
Scalable Similarity Search with Optimized Kernel Hashing

Junfeng He
Columbia University
New York, NY, 10027

jh2700@columbia.edu

Wei Liu
Columbia University
New York, NY, 10027

wliu@ee.columbia.edu

Shih-Fu Chang
Columbia University
New York, NY, 10027

sfchang@ee.columbia.edu

ABSTRACT
Scalable similarity search is the core of many large scale
learning or data mining applications. Recently, many re-
search results demonstrate that one promising approach is
creating compact and efficient hash codes that preserve data
similarity. By efficient, we refer to the low correlation (and
thus low redundancy) among generated codes. However,
most existing hash methods are designed only for vector
data. In this paper, we develop a new hashing algorithm
to create efficient codes for large scale data of general for-
mats with any kernel function, including kernels on vectors,
graphs, sequences, sets and so on. Starting with the idea
analogous to spectral hashing, novel formulations and solu-
tions are proposed such that a kernel based hash function
can be explicitly represented and optimized, and directly
applied to compute compact hash codes for new samples of
general formats. Moreover, we incorporate efficient tech-
niques, such as Nyström approximation, to further reduce
time and space complexity for indexing and search, making
our algorithm scalable to huge data sets. Another impor-
tant advantage of our method is the ability to handle diverse
types of similarities according to actual task requirements,
including both feature similarities and semantic similarities
like label consistency. We evaluate our method using both
vector and non-vector data sets at a large scale up to 1 mil-
lion samples. Our comprehensive results show the proposed
method outperforms several state-of-the-art approaches for
all the tasks, with a significant gain for most tasks.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.4 [Information Systems Appli-
cations]: Miscellaneous

General Terms
Algorithms, measurement, performance
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1. INTRODUCTION AND RELATED WORK
Internet nowadays makes it very easy to download a huge

amount of data of diverse modalities like texts, images, videos,
or others. To make use of such data sets in machine learn-
ing and data mining, a critical step is similarity search, i.e.,
finding nearest neighbors of a given query. The straightfor-
ward solution that exhaustively computes similarity between
every data point and the query obviously does not scale up
due to the prohibitive cost associated with computation and
storage. To handle the scalability issue, approximate sim-
ilarity search techniques exploring tradeoffs between accu-
racy and speed have been actively explored in recent liter-
atures [1, 2, 3, 6, 16, 7, 12, 11, 9], where we trade certain
accuracy for faster speed. In some early works, spatial par-
titions of the feature space via various tree structures[1, 2]
have been extensively studied. Despite good results for low
dimensional data, the performance of such tree-based ap-
proaches is known to degrade significantly when the data
dimension is high, sometimes even worse than linear scan.
Recently, many hash coding based algorithms have been pro-
posed to handle similarity search of high dimensional data.
These methods follow the idea that similar data points are
expected to be mapped to binary codes within a small Ham-
ming distance. When such hash codes are used as adequate
indexing keys, often a sublinear time complexity becomes
feasible for large scale similarity search.

One well known example is locality-sensitive hashing (LSH)
[3]. In LSH, random vectors are utilized to generate codes,
such that two points in database within a small distance are
shown to have a higher probability of collision, i.e., having
the same hash code. LSH algorithms with Lp norms [6],
inner products [5], and learned metrics [8] have been pro-
posed in recent literature. Another well known method is
spectral hashing[12], which rather than using randomized
projections, generates much more compact codes by thresh-
olding some nonlinear functions on the projections along
the principal component directions. It has been shown to
achieve much better performance than LSH in some appli-
cations[12].

Despite of the aforementioned progress in similarity search,
most existing hashing methods have one important limita-
tion: they assume data is represented in a vector format
and can be embedded as points in a vector space. Such as-
sumption unfortunately are not compatible with many real

1129



Table 1: Comparison with several hashing algorithms
method work with non-vectors? code efficiency fast indexing/search speed preserve various similarities ?

LSH no low yes only feature similarity
Kernelized LSH yes low yes only kernel similarity on features

Semantic Hashing no medium yes yes
Spectral Hashing no high yes only feature similarity

exp(−||Xi − Xj ||2/σ2)
Optimized yes high yes yes

Kernel Hashing

data types in the forms of graphs, trees, sequences, sets,
or other formats existent in applications involving multi-
media, biology, or Web. For such general data types, usu-
ally certain complex kernels are defined to define and com-
pute the data similarities. For instance, random walk kernel
and subtree kernel [26] are proposed for graph data; pyra-
mid matching and spatial pyramid matching kernels [24]
are proposed for data with the format of a set of vectors;
Earth mover’s distance kernel is proposed for sequence data.
How to apply hashing algorithms to those non-vector data
with complex kernels becomes an important problem. More-
over, even if the data are stored in the vector format, many
machine learning solutions benefit from the use of domain-
specific kernel functions, for which the underlying data em-
bedding to the high-dimensional space is not known explic-
itly, namely only the pair-wise kernel function is computable.
Kernelized locality sensitive hashing (KLSH) [13] is one of
the very few methods that have been developed for simi-
larity search based on kernels that are applicable to both
vector and non-vector data. However, as a direct extension
of LSH, KLSH may suffer from the same problem of produc-
ing inefficient codes, and hence will not perform well when
the number of bits is small.

In this paper, we aim at developing a hashing algorithm
that can

1. work on general types of data with any kernel function.

2. generate efficient and compact codes.

3. achieve fast indexing and search speed.

4. preserve diverse types of similarities including both
feature similarity and semantic similarity like label con-
sistency.

These properties are motivated by practical requirements
in large-scale problems. Properties 2 and 3 are critical for
making the hashing algorithm scalable to huge data sets, in
terms of space and time complexity. Property 1 is desired in
order to support general types of data from different areas.
Finally, property 4 is crucial since usually no single similar-
ity measure is sufficient for achieving robust performance in
tasks like classification, retrieval, and so on.

Comparison of several state-of-the-art hashing algorithms
based on the above properties is shown in Table 1. None of
them have properties 1 and 2 at the same time, while our
objective is to design a novel hashing solution that satisfy
all 4 properties.

Our algorithm follows the idea of generating data-dependent
optimal hash codes similar to that used in spectral hashing.
However, without an explicit hash function, the original op-
timal hash code formulation in spectral hashing suffers from

the inability in handling new data points. To derive approx-
imate solutions, in spectral hashing some strict restrictions
were used, which caused several limitations. To overcome
such problems, in our solution a kernel hash function is ex-
plicitly represented and learned via optimization, which can
be directly applied to novel samples even in nonvector data
format. In addition, several speed-up techniques, such as
those based on landmark points or Nystrom approximation,
are incorporated to reduce the time complexity involved in
the indexing and search stages. Finally, our method does
not make any assumption about the similarity terms. There-
fore, diverse types of similarities such as feature similarity,
label consistence, or other association relations can be eas-
ily handled. Hence, our method can conveniently support
unsupervised, supervised, or semi-supervised hashing.

We have evaluated our algorithm on several databases in-
cluding vector data, graphs, and sets, with a data size rang-
ing from several thousand to one million, for different tasks
such as image retrieval, classification, and near duplicate de-
tection. Compared to other stat-of-the-art approaches, our
proposed method achieves significant performance gains for
most of the data sets/tasks. In addition, our algorithm only
needs to solve a small scale eigenvector problem, and hence
is very easy to implement and reproduce.

2. OPTIMIZED KERNEL HASHING

2.1 Background: Spectral Hashing
Suppose we have N samples {Xj , j = 1, ...N}, Wij is the

similarity between sample Xi and sample Xj . As shown in
spectral hashing, efficient hash codes can be obtained by the
following optimization problem:

min
Y

N∑
i,j=1

Wij ||Yi − Yj ||2

s.t.
N∑

i=1

Yi = 0

1

N

N∑
i=1

YiYi
� = I

Yi ∈ {−1, 1}M (1)

Note here Y is a M ×N bit matrix, and Yi is ith column of
Y , which is hash bits of sample Xi.

Here,
N∑

i,j=1

Wij ||Yi − Yj ||2 tries to preserve feature similar-

ity between original data points. In other words, on average,
samples with high similarity, i.e., larger Wij , should have
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Table 2: Analysis of obtaining optimized kernel hash functions and indexing training samples
Description Time complexity

step 1 Compute KP×N and KP×P as defined in (6) and (8); O(PNTK)
step 2 Compute C from (4) for sparse W or (25) for non sparse W; O(PNS) or O(P 2N + PLN);
step 3 Compute G from (5); O(P 2N)
step 4 Apply SVD on G as in (15); O(P 3)

step 5 Compute the matrix C̃ in (18); O(P 3)

step 6 Get Ã as M eigen vectors of C̃; O(P 3)
step 7 Compute A from (16); O(P 3)
step 8 Compute hash codes for N trraining samples with (9); O(NMP )

In total L = O(P ), NS = O(PN) O(PNTK + P 2N + NMP )

Table 3: Analysis of computing hash codes for a novel sample
Description Time complexity

step 1 Compute kx from (20); O(PTK)
step 2 Compute hash codes from (19); O(PM)

In total O(PTK + PM)

similar hash codes, i.e., smaller ||Yi − Yj ||2. The constraint

N∑
i=1

Yi = 0

is to make sure every single bit component of the M hash
bits should be balanced, i.e., 50% to be 1 and 50% to be −1,
while the constraint

1

N

N∑
i=1

YiYi
� = I

is to ensure low correlation among different bits. Both these
two constraints are helpful to create compact hash bits[12].

Unfortunately, as pointed out in [12], the above problem
is equivalent to balanced graph partitioning problem, and
hence is NP-hard. In spectral hashing, first, the constraint
Yi ∈ {−1, 1}M is ignored to relax the problem, and the
relaxed version turns out to be eigenvectors of graph Lapla-
cian. However even after relaxation, the above solution does
not produce hash functions that can be used to handle novel
input samples. Therefore, several additional assumptions
are made in [12] in order to obtain an approximate solution
that can handle novel samples. First of all, the data are
assumed to be uniformly distributed vectors. Moreover, the
similarity matrix W has to be fixed as

Wij = exp(−||Xi − Xj ||2/σ2)

With these strict assumptions, spectral hashing obtains an
approximate solution by thresholding some nonlinear func-
tions on the projections along the principal component di-
rections [12].

2.2 Optimized Kernel Hashing

2.2.1 Formulation
In order to obtain efficient hash codes, we start with an

idea and formulation similar as shown above for spectral
hashing. However, unlike spectral hashing where no explicit
hash functions are included, we explicitly include hash func-
tions based on kernels, so that the learned hash functions
can be directly applied to novel input samples of generic
types. Specifically, we adopt the following formulation

min
A,b

1

2

N∑
i,j=1

Wij ||Yi − Yj ||2 + λ
M∑

m=1

||Vm||2

s.t.
N∑

i=1

Yi = 0

1

N

N∑
i=1

YiYi
� = I

Yi ∈ {−1, 1}M

Ymi = hm(Xi) = sign(V �
m

ϕ(Xi) − bm)

Vm =

P∑
p=1

Apmϕ(Zp), i = 1, · · · , N, m = 1, · · · , M

(2)

Here Ymi is the element in ith column and mth row in bit
matrix Y , and hence is the mth bit for Yi. There are M hash
functions {hm, m = 1, ...M} in total, each of which is for one
hash bit. Each hash function hm(Xi) = sign(V �

m
ϕ(Xi)−bm)

is represented in the kernel form, as in most kernel learning
methods [20], where Vm is the hyperplane vector in the ker-
nel space, ϕ is the function for embedding samples to the
kernel space and usually is not computable,and bm is the
threshold scalar. Since it is infeasible to define the hyper-
plane vector Vm directly in the kernel space, we use an ap-
proach similar to that in Kernelized LSH [13] to represent Vm

as a linear combination of landmarks in the kernel space with
combination weights denoted as Apm. {Zp, p = 1, ..., P} are
landmark samples, which for example can be a subset ran-
domly chosen from the original N samples. Moreover, if the
data are in vector form, the landmarks can also be some
”basis” vectors generated by projections like PCA, or some
cluster centers. Note that the weight matrix A is a P × M
matrix. b is M×1 vector, where bm is mth element in b. The

term
M∑

m=1

||Vm||2 is utilized to a regularized term to control

the smoothness of the kernel function.
In the following, we will derive the analytical solutions of

the above optimization problem and analyze the complex-
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ity of the method. Specifically, we will show the optimal
kernel hash functions can be found elegantly by solving an
eigenvector problem.

2.2.2 Derivation
Proposition 1: With the same relaxation as in

spectral hashing by ignoring the constraint of Yi ∈
{−1, 1}M , the above optimization problem is equiva-
lent to the following:

min
A

tr(A� (C + CT )

2
A)

s.t. A�GA = I (3)

with

b = A�k̄.

where

C = KP×N (D − W )K�
P×N + λKP×P (4)

and

G =
1

N

N∑
i=1

KP×NK�
P×N − k̄k̄� (5)

Here KP×N is the kernel matrix between P lamdmarks and
N samples. More specifically the element of ith row and jth
column for KP×N is defined as

(KP×N )p,i = K(Zp, Xi), p = 1, · · · , P, i = 1, · · · , N.
(6)

Ki is the ith column of KP×N , and

k̄ = (
N∑

i=1

Ki)/N. (7)

KP×P is the kernel matrix among P landmarks. More specif-
ically the element of ith row and jth column for KP×P is
defined as

(KP×P )i,j = K(Zi, Zj), i = 1, · · · , P, j = 1, · · · , P (8)

and D is a diagonal matrix with Dii = (
N∑

j=1

Wij+
N∑

j=1

Wji)/2,

(i = 1, · · · , N).
Proof of Proposition 1:

The kernel hashing function Ymi = hm(Xi) = sign(V �
m

ϕ(Xi)−
bm) can be reformulated as

Ymi = hm(Xi) = sign(V �
m

ϕ(Xi) − bm)

= sign(A�
mKi − bm) (9)

where Am is mth column of A or equivalently,

Yi = sign(A�Ki − b) (10)

and b = [b1, ..., bM ]T .
With the same relaxation as in spectral hashing by ignor-

ing the constraint of Yi ∈ {−1, 1}M , we will have

Yi = A�Ki − b

Hence, from the constraint of
N∑

i=1

Yi = 0 , we can get

N∑
i=1

(A�Ki − b) = 0 ⇒ b = A�k̄ (11)

Moreover, since

N∑
i=1

YiY
�

i =
N∑

i=1

(A�Ki − b)(A�Ki − b)
�

= A�(KP×NK�
P×N

−
N∑

i=1

Kik̄
� (12)

−
N∑

i=1

k̄K�
i +

N∑
i=1

k̄k̄�)A

= A�(KP×NK�
P×N

− Nk̄k̄�)A

from the constraint of 1
N

N∑
i=1

YiYi
� = I, we can get

A� 1

N
(KP×NK�

P×N
− Nk̄k̄�)A = I

And because

1

2

N∑
i,j=1

Wij ||Yi − Yj ||2 + λ

M∑
m=1

||Vm||2

= tr
(
A�KP×N (D − W )K�

P×NA
)

+ λtr
(
A�KP×P A

)

= tr
(
A�(KP×N (D − W )K�

P×N + λKP×P )A
)

(13)

So the optimization problem in (2) becomes:

min
A

tr(A�CA)

s.t. A�GA = I (14)

where

C = KP×N (D − W )K�
P×N + λKP×P

G =
1

N

N∑
i=1

KP×NK�
P×N − k̄k̄�

Moreover, note that

tr(A�CA) = tr((A�CA)T ) = tr(A�CT A)

so

tr(A�CA) = tr(A� (C + CT )

2
A)

which completes the proof of Proposition 1.
Note here C and G are both P × P matrix.

2.2.3 Implementation
The above optimization problem in (3) can be further

rewritten into an eigen vector problem for simpler imple-
mentation.

More specifically, suppose the SVD decomposition of G is

G = T0Λ0T0
� (15)

and denote Ã as

A = TΛ− 1
2 Ã (16)

where Λ is a diagonal matrix consisting of M largest ele-
ments of Λ0, while T is the corresponding columns of T0.
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The problem in (3) equals to

min
Ã

tr

(
Ã�Λ− 1

2 T� (C + CT )

2
TΛ− 1

2 Ã

)

s.t. Ã�Ã = I (17)

The solution Ã is a M × M matrix, which is the M eigen
vectors for matrix

C̃ = Λ− 1
2 T� (C + CT )

2
TΛ− 1

2 . (18)

Given Ã, A can be obtained from equation (16). For a
novel sample x, its mth bit code ym can be computed as

ym = hm(x) = sign(A�
mkx − bm) (19)

where

kx = [K(x, Z1), ..., K(x, ZP )]� (20)

namely, the kernel values between x and the landmark points.
Equally, y = sign(A�kx − b).

A complete workflow of our algorithm can be found in
Table 2 and 3. As shown in the above, kernel based hash
functions {hm, m = 1, ..., M} can be optimized by solving an
eigen vector problem on a matrix with a size around M×M .
(Recall (19), (18) and (16) ). After {hm, m = 1, ..., M} are
learned via optimization, they can directly hash new samples
of any data format using properly defined kernel function,
as shown in (19) and (20).

2.2.4 Discussion and extension
W in our algorithm does not need to be fixed as Wij =

exp(−||Xi−Xj ||2/σ2) like in spectral hashing. Furthermore,
the common requirements for similarity matrix, like positive
semi-definite, or no negative elements, are unnecessary here
either. Finally, from equation (18) and (4), it is easy to see
even nonsymmetric W is applicable. Actually, any real W
with reasonable physical meaning of some kinds of similarity
can be applied in our method. So, besides the usual feature
similarities, other kinds of similarities, e.g., those based on
class label consistency, can also be used. Hence, our method
can conveniently support unsupervised, supervised, or semi-
supervised hashing.

Besides the formulation in equation (2), other variation
or extension is possible. For instance, suppose no similarity
score Wij is directly provided, and only some ranking tuples
are available, i.e., we know sample j is ranked as more simi-
lar to i than k is. In this case ranking information instead of
similarity scores are supposed to be preserved via ”relative
comparison”, i,e., if a pair of sample (i, j) is ranked as more
similar than pair (i, k), then the distance of hash codes be-
tween j and i are supposed to be smaller than that between
k and i.

The cost function in equation (2) would be changed to

∑
(i,j)>(i,k)

(||Yi − Yj ||2 − ||Yi − Yk||2) + λ
M∑

m=1

||Vm||2 (21)

where (i, j) > (i, k) means j is ranked as more similar to i
than k is, and

∑
(i,j)>(i,k)

means to sum over all ranked tu-

ples. In this case, the definition of C in equation (4) would

become:

C = λKP×P +
∑

(i,j)>(i,k)

XjX
T
j + XkXT

k − 2(Xj + Xk)XT
i

(22)
Note here sample i does not necessarily come from training
sets. For example, in the scenario of relevance feedback,
sample i can be novel queries, and sample j and k could be
some retrieved samples for the query.

3. SCALABILITY
In the above method, the bottleneck of computation is W

and KP×N (D−W )K�
P×N . Since W is N ×N matrix, when

we have large scale data set, what may consist of millions
of samples, W and KP×N (D − W )K�

P×N would be every
expensive to compute, with a time complexity of N2 and
PN2 respectively.

3.1 Sparse Representation of W

One way to overcome the computation complexity is to
use a sparse W .

Sometimes a sparse W can be obtained with supervised
information. For example, in the task of near-duplicate text
(or image) detection, for every sample in the training set, we
only need to consider the similarity between one sample and
its near-duplicates, and hence W is very sparse. Another
example is multi-class classification task, such as news topic
categorization or image object categorization, only samples
in the same class would be considered to compute similarity.

More generally, one can always obtain sparse W by sam-
pling a small subset of training samples to compute similar-
ity matrix.

If W is sparse, even when N is very large, we can still
compute KP×N (D − W )K�

P×N directly.

3.2 Low Rank Representation of W

Another approach to overcome the computation complex-
ity is to apply a low rank representation/approximation for

W to handle huge data set. First, assume W (or W+W T

2
if

W is not symmetric) can be computed or approximated as

W = RQR�

where R is a N × L matrix and Q is L × L matrix. Usually
L << N . In our experiments, L is set to be O(P ).

This low rank approximation is often possible. For in-
stance, if the data are vectors, W can be defined as inner
products W = XX�, and hence R = X and Q = I. More
generally, when other similarities such as some kinds of fea-
ture similarities or kernel similarities is used, often Nyström
algorithm [21] can be applied to get a low rank approxi-
mation for W , such that R = WN×L and Q = W−1

L×L. (if
WL×L is not invertible, use the pseudo inverse). Here WN×L

is the similarity matrix between N samples and L selected
samples in Nyström algorithm, and WL×L is the similarity
matrix among L selected samples.

Using the aforementioned approximation W = RQR�,

KP×NWK�
P×N = (KP×NR)Q(KP×NR)� (23)

KP×NDK�
P×N =

N∑
j=1

djKjK
�
j (24)
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where d = W1 = RQ(R�1). Therefore, C can be computed
as

C = (
N∑

j=1

djKjK
�
j ) − (KP×NR)Q(KP×NR)� + λKP×P .

(25)
which involves small matrix sizes only.

3.3 Time Complexity Analysis
The detailed description and time complexity analysis for

our algorithm are provided in Table 2 and 3. To maintain
a sublinear time online searches, P are usually chosen as a
number much smaller than N . Note that TK is the time
complexity to compute the kernel between two samples and
NS is the number of non-zero elements in sparse W .

If W is sparse, we can compute C from (4), and the time
complexity is O(PNS); otherwise if W is not sparse, we can
compute C from (25) with a complexity of O(P 2N +PLN).
If W is sparse, NS << N2, and usually we can assume
NS = O(NP ). Moreover, L are often chosen as a number
close to P . So in both cases, the complexity to compute C
is O(P 2N), which is much faster than O(PN2), the original
complexity if without any speedup. Note that in step 2 of
Table 2, we also eed to compute W . However, the time
complexity of obtaining a sparse W or computing R and Q
is negligible compared to the complexity of step 1 and 2 in
Table 2.

As shown in Table 2 and 3, the complexity to obtain the
optimized kernel hash functions and compute hash codes for
training samples is O(PNTK +P 2N +NMP ) and the com-
plexity to compute hash codes for one novel query sample
is O(PTK + PM). Our complexity is actually the same as
that of kernelized locality sensitive hashing. In practice, to
index a data set consisting of around 1 million samples, spec-
tral hashing, kernelized locality sensitive hashing, and our
algorithm cost about the same amount of time, i.e., several
hours.

The space complexity of our method is O(NP ), no matter
we use a sparse W or a low rank approximation for W .

4. EXPERIMENTS

4.1 Discussion on experiment setup
As shown in equation (2), our algorithm needs to select

a set of landmark samples. These landmark samples, for
example, can be a subset randomly chosen from the original
training data, some ”basis” vectors generated by projections
like PCA, or some cluster centers.

Our algorithm only involves one parameter: λ as in (2).
Though in some preliminary experiments, we found the per-
formance can indeed be improved by carefully selecting the
parameter λ. However tuning the parameter needs extra
time. To reduce the learning time especially on the large
scale data set, in the following experiments, we set λ = 0.
As shown in the experiment results, such simplified method
performs well, for example, better than other state-of-the-
art methods.

We compare our algorithm with several state-of-the-art
methods including locality sensitive hashing (LSH), spec-
tral hashing (SH), and kernelized locality sensitive hashing
(KLSH). All algorithms are compared using the same num-
ber of hash bits. For the latter two, We used the codes
provided by the original authors, which can be downloaded

from Internet. For LSH, We use our own implementation
according to [5], which is reported as one of the best varia-
tion for LSH. For a fair comparison, we always use the same
number of landmark samples and the same kernel for our
method and KLSH.

To evaluate the above approximate methods, we need to
obtain groundtruth of true nearest neighbors for each query
sample. One way to define groundtruth near neighbors is to
choose the top samples that has highest feature similarities
to the query. Another way is to use side information other
than features. For example, in the task of near-duplicate
detection, near-duplicate groundtruth are known and can
be used as groundtruth for nearest neighbors.

4.2 Near-duplicate detection on Photo Tourism
image patch data set - 100K samples

The first data set we use is Photo Tourism image patch
set[25]. In our experiment, we use 100K patches, which are
extracted from a collection of Notre Dame pictures. 10K
patches are randomly chosen as queries, the rest 90K are
used as training set to learn the optimized kernel hashing
function. For each patch, 512 dimension gist features [18]
are extracted. The task on this data set is to identify the
neighbors, i.e., near-duplicate patches, in the training set for
each query patch. The groundtruth neighbors are defined
based on the 3D information. More specifically, for each
patch in the data set, there is a label provided to describe
its 3D position. Patches with the same label are defined
as groundtruth neighbors, which are near duplicate image
patches of the same place of Notre Dame, with variations in
lighting, camera viewpoints, and etc.

In some papers, performance is measured in terms of re-
call rate for the results with a hamming distance from the
query smaller than a threshold. However, this kind of eval-
uation may be biased sometimes. In an extreme case, if one
hashing algorithm maps all data into the same code, then
all training samples would have a 0 hamming distance to
any query, and hence have a recall of 1 all the time. This
hashing algorithm would be ”misstated” as the best, but in-
deed it is one of the worst cases. In our experiments, we
report recall rate, i.e., percentage of groundtruth neighbors
found, together with the number of retrieved samples within
a hamming distance from the query smaller than a thresh-
old. This evaluation metric contains information related to
represent both search quality (recall rate) and search time
(number of retrieved examples). Moreover, the precision-
recall curve is also reported . The experiment results of our
algorithm compared to locality sensitive hashing, spectral
hashing, and kernelized locality sensitive hashing are shown
in Figure 1. As we can see, with a similar number of re-
trieved samples, our algorithm achieved significantly higher
recall than all the other three methods. With the same re-
call rate, the precision of our method is often several times
higher than that of SH, hundreds of times higher than LSH
and KLSH.

It is a little surprising that our method can create signif-
icantly more efficient codes than spectral hashing in such
vector data, considering both solutions are designed with
similar objectives, e.g., balanced efficient codes. One possi-
ble reason is that spectral hashing assumes a uniform dis-
tribution for the data points, which may not be true in this
data set. Moreover, another limitation of spectral hashing
is that its similarity matrix W has to be fixed as Wij =
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Figure 1: Near-duplicate search results on Photo Tourism data set for several hashing algorithms with 8 bits,
16 bits and 32 bits hash code. lsh: locality sensitive hashing; klsh: kernelized locality sensitive hashing; sh:
spectral hashing; In (a), (b) and (c), the horizontal axis is the number of retrieved samples on average. The
vertical axis is the recall rate, i.e. the portion of groundtruth neighbors covered by the retrieved samples. In
the first implementation of our algorithm, denoted as ”ours 1”, 500 landmark samples are generated by PCA
projections, while in the second implementation of our algorithm, denoted as ”ours 2” and also KLSH, 500
landmark samples are randomly chosen from original training set. Linear kernel (inner product) is used in
our algorithm and KLSH. For the convenience of readers, the corresponding precision-recall curves for (a),
(b) and (c) are shown in (d), (e) and (f) respectively. For most cases, with the same recall, our precision is
hundreds of times higher than LSH or KLSH, and several times higher than SH. Graphs are best viewed in
color.
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exp(−||Xi − Xj ||2/σ2), which may not be suitable for the
task here either. On the contrary, the similarity matrix W
used in our algorithm here is defined as the label consistency
directly, i.e., Wij = 1, if the ith patch and jth patch in
the training set have the same label, namely near-duplicate
pairs; otherwise Wij = 0. This demonstrates a unique
strength of our algorithm, unlike most existing hashing al-
gorithms that can only preserve some kinds of feature sim-
ilarity, our algorithm can preserve various type similarities
other than feature similarity, or more specifically any kinds
of similarities represented by a real matrix W . This prop-
erty is one of the keys to the superior performance achieved
by our algorithm. This is confirmed by the results shown in
Figure 2, in which label similarity and feature similarity are
directly compared.

Sensitivity to landmark points
Since our algorithm needs some landmark points, which
might be randomly chosen. So a reasonable concern is that
how sensitive the performance are affected by the landmark
points. Two strategies of choosing landmark samples are ac-
tually shown in Figure 1: random selection and determinis-
tic generation via PCA. As we can see, these two strategies
provide almost the same result, which demonstrates that
our algorithm is quite robust to landmark samples. Actu-
ally, from our preliminary observation which is not reported
here, changing the number of landmark points within a wide
range, for example from 200 to 1000, only affects the per-
formance slightly.

4.3 KNN Classification on biological data with
graph kernel - 4K samples

NCI1[27] is a biological data set with 4K samples. Each
sample in this data set is a compound represented via a
graph, with a label to show whether or not the compound is
active in an anti-cancer screen (http://pubchem.ncbi.nlm.
nih.gov). Though the data set is not large, however, the ker-
nel similarities between samples are very expensive to com-
pute. For example, even some state-of-the-art graph kernels
methods have to take several seconds or minutes to compute
the kernel similarity between a single pair[26]. So approxi-
mate nearest neighbor search via hashing on this median-size
data set is still an important problem. More details on the
data and the graph kernel can be found in [26].

Due to the non-vector data type, LSH and spectral hash-
ing can not be applied to this graph data. So we can only
compare our algorithms with the KLSH method. The ex-
periments are repeated 5 times. In each time, 90% of the
data are chosen as the training set, the other 10% are used
as test queries, and KLSH and our algorithm use the same
number of randomly chosen landmark points. For each test
query sample, we find its top k nearest neighbors based on
Hamming distance to the query bits. The label of the query
sample is predicted by the majority of labels from top k-
nearest neighbors. In table 4, the average accuracy over
5 runs is shown. We can see that our method is clearly
better than the KLSH method, especially when k is small
(10% − 20% performance gain).

4.4 Retrieval on Caltech101 image set with
spatial pyramid matching kernel - 10K
samples

Caltech101 is an image data set of about 10K samples [23].
In our experiment, local SIFT features [19] are extracted for

each image, and Bag of visual words with geometry location
are used. In other words, each image is represented by a
set of visual words with geometry locations. Spatial pyra-
mid matching (SPM) kernel [24] is used to compute the set
similarity between two images. Since this data set consists
of non-vector data, only KLSH and our algorithm are ap-
plicable. 90% of the data are selected as training samples
while the other 10% are used as queries. The groundtruth
neighbors for each query is defined as top 300 neighbors in
the training set found via linear scan with spatial pyramid
matching kernel similarity. KLSH and our algorithm use the
same parameters like the number of landmark samples and
so on. The similarity matrix for our method is defined as
label consistency, i.e., Wij = 1, if the ith sample and jth
sample have the same object class label; otherwise Wij = 0.
The precision-recall curves for our algorithm and KLSH are
shown in Figure 3, confirming the superiority of our method.

4.5 Retrieval on web images data set - 1M
samples

We have downloaded around 1M web images from flickr
web site 1. For each image, 512 dimension gist features[18]
are extracted. The groundtruth neighbors for each query
here is defined as top 1% samples in the training set found
via linear scan of inner product. In this case, a factoriza-
tion for W = XXT can be used and the tricks described in
section 3 can be applied to handle a huge data set of this
scale (1 million). Specifically, R = X and Q = I in our
experiments.

For our method and KLSH, RBF kernel with the same
parameter is used, and moreover, the number of landmark
points are set close to the number of feature dimensions,
such that KLSH, SH and our algorithm would have almost
the same amount indexing time, i.e., several hours by using
a regular workstation. The results are shown in Figure 4.
Our algorithm provides better results compared to other two
methods.

We have also tried other kernels like linear kernel for
KLSH and our method. With linear kernel, our method
performs comparably or slightly better than KLSH and SH.
This result is not shown due to space limit.

5. CONCLUSION
In this paper, we have proposed a novel and effective hash-

ing algorithm that can create compact hash codes for general
types of data with any kernel, and can be easily scaled to
huge data set consisting of millions of samples.

Future works include study of how other large matrix ap-
proximation methods can be incorporated with hash func-
tion learning and how they will affect the performance of
the integrated approach. In addition, we will study how to
select suitable kernels and how to fuse multiple kernels for
specific tasks.
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Figure 2: Near-duplicate search using our algorithm with feature similarity and label consistency similarity
on Photo Tourism data set. Label consistency similarity helps improve the performance of our algorithm.
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Table 4: Accuray of KNN classification with nearest neighbors obtained by our method and KLSH on NCI
biological data set

indexing method k=3 k=6 k=9 k=12 k=15 k=18 k=21 k=24 k=27 k=30
ours with 16 bits 0.6307 0.6355 0.6506 0.6633 0.6633 0.6628 0.6667 0.6613 0.6628 0.6667
klsh with 16 bits 0.5800 0.5294 0.5796 0.5800 0.6496 0.5698 0.6068 0.5820 0.6131 0.6146
ours with 32 bits 0.7221 0.7134 0.7139 0.7022 0.7158 0.7129 0.7207 0.7148 0.7144 0.7085
klsh with 32 bits 0.5917 0.5518 0.5990 0.6019 0.6350 0.6234 0.6219 0.6253 0.6282 0.6277
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