
Soft Computing Techniques for the
Improvement of Signal Processing Algorithms

Annamária R. Várkonyi-Kóczy1,2
András Rövid1,2
Gábor Samu1,2
1Dept. of Measurement and Information Systems, Budapest University of
Technology and Economics, Budapest, Hungary, koczy@mit.bme.hu
2Integrated Intelligent Systems Japanese-Hungarian Laboratory

Abstract: Authors present an analysis about the consequences of complex measurement and
signal processing tasks. They show that measurement and signal processing problems of
now-a-days open new dimensions for the interpretation of the basic concepts of
measurement and signal processing and make the reevaluation of these concepts necessary.
Traditional methods fail in many cases to yield useful solutions, especially when
measurement and signal processing problems reveal considerable complexity, involve a
wide spectrum of various disciplines and require a multitude of components and methods.
Since traditional methods, without a proper resource management supported at the system
level, seem inappropriate to solve such problems, qualitatively new methods are needed.
The present paper seeks answers to these problems. It gives a brief overview of various
imprecise computational methods and discusses their applicability to treat complex
measurement and signal processing problems.

1. Introduction
Up to now classical problem solving methods proved to be entirely sufficient in
the measurement, signal processing and system engineering. Nowadays, however,
measurement science tackles problems of previously unseen spatial and temporal
complexity (consider e.g. measurement problems of industrial plants, large scale
environmental systems or laboratory tests in health care) and in a large number of
cases traditional information processing methods and equipment failed to handle
these problems. It became clear that new ideas are required for specifying,
designing and implementing sophisticated measurement systems.
Similar problems appeared in numerous other fields of research, and it was natural
to explore and adopt the solutions. In the field of Artificial Intelligence (AI), Soft
Computing (SC) and Imprecise Computation (IC) several methods have been
developed that address the problem of nonnumeric information processing and the
rational control of limited resources. In AI so called 'anytime algorithms' [1,2]

offer considerable control over resources, in SC and IC the trade off between
accuracy and resource usage is possible [3,4].
In measurements the used model serves as a basis to design information
processing methods and to implement them at the equipment level. In case of
complex measurements analytical models leading to a well defined numerical
optimal information processing are not enough. The complexity of the problem
manifests itself not only as a hierarchy of subsystems and relations, but also as the
variety of modeling approaches needed to grasp the essence of the modeled
phenomena. Analytical models rarely suffice. Frequently numerical information is
missing or is uncertain making place for various qualitative or symbolic
representation methods.
This situation can be still complicated by the fact that various modeling
approaches, expressing different aspects of the problem, should be used together
in a well orchestrated integrated way. Even more disturbing is that such traditional
metrological concepts, like accuracy, error, scale, unit, etc. are no more applicable
in their usual approved sense.
As a consequence researchers drew from new methods and fields to tackle the
problem. Artificial Intelligence offered means to handle nonnumeric and vague
information. Imprecise Computation and Soft Computing offered a novel view at
the computational accuracy as a utility rather than an ultimate aim of the
development. In the next section an overview of some kind of such methods is
given.

2. Overview of Non-Classical Computing Techniques

Recently we meet new efforts to combine the ideas of the traditional and the soft
computing methods. Some of the classical concepts and goals have to be analyzed
and reevaluated, and the new methods must be placed into the context of the
accepted classical frame of measurement and signal processing.

2.1. Anytime Systems

Today there is an increasing number of applications where the computing must be
carried out on-line, with a guaranteed response time and limited resources.
Moreover, the available time and resources are not only limited but can also
change during the operation of the system.
Good examples are the modern computer-based signal processing, diagnostics,
monitoring, and control systems, which are able to supervise complex industrial
processes and determine appropriate actions in case of failures or deviation from
the optimal operational mode. In these systems the model of the supervised system
is used and the evaluation of the system model must be carried out on-line, thus
the model must not only be correct, but also treatable by the limited resources

during limited time. Moreover, if some abnormality occurs in the system’s
behavior it may cause the reallocation of a part of the finite resources from the
evaluation of the system model to another task. Also in case of an alarm signal,
lower response time may be needed. Having approximate results can also help in
making decisions for the further processing.
In these cases, the so-called anytime algorithms and systems [5] can be used
advantageously, which are able to provide guaranteed response time and are
flexible in respect to the available input data, time, and computational power.
Recursive or iterative algorithms are popular tools in anytime systems, because
their complexity can be easily and flexibly changed. These algorithms always give
some, possibly not accurate result and more and more accurate results can be
obtained if the calculations are continued. Unfortunately, the usability of iterative
algorithms is limited. Besides the iterative algorithms, in a more general frame, a
wide-range of other types of computing methods/algorithms can be applied in
anytime systems. This frame means that a modular architecture is used [6]. The
system is composed of modules each of them offering several implementations for
a given task. These units (implementations within a given module) have uniform
interface (same set of inputs, outputs, and solve the same problem) but can be
characterized by different attribute-values, i.e. differ in their computational need
and accuracy. At a given time, in the knowledge of the temporal conditions (tasks
to complete, achievable time/resources, needed accuracy, etc.) an expert system
can choose the adequate configuration, i.e. the units from the modules, which will
be used. This means the optimization of the whole system instead of individual
modules.Anytime processing may have great advantages in signal processing,
monitoring, diagnostics, control, and related fields.

2.1.1 Block-Recursive Averagers

In this section the standard algorithms for recursive averaging are extended for
data-blocks as single elements.
To illustrate the key steps first the block-recursive linear averaging will be
introduced. For an input sequence x(n), n=1,2, ..., the recursive linear averaging
can be expressed as

)1(1)1(1)(−+−
−

= nx
n

ny
n

nny (1)

For n ≥ N the “block-oriented” linear averaging has the form of

∑
=

−=−
N

k
knx

N
NnX

1
)(1)((2)

while the block-recursive average can be written as

)()()(NnX
n
NNny

n
Nnny −+−

−
= (3)

If (3) is evaluated only in every Nth step, i.e. it is maximally decimated, then we
can replace (3) with n=mN, m=1,2, ..., by

])1[(1])1[(1)(NmX
m

Nmy
m

mmNy −+−
−

= (4)

or simply

)1(1)1(1)(−+−
−

= mX
m

my
m

mmy (5)

where m stands as block identifier. Note the formal correspondence with (1).
If the block identifier m in equation (5) is replaced by a constant Q > 1 then an
exponential averaging effect is achieved. In many practical applications
exponential averaging provides the best compromise if both the noise reduction
and the signal tracking capabilities are important. This is valid in our case, as well,
however, in this paper only the linear and the sliding averagers are investigated
because they can be used directly to extend the size of certain signal
transformation channels and can be applied in anytime systems.
A similar development can be provided for the sliding-window averagers. The
recursive form of this algorithm is given for a block size of N by

)]1()1([1)1()(−−−−+−= Nnxnx
N

nyny (6)

If in (6) the input samples are replaced by preprocessed data, e.g. as in (2), then a
block-recursive form is also possible:

)]2()([)()(NnXNnXNnyny −−−+−= (7)

which, however, has no practical meaning, since it gives back (2). But if the
window size is integer multiple of N, e.g. MN, then the form

))1(()([1)()(NMnXNnX
M

Nnyny +−−−+−= (8)

has real importance. If (8) is evaluated only in every Nth step, i.e. it is maximally
decimated, then we can replace (8) with n=mN, m=1,2, ..., by

)])1(())1(([1])1[()(NMmXNmX
M

NmymNy −−−−+−= (9)

or simply

)]1()1([1)1()(−−−−+−= MmXmX
M

mymy (10)

where m stands as block identifier. Note the formal correspondence with (6).

The generalization of these averaging schemes to signal transformations and/or
filter-banks is straightforward. Only (2) should be replaced by the corresponding
“block-oriented” operation. Figure 1 shows the block diagram of the linear
averaging scheme. This is valid also for the exponential averaging except m must
be replaced by Q. These frameworks can incorporate a variety of possible

Figure 1: Block-recursive linear averaging signal processing scheme, n=mN

transformations and corresponding filter-banks which permit decimation by the
block-size. Standard references, e.g. [7] provide the necessary theoretical and
practical background. The idea of transform-domain signal processing proved to
be very efficient especially in adaptive filtering (see e.g. [8]). The most important
practical advantage here compared to other methods is the early availability of
rough estimates which can orientate in making decisions concerning further
processing. The multiple-block sliding-window technique can be mentioned as a
very characteristic algorithm of the proposed family. For this the computational
complexity figures are also advantageous since using conventional methods to
evaluate in “block-sliding-window” mode the transform of a block of MN samples
would require M times an (MN)*(MN) transformation, while the block-recursive
solution calculates only for the last input block of N samples, i.e. M times an
(MN)*(N) “transformation”.

As block-oriented preprocessing the DFT is the most widely used transformation
for its fast algorithms (FFTs) and relatively easy interpretation. The above
schemes can be operated for every “channel” of the DFT and after averaging this
will correspond to the channel of a larger scale DFT. If linear averager is applied

Block-
oriented

preprocessing

Decimation

↓N

z -1 -1

m
1input

x(n)
output
y(m)

y(m-1)

this scale equals mN while for sliding averager this figure is MN. The number of
channels obviously remains N unless further parallel DFTs are applied. These
additional DFTs have to locate their channel to the positions not covered by the
existing channels. For the case where M=2, i.e. only one additional parallel DFT is
needed, where this positioning can be solved with the so-called complementary
DFT which is generated using the Nth roots of -1. This DFT locates its channels
into the positions π/N, 3π/N, etc. For M>2 proper frequency transposition
techniques must be applied. If e.g. M=4 then the full DFT will be of size 4N and
four N-point DFTs (working on complex data) are to be used. The first DFT is
responsible for the channels in positions 0, 8π /4N, etc. The second DFT should
cover the 2π /4N, 10π /4N, etc., the third the 4π /4N, 12π /4N, etc, and finally the
fourth the 6π /4N, 14π /4N, etc. positions, respectively. The first DFT does not
need extra frequency transposition. The second and the fourth process complex
input data coming from a complex modulator which multiplies the input samples
by ej 2π n/4N and ej 6π n/4N, respectively. The third DFT should be a
complementary DFT.

It is obvious from the above development that if a full DFT is required the sliding-
window DFT must be preferred otherwise the number of the parallel channels
should grow with m.

The majority of the transform-domain signal processing methods prefers the DFT
to other possible transformations. However, there are certain applications where
other orthogonal transformations can also be utilized possibly with much better
overall performance. A further aspect of practical interest can be the end-to-end
delay of the block-oriented processing. The time-recursive transformation
algorithms described e.g. in [9] and [10] are sliding-window transformations, i.e.
filter-banks providing transform domain representation of the last input data block
in every step. Decimation is not “inherent” as it is the case if the transformation is
considered as a serial to parallel conversion, therefore the processing rate can be
either the input rate, the maximally decimated one, or any other in between. These
techniques are not fast algorithms, however, “produce” less delay as those block-
oriented algorithms which start working only after the arrival of the complete
input data block.

2.2 Anytime Fourier Transformation

The above detailed algorithms can advantageously be applied in anytime systems
(see Fig. 2). If the block-recursive linear averager (L=mN) (in case of sliding-
window averager MN) is composed of m N-point DFTs then after the arrival of
the first N samples we will have a rough approximation of the signal, after 2N
samples a better one, etc. The accuracy of the pre-results will not be exact,
however the error is in most cases tolerable or even negligible.

In the followings a simple example is presented which illustrates the usability of

Figure 2: The block structure of the Anytime Fourier Transformation

In the example a 256-channel DFT is calculated recursively with N=64 for
m=1,2,8,16. The input sequence was

5.0
2

cos)(−+





= randnnx π

 (11)

where rand stands for a random number generated by MATLAB between 0 and 1.
The sinusoid is located exactly to a DFT channel position. The simulation results
for m=1,2,8 and 16 are given on Figure 3. The improvement in resolution and
noise reduction is remarkable.

Figure 3: 256 channel DFT of a single sinusoid plus noise. N=64, exactly at a DFT
channel (x(n)=cos (πn/2) + rand - 0.5).

1 DFT (N)

input
x(n)

output
y(m)

Freq. transp.
e^(j 2πn/4N) DFT (N)

Freq. transp.
e^(j 4πn/4N) DFT (N)

Freq. transp.
e^(j 6πn/4N) DFT (N)

Averager

2.3. Fuzzy based signal processing techniques

Fuzzy logic is rapidly emerging as a powerful resource of instrumentation, signal
processing and measurement because fuzzy approach is able to deal with the
typical uncertainty, which characterizes any physical system. In the following
sections a brief overview of such methods is given[11][12].

2.3.1 Fuzzy Based Noise Elimination

A major task in the field of digital processing of measurement signals is to extract
information from sensor data corrupted by noise [13][14]. For this purpose we will
use a special fuzzy system characterized by an IF-THEN-ELSE structure and a
specific inference mechanism. Different noise statistics can be addressed by
adopting different combinations of fuzzy sets and rules [13][14].

Let x(r) be the pixel luminance at location r=[r1,r2] in the noisy image where r1 is
the horizontal and r2 the vertical coordinate of the pixel. Let N be the set of eight
neighboring pixels (see Fig. 4a). The input variables of the fuzzy filter are the
amplitude differences defined by:

8,...,1,0 =−=∆ jxxx jj (12)

where the xj, j=1,…,8 values are the neighboring pixels of the actually processed
pixel x0 (see Fig. 4a).

x 1 x 2
x 4 x 5

x 7 x 8

x 0

x 3

x 6
Fig. 4a: The neighboring pixels of the actually

processed pixel x0

N1 N2 N3 N4 N5

N6 N7 N8 N9

Fig. 4b: Pixel Patterns

0 a b L-1

mLP

1

- +L 1 a b

mLN

Fig. 5: Membership function mLN and mLP. Parameters a and b are

appropriate constant values

Let y0 be the luminance of the pixel having the same position as x0 in the output
signal. This value is determined by the following relationship:

yxy ∆+= 00 (13)

where ∆y is determined thereinafter (see eq. (16)). Let the rulebase deal with the
pixel patterns N1,…,N9 (see Fig. 4b). The value y0 can be calculated, as follows
[4]:

{ }{ }9,...,1;:)(=∈∆= iNxxmMINMAX ijjLPλ (14)

{ }{ }9,...,1;:)(* =∈∆= iNxxmMINMAX ijjLNλ (15)

yxy
Ly

∆+=
∆−=∆

00

)1(λ
 (16)

where ∆λ=λ-λ*, mLP and mLN correspond to the membership functions and
mLP(u)=mLN(-u) (see Fig. 5.). The filter is recursively applied to the input data. An
example of the described fuzzy-filter can be seen in Figure 6.

(a) (b)

Figure 6: (a) Original photo of a crashed car corrupted by noise, (b) Fuzzy-filtered
image of the photo

2.3.2 Fuzzy Based Edge Detection

Edge detection in an image is a very important step for a complete image
understanding system. In fact, edges correspond to object boundaries and are
therefore useful inputs for 3D reconstruction algorithms. The proposed fuzzy
based edge detection [15] can very advantageously be used for this purpose.

Let xi,j be the pixel luminance at location [i,j] in the input image. Let us consider
the group of neighboring pixels which belong to a 3x3 window centered on xi,j.

The output of the edge detector is yielded by the following equation [15]:

{ }

jiji

jiji

LALAji

xxy

xxy

ymymMAXLz

,1,2

,,11

21,)(),()1(

−=∆

−=∆

∆∆−=

−

− (17)

where zi,j is the pixel luminance in the output image and mLA is the used
membership function (see Fig. 7). Pixels xi-1,j and xi,j-1 are the luminance values of
the left and the upper neighbor of the pixel at location [i,j].

The fuzzy based technique compared to the classical methods provided better
results with less (very small) processing time. Figure 8 shows an example of the
edge detection results.

0 q

p

L-1

mLA

1

Fig. 7: Membership function mLA. Parameters p and q are

appropriate constant values

(a) (b)

Fig. 8: (a) Original photo, (b) After fuzzy based edge detection

2.3.3 Fuzzy Based Corner Detection

Corner detection should satisfy the following requirements:

• All the true corners should be detected

• No false corners should be detected

• Corner points should be well localized

• Corner detector should be robust with respect to the noise

Förstner determines corners as local maxima of function H(x,y) [16].

22

222

),(









∂
∂

+






∂
∂









∂
∂

∂
∂

−







∂
∂








∂
∂

=

y
I

x
I

y
I

x
I

y
I

x
I

yxH (18)

Starting from the algorithm of Förstner a new improved corner detection
algorithm can be developed by combining it with fuzzy reasoning. This is used for
the characterization of the continuous transient between the localized and not
localized corner points, as well. The algorithm consists of the following steps.
First, the picture, in which we have to find the corners, is preprocessed. As a result
of the preprocessing procedure the noise is eliminated. For this purpose we apply
the intelligent fuzzy filters described in [13] and [14]. If necessary the image is
also smoothed before taking the derivatives. After noise-filtering, the first

derivatives of the intensity function I(x, y) are calculated in each image point. For
this purpose we apply the following convolution masks:

















−
−
−

101
101
101

 for determining
x
I
∂
∂

, and















 −−−

111
000
111

 for determining
y
I
∂
∂

.

For increasing the effectiveness of the corner detection it is proposed to smooth
each of the entries Ix

2, Iy
2, IxIy, in eq. (18), which correspond with the first partial

derivates of the intensity function I(x,y) (here x,y denote the 2D coordinates of the
pixels). This can be done by applying a Gaussian 6x6 convolution kernel with σ=1
[17]. As the following step, the values H(x,y) are calculated for each image point
with the help of the previously determined Ix

2, Iy
2 and IxIy smoothed values. If the

detected corners are neighbors, then we should keep only the corner having the
largest calculated value H(x,y). The others are to be ignored. In most cases we can
not unambiguously determine that the analyzed image point is a corner or not with
only the help of a certain concrete threshold value, therefore in the proposed
algorithm fuzzy techniques are applied for the calculation of the values (corners)
which increases the rate of correct corner detection. By the score of the
membership function (see Fig. 9) of fuzzy set “corners” we can determine a
weighting factor, which characterizes the rate of the corner’s membership. The
value of the membership function mc is 1 for those image points for which the
calculated value H equals or is larger than the given threshold value. With the help
of the parameters p, q (see Fig. 9) the shape of the membership function can be
modified and so the sensitivity of the described detector can be changed. Finally
the output of the proposed corner detector is yielded by the following relation:

)()1(, HmLC cyx −= , (19)

where Cx,y represent the gray-level intensity values of the output image, x and y
are the horizontal and vertical coordinates of the processed image point, L is the
largest gray level intensity value, and H stands for the calculated H(x,y) values.

0 q

p

threshold

mc

1

H

Fig. 9: Membership function of fuzzy set corner (mc). The axis H is the axis of the
calculated H(x,y) values.

 (a) (b)
Figure 10: (a) Original photo, (b) After corner detection

Conclusions
The increased complexity of measurement systems caused classical problem
solving methods, especially in resource-bounded applications, to fail to produce
'usable' solutions. This led to focus on knowledge representation, information
handling, and different ways of expressing uncertainty. Soft Computing methods
are serious candidates for handling many of the theoretical and practical
limitations and, in many cases, are the best if not the only alternatives for
emphasizing significant aspects of system behavior with a burden of less
precision. The real power of such methods can only be exploited, however, only
when they are embedded in a framework that provides efficient means for
communication and information sharing, thus providing firm basis for using
methods rather different in nature together.

Acknowledgement
This work was sponsored by the Hungarian Fund for Scientific Research (OTKA
T 035190) and the Hungarian-Portugese Intergovern. S&T Cooperation
Programme (P-24/03).

References

[1] S. Zilberstein,S. J. Russel: "Reasoning about optimal time allocation using
conditional profiles", Proc. of AAAI-92 Workshop on Implementation of
Temporal Reasoning, pp. 191-197, San Jose, California, 1992

[2] S. Zilberstein,S. J. Russel: Constructing utility-driven real-time systems using
anytime algorithms", in Procs. of the IEEE Workshop on Imprecise and
Approximate Computation, pp. 6-10, Phoenix, Arizona, 1992

[3] J.W.S. Liu, et al.: Imprecise Computations, Proc. of the IEEE, Vol. 82, No.1,
Jan 1994, pp. 83-93.

[4] L. Zadeh: Fuzzy Logic, Neural Networks, and Soft Computing,
Communications of the ACM, March 1994, Vol. 37, No.3, pp. 77-83.

[5] Zilberstein, S., “Using Anytime Algorithms in Intelligent Systems,” AI
Magazine, Vol. 17, No. 3, 1996, pp. 73-83.

[6] Várkonyi-Kóczy, A.R., A. Ruano, P. Baranyi, O.Takács, “Anytime
Information Processing Based on Fuzzy and Neural Network Models,” In
Proc. of the 2001 IEEE Instrumentation and Measurement Technology
Conference, IMTC/2001, Budapest, Hungary, May 21-23, 2001, pp. 1247-
1252.

[7] Crochiere, R.E., L.R. Rabiner, Multirate Digital Signal Processing, Prentice-
Hall, Inc., Englewood Cliffs, N.J, 1983.

[8] Shynk, J.J., “Frequency-Domain and Multirate Adaptive Filtering,” IEEE
Signal Processing Magazine, Jan. 1992, pp. 15-37.

[9] Péceli, G., “A Common Structure for Recursive Discrete Transforms,” IEEE
Trans. on Circuits and Systems, Vol.33, Oct. 1986, pp. 1035-1036.

[10]Padmanabhan, M., K. Martin and G. Péceli, Feedback-Based Orthogonal
Filters, Kluwer Academic Publishers, Boston/London/Dordrecht, 1996.

[11] I. J. Rudas, Á. Szeghegyi, J. F. Bitó, G. Geary: Non Monotone Generalized
Fuzzy Operations for Fuzzy Logic Controllers, 5th IEEE International
Workshop on Robotics in Alpe-Adria-Danube Region, June 1996, Budapest,
pp. 529-533.

[12] Imre J. Rudas, M. O Kaynak, János F. Bitó, Ágnes Szeghegyi:
New Possibilities in Fuzzy Controllers Design Using Generalized Operators.
5th International Conference on Emerging Technologies and Factory
Automation, November 1996. Hawaii, pp. 513-517.

[13]Russo, F., “Fuzzy Filtering of Noisy Sensor Data,” In Proc. of the IEEE
Instrumentation and Measurement Technology Conference, Brussels, Belgium,
4-6 June 1996, pp. 1281-1285.

[14]Russo, F., “Recent Advances in Fuzzy Techniques for Image Enhancement,”
IEEE Transactions on Instrumentation and Measurement, Vol. 47, No. 6, Dec.
1998, pp. 1428-1434.

[15]C. Harris and M. Stephens, ”A combined corner and edge detector”, Proc. 4th
Alvey Vision Conference, pp. 189-192, 1988.

[16]W. Förstner, “A feature based correspondence algorithm for image matching,”
Int. Arch. Photogramm. Remote Sensing, vol. 26, pp. 150-166, 1986.

[17] F. Catté, P.-L. Lions, J.-M. Morel, T.Coll, “Image selective smoothing and
edge detection by nonlinear diffusion,” SIAM Journal on Numerical Analysis,
32:1895-1909, 1992.

