0= 75708 f1(p™) < f3(p2) (50)

it is clear that the multiple access channel in the secorgestg, y,ora 51 and j, are the positive roots of the second order

is the bottleneck of the whole network, and thus, the capact, ations _ and _ respectively. In
is equal to log (1 4+ 4P). On the other hand, if the channelﬁ(]]iS case tﬁgﬁl\pac{fjfi f3(ﬁ2f)3_(p) Ja(p). resp Y

is such that
Proof: It is straightforward to check that for channels
that satisfy [(4B), the second order equatighsp) = f2(p)

it is clear that the two separate links in the first stage is tif@d f3(p) = f2(p) both have one and only one positive root.

bottleneck of the whole network, and the capacity is equaHrthermorepy, sz € (0,1).

to 2Ry. Thus, we only need to focus on the nontrivial cases It can be seen that bottfi(p) and f3;(p) are strictly

where decreasing irp, while f(p) is strictly increasing irp. If the
channel is such that — z— < 0, then fi(p) > fs(p)

1 1
7108 (1+2P) < Ro < 5 log (1 +4P) (46) for any p € [0,1], such as Figurél2. It — ol > 0,

To simplify presentation, let us define the following func/1(p) < fa(p) for p < /1 — mm—p5 and fi(p) > fa(p)

1
3 log (14 2P) > 2R,



otherwise, such as Figufe 3. In either case, it meanand f.(0) - 7
po either satisfy 25

ﬁ%<ﬁ%<1—m (51) ///
which corresponds to the dotted line representjfagp) in f5(0) P
Figure[3 or fale)
1 o
1—- PR —p = < p3 < pi (52)

which corresponds to the solid line representifigp) in
Figured 2 andl3.
Since for anyp(z1, z2), we always have

Evaluating the above equation with jointly Gaussian zero-
mean P-varianceX, Xo with correlationp, we obtain f—

Py By Py Py o
2(f1(p) — Ro) > f2(p) + (f3(p) — 2Ro),
VP,Ry > 0,p € [0,1] (53) Fig. 3. f1(p) and f3(p) has a crossing point

Based on the definition gf; and s,, from (53), we have
upper boundT; = f2(p2) andTz = min(f2(p1), 2Rp). Since

f2(p1) = fa(p1) f2(p2) < folpr) and fo(p2) = fs(p2) < 2Ro, the upper
f2(p2) < f1(p2) bound ismin(f2(p1), 2Ro). The lower bound is no larger than

This means only[{82), i.e., the solid line in Figufds 2 &hd £&(p2), which means the lower and upper bounds do not meet.
is possible. This also means that the lower bound is no IargjgrSUpposepl satsifiesp” > p1, then in the upper bound,

than f»(p52), in fact, whenp, satisfy g, < p°, the lower bound J2(p2) andTy = min(f1(p*),2Ro). Note thatfz(p2) =
is f2(p2), otherwise, it isfs(p°). f3(p2) < 2Ry. In this case, the upper and lower bounds meet

iff T» < T3 and the lower bound is equal tf(p-2). The above
two conditions are satisfied iff; < p°, 2Ry > f1(p*) and
f1(p*) < f2(p2). Finally, noting thatf(p*) < fa(p2) implies
f1(P) fi(p*) < fs(p2) < 2Ro, we have proved Theorefd 3 when
p1 > pa.
Next, let us consider the special case where= p, =
f2(e) J1— =L 2 5. This is equivalent to

22F0—p

22R0 (22Ro _ 1)

T T 92Rot1 _ | (54)

In this case, sincg® > p, the lower bound ig>(p). The upper
bound is alsgf2(p). Thus, when the channel parameters satisfy
(54), the upper and lower bounds meet. It is straightforward
check that when the channel parameters satisfy (54} p
and conditions[(48)-(80) satisfy also. Thus, we have proved
Theoreni B for all possiblép;, p2). [ |

To show that there indeed exist symmetric Gaussian mul-
tiple access diamond channels that satigfy (88)-(50), take
example,P = 3 and Ry = 1.2, we then have

Ol |-mmm e e oo

P,

o

Fig. 2. fl(ﬁ) > fg(ﬁ),VP € [07 1]

First, let us consider the case whefe > p,. Under this p° = 0.9003, p* = 0.8471, p1 = 0.7734, p» = 0.7643,
assumption, supposg satisfiesps > p*, then in the upper o N
bound, T} = f2(p*) and T» = min(f2(p1),2Ro). Since Fi(p?) = 1.6426, fa(p2) = 17671
f2(p*) < fa(p1) and fa(p*) < fa(p2) = f3(p2) < 2Ro, Thus, forP =3 andR, = 1.2, (48)-(50) are satisfied and the
the upper bound imin(f2(p1),2R). The lower bound is no achievability results and the converse results coinciagding
larger thanfsz(p2), which means the lower and upper boundthe capacity, which is 1.7671.
do not meet. To illustrate further, we plot the upper and lower bounds in
Supposeps and p; satsify po < p* < p1, then in the CorollariesTl and]2 and depict them in Hig. 4 and Eig. 5 for



the cases o = 3 and P = 30, respectively. As can be seen2] T. M. Cover and J. A. ThomasElements of Information Theory. John

the gap between the lower and upper bounds is rather sm

especially whenRy is relatively small and/oiP is relatively
large.

19

Fig. 4. Comparison of upper and lower bounds with= 3
P=30
3.6
— - lower bound
35K —
34+ -
33r -
3.2 A
31r -
3l |
29 ; ; ; ;
1 15 2 25 3 35
R0
Fig. 5. Comparison of upper and lower bounds with= 30

VI. CONCLUSIONS
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We have studied the Gaussian multiple access diamond
channel and provided upper and lower bounds on the capacity.
Focusing on the symmetric case, we gave necessary and
sufficient conditions that the upper and lower bounds meet.
Thus, for a symmetric Gaussian multiple access diamond
channels that satisfies these conditions, we have found its

capacity.
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