Enhanced Fixed-Priority Scheduling with (m,k)-Firm
Guarantee

Gang Quan Xiaobo (Sharon) Hu
Department of Computer Science & Engineering
University of Notre Dame
Notre Dame, IN 46556
{gquan,shi@cse.nd.edu

Abstract

In this paper, we study the problem of scheduling task sets with (©of3traints. Accord-
ing to our scheduling approach, jobs of each task into are partitionetiwoteets: mandatory
or optional. Mandatory jobs are scheduled according to their fixed-pessivhile the optional
jobs are assigned to the lowest priority. We show that finding thamab partition as well
as determining the schedulability of the resultant task set are both NPphatslems. A new
technique, based on ti&eneral Chinese Remainder Theorésrproposed to quantify the inter-
ference among the tasks, which is then used to derive two approaches toértipegartition.
Furthurmore, a sufficient condition is presented to predict the schetitylalh mandatory jobs
in polynomial time. We prove that our partitions are never worse thase obtained in the
previous work. Experimental results also show the significant ingmreent achieved by our
approaches.

1 Introduction

Much work has been conducted in scheduling analysis of realdtime systems, where violating
task deadlines must be avoided at all cost. However, in mealytime embedded systems, e.g.,
a video decoder, it is often acceptable to miss task deadbeeasionally. Several firm-deadline
models have been proposed to study such systems, e.g., phecise computation model [4], the
“skip-over” model [12], and the (m,k)-firm guarantee mod&l [In the (m,k) model{ < m < k),
system dynamic failure occurs if fewer tham out of anyk consecutive jobs of some task meet
their deadlines. lin = k, the system becomes a hard-deadline system. For the spasilof
m = k — 1, the (m,k) model reduces to the “skip-over” model [12]. Thek) model can be readily
incorporated into system Quality of Service (QoS) requigats, and is applicable to many real-time
systems such as those in multimedia and automotive comtrttis paper, we use the (m,k) model
to study the scheduling problem of overloaded systems.

Some approaches [1, 2, 3,5, 7, 9, 12, 19] apply dynamic simgdidchniques to handle over-
loaded real-time systems. However, in many applicatiomedfipriority scheduling algorithms are
usually more attractive than dynamic-priority ones beeagst incurs lower overhead;{) the im-
plementation is relatively simpleji¢) it gives a designer control over task priorities. In thisypter,
we focus on applying fixed-priority scheduling to deal witredoaded systems. A few papers have
been published that study the (m,k) model under fixed-pyigtheduling. In [12], the “skip-over”
model is used and the task set schedulability is analyzdthircbntext. However, the results cannot

be readily applied to the (m,k) model. In [16], Ramanathappsed a scheduling technique for the
general (m,k) model. The beauty of the technique is thateis asvery simple algorithm to partition
the jobs of each task into two sets: mandatory and optionthimAndatory jobs are scheduled ac-
cording to their fixed-priorities, while optional jobs arssegned the lowest priority. It follows that
if all mandatory jobs meet their deadlines, no dynamic failwill happen.

Though the technique proposed in [16] is simple and elegdfashbes have some potential prob-
lems. First, thdirstjob of every task is always designated as mandatory, whide$xhe worst case
response time of every task to be that of the first job. Segptit# job partition algorithm implicitly
distributes the mandatory jobs evenly amdngonsecutive instances of a task. Such even distribu-
tion may not be advantageous in certain situations. Furtbe, the partition algorithm depends
solely on the ratio ofn overk of each task. That is, regardless of task periods and exectitnes,
the mandatory jobs of two tasks having the sameverk ratio are always distributed in the same
way among the&: consecutive jobs. In the following, we provide some exampeillustrate the
consequence of the above problems. In summary, all the giroldems can significantly impact
task set schedulability, which may then lead to overly paissic designs.

We believe that judicious selection of mandatarg. optional jobs plays a critical role in
scheduling systems with (m,k)-firm constraints. In thisgrapve first prove that the problem of
finding theoptimal partition between mandatory and optional jobs for each im&kP-hard in the
strong sense. Then, we present a heuristic algorithm tofynthai partitions given in [16]. Through
analyzing the effects of preemption and blocking on lowéoniy mandatory jobs by higher pri-
ority ones, we design an algorithm to carefully select mémggobs and reduce such effects. Our
experimental results show that our algorithm producesiféigimtly better partitions than the ones
proposed in [16] in terms of system schedulability. We atsonfally show that our solutions form
a super set of that obtained by [16], in the sense that anys&tskith (m,k) constraints schedulable
by [16] is always schedulable by using our algorithm.

The schedulability of (m,k) systems can be further improWeshe can tolerate spending some
more time on finding better mandatory/optional partitioffsliae. In this regards, we believe that
a probabilistic optimization algorithm (e.g., geneticaithms or simulated annealing) can be very
effective. One challenge in applying such algorithms isotorfulate an appropriate objective func-
tion. We propose a metric that can be used as an objectivédarand demonstrate its effectiveness
by implementing a genetic algorithm based on this metrice &perimental results are extremely
encouraging.

Another difficulty is to determine the schedulability ofikasvith (m,k) constraints after manda-
tory jobs are selected, which we prove to be NP-hard. One waplie this problem is to perform
the exact analysis for a large number of possible cases agestegl in [1, 18], which is com-
putational intractable for large task sets. We present ficeirit condition which can be used to
determine in polynomial time if a given set of mandatory jadschedulable. The condition was
derived based on an extension to the algorithm presentein [

The paper is organized as follows. In Section 2, we define mbipm and analyze some related
work. In Section 3, we prove several theorems to demonss@tee characteristics of the (m,k)-
firm guarantee problem and then introduce an important qunperecution interferenct® capture
the preemption and bolcking effects among tasks. Sectiamtams a detailed discussion of our
partitioning algorithms and approach to checking scheaility of task set with (m,k) constraints.
Experimental results are given in Section 5. Finally, we swuarnze our work in Section 6.

2 Preliminary and Motivation

Consider a system with independent periodic task¥, = {7y, 1, -, 7,}, arranged in the de-
creasing order of their priorities. Each instance of a tagtailed gob. Thejjth job of r; is denoted
asT;;. The following timing parameters are defined for tagk

e O;: the release time of the first job ef, referred to agnitial time.
e T;: the interval between two consecutive job release times, oéferred to aperiod

e D;: the maximum time allowed from the release to the complebibri's job, referred to as
deadline

e (;: the maximum time needed to completewithout any interruption, referred to &ecu-
tion time

e m; andk;: the (m,k) constraint for;, which mandates that at least out of & consecutive
jobs of r; must be completed prior to or on their deadlines to avoid gmachic failure.

When scheduling a task set with (m,k) constraints accorttiregfixed-priority assignment, one
critical step is to determine for each task whether its etienus mandatory or optional. This may
be envisioned as each job being associated with a binagbtari. If 7 = 1, the corresponding job
is mandatory. Otherwise, it is optional. The collection btlaese binary variables forms a binary
string, which we refer to as thmandatory job patternApparently, the selection of such mandatory
job pattern for each task may greatly impact the schedithaloif the task set. To ease our effort in
searching for the mandatory job patterns which can satigfy(n,k) constraints while making the
task set as schedulable as possible, we first introduce ltbaviiog definition.

Definition 1 The(m,k)-pattern of taskr;, denoted byl;, is a binary stringll; = {m;;mo...mi, }
which satisfies the following:)X 7;; is a mandatory job ifr;; = 1 and optional ifr;; = 0, and ¢)

k:,
>l T = M.

By repeating the (m,k)-patterfi;, we get a mandatory job pattern for. It is not difficult to see
that the (m,K) constraints for, can be satisfied if the mandatory jobsmpfire selected accordingly.
Note that the length of the (m,k)-pattern for tagks k;. Although we can increase the length of the
pattern, for example to bi#&:;, 3%;, ..., to improve the flexibility of selecting mandatory job paitis,
it increases the complexity of scheduling analysis and disates system implementation at the
same time. Note that when the length of pattern is greater thaor example, let it b&k;, then
Z?’Q’] mi; = 2m; do not necessary guarantee the (m,k) constraint. In that 2aswindows with
sizek; each need to be checked (wrap around the pattern if necg$sagyarantee that the (m,k)
constraint is not violated.

With the definition of (m,k)-pattern, we formulate the fixpderity (m,k) scheduling problem
as follows.

Definition 2 Given a periodic task séf, let the mandatory jobs defined by a set of (m,k)-patterns
be assigned fixed priorities and the optional jobs have theki priority. Find the optimal (m,k)-
patternII; for eachr; € 7 such that no other (m,k)-patterns can satisfy the (m,k)tcainss if the
optimal pattern cannot satisfy the (m,k) constraints.

Solving the above problem consists of two challenges:

e given a task set with (m,k) constraints, how to determined set of (m,k)-patterns are better
or easier to be scheduled than another;

e given a set of (m,k)-patterns, how to predict if the corregfing mandatory jobs are all
schedulable.

In [12], the authors consider the “skip-over” model, a specase of the above fixed-priority
(m,k) scheduling problem whema = k& — 1. They prove that determining whether a set of pe-
riodic, occasionally skippable tasks is schedulable isHdR} in the weak sense. We will extend
their proof and show that the problem of finding the optimajikapatterns is NP-hard in the strong
sense. When applying the rate-monotonic scheduling &fgorin the “skip-over” model, the au-
thors in [12] implicitly adopt the so-calledeeply-redtask set to be the mandatory job set. This
corresponds to the following (m,k)-pattern:

1 1<i<ki—1
mj—{ 0 j=k @)

For the above (m,k)-pattern, a sufficient and necessaryitimmds presented in [12] to determine
the schedulability. It is claimed in [12] that the worst camzurs in the deeply-red task set in
the "skip-over” model. However, no further work is done orooking different (m,k)-patterns to
improve the schedulability of a task set.

In [16], the general (m,k) model is used and an algorithm@ppsed for determining the (m,k)-
patterns for a given task set, which leads to the followingkjrpattern:

o 1 ifj= H(]?1k).><mr‘ X%J—l—l)
- P o 0
0 otherwise i=1,2,--- Kk

For the (m,k)-patterns above, one can see that the (m,tgrpdor a task is fixed once its (m,k)
constraint is defined, and the first job of every task is alwapeled to be mandatory. Moreover,
it is proved in [16] that the algorithm results in the most miatory jobs from0, ¢] compared with
those in any other interval of the same lengti®ne attractive consequence of the approach in [16]
is that the schedulability analysis can be conducted bylgieqiending that proposed in [13], since
the first job of each task always has the worst case respanee lHowever, this advantage becomes
less desirable in terms of meeting (m,k) constraints.

Consider the example in Figure 1. Here, the task set contaimsasks with the same periods
and the same (m,k)-firm constraint, i.e., (1,2). It is showirigure 1(a) that the mandatory jobs
cannot be scheduled if the (m,k)-patterns are assigneddiagdo (2), while some different (m,k)-
patterns can satisfy the (m,k) constraints (see Figure).1(b)addition to forcing the worst case
response time of every task to be that of the first job, thertiegte in [16] implicitly distributes the
mandatory jobs evenly amorkg consecutive jobs af;. Such even distribution may not be desirable
in certain situations as seen in the example given in Figuseh2re the (m,k) constraint af; is
(3,6) and that ofry is (1, 2).

In the following, we present our contributions on solving #fm,k) scheduling problem. We
first introduce the termwvork loadsimilar to the one introduced in [13]. It will be used extetety
in the rest of the paper.

Definition 3 Lett andt + ¢’ be two time instants in some-busy period11]. Thework load of 7;
in[¢,t + ¢'], denoted byW;(¢,t + t'), is defined as

Wz'(t,t + t’) = Zl” X Cj, (3)
J<i

0 T2 212 3T2 0 T2 272 312 472

(a) Using 10 as the (m,k)-patterns for both (b) Using 10 as the (m,k)-pattern
Task 1 and Task 2 results in an infeasible for Task 1 and 01 for Task 2 results
schedule in a feasible schedule

Figure 1: Different (m,k)-patterns for the same task sat keedifferent scheduling results.

Task 17772 vy /Y,

3T1 5T1 7Tl 5T1
mis
Task2 pr mm A
0 T2 2T2 0 T2 2712
(a) Using 101010 as the (m,k)-pattern for (b) Using 111000 as the (m,k)-pattern for
Task 1 and 10 for Task 2 results in an infeasible Task 1 and 01 for Task 2 results in a feasible
schedule schedule

Figure 2: Evenly distributed mandatory jobs may not alwayprove the schedulability.

wherel;; is the number of mandatory jobs of (j < 7) with their release times withirt[t + ¢').

3 Observations on the (m,k) Scheduling Problem

In this section, we first present several observationsaéléd the complexity issues of the (m,k)
scheduling problem. Then, we discuss an important conoepstimating preemption and blocking
effects among tasks with (m,k) constraints.

3.1 Complexity issues

We first show that selecting the “optimal” (m,k)-pattern &ach task can be very “difficult”.

Theorem 1 Given atask seI” the problem of deciding if there exists an (m,k)-patterreiach task
in 7 such that7 is schedulable is NP-hard in the strong sense.

Proof: We prove the theorem by reducing tBePartition problemto our scheduling problem. The
3-Partition problemis: given a setd = {aj,aq,---, a3} of 3m positive integers and a positive
integerB such that}IB <a; < %B andY?™ a; = mB, canA be partitioned inton, disjoined sets,
Ay, Ag, ..., A, such tha@aieAj a; = B for eachl < j < m? The3-Partition problemis proved
to be NP-hard in the strong sense [6].

Given a3-Partition problem we construct a task s6t = {1, 79, -, T3, } Such thatO; =
0,C; = a;,D; =T; = B,m; = 1,k; = m. Assume we have found an (m,k)-pattern for each
such that7 is schedulable. Then, after clustering tasks with the saml){pattern to forni; and
let the corresponding; form A;, we have

T; isschedulable= > a;=B,i=1,---,m
(l]‘EAi

5

Since the above reduction is linear, we prove the theorem. O

Another challenge in solving the (m,k) scheduling problentoi decide if the mandatory jobs
given by a set of (m,k)-patterns are schedulable. Unfotaipathe problem is also NP-hard.

Theorem 2 Given atask seI” and an (m,k)-pattern for each taskjn, the problem of determining
whetherT is schedulable is NP-hard.

Proof: Leung and Merrill have shown that checking the feasibilifyagperiodic task sets with
arbitrary initial times is NP-hard [14]. For any task etdefined in [14], we can always construct
a new task sef’ with (m,k) constraints such that; = k; for all 0 < 7 < n. The theorem holds
because it has been proved in[14] that deciding whefhisrschedulable or not is NP-hard. O

In Section 2, we reviewed the deeply-red task set used byskip-bver” model in [12] and
showed its (m,k)-pattern in (1). Here, we extend the deepdiytask set definition to the general
(m,k)-firm guarantee model.

Definition 4 Given a task sef with (m,k) constraints, thdeeply-red (m,k)-pattern for task 7,
I = {n]yny...m}} }, satisfies

1 1<5<m
M0 my <<k

For the deeply-red (m,k)-pattern, we have the followingestation.

Theorem 3 For task set7 with O; = 0,1 < i < n, if the mandatory jobs defined by the deeply-red
(m,k)-patterns are schedulable, the mandatory jobs ddrfkx@am any other (m,k)-patterns are also
schedulable.

Proof: Given the mandatory jobs according to the deeply-red (patlerns, for the first job of
7; € T, its work load in[0,] is,
j<i
wherel; is the number of mandatory jobs of from [0, z]. If 7; is schedulable, there exists a time
instantty such that
Wi(0,t9) =to < D;.

Suppose that job of;, 7;4, has the worst case response time, which is released in spme
busy period [11]. A job from a higher priority task can intené with the execution of;, if it is
released prior te;, but has not been completed by, or it is released in the;-busy period after
riq (See Figure 3(a)). If we shift the execution of every highgorty task such that its first job
interfering with7;, is released exactly af,, the resultant job pattern will make, more difficult
to be scheduled. Consequentlyrif in Figure 3(b) is schedulable, soig in 3(a), and hence; is
schedulable. In Figure 3(b), the work load®fin [r;,, ri, + to] iS

Wil(riqariq + tU) = ZI; X Cj’
J<i

wherel’; is the number of mandatory jobs of(j < i) in [rig, 7ig + to].
Sincel; is the maximum possible number of mandatory jobs;of; <) within any interval
with lengtht, i.e.,l; <1;, so we have,

Wi'(riq,riq + to) < Wi(o,tg) =ty < D;.

and taskr; must be schedulable. Box

@ (b)

Figure 3: Shifting periods of higher priority tasks; @ndr;) to create a worse case for.

3.2 Execution interference among tasks

As mentioning in previous sections, determining the scladgility of a task set with (m,k) con-
straints is a challenging problem, since exact timing aialfor a large number of possible cases
is very time consuming and in fact intractable for large tests. To reduce the computational cost,
we propose an effective way to help characterize and qyathigf preemption and blocking effects
on lower priority mandatory jobs by higher priority ones.

Given two tasksr, and7; (b < i), we say that a;,'s jobinterferesa 7;'s job if the execution
time interval of ther,,'s job either partially or entirely overlaps with the periofithe 7;'s job. We

8 e
Task h ; A‘V A‘ ‘V;{

hs Mh(s +1) A

Task i
"ig-1) i

Figure 4: Execution interference of with 7;;, wherer,, is the release time of joh,,.

use the ternexecution interferencef 7, with job 7;; to capture the amount gitentialpreemption
and/or blocking effect caused by during [(j — 1)T; + Oy, 5T; + O;]. In Figure 4,7,4,7,(511),
andr, all interfere with;;, and the execution interference of with 7;; is shown by the shaded
regions. Formally, we define execution interference ag¥ail

Definition 5 Given two tasks;, andr; (h < 4) and the (m,k)-pattern for each task, téeecution
interference of 7, with job 7;;, denoted b}Fj; eguals the total portions of the execution times of
all 7,'s mandatory jobs that fall insidgj — 1)T; + O;, 5T; + O;].

(Note that in Figure 4e, ande; become zero if the corresponding jobs are not mandatory)héda

matically, FZ’]’ can be calculated as follows,

Fli=e,+1}; x Ci + e, (4)

Wherelfj is the number of mandatory jobs of that fall entirely in the interval(j — 1)T; + O;, jT; +
Oi], €s = Thy min{Ch + rps — Ti(—1) 0}, ande; = mp,; min{Ch,rij — Tht}-

Each mandatory job of; may suffer different amount of interference by, and the job of
7; that suffers the most execution interference from highéority tasks tends to dominate the
schedulability ofr;. We refer to this maximum execution interference as the @i@t interference
of task 7, with taskr;, and denote it byF?, i.e.,

Fh = mjax{Fi};},j =1,2,---.
Since there exists an infinite number of mandatory jobs f&k 1 it might seem daunting to deter-
mine]-'ih. To tackle this problem, we borrow an existing theor&eneralized Chinese Remainder
Theorem (GCRT)[15], which is restated below.

Theorem 4 (GCRT) Let vy, v9, -+, v, be positive integersy be the least common multiple of
vy,v9, -+, Up, @anda, uy, - - -, u, be any integers. There exists exactly one integarich satisfies
a<u<at+vandu =wu; (moduvj)foralll <j<rifandonlyifu; =u; (mod ged(v;,v;))
forall 1 <i < j <r,whereged(z,y) denotes the greatest common divisor (GCD} aindy.

(Note thate = b (mod ¢) is equivalent taz mod ¢ = b mod ¢.) Based on GCRT, we proof two
lemmas to be used for analyzing the execution interfereet@den tasks. For generality, we use
“events” rather than “tasks” in the lemmas.

Lemma 1 Given two periodic event&; and E, with periodT; andT5, respectively, let the initial
times of the two events be the same, (k.= O,. Denote the release time of any instancepf
(resp.,E») by ry (resp.,r2). Thensy — ro = g * ged(T1,13), g € Z (Z is the set of integers).

Proof: Consider the case wherg; > r»;. (The other case can be proved in a similar manner.)
Sincery = a1y andry = b1y (a,b > 0, € Z), we have
ri; = 21 x 11,
and
ro = ko x 1To,
wherekq, k» > 0 andkq, ks € Z. Because
r1 mod T} = r9 mod Ty = 0.
Then, by applying GCRT, we have
ro =71 (mod ged(Ty,Ty)).
Hence,

|re — 1| = ¢ * ged (T, Ts), g >0, andq € Z.

O
Lemma 1 states that the interval between the release tinmeesydivo instances of two periodic
events always equals the integer multiple of the GCD of theitods, if these two periodic events
have the same initial time. Similarly, for periodic evengvimg different initial times, we have the
following lemma.

Lemma 2 Suppose that two periodic everiis and F, have periodd’ andT5,, and different initial
timesO; andO,, respectively. Denote the release time of any instanég ¢fesp.,F-) byr; (resp.,
r9). Then,ry —ro = px g+ (01 — Oy) mod g, whereg = ged(Ty,Ts), p € Z. Furthermore,
if |r1 — ro| is theminimum distancéetween the release times of afly's instance and any,'s
instance, thetr; — ro| < 4.

Proof: According to Lemma 1, if; and E; had the same initial time, we would have
ro=ri+axg,a € Z.
Given different initial times(; andO2, it follows thatr; andr,; satisfy one of the following:
ro—ri=a*xg+ (03— 01) =bxg+ (02 — O1) mod g,

and
ri—ro=a*xg+ (01— 02) =c*g+ (01 — Oy) mod g,

whereb, c € Z. Since
min|r; — r9| = min{(O; — O3) mod g, (02 — O1) mod g},

we conclude
min |7”] - 7”2‘ <

NS

O

Observe that;'s mandatory jobs corresponding tobjf = 1 can be viewed as a periodic event
E; with period &;T; and initial timeO; + (j — 1)7;. Furthermore, the mandatory jobs of can
also be viewed as a periodic evdryt with periodk, T}, and initial timeO,,. Let the release time of
an instance o¥J; (resp.,Ey) by r; (resp.,r,). According to Lemma 2y, —r, = {px g+ ((j —
1)T; + O; — Op) mod g}, whereg = ged(kpTh, kiT3), p € Z. Note that each unique value of
0 < (r; —rn) < kyT, may result in a different execution interferencergffor the corresponding
7;'s job. However, fofr; —r,) < 0 or (r; —ry) > kT, the execution interferences simply repeat
the cases fab < r; —r, < k,T},. Therefore, the computation of execution interference/beth two
tasks can be greatly simplified and is outlined in AlgorithnThe concept oéxecution interference
between tasks forms the basis of our proposed approachesdisdussed in the next section.

4 Our Approaches to the (m,k) Scheduling Problem

In this section, we first present a heuristic technique taaw@the (m,k)-patterns obtained by [16].
We then propose a metric that can be used as an objectiveduiciany probabilistic optimization
algorithm. Finally, we derive a sufficient condition to pigdthe schedulability of a task set with
given (m,k)-patterns.

4.1 Improving Evenly Distributed (m,k)-Patterns

In Section 2, we know that the algorithm in [16] results in K}rpatterns that are not always de-
sirable. We hereby present a heuristic technique to obtited(m,k)-patterns by judiciously “ro-
tating” the (m,k)-patterns computed by (2). The key ideapiseduce the execution interference
between tasks.

Algorithm 1 Calculate the execution interference between two tasks
Input: T; = {OZ', T;, D;, C;,m;, ki}, THh = {Oh, Ty, Dy, Ch, mp, kh}, I, I, h < 4
Output: F! /lexecution interference of, with 7;

Fh =0;
g = g(‘d(szz, k/'hTh);
for j from 1 to k; do
if Tij = 1 then
z = (0i+ (j —)T; — Op) mod g;
while z < k;, T}, do
Fz’; is calculated according to (4);
if 7} < Ft then
end if
r=x+g,
end while
end if
end for

As mentioned before, execution interference between akfave a significant impact on the
schedulability of a task set. It would be very helpful if wedknat what instants the maximum
execution interference for a given set of (m,k)-patterny mecur. We introduce the concept of
worst-case interference poitd capture this concept.

Definition 6 A worst-case interference point (WCIP) of taskr; is the beginning instant of a time
interval such that the number of mandatory jobs0fs the largest among all time intervals of the
same length.

Based on the above definition, for the (m,k)-patterns define@), time 0 is aworst-case
interference poinsince interval0, ¢] contains the largest number of mandatory jobs compared with
any other interval with the same length. Note that any taskas an infinite number of WCIPs for
a given (m,k)-pattern and they occur periodically with pdrk;7;. If a mandatory job from a lower
priority task is released at the same time as one of the W{IBanoe higher priority tasks, the job
will apparently suffer the largest execution interfereffican the higher priority tasks. Intuitively,
given a set of (m,k)-patterns, if a WCIP of a lower prioritghaand those of higher priority tasks
concur, it will be more difficult to meet the (m,k) constrainivhich is the case for the (m,k)-patterns
by [16].

If (m,k)-patterns can be defined such that the WCIPs betwasis tare as far apart as possible,
the schedulability of the task set would be improved. One t@agchieve this is to modify (2) as
follows. . (G 1)y, N

0 otherwise
wheres; > 0 ands; € Z. Note that the new (m,k)-pattern can be viewed as rotatieq(rti k)-
pattern in (2) right bys; bits. The new (m,k)-pattern certainly satisfies the (m,k)strints. Fur-

thermore, we have the following lemma.

Lemma 3 For 7; with the (m,k)-pattern defined in (5), the number of mandajobs ofr; is the
largest in[s; x T;, s; x T; 4+ t] compared with those within any other interval of the samgtlen

10

The proof can be readily obtained by applying Lemma 4 in [16] & thus omitted. According to
Lemma 3, by rotating the original (m,k)-pattern defined i (e essentially move the first WCIP
of taskr; from 0 to s;T;. Hence, through careful selection f(0 < s; < k;) values, we can alter
the separation between WCIPs of different tasks.

Our problem now becomes determining the valuesfaio separate WCIPs among tasks as far
as possible. Since the WCIPs of a task occur periodicallyresert to Lemma 2 in our search for
betters; values. Given task; and the (m,k)-pattern defined in (5), the WCIPs fpis a periodic
event with periodk;T; and initial timeO; + s;T;. According to Lemma 2, the distance between
the closest WCIPS of the two tasks,and;, is never bigger thaged(k;T;, k;T;)/2. Hence, we
can selects; and s; such that the distance is as closegta (k;7;, k;7})/2 as possible to reduce
the execution interference between the two tasks. For &tskcontaining three or more tasks, we
design a greedy algorithm shown in Algorithm 2.

Algorithm 2 Algorithm for finding rotation values for (m,k)-patterns
Input: Task set] = {7'1, Ty vuny Tn}, wherer; = {Oz, T;, D;, Cq;, mg, k‘q}
Output: sq,---, s, //rotation values for each tasks
U = (); // ¢ contains the tasks whosgvalues have been determined
while 7" is not empty do
7; = task inT with the smallesk;;
if U # () then
Q=U;
while Q # 0 do . .
7; = task in€2 such thatF} is maximum, where?? is defined in Section 3.2;
g = g(‘d(/ﬂ x Tj, k,‘j X Tj);
if g =1then
remover; from €2;
else
break;
end if
end while
O; = Oj + 55 X Tj;
s;j = lsuchthad <! < k; and| l><TZ~+OZ~—O; | is nearest to one dRq+1) x g/2,q € Z;
else

Add 7; to ¥;
Remover; from T
end while

The basic idea for Algorithm 2 is to reduce the worst caseaesg time of mandatory jobs by
reducing the execution interference between tasks. Obdskat the larger the valug is, the more
choices task; has for the position of its first WCIP. Hence, among the reingitasks whose;
values need to be determined, the algorithm always pick nieehaving the smallegt in its (m,k)
constraint. Then, the algorithm selects taskrom the tasks whose; values have been determined
such that the execution interference betweeandr; is the largest. The; value is then set so that
the distance between the WCIPs are maximized. Note thaticdbe whegcd(k;T;, k;T;) = 1,
no matter what the initial positions of WCIPs are, they wilestually meet at some time instant in

11

the future. If this happens, we simply go on to the next task.

Algorithm 2 is quite effective in improving the schedulatyilof task sets with (m,k) constraints.
We will give experimental results later to illustrate thisurthermore, we have the following theo-
rem. We omit the proof due to the page limit.

Theorem 5 If a task set can be scheduled with the (m,k)-patterns debigd®), it can always be
scheduled with the (m,k)-patterns defined in (5) wjtHetermined by Algorithm 2.

Proof: Consider first the case when the (m,k)-patterns are deriyd@)b The first job of each;
is always a mandatory one and has the worst case responseTtimaavork load of the job during
[0,%] is as defined in (3), i.e.,
t) =Y lij x Cj, (6)
J<i

wherel; is the number of mandatory jobs of (j < ¢) in [0, ¢]. If 7; is schedulable, we have
Wi(0,t1) =t <T;.

Now, let the (m,k)-patterns be rotated byvalues obtained from Algorithm 2. Similar to the
proof for Theorem 3, we only consider the case as shown inr€ig(b). In Figure 3(b), the work
load of 7; in [riq. g +] is

Wi((Tig:Tig +1) = Zl' x Cj,
1<t
wherel’; is the number of mandatory jobs of(j < i) in [rig, 7iq + t]. Since the (m,k)-patterns are
a rotated version of the ones derived from (2), by Lemma 3, areconclude thal; < ;. Thus
W/ (rig,mig +1t) < W;(0,t) =t < T;. It follows thatr; can be scheduled. O

4.2 A Metric for Evaluating (m,k)-patterns in Probabilistic Optimizat ion

Though the algorithm proposed in the previous section isilokgpof improving the schedulability
of task sets employing the (m,k)-patterns derived in [1&3re exist cases where no rotating (m,k)-
patterns can improve the schedulability. This was dematesdrby the example in Figure 2 in
Section 2. In such cases, evenly distributed (m,k)-pattane not appropriate. We need to find
other (m,k)-patterns. Since determining the optimal (rp&iterns is NP-hard, a natural contender
for solving the problem is a probabilistic optimization apgch based on such as genetic algorithms
(GA) or simulated annealing (SA), both of which have beemshto be effective in solving many
NP-hard problems [8, 17]. GA and SA differ in their mechanifmescaping local minima, but
both need an effective objective function to help direct skarch process. A major factor to the
success of such an approach is the choice of the objectieéidan We borrow the terrfitnessrom
GA to refer to the objective function, where a higher fithealug indicates a better solution. In this
subsection, we present a fithess function which is quitegfefor finding superior (m,k)-patterns.
An ideal fitness function should be able to reflect the fact tiséng one set of (m,k)-patterns
may make the system “easier” to be scheduled than anotheTlsetchallenge is how to describe
this “easiness”. Intuitively, a set of (m,k)-patterns lie@gto shorter worst case response times for
tasks is better. Yet, we have shown in Section 3 that, withirarlg (m,k)-patterns, finding the worst
case response time of a task is NP-hard. As mentioned bef@execution interference suffered
by a task directly impacts the schedulability of the task. Mdesby propose to use the execution

12

interference between the tasks to formulate the fithesdiamcSpecifically, let the fithess af be
f (). Then, we have

T;
F) = Gy ()
The denominator in (7) is an estimated worst case work load;fand all the higher priority tasks
during any time interval of lengtil;. To define the overall fithess value for a task set with some
known (m,k)-patterns, we notice that a task set is consitierdre unschedulable if any one of its
tasks misses the deadline. Hence, the task-set fithesgeddnof (7), is the minimum among the
fitness values of all tasks, i.e.,

f(T) = min f(7), (8)

1<i<n”
Given a task set with known (m,k)-patterns, evaluatftig;) hinges on computing the execution
interferences between pairs of tasks, which can be obtdipeédgorithm 1.

After the fitness function is obtained, we can apply eitherfads SA approach to search for
better (m,k)-patterns. We should point out that the fitneastion defined above is only an indicator
of the task set schedulability. That is, we cannot guarathtaefor any given task setg and7;,

T2 must be schedulable jf(71) < f(72) andT; is schedulable. However, we have used the
fitness function in a GA implementation and the experimergsililts are extremely encouraging as
shown in the next section. In our GA implementation, a gerdefined as a turple of a task and

12

M = number of generatio
x=0
‘ Initialize Population ‘
‘ Evaluate Fitness Fi

‘ Select Survivors ‘

!

‘ XxX=x+1 ‘

Randomly Vary Survivor#

Y

‘ Output the result ‘

Figure 5: Procedure of genetic algorithm for finding the (¥pktterns

its (m,k)-pattern, i.e., 7, I1;). The reproduction strategy is quite straight forward. Tingtation
operation selects a gene and changes one bit in the (mfeapétom 1 to 0 and another bit from
0 to 1. The crossover operation selects a cross point for mdividuals and swaps their contents
to construct two new individuals. More detailed information GA can be found in [8]. While the
effectiveness of our approach is demonstrated in the expets, how to construct a better fithess
function remains an open problem.

4.3 Determining Schedulability for Given (m,k)-patterns

We have proposed two methods to find better (m,k)-pattemthéo(m,k) scheduling problem. Yet,
we still face the challenge of determining if a task set iseskitable for some given (m,k)-patterns.

13

Answering this question becomes critical when the first jblewery task no longer has the worst
case response time. In section 3, we have proved that thisNd?ahard problem. Note that a task
7; With certain k-patterns can be viewed 5ag periodic tasks with period;T;, deadlineD;, and
initial offsets(a; — 1)T; + O; (a; is the index of the mandatory job #'s (m,k)-pattern). One way
to deal with this problem is to apply exact analysis [1, 18]dlhthe possible jobs where the worst
case response time may happen which is quite prohibitivéafge task sets. In the following, we
construct a sufficient condition to test if a task set withwndm,k)-patterns is schedulable. Our
goal is to be able to efficiently evaluate such a conditiod, lzance quickly decide if a set of (m,k)-
pattern, derived by an approach such as those describeé,atmv meet the (m,k) constraints. To
simplify the problem, we assume that the deadline of a tasklsdts period.

Our sufficient condition is an extension to the work by Han &yah [10]. In [10], a polynomial-
time algorithm is proposed to test the schedulability of edh@al-time system scheduled with
RMA. The basic idea is to map each task in the task set to a n&wstach that the new task
period is less than or equal to the original period and themgation time remains the same. An
additional requirement is that the new task set mudtdrenonic i.e., any shorter task period must
divide any longer task period. It is proved in [10] that if tharmonic task set is schedulable,
so is the original task set. However, this is no longer trueafdask set with (m,k) constraints.
Figure 6 illustrates such an example, whre= {r, o}, Th' = C1 = 6,7y = 7,Cy = 6,
and (my, k1) = (ma,k2) = (1,2). The corresponding harmonic task €t = {7/,)} with

=Cy =6,Ty = Cy = 6, and(m), k) = (mh, k) = (1,2). As shown in Figure 6(a)]’ can
be easily scheduled by executing the mandatory jobs atteeha but 7 cannot be scheduled with
the same (m,k)-patterns as shown in Figure 6(b).

Task 1
Task 2 -
6 12 18 24 36 7 14 21 28
(a) A harmonic task set is schedulable (b) A general task set using the same (m,k)-patterns
with 10 as the (m,k)-pattern for Task 1 as those in (a) is not schedulable even though the tasks
and 01 for Task 2 have longer periods

Figure 6: Harmonic task set and its original task set

We derive a sufficient condition that can be applied to tasik (m,k) constraints. Consider
task7; in aharmonictask set7". Let 7; has higher priority tham;. Then for any mandatory job of
7; released atg, at most[%ﬂ mandatory jobs of; occur in [,y + 7;]. SinceT is a harmonic

task set, so
1;
[21 _) T T: > T
1 otherwise

Supposé;; is the maximum number of mandatory jobs fremduring any time interval of length
T;. Let
Wi = (lij x Cj) 9)
j<i
Then, if 7 Wl < 1, the total work load by the;'s job under consideration and all other higher priority
mandatory jobs can be completed in anes period. Hence, task is certainly schedulable. For
general task sets, we have the following theorem.

14

Theorem 6 Given two task sets and 7" with T} < T;, C; = C;,m; = m;, k; = k;, andT} divides
T! if TJ‘ < T!. With the given (m,k)-patterns,jtjgi(lij x C;)/T] < 1, wherel;; is themaximum
number of mandatory jobs during any time interval of lengjththen7 is also schedulable.

Proof: Suppose that the worst case response timeg tlappens at;, as shown in Figure 3(a).
Similar to the proof for Theorem 3, we only consider the casstaown in Figure 3(b). In Figure
3(b), we have
Wilrig,rig + T7) = Y (pij % Cj),
J<i
wherep;; is the maximum number of mandatory jobsmgfduring [rig, rig + T;]. SinceT; > Tj,
we havep; < [;;, and thus

Wi(rig:rig + 1) <Y (lij x Cj) < T] < T;.
Jj<i

It follows that jobr;, with the worst case response time can be finished beforeatslide. Hence,

7; 1S schedulable. O
Given a task set with (m,k) constraints, we can apply therdlgo in [10] to find the corre-
sponding harmonic task set, and deterniijndrom the given (m,k)-patterns. Then, by Theorem 6,
the schedulability of the task set can be tested. A strasghtird implementation of our sufficient
condition takes) (n*klogn) time, wherek = max; k; andn is the number of tasks. Note that our
analysis above is based on the case when= T;,7 = 1,...,n. The result can be extended to
the case wheD; < T;,7 = 1,...,n with the similar approach shown in [10]. How to get tighter

sufficient condition without greatly increasing the congligtnal cost is another open problem.

5 Experimental Results

In this section, we present some experimental results tgeaosrthe performance of our approaches
with that in [16]. For ease of explanation, we usig_Orig for the algorithm in [16],Alg_RT for
Algorithm 2 in Section 4.1, andlg_GA for the genetic algorithm approach that employs the fitness
function discussed in Section 4.2.

Recall that the goal of our approaches is to select a set &j-{patterns such that they will make
the given task set easier to be scheduled. According to €he8t a task set can be scheduled with
any set of (m,k)-patterns if it is schedulable with theeply-red(m,k)-patterns. In this case, there
would be no benefit to apply the (m,k)-patterns obtained theei16] or our approaches. Hence,
we discard such task sets during our experiments. Moresugre task sets with low utilization
factor values are easier to be scheduled even with (m,k)trdints, a fair comparison needs to
study a large spectrum of utilization factor values.

In our experiments, we consider task sets with 5 tasks. Thedgef each task is randomly
selected from a uniform distribution between 10 to 50, amddbadline of each task is assumed to
equal its period. The; andk; values are also randomly selected, whigries uniformly distributed
between 2 to 10, anak; is uniformly distributed between 1 arigl. We partition the utilization factor
values into intervals of length 0.2. Then, the executioretheach task is randomly selected such
that the utilization values of the resulting task sets aiiéormly distributed within each interval.
To reduce statistical errors, the number of task sets sdhigléuoy at least one of the approaches is
no less than 50 within each interval, or at least 5000 diffetask sets have been generated for the
interval. In the genetic algorithm implementatioflg_GA), both the number of individuals and

15

the number of generations are set to 30. To precisely adsegetformance of the approaches, we
resort to simulation to check the schedulability of a tagk@ea given set of (m,k)-patterns.

The program is run for 10 times and the average results akected in Table 1. In our exper-
iments, task sets with utilization values less than 0.8 Hrechedulable with their corresponding
deeply-red (m,k)-patterns, and none of the task set witlzation greater than 2.0 is schedulable
with any of the approaches. Hence, we omit these data frorte Takin Table 1, columns 2-4 list
the average numbers of schedulable task sets by each ap@wass 10 runs. The columns labeled
“Improvement” represent the relative improvements of auo approaches over the approach in
[16].

No. of Schedulable Task Sets| Improvement(%)
Utilization || Alg_Orig | Alg_RT | Alg_GA || Alg_RT | Alg_GA
0.8-1.0 28.3 311 31.2 9.89 12.24
1.0-1.2 133.7 153.7 | 151.1 15.96 | 13.01
1.2-14 105.6 1239 | 127.8 17.32 | 21.02

14-16 20.1 26.6 36.3 32.34 | 80.60
16-18 1.6 3.0 6.1 87.50 281.25
1.8-20 0.0 0.1 0.6 NaN NaN

Table 1: Experimental results comparing the three appesmch

From Table 1, one can conclude that bétdg_RT and Alg_GA improve the performance of
Alg_Orig, and the improvements become more significant as the taskiization factor values
increase. In the experiments, as we expect, a task set ididabie withAlg_RT as long as it
is schedulable withAlg_Orig. We want to point out that there exist few cases when a tasis set
schedulable wittAlg_Orig but cannot be scheduled witkig_GA. However, as shown in Table 1,
for a large number of task sets, much more task sets can bdudetenithAlg_GA, and in most
casesAlg_GA has the best performance among the three approaches indetinesnumber of task
sets satisfying the (m,k) constraints.

6 Conclusions

In this paper, we address the problem of scheduling taskagtitgm,k) constraints using the fixed-
priority scheme. Similar to [16], the scheduling approaghoi partition the jobs of each task into
mandatory or optional jobs. All the jobs are scheduled atingrto RMA with the optional jobs
assigned the lowest priority. We prove that finding the optipartition as well as determining the
schedulability of the resultant task set are both NP-haotlpms. Since traditional hard real-time
analysis techniques cannot be readily employed to anahad®deéhavior of a task sets with (m,k)
constraints, we propose a new technique, based on the Gé&iterese Remainder Theorem, to
guantify the interference between tasks. We then propos@pproaches to improve the partitions
proposed in [16]. Compared with the approach in [16], ourrapphes produce better partitions
for reducing the interference among mandatory jobs andhlbtter explore the (m,k) constraints in
overloaded systems. We prove that our solution space isex sepof that in [16]. Furthermore, for
a task set with arbitrary (m,k)-patterns, whose worst caspanse time cannot be easily identified,
we propose a sufficient condition which takes only polyndrtifae to predict its schedulability.

16

Experimental results show that the improvements achieyealb approaches are quite significant
when the utilization factors of task sets are relativelgéar

References

[1] G.Bernatand A. Burns. Combining (n,m)-hard deadlines and duadifyrischedulingProceedings of
Real-Time Systems Symposipages 46-57, Dec 1997.

[2] G. Buttazzo. Value vs. deadline scheduling in overload conditi®ngceedings of Real-Time Systems
Symposiunpages 90-99, Dec 1995.

[3] M. Caccamo and G. Buttazzo. Exploiting skips in periodic tasks fomanimg aperiodic responsive-
ness.Proceedings fo Real-Time Systems Sympaggages 330-339, Dec 1997.

[4] J.-Y. Chung, J. W. Liu, and K.-J. Lin. Scheduling periodic gahat allow imprecise resultsEEE
Transactions on Computer39(9):1156-1175, Sep 1990.

[5] M. K. Gardner and J. W.S.Liu. Performance of algorithms for scheduial-time systems with over-
run and overloadProceedings of the eleventh euromicro conference on real-time systages 287—
296, Jun 1999.

[6] M. Garey and D. JohnsorComputers and Intractability: A Guid to the Theory of NP-Complessn
FreeMan, San Francisco, CA, 1979.

[7] K. Gilad and S. Dennis. Dover: an optimal on-line scheduling athorifor overloaded uniprocessor
real-time systemsElectronics Letters33(15):1301-1302, July 1997.

[8] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Leaniaddison-Wesley,
MA, 1989.

[9] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment techfdgstreams with (m,k)-
firm deadlineslEEE Transactions on Compute®t:1443-1451, Dec 1995.

[10] C.-C. Han and H.-Y. Tyan. A better polynomial-time schedulabil@st for real-time fixed-priority
scheduling algorithmsProceedings of the Real-Time Systems Sympogpiages 36—45, 1997.

[11] M. C.H. M. H.Klein and J. P. Lehoczky. Timing analysis for fixedepity scheduling of hard real-time
systemslEEE Transactions on Software Engineeri2@(1):13—-28, 1994.

[12] G. Koren and D. Shasha. Skip-over: Algorithms and complexityoferloaded systems that allow
skips. Proceedings of Real-Time Systems Sympqgages 110-117, Dec 1995.

[13] J.Lehoczky, L. Sha, and Y. Ding. The rate monotonic schedulingyitihgm: Exact characterization and
average case behavidProceedings of the 1989 IEEE Real-time System Sympppages 166-171,
1989.

[14] J. Y.-T. Leung and M.L.Merrill. A note on preemptive schedulwfgeriodic, real-time taskslnfor-
mation Processing Letterd1(3):115-118, Nov 1980.

[15] J.Y.-T. Leung and J. Whitehead. On the complexity of fixed-jisicrcheduling of periodic,real-time
tasks.Performance Evaluatiqr2:237-250, 1982.

[16] P. Ramanathan. Overload management in real-time control applicatiogs(agk)-firm guarantee.
IEEE Transactions on Parallel and Distributed Systet®6):549-559, Jun 1999.

[17] F. Remeo.Simulated Annealing: Theory and Applications to Layout ProbleRitD thesis, Dept. Of
Elec. Eng. & Comp. Sci., University of California, Berkeley, Mar. 1989

[18] K. Tindell. Adding time-offsets to schedulability analysigchnical Report YCS 221, Dept. of Com-
puter Science, University of York, England, 1994.

[19] R. West and K. Schwan. Dynamic window-constrained scheduling tdtimmedia applicationsThe
6th International Conference on Multimedia Computing and Syst&ams1999.

17

