
Enhanced Fixed-Priority Scheduling with (m,k)-Firm
Guarantee

Gang Quan Xiaobo (Sharon) Hu
Department of Computer Science & Engineering

University of Notre Dame
Notre Dame, IN 46556fgquan,shug@cse.nd.edu

Abstract

In this paper, we study the problem of scheduling task sets with (m,k)constraints. Accord-
ing to our scheduling approach, jobs of each task into are partitioned intotwo sets: mandatory
or optional. Mandatory jobs are scheduled according to their fixed-priorities while the optional
jobs are assigned to the lowest priority. We show that finding the optimal partition as well
as determining the schedulability of the resultant task set are both NP-hard problems. A new
technique, based on theGeneral Chinese Remainder Theorem, is proposed to quantify the inter-
ference among the tasks, which is then used to derive two approaches to improve the partition.
Furthurmore, a sufficient condition is presented to predict the schedulability of mandatory jobs
in polynomial time. We prove that our partitions are never worse thanthose obtained in the
previous work. Experimental results also show the significant improvement achieved by our
approaches.

1 Introduction

Much work has been conducted in scheduling analysis of hard real-time systems, where violating
task deadlines must be avoided at all cost. However, in many real-time embedded systems, e.g.,
a video decoder, it is often acceptable to miss task deadlines occasionally. Several firm-deadline
models have been proposed to study such systems, e.g., the imprecise computation model [4], the
“skip-over” model [12], and the (m,k)-firm guarantee model [9]. In the (m,k) model (0 < m � k),
system dynamic failure occurs if fewer thanm out of anyk consecutive jobs of some task meet
their deadlines. Ifm = k, the system becomes a hard-deadline system. For the specialcase ofm = k� 1, the (m,k) model reduces to the “skip-over” model [12]. The (m,k) model can be readily
incorporated into system Quality of Service (QoS) requirements, and is applicable to many real-time
systems such as those in multimedia and automotive control.In this paper, we use the (m,k) model
to study the scheduling problem of overloaded systems.

Some approaches [1, 2, 3, 5, 7, 9, 12, 19] apply dynamic sheduling techniques to handle over-
loaded real-time systems. However, in many applications, fixed-priority scheduling algorithms are
usually more attractive than dynamic-priority ones because (i) it incurs lower overhead; (ii) the im-
plementation is relatively simple; (iii) it gives a designer control over task priorities. In this chapter,
we focus on applying fixed-priority scheduling to deal with overloaded systems. A few papers have
been published that study the (m,k) model under fixed-priority scheduling. In [12], the “skip-over”
model is used and the task set schedulability is analyzed in that context. However, the results cannot

be readily applied to the (m,k) model. In [16], Ramanathan proposed a scheduling technique for the
general (m,k) model. The beauty of the technique is that it uses a very simple algorithm to partition
the jobs of each task into two sets: mandatory and optional. All mandatory jobs are scheduled ac-
cording to their fixed-priorities, while optional jobs are assigned the lowest priority. It follows that
if all mandatory jobs meet their deadlines, no dynamic failure will happen.

Though the technique proposed in [16] is simple and elegant,it does have some potential prob-
lems. First, thefirst job of every task is always designated as mandatory, which forces the worst case
response time of every task to be that of the first job. Secondly, the job partition algorithm implicitly
distributes the mandatory jobs evenly amongk consecutive instances of a task. Such even distribu-
tion may not be advantageous in certain situations. Furthermore, the partition algorithm depends
solely on the ratio ofm overk of each task. That is, regardless of task periods and execution times,
the mandatory jobs of two tasks having the samem overk ratio are always distributed in the same
way among thek consecutive jobs. In the following, we provide some examples to illustrate the
consequence of the above problems. In summary, all the aboveproblems can significantly impact
task set schedulability, which may then lead to overly pessimistic designs.

We believe that judicious selection of mandatoryv.s. optional jobs plays a critical role in
scheduling systems with (m,k)-firm constraints. In this paper, we first prove that the problem of
finding theoptimal partition between mandatory and optional jobs for each taskis NP-hard in the
strong sense. Then, we present a heuristic algorithm to modify the partitions given in [16]. Through
analyzing the effects of preemption and blocking on lower priority mandatory jobs by higher pri-
ority ones, we design an algorithm to carefully select mandatory jobs and reduce such effects. Our
experimental results show that our algorithm produces significantly better partitions than the ones
proposed in [16] in terms of system schedulability. We also formally show that our solutions form
a super set of that obtained by [16], in the sense that any taskset with (m,k) constraints schedulable
by [16] is always schedulable by using our algorithm.

The schedulability of (m,k) systems can be further improvedif one can tolerate spending some
more time on finding better mandatory/optional partitions off-line. In this regards, we believe that
a probabilistic optimization algorithm (e.g., genetic algorithms or simulated annealing) can be very
effective. One challenge in applying such algorithms is to formulate an appropriate objective func-
tion. We propose a metric that can be used as an objective function and demonstrate its effectiveness
by implementing a genetic algorithm based on this metric. The experimental results are extremely
encouraging.

Another difficulty is to determine the schedulability of tasks with (m,k) constraints after manda-
tory jobs are selected, which we prove to be NP-hard. One way to solve this problem is to perform
the exact analysis for a large number of possible cases as suggested in [1, 18], which is com-
putational intractable for large task sets. We present a sufficient condition which can be used to
determine in polynomial time if a given set of mandatory jobsis schedulable. The condition was
derived based on an extension to the algorithm presented in [10].

The paper is organized as follows. In Section 2, we define our problem and analyze some related
work. In Section 3, we prove several theorems to demonstratesome characteristics of the (m,k)-
firm guarantee problem and then introduce an important concept, execution interference,to capture
the preemption and bolcking effects among tasks. Section 4 contains a detailed discussion of our
partitioning algorithms and approach to checking scheduliability of task set with (m,k) constraints.
Experimental results are given in Section 5. Finally, we summarize our work in Section 6.

2

2 Preliminary and Motivation

Consider a system withn independent periodic tasks,T = f�1; �2; � � � ; �ng, arranged in the de-
creasing order of their priorities. Each instance of a task is called ajob. Thejth job of �i is denoted
as�ij . The following timing parameters are defined for task�i:� Oi: the release time of the first job of�i, referred to asinitial time.� Ti: the interval between two consecutive job release times of�i, referred to asperiod.� Di: the maximum time allowed from the release to the completionof �i's job, referred to as

deadline.� Ci: the maximum time needed to complete�i without any interruption, referred to asexecu-
tion time.� mi andki: the (m,k) constraint for�i, which mandates that at leastm out of k consecutive
jobs of�i must be completed prior to or on their deadlines to avoid any dynamic failure.

When scheduling a task set with (m,k) constraints accordingto a fixed-priority assignment, one
critical step is to determine for each task whether its execution is mandatory or optional. This may
be envisioned as each job being associated with a binary variable�. If � = 1, the corresponding job
is mandatory. Otherwise, it is optional. The collection of all these binary variables forms a binary
string, which we refer to as themandatory job pattern. Apparently, the selection of such mandatory
job pattern for each task may greatly impact the schedulability of the task set. To ease our effort in
searching for the mandatory job patterns which can satisfy the (m,k) constraints while making the
task set as schedulable as possible, we first introduce the following definition.

Definition 1 The(m,k)-pattern of task�i, denoted by�i, is a binary string�i = f�i1�i2:::�ikig
which satisfies the following: (i) �ij is a mandatory job if�ij = 1 and optional if�ij = 0, and (ii)Pkij=1 �ij = mi.
By repeating the (m,k)-pattern�i, we get a mandatory job pattern for�i. It is not difficult to see
that the (m,k) constraints for�i can be satisfied if the mandatory jobs of�i are selected accordingly.
Note that the length of the (m,k)-pattern for task�i is ki. Although we can increase the length of the
pattern, for example to be2ki; 3ki; :::, to improve the flexibility of selecting mandatory job patterns,
it increases the complexity of scheduling analysis and complicates system implementation at the
same time. Note that when the length of pattern is greater than ki, for example, let it be2ki, thenP2kij=1 �ij = 2mi do not necessary guarantee the (m,k) constraint. In that case, 2ki windows with
sizeki each need to be checked (wrap around the pattern if necessary) to guarantee that the (m,k)
constraint is not violated.

With the definition of (m,k)-pattern, we formulate the fixed-priority (m,k) scheduling problem
as follows.

Definition 2 Given a periodic task setT , let the mandatory jobs defined by a set of (m,k)-patterns
be assigned fixed priorities and the optional jobs have the lowest priority. Find the optimal (m,k)-
pattern�i for each�i 2 T such that no other (m,k)-patterns can satisfy the (m,k) constraints if the
optimal pattern cannot satisfy the (m,k) constraints.

Solving the above problem consists of two challenges:

3

� given a task set with (m,k) constraints, how to determine if one set of (m,k)-patterns are better
or easier to be scheduled than another;� given a set of (m,k)-patterns, how to predict if the corresponding mandatory jobs are all
schedulable.

In [12], the authors consider the “skip-over” model, a special case of the above fixed-priority
(m,k) scheduling problem wherem = k � 1. They prove that determining whether a set of pe-
riodic, occasionally skippable tasks is schedulable is NP-hard in the weak sense. We will extend
their proof and show that the problem of finding the optimal (m,k)-patterns is NP-hard in the strong
sense. When applying the rate-monotonic scheduling algorithm in the “skip-over” model, the au-
thors in [12] implicitly adopt the so-calleddeeply-redtask set to be the mandatory job set. This
corresponds to the following (m,k)-pattern:�ij = (1 1 � j < ki � 10 j = ki (1)

For the above (m,k)-pattern, a sufficient and necessary condition is presented in [12] to determine
the schedulability. It is claimed in [12] that the worst caseoccurs in the deeply-red task set in
the ”skip-over” model. However, no further work is done on choosing different (m,k)-patterns to
improve the schedulability of a task set.

In [16], the general (m,k) model is used and an algorithm is proposed for determining the (m,k)-
patterns for a given task set, which leads to the following (m,k)-pattern:�ij = (1 if j = bd (j�1)�miki e � kimi c+ 10 otherwise j = 1; 2; � � � ; ki (2)

For the (m,k)-patterns above, one can see that the (m,k)-pattern for a task is fixed once its (m,k)
constraint is defined, and the first job of every task is alwayslabeled to be mandatory. Moreover,
it is proved in [16] that the algorithm results in the most mandatory jobs from[0; t] compared with
those in any other interval of the same lengtht. One attractive consequence of the approach in [16]
is that the schedulability analysis can be conducted by simply extending that proposed in [13], since
the first job of each task always has the worst case response time. However, this advantage becomes
less desirable in terms of meeting (m,k) constraints.

Consider the example in Figure 1. Here, the task set containstwo tasks with the same periods
and the same (m,k)-firm constraint, i.e., (1,2). It is shown in Figure 1(a) that the mandatory jobs
cannot be scheduled if the (m,k)-patterns are assigned according to (2), while some different (m,k)-
patterns can satisfy the (m,k) constraints (see Figure 1(b)). In addition to forcing the worst case
response time of every task to be that of the first job, the technique in [16] implicitly distributes the
mandatory jobs evenly amongki consecutive jobs of�i. Such even distribution may not be desirable
in certain situations as seen in the example given in Figure 2, where the (m,k) constraint of�1 is(3; 6) and that of�2 is (1; 2).

In the following, we present our contributions on solving the (m,k) scheduling problem. We
first introduce the termwork loadsimilar to the one introduced in [13]. It will be used extensively
in the rest of the paper.

Definition 3 Let t andt+ t0 be two time instants in some�i-busy period[11]. Thework load of �i
in [t; t+ t0], denoted byWi(t; t+ t0), is defined asWi(t; t+ t0) =Xj�i lij � Cj ; (3)

4

��

��

�
�
�

�
�
�

�
�
�

�
�
�

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

��

��
����
����
����

��
��
��
��

����
����
����
����

���
���
���
���

����
����
����
����

����
����
����
����

Task 1

Task 2

0

Task 1

Task 2

0

miss miss

(a) Using 10 as the (m,k)-patterns for both
Task 1 and Task 2 results in an infeasible
schedule

(b) Using 10 as the (m,k)-pattern
for Task 1 and 01 for Task 2 results
in a feasible schedule

3T1T1

2T2

3T12T1

T2 3T2

2T1 4T1

3T2T2 2T2 4T2

T1

Figure 1: Different (m,k)-patterns for the same task set lead to different scheduling results.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��������
��������
��������
��������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���������������������

��
��

��
��
��

���
���
���
���

���
���
���
�������

��
��
��
��

Task 1

Task 2

0

Task 1

Task 2

0

miss

T1 3T1

T2 2T2

5T1 7T1 T1 3T1

T2 2T2

5T1 7T1

(a) Using 101010 as the (m,k)-pattern for

schedule
Task 1 and 10 for Task 2 results in an infeasible

(b) Using 111000 as the (m,k)-pattern for
Task 1 and 01 for Task 2 results in a feasible
schedule

Figure 2: Evenly distributed mandatory jobs may not always improve the schedulability.

wherelij is the number of mandatory jobs of�j (j � i) with their release times within [t; t+ t0).
3 Observations on the (m,k) Scheduling Problem

In this section, we first present several observations related to the complexity issues of the (m,k)
scheduling problem. Then, we discuss an important concept for estimating preemption and blocking
effects among tasks with (m,k) constraints.

3.1 Complexity issues

We first show that selecting the “optimal” (m,k)-pattern foreach task can be very “difficult”.

Theorem 1 Given a task setT the problem of deciding if there exists an (m,k)-pattern foreach task
in T such thatT is schedulable is NP-hard in the strong sense.

Proof: We prove the theorem by reducing the3-Partition problemto our scheduling problem. The
3-Partition problemis: given a setA = fa1; a2; � � � ; a3mg of 3m positive integers and a positive
integerB such that14B < ai < 12B and

P3mi=1 ai = mB, canA be partitioned intom disjoined sets,A1; A2; :::; Am, such that
Pai2Aj ai = B for each1 � j � m? The3-Partition problemis proved

to be NP-hard in the strong sense [6].
Given a3-Partition problem, we construct a task setT = f�1; �2; � � � ; �3mg such thatOi =0; Ci = ai;Di = Ti = B;mi = 1; ki = m. Assume we have found an (m,k)-pattern for each�i

such thatT is schedulable. Then, after clustering tasks with the same (m,k)-pattern to formT 0i and
let the correspondingaj formAi, we haveT 0i is schedulable() Xaj2Ai aj = B; i = 1; � � � ;m

5

Since the above reduction is linear, we prove the theorem. 2
Another challenge in solving the (m,k) scheduling problem is to decide if the mandatory jobs

given by a set of (m,k)-patterns are schedulable. Unfortunately, the problem is also NP-hard.

Theorem 2 Given a task setT and an (m,k)-pattern for each task inT , the problem of determining
whetherT is schedulable is NP-hard.

Proof: Leung and Merrill have shown that checking the feasibility of a periodic task sets with
arbitrary initial times is NP-hard [14]. For any task setT defined in [14], we can always construct
a new task setT 0 with (m,k) constraints such thatmi = ki for all 0 � i � n. The theorem holds
because it has been proved in[14] that deciding whetherT is schedulable or not is NP-hard. 2

In Section 2, we reviewed the deeply-red task set used by the “skip-over” model in [12] and
showed its (m,k)-pattern in (1). Here, we extend the deeply-red task set definition to the general
(m,k)-firm guarantee model.

Definition 4 Given a task setT with (m,k) constraints, thedeeply-red (m,k)-pattern for task�i,�ri = f�ri1�ri2:::�rikig, satisfies �rij = (1 1 � j � mi0 mi < j � ki
For the deeply-red (m,k)-pattern, we have the following observation.

Theorem 3 For task setT withOi = 0; 1 � i � n, if the mandatory jobs defined by the deeply-red
(m,k)-patterns are schedulable, the mandatory jobs derived from any other (m,k)-patterns are also
schedulable.

Proof: Given the mandatory jobs according to the deeply-red (m,k)-patterns, for the first job of�i 2 T , its work load in[0; t] is, Wi(0; t) =Xj�iCj � lj;
wherelj is the number of mandatory jobs of�j from [0; t]. If �i is schedulable, there exists a time
instantt0 such that Wi(0; t0) = t0 � Di:

Suppose that job of�i, �iq, has the worst case response time, which is released in some�i-
busy period [11]. A job from a higher priority task can interfere with the execution of�iq if it is
released prior toriq but has not been completed byriq or it is released in the�i-busy period afterriq (see Figure 3(a)). If we shift the execution of every higher priority task such that its first job
interfering with�iq is released exactly atriq, the resultant job pattern will make�iq more difficult
to be scheduled. Consequently, if�iq in Figure 3(b) is schedulable, so is�iq in 3(a), and hence�i is
schedulable. In Figure 3(b), the work load of�i in [riq; riq + t0] isW 0i (riq; riq + t0) =Xj�i l0j � Cj ;
wherel0j is the number of mandatory jobs of�j(j � i) in [riq; riq + t0].

Sincelj is the maximum possible number of mandatory jobs of�j (j < i) within any interval
with lengtht0, i.e.,l0j � lj , so we have,W 0i (riq; riq + t0) �Wi(0; t0) = t0 � Di:
and task�i must be schedulable. Box

6

��
����������������
����������������
����������������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
�������
�������
�������

�������
�������
�������
�������

��

���
���
���
���

���
���
���
���

���
���
���
���

��

�������
�������
�������
�������

�������
�������
�������
�������

����������������
����������������
����������������
����������������

���
���
���
���

Task j

Task k

Task i

(a) (b)

Task j

Task k

Task i riq riq

Figure 3: Shifting periods of higher priority tasks (�j and�k) to create a worse case for�i.
3.2 Execution interference among tasks

As mentioning in previous sections, determining the schedulability of a task set with (m,k) con-
straints is a challenging problem, since exact timing analysis for a large number of possible cases
is very time consuming and in fact intractable for large tasksets. To reduce the computational cost,
we propose an effective way to help characterize and quantify the preemption and blocking effects
on lower priority mandatory jobs by higher priority ones.

Given two tasks�h and�i (h < i), we say that a�h's job interferesa �i's job if the execution
time interval of the�h's job either partially or entirely overlaps with the periodof the�i's job. We

���� ���� ������ ������

������������������������������

��

����
����
����
����

���
���
���
���

��
��
��
��

������������������

e e
Task h

Task i

s t

rhtr h(s +1)r

r ri(j-1) ij

hs

Figure 4: Execution interference of�h with �ij, whererpq is the release time of job�pq.
use the termexecution interferenceof �h with job �ij to capture the amount ofpotentialpreemption
and/or blocking effect caused by�h during [(j � 1)Ti + Oi; jTi + Oi]. In Figure 4,�hs,�h(s+1),
and�ht all interfere with�ij, and the execution interference of�h with �ij is shown by the shaded
regions. Formally, we define execution interference as follows.

Definition 5 Given two tasks�h and�i (h < i) and the (m,k)-pattern for each task, theexecution
interference of �h with job �ij , denoted byF hij , equals the total portions of the execution times of
all �h's mandatory jobs that fall inside[(j � 1)Ti +Oi; jTi +Oi].
(Note that in Figure 4,es andet become zero if the corresponding jobs are not mandatory). Mathe-
matically,F hij can be calculated as follows,F hij = es + lhij � Ci + et; (4)

7

wherelhij is the number of mandatory jobs of�h that fall entirely in the interval [(j�1)Ti+Oi; jTi+Oi], es = �hsminfCh + rhs � ri(j�1); 0g, andet = �htminfCh; rij � rhtg.
Each mandatory job of�i may suffer different amount of interference by�h, and the job of�i that suffers the most execution interference from higher priority tasks tends to dominate the

schedulability of�i. We refer to this maximum execution interference as the execution interference
of task�h with task�i, and denote it byFhi , i.e.,Fhi = maxj fF hijg; j = 1; 2; � � � :
Since there exists an infinite number of mandatory jobs for task �i, it might seem daunting to deter-
mineFhi . To tackle this problem, we borrow an existing theorem,Generalized Chinese Remainder
Theorem (GCRT)[15], which is restated below.

Theorem 4 (GCRT) Let v1; v2; � � � ; vr be positive integers,v be the least common multiple ofv1; v2; � � � ; vr, anda; u1; � � � ; ur be any integers. There exists exactly one integeru which satisfiesa � u < a+v andu = uj (mod vj) for all 1 � j � r if and only ifui = uj (mod gcd(vi; vj))
for all 1 � i < j � r, wheregcd(x; y) denotes the greatest common divisor (GCD) ofx andy.

(Note thata = b (mod c) is equivalent toa mod c = b mod c.) Based on GCRT, we proof two
lemmas to be used for analyzing the execution interference between tasks. For generality, we use
“events” rather than “tasks” in the lemmas.

Lemma 1 Given two periodic eventsE1 andE2 with periodT1 andT2, respectively, let the initial
times of the two events be the same, i.e.,O1 = O2. Denote the release time of any instance ofE1
(resp.,E2) by r1 (resp.,r2). Then,r1 � r2 = q � gcd(T1; T2), q 2 Z (Z is the set of integers).

Proof: Consider the case wherer1i > r2j . (The other case can be proved in a similar manner.)
Sincer1 = aT1 andr2 = bT2 (a; b � 0;2 Z), we haver1i = z1 � T1;
and r2 = k2 � T2;
wherek1, k2 > 0 andk1; k2 2 Z. Becauser1 mod T1 = r2 mod T2 = 0:
Then, by applying GCRT, we haver2 = r1 (mod gcd(T1; T2)):
Hence, jr2 � r1j = q � gcd(T1; T2); q � 0; andq 2 Z: 2

Lemma 1 states that the interval between the release times ofany two instances of two periodic
events always equals the integer multiple of the GCD of theirperiods, if these two periodic events
have the same initial time. Similarly, for periodic events having different initial times, we have the
following lemma.

8

Lemma 2 Suppose that two periodic eventsE1 andE2 have periodsT1 andT2, and different initial
timesO1 andO2, respectively. Denote the release time of any instance ofE1 (resp.,E2) byr1 (resp.,r2). Then,r1 � r2 = p � g + (O1 � O2) mod g, whereg = gcd(T1; T2), p 2 Z. Furthermore,
if jr1 � r2j is theminimum distancebetween the release times of anyE1's instance and anyE2's
instance, thenjr1 � r2j � g2 .

Proof: According to Lemma 1, ifE1 andE2 had the same initial time, we would haver2 = r1 + a � g; a 2 Z:
Given different initial times,O1 andO2, it follows thatr1i andr2j satisfy one of the following:r2 � r1 = a � g + (O2 �O1) = b � g + (O2 �O1) mod g;
and r1 � r2 = a � g + (O1 �O2) = c � g + (O1 �O2) mod g;
whereb; c 2 Z. Sincemin jr1 � r2j = minf(O1 �O2) mod g; (O2 �O1) mod gg;
we conclude min jr1 � r2j � g2 2

Observe that�i's mandatory jobs corresponding to bit�ij = 1 can be viewed as a periodic eventEi with periodkiTi and initial timeOi + (j � 1)Ti. Furthermore, the mandatory jobs of�h can
also be viewed as a periodic eventEh with periodkhTh and initial timeOh. Let the release time of
an instance ofEi (resp.,Eh) by ri (resp.,rh). According to Lemma 2,ri � rh = fp � g + ((j �1)Ti + Oi � Oh) mod gg, whereg = gcd(khTh; kiTi), p 2 Z. Note that each unique value of0 � (ri � rh) < khTh may result in a different execution interference of�h for the corresponding�i's job. However, for(ri� rh) < 0 or (ri� rh) � khTh, the execution interferences simply repeat
the cases for0 � ri�rh < khTh. Therefore, the computation of execution interference between two
tasks can be greatly simplified and is outlined in Algorithm 1. The concept ofexecution interference
between tasks forms the basis of our proposed approaches to be discussed in the next section.

4 Our Approaches to the (m,k) Scheduling Problem

In this section, we first present a heuristic technique to improve the (m,k)-patterns obtained by [16].
We then propose a metric that can be used as an objective function in any probabilistic optimization
algorithm. Finally, we derive a sufficient condition to predict the schedulability of a task set with
given (m,k)-patterns.

4.1 Improving Evenly Distributed (m,k)-Patterns

In Section 2, we know that the algorithm in [16] results in (m,k)-patterns that are not always de-
sirable. We hereby present a heuristic technique to obtain better (m,k)-patterns by judiciously “ro-
tating” the (m,k)-patterns computed by (2). The key idea is to reduce the execution interference
between tasks.

9

Algorithm 1 Calculate the execution interference between two tasks
Input: �i = fOi; Ti;Di; Ci;mi; kig, �h = fOh; Th;Dh; Ch;mh; khg, �i;�h; h < i
Output: Fhi //execution interference of�h with �iFhi = 0;g = gcd(kiTi; khTh);
for j from 1 to ki do

if �ij = 1 thenx = (Oi + (j � 1)Ti �Oh)mod g;
while x < khTh doF hij is calculated according to (4);

if Fhi < F hij thenFhi = F hij ;
end ifx = x+ g;

end while
end if

end for

As mentioned before, execution interference between taskscan have a significant impact on the
schedulability of a task set. It would be very helpful if we know at what instants the maximum
execution interference for a given set of (m,k)-patterns may occur. We introduce the concept of
worst-case interference pointto capture this concept.

Definition 6 A worst-case interference point (WCIP) of task�i is the beginning instant of a time
interval such that the number of mandatory jobs of�i is the largest among all time intervals of the
same length.

Based on the above definition, for the (m,k)-patterns definedin (2), time 0 is aworst-case
interference pointsince interval[0; t] contains the largest number of mandatory jobs compared with
any other interval with the same length. Note that any task,�i, has an infinite number of WCIPs for
a given (m,k)-pattern and they occur periodically with periodkiTi. If a mandatory job from a lower
priority task is released at the same time as one of the WCIPs of some higher priority tasks, the job
will apparently suffer the largest execution interferencefrom the higher priority tasks. Intuitively,
given a set of (m,k)-patterns, if a WCIP of a lower priority task and those of higher priority tasks
concur, it will be more difficult to meet the (m,k) constraints, which is the case for the (m,k)-patterns
by [16].

If (m,k)-patterns can be defined such that the WCIPs between tasks are as far apart as possible,
the schedulability of the task set would be improved. One wayto achieve this is to modify (2) as
follows. �ij = (1 if j = bd ((j�1)+si)�miki e � kimi c+ 10 otherwise

(5)

wheresi > 0 andsi 2 Z. Note that the new (m,k)-pattern can be viewed as rotating the (m,k)-
pattern in (2) right bysi bits. The new (m,k)-pattern certainly satisfies the (m,k) constraints. Fur-
thermore, we have the following lemma.

Lemma 3 For �i with the (m,k)-pattern defined in (5), the number of mandatory jobs of�i is the
largest in[si � Ti; si � Ti + t] compared with those within any other interval of the same length t.

10

The proof can be readily obtained by applying Lemma 4 in [16] and is thus omitted. According to
Lemma 3, by rotating the original (m,k)-pattern defined in (2), we essentially move the first WCIP
of task�i from 0 tosiTi. Hence, through careful selection ofsi (0 � si < ki) values, we can alter
the separation between WCIPs of different tasks.

Our problem now becomes determining the value forsi to separate WCIPs among tasks as far
as possible. Since the WCIPs of a task occur periodically, weresort to Lemma 2 in our search for
bettersi values. Given task�i and the (m,k)-pattern defined in (5), the WCIPs for�i is a periodic
event with periodkiTi and initial timeOi + siTi. According to Lemma 2, the distance between
the closest WCIPS of the two tasks,�i and�j, is never bigger thangcd(kiTi; kjTj)=2. Hence, we
can selectsi andsj such that the distance is as close togcd(kiTi; kjTj)=2 as possible to reduce
the execution interference between the two tasks. For task sets containing three or more tasks, we
design a greedy algorithm shown in Algorithm 2.

Algorithm 2 Algorithm for finding rotation values for (m,k)-patterns
Input: Task setT = f�1; �2; :::; �ng, where�i = fOi; Ti;Di; Ci;mi; kig
Output: s1; � � � ; sn //rotation values for each tasks	 = ;; // 	 contains the tasks whosesi values have been determined
while T is not emptydo�i = task inT with the smallestki;

if 	 6= ; then
 = 	;
while
 6= ; do�j = task in
 such thatF ji is maximum, whereF ji is defined in Section 3.2;g = gcd(ki � Ti; kj � Tj);

if g = 1 then
remove�j from
;

else
break;

end if
end whileO0j = Oj + sj � Tj ;si = l such that0 � l < ki andj l�Ti+Oi�O0j j is nearest to one of(2q+1)�g=2; q 2 Z;

elsesi = 0;
end if
Add �i to	;
Remove�i from T ;

end while

The basic idea for Algorithm 2 is to reduce the worst case response time of mandatory jobs by
reducing the execution interference between tasks. Observe that the larger the valueki is, the more
choices task�i has for the position of its first WCIP. Hence, among the remaining tasks whosesi
values need to be determined, the algorithm always pick the one having the smallestki in its (m,k)
constraint. Then, the algorithm selects task�j from the tasks whosesj values have been determined
such that the execution interference between�i and�j is the largest. Thesi value is then set so that
the distance between the WCIPs are maximized. Note that in the case whengcd(kiTi; kjTj) = 1,
no matter what the initial positions of WCIPs are, they will eventually meet at some time instant in

11

the future. If this happens, we simply go on to the next task.
Algorithm 2 is quite effective in improving the schedulability of task sets with (m,k) constraints.

We will give experimental results later to illustrate this.Furthermore, we have the following theo-
rem. We omit the proof due to the page limit.

Theorem 5 If a task set can be scheduled with the (m,k)-patterns definedby (2), it can always be
scheduled with the (m,k)-patterns defined in (5) withsi determined by Algorithm 2.

Proof: Consider first the case when the (m,k)-patterns are derived by (2). The first job of each�i
is always a mandatory one and has the worst case response time. The work load of the job during[0; t] is as defined in (3), i.e., Wi(0; t) =Xj�i lij � Cj; (6)

wherelj is the number of mandatory jobs of�j (j � i) in [0; t]. If �i is schedulable, we haveWi(0; t1) = t1 � Ti:
Now, let the (m,k)-patterns be rotated bysi values obtained from Algorithm 2. Similar to the

proof for Theorem 3, we only consider the case as shown in Figure 3(b). In Figure 3(b), the work
load of�i in [riq; riq + t] is W 0i (riq; riq + t) =Xj�i l0j � Cj;
wherel0j is the number of mandatory jobs of�j(j � i) in [riq; riq + t]. Since the (m,k)-patterns are
a rotated version of the ones derived from (2), by Lemma 3, we can conclude thatl0j � lj . ThusW 0i (riq; riq + t) �Wi(0; t) = t � Ti. It follows that�i can be scheduled. 2
4.2 A Metric for Evaluating (m,k)-patterns in Probabilistic Optimizat ion

Though the algorithm proposed in the previous section is capable of improving the schedulability
of task sets employing the (m,k)-patterns derived in [16], there exist cases where no rotating (m,k)-
patterns can improve the schedulability. This was demonstrated by the example in Figure 2 in
Section 2. In such cases, evenly distributed (m,k)-patterns are not appropriate. We need to find
other (m,k)-patterns. Since determining the optimal (m,k)-patterns is NP-hard, a natural contender
for solving the problem is a probabilistic optimization approach based on such as genetic algorithms
(GA) or simulated annealing (SA), both of which have been shown to be effective in solving many
NP-hard problems [8, 17]. GA and SA differ in their mechanismfor escaping local minima, but
both need an effective objective function to help direct thesearch process. A major factor to the
success of such an approach is the choice of the objective function. We borrow the termfitnessfrom
GA to refer to the objective function, where a higher fitness value indicates a better solution. In this
subsection, we present a fitness function which is quite effective for finding superior (m,k)-patterns.

An ideal fitness function should be able to reflect the fact that using one set of (m,k)-patterns
may make the system “easier” to be scheduled than another set. The challenge is how to describe
this “easiness”. Intuitively, a set of (m,k)-patterns leading to shorter worst case response times for
tasks is better. Yet, we have shown in Section 3 that, with arbitrary (m,k)-patterns, finding the worst
case response time of a task is NP-hard. As mentioned before,the execution interference suffered
by a task directly impacts the schedulability of the task. Wehereby propose to use the execution

12

interference between the tasks to formulate the fitness function. Specifically, let the fitness of�i bef(�i). Then, we have f(�i) = TiCi +Pi�1h=1Fhi : (7)

The denominator in (7) is an estimated worst case work load for �i and all the higher priority tasks
during any time interval of lengthTi. To define the overall fitness value for a task set with some
known (m,k)-patterns, we notice that a task set is considered to be unschedulable if any one of its
tasks misses the deadline. Hence, the task-set fitness, denoted byf(T), is the minimum among the
fitness values of all tasks, i.e., f(T) = min1�i�n f(�i); (8)

Given a task set with known (m,k)-patterns, evaluatingf(�i) hinges on computing the execution
interferences between pairs of tasks, which can be obtainedby Algorithm 1.

After the fitness function is obtained, we can apply either a GA or SA approach to search for
better (m,k)-patterns. We should point out that the fitness function defined above is only an indicator
of the task set schedulability. That is, we cannot guaranteethat for any given task setsT1 andT2,T2 must be schedulable iff(T1) < f(T2) and T1 is schedulable. However, we have used the
fitness function in a GA implementation and the experimentalresults are extremely encouraging as
shown in the next section. In our GA implementation, a gene isdefined as a turple of a task and

M = number of generations
x = 0

x = x + 1

x > M

Y

N

Select Survivors

Initialize Population

Evaluate Fitness

Randomly Vary Survivors

Output the result

Figure 5: Procedure of genetic algorithm for finding the (m,k)-patterns

its (m,k)-pattern, i.e., (�i, �i). The reproduction strategy is quite straight forward. Themutation
operation selects a gene and changes one bit in the (m,k)-pattern from 1 to 0 and another bit from
0 to 1. The crossover operation selects a cross point for two individuals and swaps their contents
to construct two new individuals. More detailed information on GA can be found in [8]. While the
effectiveness of our approach is demonstrated in the experiments, how to construct a better fitness
function remains an open problem.

4.3 Determining Schedulability for Given (m,k)-patterns

We have proposed two methods to find better (m,k)-patterns for the (m,k) scheduling problem. Yet,
we still face the challenge of determining if a task set is schedulable for some given (m,k)-patterns.

13

Answering this question becomes critical when the first job of every task no longer has the worst
case response time. In section 3, we have proved that this is an NP-hard problem. Note that a task�i with certain k-patterns can be viewed asmi periodic tasks with periodkiTi, deadlineDi, and
initial offsets(ai � 1)Ti +Oi (ai is the index of the mandatory job in�i's (m,k)-pattern). One way
to deal with this problem is to apply exact analysis [1, 18] for all the possible jobs where the worst
case response time may happen which is quite prohibitive forlarge task sets. In the following, we
construct a sufficient condition to test if a task set with known (m,k)-patterns is schedulable. Our
goal is to be able to efficiently evaluate such a condition, and hence quickly decide if a set of (m,k)-
pattern, derived by an approach such as those described above, can meet the (m,k) constraints. To
simplify the problem, we assume that the deadline of a task equals its period.

Our sufficient condition is an extension to the work by Han andTyan [10]. In [10], a polynomial-
time algorithm is proposed to test the schedulability of a hard real-time system scheduled with
RMA. The basic idea is to map each task in the task set to a new task such that the new task
period is less than or equal to the original period and the computation time remains the same. An
additional requirement is that the new task set must beharmonic, i.e., any shorter task period must
divide any longer task period. It is proved in [10] that if theharmonic task set is schedulable,
so is the original task set. However, this is no longer true for a task set with (m,k) constraints.
Figure 6 illustrates such an example, whereT = f�1; �2g, T1 = C1 = 6; T2 = 7; C2 = 6,
and (m1; k1) = (m2; k2) = (1; 2). The corresponding harmonic task setT 0 = f� 01; � 02g withT 01 = C1 = 6; T 02 = C2 = 6, and(m01; k01) = (m02; k02) = (1; 2). As shown in Figure 6(a),T 0 can
be easily scheduled by executing the mandatory jobs alternatively, butT cannot be scheduled with
the same (m,k)-patterns as shown in Figure 6(b).

��

��
����
����
����

����
����
����
����

����
����
����
����

��

��
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��
��
��
��

����
����
����
����

����
����
����
����

��
��
��
��

6 12 18 24 36
Task 1’

Task 2’

Task 1

Task 2

6

7

12

14

18 24 36

21 286 12 18 24 36

miss miss

(a) A harmonic task set is schedulable
with 10 as the (m,k)-pattern for Task 1
and 01 for Task 2

(b) A general task set using the same (m,k)-patterns
as those in (a) is not schedulable even though the tasks
have longer periods

Figure 6: Harmonic task set and its original task set

We derive a sufficient condition that can be applied to tasks with (m,k) constraints. Consider
task�i in a harmonictask setT . Let �j has higher priority than�j. Then for any mandatory job of�i released att0, at mostd TiTj e mandatory jobs of�j occur in [t0; t0 + Ti]. SinceT is a harmonic
task set, so dTiTj e = (TiTj Ti > Tj1 otherwise

Supposelij is the maximum number of mandatory jobs from�j during any time interval of lengthTi. Let Wi =Xj�i(lij � Cj) (9)

Then, if WiTi � 1, the total work load by the�i's job under consideration and all other higher priority
mandatory jobs can be completed in one�i's period. Hence, task�i is certainly schedulable. For
general task sets, we have the following theorem.

14

Theorem 6 Given two task setsT andT 0 withT 0i � Ti; C 0i = Ci;m0i = mi; k0i = ki, andT 0j dividesT 0i if T 0j � T 0i . With the given (m,k)-patterns, if
Pj�i(lij � Cj)=T 0i � 1, wherelij is themaximum

number of mandatory jobs during any time interval of lengthT 0i , thenT is also schedulable.

Proof: Suppose that the worst case response time of�i happens at�iq as shown in Figure 3(a).
Similar to the proof for Theorem 3, we only consider the case as shown in Figure 3(b). In Figure
3(b), we have Wi(riq; riq + T 0i) =Xj�i(pij � Cj);
wherepij is the maximum number of mandatory jobs of�j during [riq; riq + T 0i]. SinceTj � T 0j,
we havepj � lij , and thusWi(riq; riq + T 0i) �Xj�i(lij � Cj) � T 0i � Ti:
It follows that job�iq with the worst case response time can be finished before its deadline. Hence,�i is schedulable. 2

Given a task set with (m,k) constraints, we can apply the algorithm in [10] to find the corre-
sponding harmonic task set, and determinelij from the given (m,k)-patterns. Then, by Theorem 6,
the schedulability of the task set can be tested. A straightforward implementation of our sufficient
condition takesO(n3klogn) time, wherek = maxi ki andn is the number of tasks. Note that our
analysis above is based on the case whenDi = Ti; i = 1; :::; n. The result can be extended to
the case whenDi < Ti; i = 1; :::; n with the similar approach shown in [10]. How to get tighter
sufficient condition without greatly increasing the computational cost is another open problem.

5 Experimental Results

In this section, we present some experimental results to compare the performance of our approaches
with that in [16]. For ease of explanation, we useAlg Orig for the algorithm in [16],Alg RT for
Algorithm 2 in Section 4.1, andAlg GA for the genetic algorithm approach that employs the fitness
function discussed in Section 4.2.

Recall that the goal of our approaches is to select a set of (m,k)-patterns such that they will make
the given task set easier to be scheduled. According to Theorem 3, a task set can be scheduled with
any set of (m,k)-patterns if it is schedulable with thedeeply-red(m,k)-patterns. In this case, there
would be no benefit to apply the (m,k)-patterns obtained by either [16] or our approaches. Hence,
we discard such task sets during our experiments. Moreover,since task sets with low utilization
factor values are easier to be scheduled even with (m,k) constraints, a fair comparison needs to
study a large spectrum of utilization factor values.

In our experiments, we consider task sets with 5 tasks. The period of each task is randomly
selected from a uniform distribution between 10 to 50, and the deadline of each task is assumed to
equal its period. Themi andki values are also randomly selected, whereki is uniformly distributed
between 2 to 10, andmi is uniformly distributed between 1 andki. We partition the utilization factor
values into intervals of length 0.2. Then, the execution time of each task is randomly selected such
that the utilization values of the resulting task sets are uniformly distributed within each interval.
To reduce statistical errors, the number of task sets schedulable by at least one of the approaches is
no less than 50 within each interval, or at least 5000 different task sets have been generated for the
interval. In the genetic algorithm implementation (Alg GA), both the number of individuals and

15

the number of generations are set to 30. To precisely assess the performance of the approaches, we
resort to simulation to check the schedulability of a task set for a given set of (m,k)-patterns.

The program is run for 10 times and the average results are collected in Table 1. In our exper-
iments, task sets with utilization values less than 0.8 are all schedulable with their corresponding
deeply-red (m,k)-patterns, and none of the task set with utilization greater than 2.0 is schedulable
with any of the approaches. Hence, we omit these data from Table 1. In Table 1, columns 2-4 list
the average numbers of schedulable task sets by each approach across 10 runs. The columns labeled
“Improvement” represent the relative improvements of our two approaches over the approach in
[16].

No. of Schedulable Task Sets Improvement(%)
Utilization Alg Orig Alg RT Alg GA Alg RT Alg GA
0.8 - 1.0 28.3 31.1 31.2 9.89 12.24
1.0 - 1.2 133.7 153.7 151.1 15.96 13.01
1.2 - 1.4 105.6 123.9 127.8 17.32 21.02
1.4 - 1.6 20.1 26.6 36.3 32.34 80.60
1.6 - 1.8 1.6 3.0 6.1 87.50 281.25
1.8 - 2.0 0.0 0.1 0.6 NaN NaN

Table 1: Experimental results comparing the three approaches

From Table 1, one can conclude that bothAlg RT andAlg GA improve the performance of
Alg Orig , and the improvements become more significant as the task-set utilization factor values
increase. In the experiments, as we expect, a task set is schedulable withAlg RT as long as it
is schedulable withAlg Orig . We want to point out that there exist few cases when a task setis
schedulable withAlg Orig but cannot be scheduled withAlg GA. However, as shown in Table 1,
for a large number of task sets, much more task sets can be scheduled withAlg GA, and in most
cases,Alg GA has the best performance among the three approaches in termsof the number of task
sets satisfying the (m,k) constraints.

6 Conclusions

In this paper, we address the problem of scheduling task setswith (m,k) constraints using the fixed-
priority scheme. Similar to [16], the scheduling approach is to partition the jobs of each task into
mandatory or optional jobs. All the jobs are scheduled according to RMA with the optional jobs
assigned the lowest priority. We prove that finding the optimal partition as well as determining the
schedulability of the resultant task set are both NP-hard problems. Since traditional hard real-time
analysis techniques cannot be readily employed to analyze the behavior of a task sets with (m,k)
constraints, we propose a new technique, based on the General Chinese Remainder Theorem, to
quantify the interference between tasks. We then propose two approaches to improve the partitions
proposed in [16]. Compared with the approach in [16], our approaches produce better partitions
for reducing the interference among mandatory jobs and thusbetter explore the (m,k) constraints in
overloaded systems. We prove that our solution space is a super set of that in [16]. Furthermore, for
a task set with arbitrary (m,k)-patterns, whose worst case response time cannot be easily identified,
we propose a sufficient condition which takes only polynomial time to predict its schedulability.

16

Experimental results show that the improvements achieved by our approaches are quite significant
when the utilization factors of task sets are relatively large.

References

[1] G. Bernat and A. Burns. Combining (n,m)-hard deadlines and dual priority scheduling.Proceedings of
Real-Time Systems Symposium, pages 46–57, Dec 1997.

[2] G. Buttazzo. Value vs. deadline scheduling in overload conditions.Proceedings of Real-Time Systems
Symposium, pages 90–99, Dec 1995.

[3] M. Caccamo and G. Buttazzo. Exploiting skips in periodic tasks for enhancing aperiodic responsive-
ness.Proceedings fo Real-Time Systems Symposium, pages 330–339, Dec 1997.

[4] J.-Y. Chung, J. W. Liu, and K.-J. Lin. Scheduling periodic jobs that allow imprecise results.IEEE
Transactions on Computers, 39(9):1156–1175, Sep 1990.

[5] M. K. Gardner and J. W.S.Liu. Performance of algorithms for scheduling real-time systems with over-
run and overload.Proceedings of the eleventh euromicro conference on real-time systems, pages 287–
296, Jun 1999.

[6] M. Garey and D. Johnson.Computers and Intractability: A Guid to the Theory of NP-Completeness.
FreeMan, San Francisco, CA, 1979.

[7] K. Gilad and S. Dennis. Dover: an optimal on-line scheduling algorithm for overloaded uniprocessor
real-time systems.Electronics Letters, 33(15):1301–1302, July 1997.

[8] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley,
MA, 1989.

[9] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for streams with (m,k)-
firm deadlines.IEEE Transactions on Computes, 44:1443–1451, Dec 1995.

[10] C.-C. Han and H.-Y. Tyan. A better polynomial-time schedulability test for real-time fixed-priority
scheduling algorithms.Proceedings of the Real-Time Systems Symposium, pages 36–45, 1997.

[11] M. C. H. M. H. Klein and J. P. Lehoczky. Timing analysis for fixed-priority scheduling of hard real-time
systems.IEEE Transactions on Software Engineering, 20(1):13–28, 1994.

[12] G. Koren and D. Shasha. Skip-over: Algorithms and complexity for overloaded systems that allow
skips.Proceedings of Real-Time Systems Symposium, pages 110–117, Dec 1995.

[13] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact characterization and
average case behavior.Proceedings of the 1989 IEEE Real-time System Symposium, pages 166–171,
1989.

[14] J. Y.-T. Leung and M.L.Merrill. A note on preemptive schedulingof periodic, real-time tasks.Infor-
mation Processing Letters, 11(3):115–118, Nov 1980.

[15] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic,real-time
tasks.Performance Evaluation, 2:237–250, 1982.

[16] P. Ramanathan. Overload management in real-time control applications using (m,k)-firm guarantee.
IEEE Transactions on Parallel and Distributed Systems, 10(6):549–559, Jun 1999.

[17] F. Remeo.Simulated Annealing: Theory and Applications to Layout Problems. PhD thesis, Dept. Of
Elec. Eng. & Comp. Sci., University of California, Berkeley, Mar. 1989.

[18] K. Tindell. Adding time-offsets to schedulability analysis. Technical Report YCS 221, Dept. of Com-
puter Science, University of York, England, 1994.

[19] R. West and K. Schwan. Dynamic window-constrained scheduling for multimedia applications.The
6th International Conference on Multimedia Computing and Systems, Jun 1999.

17

