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Abstract: Authors present an analysis about the consequences of complex measurement and 
signal processing tasks. They show that measurement and signal processing problems of 
now-a-days open new dimensions for the interpretation of the basic concepts of 
measurement and signal processing and make the reevaluation of these concepts necessary. 
Traditional methods fail in many cases to yield useful solutions, especially when 
measurement and signal processing problems reveal considerable complexity, involve a 
wide spectrum of various disciplines and require a multitude of components and methods. 
Since traditional methods, without a proper resource management supported at the system 
level, seem inappropriate to solve such problems, qualitatively new methods are needed. 
The present paper seeks answers to these problems. It gives a brief overview of various 
imprecise computational methods and discusses their applicability to treat complex 
measurement and signal processing problems. 

1. Introduction 
Up to now classical problem solving methods proved to be entirely sufficient in 
the measurement, signal processing and system engineering. Nowadays, however, 
measurement science tackles problems of previously unseen spatial and temporal 
complexity (consider e.g. measurement problems of industrial plants, large scale 
environmental systems or laboratory tests in health care) and in a large number of 
cases traditional information processing methods and equipment failed to handle 
these problems. It became clear that new ideas are required for specifying, 
designing and implementing sophisticated measurement systems.  
Similar problems appeared in numerous other fields of research, and it was natural 
to explore and adopt the solutions. In the field of Artificial Intelligence (AI), Soft 
Computing (SC) and Imprecise Computation (IC) several methods have been 
developed that address the problem of nonnumeric information processing and the 
rational control of limited resources. In AI so called 'anytime algorithms' [1,2] 



offer considerable control over resources, in SC and IC the trade off between 
accuracy and resource usage is possible [3,4]. 
In measurements the used model serves as a basis to design information 
processing methods and to implement them at the equipment level. In case of 
complex measurements analytical models leading to a well defined numerical 
optimal information processing are not enough. The complexity of the problem 
manifests itself  not only as a hierarchy of subsystems and relations, but also as the 
variety of modeling approaches needed to grasp the essence of the modeled 
phenomena. Analytical models rarely suffice. Frequently numerical information is 
missing or is uncertain making place for various qualitative or symbolic 
representation methods. 
This situation can be still complicated by the fact that various modeling 
approaches, expressing different aspects of the problem, should be used together 
in a well orchestrated integrated way. Even more disturbing is that such traditional 
metrological concepts, like accuracy, error, scale, unit, etc. are no more applicable 
in their usual approved sense. 
As a consequence researchers drew from new methods and fields to tackle the 
problem. Artificial Intelligence offered means to handle nonnumeric and vague 
information. Imprecise Computation and Soft Computing offered a novel view at 
the computational accuracy as a utility rather than an ultimate aim of the 
development.  In the next section an overview of some kind of such methods is 
given. 

2. Overview of Non-Classical Computing Techniques 
 
Recently we meet new efforts to combine the ideas of the traditional and the soft 
computing methods. Some of the classical concepts and goals have to be analyzed 
and reevaluated, and the new methods must be placed into the context of the 
accepted classical frame of measurement and signal processing. 

2.1. Anytime Systems  
 
Today there is an increasing number of applications where the computing must be 
carried out on-line, with a guaranteed response time and limited resources. 
Moreover, the available time and resources are not only limited but can also 
change during the operation of the system. 
Good examples are the modern computer-based signal processing, diagnostics, 
monitoring, and control systems, which are able to supervise complex industrial 
processes and determine appropriate actions in case of failures or deviation from 
the optimal operational mode. In these systems the model of the supervised system 
is used and the evaluation of the system model must be carried out on-line, thus 
the model must not only be correct, but also treatable by the limited resources 



during limited time. Moreover, if some abnormality occurs in the system’s 
behavior it may cause the reallocation of a part of the finite resources from the 
evaluation of the system model to another task. Also in case of an alarm signal, 
lower response time may be needed. Having approximate results can also help in 
making decisions for the further processing. 
In these cases, the so-called anytime algorithms and systems [5] can be used 
advantageously, which are able to provide guaranteed response time and are 
flexible in respect to the available input data, time, and computational power. 
Recursive or iterative algorithms are popular tools in anytime systems, because 
their complexity can be easily and flexibly changed. These algorithms always give 
some, possibly not accurate result and more and more accurate results can be 
obtained if the calculations are continued. Unfortunately, the usability of iterative 
algorithms is limited. Besides the iterative algorithms, in a more general frame, a 
wide-range of other types of computing methods/algorithms can be applied in 
anytime systems. This frame means that a modular architecture is used [6]. The 
system is composed of modules each of them offering several implementations for 
a given task. These units (implementations within a given module) have uniform 
interface (same set of inputs, outputs, and solve the same problem) but can be 
characterized by different attribute-values, i.e. differ in their computational need 
and accuracy. At a given time, in the knowledge of the temporal conditions (tasks 
to complete, achievable time/resources, needed accuracy, etc.) an expert system 
can choose the adequate configuration, i.e. the units from the modules, which will 
be used. This means the optimization of the whole system instead of individual 
modules.Anytime processing may have great advantages in signal processing, 
monitoring, diagnostics, control, and related fields. 
 

2.1.1 Block-Recursive Averagers  

In this section the standard algorithms for recursive averaging are extended for 
data-blocks as single elements. 
To illustrate the key steps first the block-recursive linear averaging will be 
introduced. For an input sequence x(n), n=1,2, ..., the recursive linear averaging 
can be expressed as 
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For n ≥ N the “block-oriented” linear averaging has the form of 
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while the block-recursive average can be written as 
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If (3) is evaluated only in every Nth step, i.e. it is maximally decimated, then we 
can replace (3) with n=mN, m=1,2, ..., by 
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where m stands as block identifier. Note the formal correspondence with (1). 
If the block identifier m in equation (5) is replaced by a constant Q > 1 then an 
exponential averaging effect is achieved. In many practical applications 
exponential averaging provides the best compromise if both the noise reduction 
and the signal tracking capabilities are important. This is valid in our case, as well, 
however, in this paper only the linear and the sliding averagers are investigated 
because they can be used directly to extend the size of certain signal 
transformation channels and can be applied in anytime systems. 
A similar development can be provided for the sliding-window averagers. The 
recursive form of this algorithm is given for a block size of N by 
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If in (6) the input samples are replaced by preprocessed data, e.g. as in (2), then a 
block-recursive form is also possible: 
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which, however, has no practical meaning, since it gives back (2). But if the 
window size is integer multiple of N, e.g. MN, then the form 
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has real importance. If (8) is evaluated only in every Nth step, i.e. it is maximally 
decimated, then we can replace (8) with n=mN, m=1,2, ..., by 
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or simply 
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where m stands as block identifier. Note the formal correspondence with (6). 

The generalization of these averaging schemes to signal transformations and/or 
filter-banks is straightforward. Only (2) should be replaced by the corresponding 
“block-oriented” operation. Figure 1 shows the block diagram of the linear 
averaging scheme. This is valid also for the exponential averaging except m must 
be replaced by Q.  These  frameworks  can incorporate a variety of possible  

 

 

Figure 1: Block-recursive linear averaging signal processing scheme, n=mN 

transformations and corresponding filter-banks which permit decimation by the 
block-size. Standard references, e.g. [7] provide the necessary theoretical and 
practical background. The idea of transform-domain signal processing proved to 
be very efficient especially in adaptive filtering (see e.g. [8]). The most important 
practical advantage here compared to other methods is the early availability of 
rough estimates which can orientate in making decisions concerning further 
processing. The multiple-block sliding-window technique can be mentioned as a 
very characteristic algorithm of the proposed family. For this the computational 
complexity figures are also advantageous since using conventional methods to 
evaluate in “block-sliding-window” mode the transform of a block of MN samples 
would require M times an (MN)*(MN) transformation, while the block-recursive 
solution calculates only for the last input block of N samples, i.e. M times an 
(MN)*(N) “transformation”. 

As block-oriented preprocessing the DFT is the most widely used transformation 
for its fast algorithms (FFTs) and relatively easy interpretation. The above 
schemes can be operated for every “channel” of the DFT and after averaging this 
will correspond to the channel of a larger scale DFT. If linear averager is applied 
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this scale equals mN while for sliding averager this figure is MN. The number of 
channels obviously remains N unless further parallel DFTs are applied. These 
additional DFTs have to locate their channel to the positions not covered by the 
existing channels. For the case where M=2, i.e. only one additional parallel DFT is 
needed, where this positioning can be solved with the so-called complementary 
DFT which is generated using the Nth roots of -1. This DFT locates its channels 
into the positions π/N, 3π/N, etc. For M>2 proper frequency transposition 
techniques must be applied. If e.g. M=4 then the full DFT will be of size 4N and 
four N-point DFTs (working on complex data) are to be used. The first DFT is 
responsible for the channels in positions 0, 8π /4N, etc. The second DFT should 
cover the 2π /4N, 10π /4N, etc., the third the 4π /4N, 12π /4N, etc, and finally the 
fourth the 6π /4N, 14π /4N, etc. positions, respectively. The first DFT does not 
need extra frequency transposition. The second and the fourth process complex 
input data coming from a complex modulator which multiplies the input samples 
by ej 2π n/4N and ej 6π n/4N, respectively. The third DFT should be a 
complementary DFT. 

It is obvious from the above development that if a full DFT is required the sliding-
window DFT must be preferred otherwise the number of the parallel channels 
should grow with m. 

The majority of the transform-domain signal processing methods prefers the DFT 
to other possible transformations. However, there are certain applications where 
other orthogonal transformations can also be utilized possibly with much better 
overall performance. A further aspect of practical interest can be the end-to-end 
delay of the block-oriented processing. The time-recursive transformation 
algorithms described e.g. in [9] and [10] are sliding-window transformations, i.e. 
filter-banks providing transform domain representation of the last input data block 
in every step. Decimation is not “inherent” as it is the case if the transformation is 
considered as a serial to parallel conversion, therefore the processing rate can be 
either the input rate, the maximally decimated one, or any other in between. These 
techniques are not fast algorithms, however, “produce” less delay as those block-
oriented algorithms which start working only after the arrival of the complete 
input data block. 

2.2 Anytime Fourier Transformation  

The above detailed algorithms can advantageously be applied in anytime systems 
(see Fig. 2). If the block-recursive linear averager (L=mN) (in case of sliding-
window averager MN) is composed  of m N-point DFTs then after the arrival of 
the first N samples we will have a rough approximation of the signal, after 2N 
samples a better one, etc. The accuracy of the pre-results will not be exact, 
however the error is in most cases tolerable or even negligible. 

In the followings a simple example is presented which illustrates the usability of  



 

Figure 2: The block structure of the Anytime Fourier Transformation 

In the example a 256-channel DFT is calculated recursively with N=64 for 
m=1,2,8,16. The input sequence was 
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where rand stands for a random number generated by MATLAB between 0 and 1. 
The sinusoid is located exactly to a DFT channel position. The simulation results 
for m=1,2,8 and 16 are given on Figure 3. The improvement in resolution and 
noise reduction is remarkable. 

             

Figure 3: 256 channel DFT of a single sinusoid plus noise. N=64, exactly at a DFT 
channel (x(n)=cos (πn/2) + rand - 0.5). 
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2.3. Fuzzy based signal processing techniques 

Fuzzy logic is rapidly emerging as a powerful resource of instrumentation, signal 
processing and measurement because fuzzy approach is able to deal with the 
typical uncertainty, which characterizes any physical system. In the following  
sections a brief overview of such methods is given[11][12]. 

2.3.1 Fuzzy Based Noise Elimination 

A major task in the field of digital processing of measurement signals is to extract 
information from sensor data corrupted by noise [13][14]. For this purpose we will 
use a special fuzzy system characterized by an IF-THEN-ELSE structure and a 
specific inference mechanism. Different noise statistics can be addressed by 
adopting different combinations of fuzzy sets and rules [13][14]. 

Let x(r) be the pixel luminance at location r=[r1,r2] in the noisy image where r1 is 
the horizontal and r2 the vertical coordinate of the pixel. Let N be the set of eight 
neighboring pixels (see Fig. 4a). The input variables of the fuzzy filter are the 
amplitude differences defined by: 
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where the xj, j=1,…,8 values are the neighboring pixels of the actually processed 
pixel x0 (see Fig. 4a). 
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Fig. 5: Membership function mLN and mLP. Parameters a and b are  

appropriate constant values 

Let y0 be the luminance of the pixel having the same position as x0 in the output 
signal. This value is determined by the following relationship: 
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where ∆y is determined thereinafter (see eq. (16)). Let the rulebase deal with the 
pixel patterns N1,…,N9 (see Fig. 4b). The value y0 can be calculated, as follows 
[4]: 
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where ∆λ=λ-λ*, mLP and mLN correspond to the membership functions and 
mLP(u)=mLN(-u) (see Fig. 5.). The filter is recursively applied to the input data. An 
example of the described fuzzy-filter can be seen in Figure 6. 

 

   
(a)     (b) 

Figure 6: (a) Original photo of a crashed car corrupted by noise, (b) Fuzzy-filtered 
image of the photo 



2.3.2 Fuzzy Based Edge Detection 

Edge detection in an image is a very important step for a complete image 
understanding system. In fact, edges correspond to object boundaries and are 
therefore useful inputs for 3D reconstruction algorithms. The proposed fuzzy 
based edge detection [15] can very advantageously be used for this purpose.  

Let xi,j be the pixel luminance at location [i,j] in the input image. Let us consider 
the group of neighboring pixels which belong to a 3x3 window centered on xi,j. 
 
The output of the edge detector is yielded by the following equation [15]: 
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where zi,j is the pixel luminance in the output image and mLA is the used 
membership function (see Fig. 7). Pixels  xi-1,j and xi,j-1 are the luminance values of 
the left and the upper neighbor of the pixel at location [i,j]. 
 
The fuzzy based technique compared to the classical methods provided better 
results with less (very small) processing time. Figure 8 shows an example of the 
edge detection results.  
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Fig. 7: Membership function mLA. Parameters p and q are 

appropriate constant values 
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Fig. 8: (a) Original photo, (b) After fuzzy based edge detection 

2.3.3 Fuzzy Based Corner Detection 

Corner detection should satisfy the following requirements: 

 

• All the true corners should be detected 

• No false corners should be detected 

• Corner points should be well localized 

• Corner detector should be robust with respect to the noise 

 
Förstner determines corners as local maxima of function H(x,y) [16].  
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Starting from the algorithm of Förstner a new improved corner detection 
algorithm can be developed by combining it with fuzzy reasoning. This is used for 
the characterization of the continuous transient between the localized and not 
localized corner points, as well. The algorithm consists of the following steps. 
First, the picture, in which we have to find the corners, is preprocessed. As a result 
of the preprocessing procedure the noise is eliminated. For this purpose we apply 
the intelligent fuzzy filters described in [13] and [14]. If necessary the image is 
also smoothed before taking the derivatives. After noise-filtering, the first 



derivatives of the intensity function I(x, y) are calculated in each image point. For 
this purpose we apply the following convolution masks: 
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For increasing the effectiveness of the corner detection it is proposed to smooth 
each of the entries Ix

2, Iy
2, IxIy, in eq. (18), which correspond with the first partial 

derivates of the intensity function I(x,y) (here x,y denote the 2D coordinates of the 
pixels). This can be done by applying a Gaussian 6x6 convolution kernel with σ=1 
[17]. As the following step, the values H(x,y) are calculated for each image point 
with the help of the previously determined Ix

2, Iy
2 and IxIy smoothed values. If the 

detected corners are neighbors, then we should keep only the corner having the 
largest calculated value H(x,y). The others are to be ignored. In most cases we can 
not unambiguously determine that the analyzed image point is a corner or not with 
only the help of a certain concrete threshold value, therefore in the proposed 
algorithm fuzzy techniques are applied for the calculation of the values (corners) 
which increases the rate of correct corner detection. By the score of the 
membership function (see Fig. 9) of fuzzy set “corners” we can determine a 
weighting factor, which characterizes the rate of the corner’s membership. The 
value of the membership function mc is 1 for those image points for which the 
calculated value H equals or is larger than the given threshold value. With the help 
of the parameters p, q (see Fig. 9) the shape of the membership function can be 
modified and so the sensitivity of the described detector can be changed. Finally 
the output of the proposed corner detector is yielded by the following relation: 
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where Cx,y represent the gray-level intensity values of the output image, x and y 
are the horizontal and vertical coordinates of the processed image point, L is the 
largest gray level intensity value, and H stands for the calculated H(x,y) values. 
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Fig. 9: Membership function of fuzzy set corner (mc). The axis H is the axis of the 
calculated H(x,y) values. 

 

       (a)     (b) 
Figure 10: (a) Original photo, (b) After corner detection 

Conclusions 
The increased complexity of measurement systems caused classical problem 
solving methods, especially in resource-bounded applications, to fail to produce 
'usable' solutions. This led to focus on knowledge representation, information 
handling, and different ways of expressing uncertainty. Soft Computing methods 
are serious candidates for handling many of the theoretical and practical 
limitations and, in many cases, are the best if not the only alternatives for 
emphasizing significant aspects of system behavior with a burden of less 
precision. The real power of such methods can only be exploited, however, only 
when they are embedded in a framework that provides efficient means for 
communication and information sharing, thus providing firm basis for using 
methods rather different in nature together.  
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