
A Survey of Software Development with Open Source
Components in Chinese Software Industry

Weibing Chen1, Jingyue Li2, Jianqiang Ma1, Reidar Conradi2, Junzhong Ji1, and
Chunnian Liu1

1 Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology,
College of Computer Science and Technology,

Beijing University of Technology (BJUT), Beijing 100022, China
{weibingchen, jianqiang.ma}@gmail.com

2 Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway
{jingyue, conradi}@idi.ntnu.no

Abstract. Chinese software companies are increasingly using Open Source
Software (OSS) components in system development. Integrating such
components into new software systems leads to challenges related to
component selection, component integration and testing, licensing compliance,
and system maintenance. Although these issues have been investigated
industrially in other countries, few state-of-the-practice studies have so far been
performed in China and with a representative subset of software companies. It
is therefore difficult for Chinese software companies to be aware of special
issues, or to plan improvement of OSS-related processes. This paper describes a
questionnaire-based survey in Chinese software companies of software
development with existing OSS components. Data from 47 finished
development projects in 43 companies have been collected. The results show
that use of web search engines was the most common method to locate OSS
components. Local expertise combined with requirements compliance was the
most decisive factors when choosing an identified component. To avoid legal
exposure, the common strategy was to use components without licensing
constraints. About 84% of the components needed bug fixing or other code
changes, rarely relies on support from the OSS community. However, close
participation with the OSS community was rare, although most developers
meant that this was important.

1 Introduction

Building new software systems by pre-fabricated components is an attractive way to
achieve lower cost, shorter time-to-market, higher quality, adherence to industrial
standards etc. [11]. It has recently become more and more popular to reuse Open
Source Software (OSS) components in system development [2, 5, 16, 18]. Such
components offer many advantages, such as free and changeable code. Indeed, many
OSS components are recognized for their high reliability, performance, and

2 W. Chen et al.

robustness [17]. On the other hand, reusing OSS component (and “external”
component in general) raises challenges in selecting the right component and to
successfully integrate and test the selected component [12]. In addition, it is important
to select and integrate OSS component with proper license, if the developed system is
going to be distributed or sold to the general market [2, 17].

Many previous studies of OSS-based development are based on theoretical
proposals (especially around component selection) [2, 6] and industrial case studies
[5, 14, 16]. One major survey has been performed to investigate the state-of-the-
practice of OSS-based development in three European countries [11]. Although China
has become a major actor to employ OSS software in industry, especially regarding
software platforms like Linux, little research has been performed on the challenges of
efficient reuse of OSS components in Chinese software industry.

Our questionnaire-based survey focuses on three main issues in reusing OSS
components for software development in Chinese software industry, namely
component selection, licensing terms, and system maintenance. We have used
membership lists from a national Chinese software organization (CSO for short)1 to
achieve an almost representative subset of software companies. We have gathered
information from 47 finished projects in 43 companies. The results show that use of
web search engines was the most common method to locate OSS components. Local
expertise combined with requirements compliance was the most decisive factors in
deciding upon an identified component. To avoid legal exposure, the common
strategy was to use components without licensing constraints or to package
proprietary code separately. About 84% of the components needed bug fixing or other
code changes, rarely relies on support from the OSS community. In addition, close
participation with the OSS community in so-called OSS projects was rare on most
issues, although most developers meant that this was important.

The rest of this paper is organized as follows: Section 2 describes the background.
Section 3 discusses the research approach. Section 4 presents results and discussion of
research questions, Section 5 contains a general discussion, and a conclusion and
ideas for future work are presented in section 6.

2 Background

2.1 Concepts used in this study

In this study, we define a software component as in [10]:“Software components are
executable units of independent production, acquisition, and deployment that can be
composed into a functioning system.” An OSS component is defined as a software
component that:
• Is provided by the OSS community
• Is subject to licensing constraints

1 The name of this organization was omitted for confidential reasons.

A Survey of OSS-based Development in Chinese Software Industry 3

• Is not a platform software (e.g., OS like Linux, DBMS, or similar software).

2.2 State-of-the-art

There have been two main kinds of empirical studies of OSS:
• Cultural-oriented studies concentrate on how to make new OSS software’s and

components, the OSS project itself and its organization as an OSS community, the
participators’ motivation, and the evolution of the OSS project [22, 24].

• Technical-oriented studies like this one, concentrates on process issues in reusing
existing OSS components to develop new software [13, 17].

The aim of this study is therefore to establish some empirical-based guidelines to

make OSS-based development to run more smoothly. Typically, such a development
process includes several stages, such as OSS component selection, component
integration, and system maintenance.

2.2.1 OSS component selection
Selecting a right component is one key factor for the success of OSS-based
development. Typically, the component selection process includes locating candidate
components, evaluating components based on pre-defined criteria, and deciding upon
components [12, 15]. Most previous studies on component selection focus on
selecting COTS (commercial-off-the-shelf) components [1, 15]. Due to the peculiar
nature of OSS components, the process and criteria to select OSS components are
quite different with those used to select COTS components [6]. The proposed COTS
component selection process may not fit OSS selection very well [6].

2.2.2 OSS component integration and OSS licensing issues
After OSS components are selected, the next step is to integrate them into the target
system. To ensure the success of integrating the OSS components, the integrators
need to consider not only technical issues, such as API and programming language,
but also the licensing terms of the selected OSS components. There are more than 50
different OSS licenses [9]. Some licenses have strict constraints on the distribution or
resale of the derived system from OSS components. For example, the GPL (GNU
Public License)-type licenses do not give the licensee unlimited redistribution rights.
The right to redistribute is granted only if the distribution is licensed under the terms
of the GPL and includes, or unconditionally offers to include at the moment of
distribution, the source code [12, 17].

2.2.3 System maintenance
After OSS components are integrated into a software system, it is important to
maintain and update those components properly for a long term use. Most technical
supports from OSS communities are in the form of mailing lists and bulletin boards
[12]. Since these supports are provided mainly by loosely organized volunteers, it is
difficult to control the support quality. To get high quality and long-term support, one
proposed strategy is to establish a long-term working relationship with the OSS

http://en.wikipedia.org/wiki/Source_code

4 W. Chen et al.

community [16]. That is, the OSS component users not only download software from
the community, but also upload the modified software to the OSS community [13,
16]. Such a relationship between users and the OSS community is supposed to benefit
both practitioners [2].

2.3 State-of-the-practice of OSS-based development in China

China is one of the major countries using OSS in information systems. The Chinese
government has played an important role in the process of promoting the Chinese
OSS movement. For example, The Japan-China-Korea (JCK) open alliance which
announced in November 2003 is an initiative to promote OSS by cooperation [8]. Due
to the Chinese government’s encouragement on the use of Linux and OSS, more and
more Chinese software companies start to use OSS components to develop software.
No other country comes even close to the level of advancement that China has
achieved in deploying OSS, particularly Linux [8]. The current scale of OSS-based
development is large enough to be noticed at the global level. However, there are few
empirical studies on OSS-based development in Chinese software industry.

3 Research approach

3.1 Research questions

This study is to investigate the state-of-the-practice of OSS-based development in
Chinese software industry. We designed three research questions RQ1 to RQ3 and
corresponding sub-questions.

The number of OSS components has increased dramatically these years. More than
137,000 OSS projects have been registered at sourceforge.net. Facing so many OSS
components, it is difficult to select the best one to be integrated into a new system.
Although researchers have proposed several structured, formal, semi-formal selection
processes, and various evaluation criteria, there are few empirical studies have
observed the actual selection process used by commercial developers [12]. Thus, our
research question RQ1 and corresponding sub-questions RQ1.1 and RQ1.2 are:

RQ1: How the OSS components were selected in practice?
• RQ1.1. what methods were used to locate candidate OSS components?
• RQ1.2. what evaluation criteria were used to evaluate OSS components?

Many studies claimed that the OSS licensing terms affect the using of OSS
components. Although Ruffin [17] discussed major legal aspects of using OSS and
related risks mitigation strategy, few studies have illustrated how the licensing issues
are managed in practice. So the second research question RQ2 and corresponding
sub-questions RQ2.1 to RQ2.4 are:

RQ2: How did OSS license affect the OSS component selection and integration?

A Survey of OSS-based Development in Chinese Software Industry 5

• RQ2.1. How well did developers understand OSS license?
• RQ2.2. Did developers read related OSS licensing terms?
• RQ2.3. Did developers encounter OSS license related troubles?
• RQ2.4. what strategies were used to avoid the possible OSS licensing troubles?

To get long-term technical support of the integrated OSS components, establishing
a long-term relationship by engaging in the related OSS community has been
proposed as a solution [7, 16]. However, this proposal lacks support from industry
practices. Thus, our research question RQ3 is:

RQ3: Did the engagement in the OSS community facilitate the maintenance of
the integrated OSS components?

3.2 Research design

To answer the research questions, we have used a survey to collect data. First, a
preliminary questionnaire with both open-ended and close-ended questions was
designed by reading literature. Second, a pre-study was performed to validate the
quality of questions in the preliminary questionnaire and to get answers of the open-
ended questions. Based on the results of the pre-study, all open-ended questions in the
preliminary questionnaires were redesigned into close-ended questions. In addition,
the problematic questions in the preliminary questionnaire were revised. Then, the
revised questionnaire was used to collect data in a main study.

3.2.1 The preliminary questionnaire
The preliminary questionnaire has 5 sections. Sections 1 and 5 contain questions to
collect background information of projects and the respondents. Sections 2, 3, and 4
include questions to investigate our research questions.

3.2.2 The pre-study to verify and refine the preliminary questionnaire
The pre-study included two steps, i.e., individual interviews followed by a group
discussion.
Step 1 – Individual interviews. We have interviewed 5 project managers from 5
different companies. All interviewees have solid experience with OSS-based
development. Each interview was conducted by two authors of this paper. One was
responsible for conducting the interview, and the other recorded answers and asked
for clarification if needed. The interviews were also taped for later verification.
Step 2 – A group discussion. After the individual interviews, we revised the open-
ended questions in the preliminary questionnaire to close-ended questions and made a
second version of the preliminary questionnaire. We then organized a workshop with
more than 30 industrial experts to verify and comment on the second version of the
questionnaire. Based on comments from the workshop, we revised the questionnaire
into a final version. The final questionnaire includes about 35 questions and takes
about half one hour to be filled out.

6 W. Chen et al.

3.2.3 The main study to collect data
In the main study, the data was collected by the cooperating with the CSO. In total,
we got 47 questionnaires from 43 companies (4 companies filled in 2 questionnaires
each). The sample selection and data collection process are as follows:
1. Assemble the target population. We randomly selected 2,000 companies from a

database of CSO, which included about 6,000 companies.
2. Send invitation letters by email to obtain possible participants. We sent

invitation letters by email to the 2,000 selected companies. The invitation letter
introduces the survey. We specified that survey participants will be rewarded
with either the final report of the survey or an annual membership of the CSO
worth of 500 Chinese Yuan. We got about 200 company responses from this step
and these companies were used as the original contact list.

3. Send questionnaires by email to possible participants. We sent questionnaires
(as word files) by email to the 200 companies and asked them to select one
completed software development project, which used one or more OSS
components, to fill in the questionnaire. Since we cannot get the complete list of
relevant projects in such a company, project selection within the company was
decided by the respondents themselves. Therefore the sample selection process
was a random selection of companies, followed by a convenience sample of
relevant projects within companies.

4. Collect filled-in questionnaires with follow up. From the 200 companies, we
first got 40 questionnaires back. To ensure the quality of the data, we excluded 10
questionnaires answered by programmers whose work experiences were less than
three years. For the remaining 30 questionnaires, we contacted the respondents
again by telephone to clarify possible misunderstanding and to fill in the missing
data. At the same time, we contacted the remaining of 160 companies by
telephone to persuade them to fill in the questionnaire. By doing this, we got 17
other questionnaires back.

4 Results and discussion of research questions

In this section, we first present background information of the interviewees,
participating companies, and projects. We then show the results for each research
question followed by detailed discussion.

4.1 Background information

Human respondents. Most respondents have a solid IT background. Five of them are
IT managers, 13 are project mangers, 14 are software architects and 7 are senior
software developers. Most of them have more than five years of software
development and more than two years working experiences with OSS-based
development.
Participating companies. According to number of employees, the participating
companies include 7 small, 19 medium, 9 large, and 8 super large companies, as

A Survey of OSS-based Development in Chinese Software Industry 7

shown in Fig. 1. Comparing with the official number of employees in Chinese
software companies [23], as shown in Fig.1, it shows that most of the participating
companies are medium and large companies.
Participating projects. Forty-six respondents filled in the actual-used effort of
projects. Thirteen out of 46 projects used efforts less than 10 person-months, 18 used
efforts between 10 and 100 person-months, and the remaining 15 projects used more
than 100 person-months.

The distribution of companies

16.3%

44.2%

20.9% 18.6%
26.0%

6.5%
0.5%

67.0%

0%
10%
20%

30%
40%
50%
60%

70%
80%

small (<=50) medium (51-300) large (301-1000) super (>1000)

The participating companies All Chinese software companies

Fig. 1. The distribution of participating companies

4.2 Investigating RQ1: How OSS components were selected

Results of RQ1.1. To answer RQ1.1, we listed possible activities of locating OSS
components from our pre-study and literature [15] as following:
− a) Have used it (them) before
− b) From colleagues of same company
− c) From friends of other companies
− d) Through reading related magazines (e.g., Programmer magazine)
− e) Through visiting trade shows and exhibitions
− f) Using search engines (e.g., Google, Yahoo)
− g) Visiting OSS project portals (e.g., sourceforge.net, freshmeat.com)

The respondents were asked to answer whether they have performed such activities
to locate OSS components or not. The results are shown in Fig. 2 and reveal that
locating OSS components was mostly based either on search engines (e.g., Google or
the search feature in Sourceforge) or internal experience (e.g., having used the
components before, reading magazines, getting advice from internal colleagues).
External information channel, such as getting advices from friends in other
companies, was rarely used.

Discussion of RQ1.1. Previous studies have discussed the practices of selecting OSS
components. In [12], the authors concluded that most companies use a manual (brute
force) method, e.g., searching with Google or Sourceforge. Our data support that
conclusion. However, our results show that developers used Google more frequent
than Sourceforge. The authors of [12] also proposed that familiarity was the main

8 W. Chen et al.

attribute to be considered when selecting OSS components. Our results support this.
As indicated in [13], companies were willing to listen to experience from other
companies and were also willing to share their own experience with others. However,
our results show that experience sharing between people in different organizations
was not popular. The possible reason is that there is a lack of channels to share
experience of using OSS components between different organizations.

Methods to locate OSS components

83%
70%

32%

77%

26%

96%
81%

17%
30%

68%

23%

68%

2%
17%

0% 0% 0% 0% 6% 2% 2%
0%

20%

40%

60%

80%

100%

a b c d e f g

Yes No Do not know

Fig. 2. Distribution of methods to locate OSS components

Results of RQ1.2. To answer this question, we formulated possible criteria to be
considered when evaluating OSS components from [3, 12] as following:
− Requirements compliance
− Architecture compliance
− Quality of components (security, reliability, usability etc.)
− Functionality
− OSS licensing term
− Price
− Reputation of components or supplier
− Quality of documentation
− Expected support from the OSS community (updating, bug fixing etc.)
− Environment to be used in (platform, hardware etc.)

Respondents were asked to answer “don’t agree at all”, “very low”, “low”,
“medium”, “high”, and “very high”, or “don’t know”. We assigned an ordinal number
from 1 to 5 to the above alternatives (5 meaning very high). The results are shown in
Fig. 3 and illustrate that requirements compliance (i.e., with median value 4) is the
most important criteria to be considered. On the other hand, price and support are
the least important criteria to be considered (i.e., with median value 3). The
importance of other criteria, such as component quality and reputation, architecture
compliance, OSS licensing terms are between.

Discussion of RQ1.2. Our results confirm that one of most important criteria to be
considered when evaluating OSS component is still requirement compliance, rather
than architecture compliance proposed by [12]. The authors of [10] proposed that

A Survey of OSS-based Development in Chinese Software Industry 9

components with more and better comments in the community or marketplace bulletin
had a good chance to be selected, because they were assumed to be better tested with
generally good qualities. Our data can give that conclusion further support. Although
previous studies claimed that technical support was very important to ensure the
success of OSS-based systems [5, 20], our data show that the possible support from
the OSS community was not considered as very important during component
evaluation.

47464747464447474747N =

Environment

Support

Doc. quality

Reputation

Price

Licensing

Com. quality

Functionality

Architecture

Requirements

6

5

4

3

2

1

0

28251539371319

1621

146122273642183

24153842282719

21112016

3623221244171829

Fig. 3. Distribution of assumed importance of the evaluation criteria

4.3 Investigating RQ2: How the licensing terms were complied

Results of RQ2.1-RQ2.3. Questions related to RQ2.1 to RQ2.3 and corresponding
answers are in Table 1. RQ2.1 and RQ2.3 were used the same measurement as RQ1.2.
With respect to RQ2.2, respondents were asked to answer “don’t agree at all”, “hardly
agree”, “agree somewhat”, “mostly agree”, “strongly agree”, or “do not know”. We
assign an ordinal number from 1 to 5 (5 meaning strongly agree) to these alternatives.

Table 1. Results of RQ2.1-RQ2.3

RQs Questions in the questionnaire Results

RQ2.1 What was the extent of your
understanding of OSS license?

The results show that most
respondents did not understand OSS
licenses very well.

RQ2.2 Have you read all licensing terms
of the OSS component that you
are using?

The results show that respondents
have only partly read OSS licensing
terms.

RQ2.3 Have you encountered OSS
license related troubles?

21% of the respondents never
encountered OSS license related
troubles. The remaining respondents
rarely encountered license related
troubles.

10 W. Chen et al.

Since the respondents’ understanding and correct use of OSS licenses may be
affected by their emphasis on licensing issues in the selection phase, we wonder
whether the more the developers considered licensing terms in the selection phase, the
better they understood the licensing terms. To investigate this question, we calculated
the correlations between the respondents’ emphasis of license criteria in the selection
phase and answers of the above three questions with a Spearman rank correlations in
SPSS 11.0. The results are shown in Table 2.

Table 2. Correlation between respondents’ emphasis of OSS licensing term in the selection
phases and the results of their understanding and using OSS license

 Correlation
coefficient

Respondents’ emphasis on licensing terms in the selection
phase vs. their actual understandings on the licensing terms

.243

Respondents’ emphasis on licensing terms in the selection
phase vs. their effort used to read OSS licensing terms

.243

Respondents’ emphasis on licensing terms in the selection
phase vs. the occurrences of OSS license related trouble

.376*

* Correlation is significant at the p-value < .05 level (2-tailed)

Discussion of RQ2.1-RQ2.3. Results show that there are no significant correlations
between the respondents’ emphasis on licensing terms in selection phase and their
knowledge and effort used to read these licensing terms. Surprisingly, the more
developers emphasized the OSS licensing terms, the more frequently they
encountered license related troubles. The possible explanation is that people did not
understand licensing terms and did not take proper action to avoid possible troubles,
even though they considered licensing terms as an important issue.

Results of RQ2.4. RQ2.4 deal with what actions have been used to avoid possible
license related troubles. From the literature [2, 12, 16, 17], we have summarized
possible strategies as following:
− Use other components without licensing constraints.
− Consult legal experts for help.
− Develop modules containing GPL-based components and with APIs exposing them,

in order to avoid GPL restrictions.
− Package the proprietary code separately to avoid GPL restriction.
− Contact the OSS license’s “owner” and agree on a certain license to avoid the

licensing impacts.
− Place all the “derived programs” which relate to licensing issues, back to the OSS

community.

We use the same measures as RQ2.2. The result shows that using other OSS
components without license constraints was the most popularly used strategy. On the
other hand, putting all “derived programs” back to OSS community was the least used
strategy. The frequency of using the other strategies, such as packaging open source
code with proprietary code separately and contact OSS license’s “owner”, was
between.

A Survey of OSS-based Development in Chinese Software Industry 11

Discussion of RQ2.4. From the OSS component users’ perspective, the main concern
on OSS licensing term is whether the system reusing OSS components is defined as a
“derived programs” [2]. If so, according to many OSS licenses, the “derived work”
should be published. The source code of project is a private property for business
companies which hide the intellectual property (IP) from their competitors and make
profits on IP investment [12]. When using OSS components, our results show that
business companies would rather use components without strong licensing constraints
to avoid making their code public.

4.4 Investigating RQ3: How the maintenance was performed

Results of RQ3. This research question investigates how to maintain OSS-based
systems smoothly. We first investigated whether developers needed to fix bugs and to
change the source code. If the answer was ‘Yes’, the follow up questions were what
they did. Results show that 44.7% of respondents needed bug fixing and 39.3% of the
developers needed to change code. When they did the fixing or changing, our results
show (see Table 3) that more respondents prefer to do it themselves rather than to ask
for help from the OSS community. However, respondents needed more effort (40
person-hours) on average to correct errors by themselves than by the OSS community
(11 person-hours). On the other hand, respondents need less effort on average to
change the code themselves (35.2 person-hours) than by the OSS community (60
person-hours).

Table 3. Results of fixing bugs and changing code

By respondents themselves By the OSS community
Percentage Average effort

(person-hours)
Percentage Average effort

(person-hours)
fixing bugs 40.4% 40 12.7% 11
changing code 21.3% 35.2 4.3% 60

To answer RQ3, we also investigated the relationship between project developers

and the OSS community. We asked respondents whether there were developers (i.e.,
those in their projects) that have taken part in the OSS community. Only 4
respondents said ‘Yes’. For the respondents with “No” answers, they were asked to
select one from the following three reasons with the same measures as in RQ2.2.
− There was no need to take part in the community
− Do not have enough resources (such as time, human resources, etc.)
− It was difficult to take part due to the hierarchy of the OSS community.

Results illustrate that developers thought it was needed to take part in the OSS
community. Due to resource limitation, such as time and cost, most of them did not
join in the OSS community. However, joining in the OSS projects was not regarded
as a difficult.

Discussion of RQ3. Although taking part in a corresponding community and

12 W. Chen et al.

contributing to the OSS projects and getting contributions published may not be
straightforward, it proved to be helpful [13]. Our results show that most developers
thought that taking part in OSS community was needed. However, there was a lack of
resource to do that. Fortunately, there are many other ways to work with the OSS
community. Perhaps the simplest way is to provide feedback and to report bugs to
OSS projects [7, 13]. In addition, new features and possible implementation of the
features can be proposed to OSS projects [13, 20].

5 Final discussion

5.1 General discussion

This study summarized the practices of three key issues of OSS-based development in
Chinese software industry, namely selecting OSS components, complying OSS
licensing terms, and maintaining OSS components. Based on our results, we give
three suggestions on facilitating the OSS-based development.

Improve the OSS search engine to facilitate experience sharing
Although several methods can be used to locate OSS components, our findings in
RQ1 show that two methods had been used most popularly, i.e., web search engines
(e.g., Google) and OSS project portals (e.g., Sourceforge.net). The same findings have
been reported in [12]. The advantage of using web search engines is that they are
simple and fast. However, the disadvantage is that the search results are imprecise and
possible huge. The advantage of using OSS project portals is that the OSS projects are
centralized and classified. On the other hand, one OSS project portal can not include
all OSS projects. People have to search in several portals to get all possible
component candidates. The new ‘Google Code Search’ helps to solve the above
shortcomings by combing portals of the open-source domain.

When selecting and evaluating the OSS components, experience of previous use of
OSS components is valuable. Our results of RQ1 show that, however, experience
sharing was limited to internal colleagues. To facilitate experience sharing between
different companies, it would have been better for ‘Google Code Search’ to include
and structure the users’ experience and comments of using components, i.e., creating
an OSS community for relevant components.

Understand and comply with OSS licensing terms properly
Another important issue of reusing OSS component is OSS licensing terms [12]. It is
important for companies to carefully read, understand, and comply with the license of
an OSS component. Our results of RQ2.1 and RQ2.2 show that most developers did
not read and understand OSS licensing terms properly. Although there are many OSS
licenses in use (more than 50 approved by opensource.org) and the licensing terms
varies, five common licenses (i.e., GPL, LGPL, BSD, AL, and MIT) [20, 21], which
are simple to comply with, cover 90% of OSS projects [20]. It is may be wise for OSS
users to learn and understand these most common licenses before they start to select
and integrate OSS components.

A Survey of OSS-based Development in Chinese Software Industry 13

Take a more active part in the OSS community
When considering maintenance of the OSS-based system, project developers may
need to fix bugs of OSS components, to add or revise the components’ functionalities.
Our results of RQ3 show that developers needed more effort on debugging, than what
the OSS community did. A better way might be to report bugs on bulletin boards and
then letting the OSS community fix them. To change the OSS component code, our
results of RQ3 show that asking the community the changes needed more effort than
doing the changes locally. The possible reason is that OSS community needs a long
time to accept suggested changes.

As indicated in previous studies, one of the solutions to the maintenance of OSS-
based system is to take part in OSS community [7, 16]. Some previous data show that
83% of community participants live in the Western countries and 55% of them
contribute to OSS projects during working hours [24]. In contrast, our results from
Chinese software industry show that only 9% of the investigated projects had
dedicated developers take part in the OSS community. Thus, one of the primary tasks
of the Chinese OSS movement is to mingle with the OSS community [19].

5.2 Threats to validity

Construct validity. In this study, most variables and alternatives are taken directly, or
with little modification from existing literature. We did a pre-study to ensure the
quality of questionnaire, and nearly 15% of the questions and alternatives in the final
questionnaire were revised based on the pre-study.
Internal validity. We promised respondents in this study a final report or the annual
membership of the CSO which worth of 500 Chinese Yuan. Most respondents took
part in this survey as volunteers and selected the report as the reward. We therefore
think that the respondents answered the questionnaire truthfully. However, our unit of
study was a finished project. So a possible threat is that the respondents have failing
memory on past projects.
External validity. There were more than 11,550 software companies registered in
China in 2005 [23]. The CSO database contained only less than a half of them.
Although we have put much effort on collecting data, we only got data from 43
companies out of our initial contact list of 2000 companies. For the remaining
companies, we do not know their reasons for not participating. The respondents
answered the questionnaires based on finished projects which were selected based on
convenience by respondents. All the above issues may bring external threats to the
conclusion of this study.

6 Conclusions and future work

More and more software companies are reusing OSS components in their software
development projects, in China and elsewhere. Such companies need empirically-
based guidelines for OSS-based development. The main conclusions of our survey are:

• Selection of OSS components is mainly based on existing web search engines,
followed by local expertise for evaluation, e.g., requirements compliance and

14 W. Chen et al.

assumed component quality. The new Google code search engine
(http://labs.google.com) illustrates the need for improved search support.

• OSS licensing terms are not a barrier to software companies, when reusing
OSS components in system development.

• System maintenance leads in 84% of the development projects to bug fixing or
other code changes in the selected OSS components, and involves the OSS
community on a case-to-case basis. We recommend that the experience and
knowledge around relevant OSS components is handled by an internal
“component uncle”, and by a more active participation with the OSS
community. The latter is also expressed by the developers themselves, but not
followed up - perhaps for cultural and organizational reasons?

• Finally, since China has no comprehensive, national database of software
companies, it is difficult to select a random sample of participants in such
surveys, even if the present one is maybe as good as we can get.

In Europe 2005, over 50% of the software companies report that they are using
OSS components in own software development [4]. We do not know a similar figure
for China, but have a feeling that it is lower. We therefore need further studies of the
extent, challenges, problems and cost/benefits of OSS-based software development in
China and elsewhere. We also need to study in what ways the use of OSS affect the
software projects.

Acknowledgements

This study was a joint research effort between BJUT and NTNU, partially funded by
the Norwegian SEVO project with grant 159916/V30. We thank the CSO for data
sampling and questionnaire collection. We also thank our colleagues and all
participants in the survey.

Reference

1. Briand, L. C.: COTS Evaluation and Selection. Proc. of International Conference on
Software Maintenance, Bethesda, Maryland (1998) 222-223.

2. Brown, A. W., and Booch, G.: Reusing Open-Source Software and Practices: The Impact of
Open-Source on Commercial Vendors. Proc. of the 7th International Conference on
Software Reuse (ICSR-7). Austin, TX, USA, April 15-19, 2002, Springer Verlag LNCS, Vol.
2319, 123-136.

3. Dagdeviren, H., Juric, R., and Kassana, T. A.: An Exploratory Study for Effective COTS and
OSS Product Marketing. Proc. of the 27th International Conference on Information
Technology Interfaces, Cavtat, Croatia (2005) 644-649.

4. Evans Data Corporation, “Open Source/Linux Development Survey”, 2006,
http://www.evansdata.com/survey_linux_topical.shtml.

5. Fitzgerald, B., and Kenny, T.: Developing an Information Systems Infrastructure with Open
Source Software. IEEE Software, January-February (2004), 21(1):50-55.

6. Giacomo, P. D.: COTS and Open Source Components: Are They Really Different on the
Battlefield? Proc. of the 4th International Conference on COTS-Based Software Systems.

http://labs.google.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20dagdeviren%20%20h.%3cIN%3eau)&valnm=+Dagdeviren%2C+H.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20juric%20%20r.%3cIN%3eau)&valnm=++Juric%2C+R.&reqloc%20=others&history=yes

A Survey of OSS-based Development in Chinese Software Industry 15

Bilbao, Spain, February 2005, Springer Verlag, LNCS, Vol. 3412, 301-310.
7. Holck, J., Larsen, M. H., and Pedersen, M. K.: Managerial and Technical Barriers to the

Adoption of Open Source Software. Proc. of the 4th International Conference on COTS-
Based Software Systems. Bilbao, Spain, February, 2005, Springer Verlag, LNCS, Vol. 3412,
289-300.

8. Kshetri, N.: Structural Shifts in the Chinese Software Industry. IEEE Software, July-August
(2005), 22(4):86-93.

9. Open Source Initiative, 2005, available at http://www.opensource.org/index.php.
10. Li, J., Bjørnson, F. O., Conradi, R., and Kampenes, V. B.: An Empirical Study of COTS

Component Selection Processes in Norwegian IT companies. Proc. of the Int'l Workshop on
Models and Processes for the Evaluation of COTS Components (MPEC'04 Arranged in co-
location with ICSE'04), Edinburgh, Scotland. May 2004, 27-30.

11. Li, J., Conradi, R., Slyngstad, O. P. N., et al.: An Empirical Study on Off-the-Shelf
Component Usage in Industrial Projects. Proc. of the 6th Intl. Conf. on Product Focused
Software Process Improvement, Oulu, Finland, Jun. 2005, Springer Verlag, LNCS Vol. 3547,
54-68.

12. Mandanmohan, T. M., and Rahul De’: Open Source Reuse in Commercial Firms. IEEE
Software, November-December (2004), 21(6):62-69.

13. Merilinna, J., and Matinlassi, M.: State of the Art and Practice of Open Source Component
Integration. Proc. of the 32nd EUROMICRO Conference on Software Engineering and
Advanced Applications, Cavtat/Dubrovnik, Croatia (2006) 170-177.

14. Morad, S., and Kuflik, T.: Conventional and Open Source Software Reuse at Orbotech – an
Industrial Experience. Proc. Of the IEEE International Conference on Software – Science,
Technology & Engineering (SwSTE’05), (2005) 110–117.

15. Ncube, C., and Maiden, N.: Selecting COTS Anti-Virus Software for an International Bank:
Some Lessons Learned! Proc. of the 26th International Conference on Software Engineering
MPEC 2004, Edinburgh, Scotland, UK. (2004) 17-21.

16. Norris, J. S.: Mission-Critical Development with Open Source Software. IEEE Software,
January-February (2004), 21(1):42-49.

17. Ruffin, M., and Ebert, C.: Using Open Source Software in Product Development: A Primer.
IEEE Software, January-February (2004), 21(1):82-86.

18. Spinellis, D., and Szyperski, C.: How is Open Source Affecting Software Development?
IEEE Software, January-February (2004), 21(1): 28-33.

19. Wang, G., and Zhang, X.: Chinese Linux Open Source Encounters Close. IT Time Weekly,
Volume 22, (2004) 20-21.

20. Tuma, D.: Open Source Software: Opportunities and Challenges. Journal of Defence
Software Engineering, January (2005) 6-10.

21. Ueda, M.: Licenses of Open Source Software and Their Economic Values. Proc. of the 2005
Symposium on Applications and the Internet Workshops (SAINT-W’05), January (2005)
381-383.

22. Xu, J., Gao, Y., Christley, S., and Madey, G.: A Topological Analysis of the Open Source
Software Development Community. Proc. of the 38th Annual Hawaii International
Conference on System Science. Hawii, Jan. (2005) 198a - 198a.

23. Ministry of Information of the People’s Republic of China & Chinese Software Industry
Association: Annual Report of China Software Industry, (2006):
http://www.soft6.com/news/detail.asp?id=15759.

24. Lakhani, K. and Wolf, R. G.: Why Hackers Do What They Do: Understanding Motivation
and Effort in Free/Open Source Software Projects, In: Feller, J., B. Fitzgerald, S. Hissam, K.
Lakhani (eds.), Perspectives on Free and Open Source Software, MIT Press, Cambridge.
(2005) 3-22.

http://www.soft6.com/news/detail.asp?id=15759

