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Micromagnetic simulation of thermally activated switching
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Abstract

Effects of thermal activation are included in micromagnetic simulations by adding a random thermal field to the
effective magnetic field. As a result, the Landau–Lifshitz equation is converted into a stochastic differential equation of
Langevin type with multiplicative noise. The Stratonovich interpretation of the stochastic Landau–Lifshitz equation

leads to the correct thermal equilibrium properties. The proper generalization of Taylor expansions to stochastic
calculus gives suitable time integration schemes. For a single rigid magnetic moment the thermal equilibrium properties
are investigated. It is found, that the Heun scheme is a good compromise between numerical stability and

computational complexity. Small cubic and spherical ferromagnetic particles are studied. r 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Micromagnetic simulations of permanent mag-
netic materials reveal the details of the magnetiza-
tion distribution and dynamic magnetization
reversal processes. A knowledge of the dynamic
behaviour is of great importance for the design of
future magnetic recording media. When the desired
magnetization switching frequencies reach an order
of magnitude, which is comparable to the intrinsic
relaxation time of the media, the switching
dynamics have to be investigated in more detail.
The paper is organized as follows: In Section 2

we extend the theory to take into account thermal

perturbations and find a stochastic differential
equation. In Section 3 stochastic calculus is
summarized and we find the quantitative proper-
ties of the thermal field. For the numerical solution
of our Langevin equation we develop suitable
numerical integration schemes in Section 4. Then
we study the behaviour of a rigid magnetic
moment in Section 5 before we go on to cubic
and spherical particles in Sections 6 and 7,
respectively, which are discretized into smaller
computational cells.

2. The stochastic Landau–Lifshitz equation

Thermal activation is introduced in the Landau–
Lifshitz equation by a stochastic thermal field Hth;
which is added to the effective field. It accounts for
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the effects of the interaction of the magnetization
with the microscopic degrees of freedom (e.g.
phonons, conducting electrons, nuclear spins,
etc.), which cause fluctuations of the magnetiza-
tion. This interaction is also responsible for the
damping, since fluctuations and dissipation are
related manifestations of one and the same intera-
ction of the magnetization with its environment.
Since a large number of microscopic degrees of

freedom contribute to this mechanism, the thermal
field is assumed to be a Gaussian random process
with the following statistical properties

/Hth;iðtÞS ¼ 0: ð1Þ

This means, that the average of the thermal field
taken over different realizations vanishes in each
direction iAfx; y; zg of space. The second moment,
or variance, is given by

/Hth;iðtÞHth;j ðt0ÞS ¼ 2Ddijdðt� t0Þ: ð2Þ

This equation is a manifestation of the fluctua-
tion–dissipation theorem. It relates the strength of
the thermal fluctuations (the variance 2D of the
thermal field) to the dissipation due to the
damping of our system [1]. The Kronecker d
expresses the assumption, that the different com-
ponents of the thermal field are uncorrelated,
whereas the Dirac d expresses, that the autocorre-
lation time of the thermal field is much shorter
than the response time of the system (‘‘white
noise’’).
After adding the thermal field we get the

stochastic Landau–Lifshitz equation

dM

dt
¼ � g0M� ðHeff þHthÞ

�
ag0

Ms
M � ðM� ðHeff þHthÞÞ; ð3Þ

where

g0 ¼
g

1þ a2

����
���� ; g ¼

m0gjej
2me

:

Rearrangement to separate deterministic from
stochastic contributions gives

dM

dt
¼ � g0M�Heff �

ag0

Ms
M� ðM�Heff Þ

� g0M�Hth �
ag0

Ms
M� ðM�HthÞ; ð4Þ

which reveals, that it is a Langevin type stochastic
differential equation with multiplicative noise.
To keep the notation simple, we rewrite Eq. (4)

by substituting

AiðM; tÞ ¼ �g0M�Heff �
ag0

Ms
M� ðM�Heff Þ

� �
i

ð5Þ

and

BikðM; tÞ ¼ � g0eijkMj �
ag0

Ms
eijnMjenmkMm

¼ � g0eijkMj �
ag0

Ms
ðdimdjk � dikdjmÞMjMm

¼ � g0eijkMj �
ag0

Ms
ðMiMk � dikM2Þ ; ð6Þ

where we have written M2 for Mjj ¼ M2
s : We have

used the Einstein summation convention and we
will do so in the following. The outer products
have been rewritten with the totally antisymmetric
unit tensor e (Levi–Civita symbol).
Hence, we can simplify the stochastic Landau–

Lifshitz equation (3) and get

dMi

dt
¼ AiðM; tÞ þ BikðM; tÞHth; kðtÞ: ð7Þ

This is the general form of a system of Langevin
equations with multiplicative noise, because the
multiplicative factor BikðM; tÞ for the stochastic
process Hth;kðtÞ is a function of M:

3. Stochastic calculus

As we have seen in Section 2, the effect of
thermal activation can be introduced in the
formalism of micromagnetics by adding a random
fluctuation field to the effective magnetic field. A
trajectory of the magnetization can be obtained by
integrating the equation of motion. However, in
addition to the well-known deterministic terms we
also have a stochastic contribution.
It is assumed that the thermal activation is

caused by perturbations of very high frequency.
‘‘Very high’’ means in this case that the frequency
is well above the typical precession frequency of
the magnetization vector. Thus, the fluctuating
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field, which is used to simulate the effect of thermal
activation, is represented by a stochastic process.
It is assumed to be Gaussian white noise, because
the fluctuations emerge from the interaction of the
magnetization with a large number of independent
microscopic degrees of freedom with equivalent
stochastic properties (e.g. phonons, conducting
electrons, nuclear spins, etc.) [2]. As a result of the
central limit theorem, the fluctuation field is
Gaussian distributed.
Let us assume a one-dimensional stochastic

differential equation with multiplicative noise [3]

dXðtÞ
dt

¼ aðXðtÞ; tÞ þ bðXðtÞ; tÞ ZðtÞ: ð8Þ

The increment dX during a short time interval dt is
given by

dXðtÞ ¼
Z tþdt

t

aðXðt0Þ; t0Þ dt0

þ
Z tþdt

t

bðXðt0Þ; t0ÞZðt0Þ dt0:

The second term, which is a stochastic integral, has
to be investigated in more detail. We can evaluate
the integrand at the beginning of the interval ½t; tþ
dt�; multiply it by the length of the interval and use
the result as the increment for small dt: Thus, we
obtain

dXðtÞ ¼ a XðtÞ; tð Þ dtþ b XðtÞ; tð ÞZðtÞ
ffiffiffiffiffi
dt

p
;

where ZðtÞ is a standard Gaussian random variable
at each discrete time step with

/ZðtÞZðt0ÞS ¼ dðt; t0Þ:

However, we could also evaluate the integrand b at
any other time t0 in the interval ½t; tþ dt� and at

%XðtÞ ¼ ð1� aÞXðtÞ þ aXðtþ dtÞ

¼ ð1� aÞXðtÞ þ a XðtÞ þ dXðtÞð Þ

¼XðtÞ þ adXðtÞ: ð9Þ

In this general case we get for the increment dXðtÞ
an implicit expression

dXðtÞ ¼ a %XðtÞ; t0
� �

dtþ b XðtÞð

þ adXðtÞ; t0ÞZðtÞ
ffiffiffiffiffi
dt

p
:

With the abbreviation b0 ¼ @bðX ; tÞ=@X we get

b XðtÞ þ a dXðtÞ; t0
� �

ZðtÞ
ffiffiffiffiffi
dt

p
¼ b XðtÞ; tð ÞZðtÞ

ffiffiffiffiffi
dt

p
þ ab0 XðtÞ; t0

� �
dXðtÞZðtÞ

ffiffiffiffiffi
dt

p
þ? ð10Þ

b XðtÞ þ a dXðtÞ; t0
� �

ZðtÞ
ffiffiffiffiffi
dt

p
¼ b XðtÞ; tð ÞZðtÞ

ffiffiffiffiffi
dt

p
þ ab0 XðtÞ; t0

� �
b XðtÞ; t0
� �

Z2ðtÞ dt

þOðdt3=2Þ: ð11Þ

Finally, we get for the increment dXðtÞ

dXðtÞ ¼ a XðtÞ; tð Þ þ ab0 XðtÞ; tð Þb XðtÞ; tð ÞZ2ðtÞ
	 


dt

þ b XðtÞ; tð ÞZðtÞ
ffiffiffiffiffi
dt

p
: ð12Þ

In this equation we find an additional drift term,
which contains a and Z2ðtÞ: The latter can be
replaced by 1 for terms up to the order of dt:
Depending on the choice of a and the interpreta-
tion of the integral, we get different drift terms. If
we set a ¼ 0; we get

dXðtÞ ¼ aðXðtÞ; tÞ dtþ bðXðtÞ; tÞZðtÞ
ffiffiffiffiffi
dt

p
ð13Þ

and we call it the It #o interpretation of the
stochastic differential equation

’XðtÞ ¼ aðXðtÞ; tÞ þ bðXðtÞ; tÞZðtÞ: ð14Þ

For a ¼ 1=2; we get

dXðtÞ ¼ aðXðtÞ; tÞ þ
1

2
b0ðXðtÞ; tÞbðXðtÞ; tÞ

� �
dt

þ bðXðtÞ; tÞZðtÞ
ffiffiffiffiffi
dt

p
ð15Þ

and we call it the Stratonovich interpretation,
which is indicated by writing

’XðtÞ ¼ aðXðtÞ; tÞ þ bðXðtÞ; tÞ 3 ZðtÞ: ð16Þ

Thus, we have to distinguish between the
interpretation of a stochastic differential equation
and the version, in which it is written. The
stochastic differential equation (16) can be written
in an It #o version using Eq. (15) as

’XðtÞ ¼ aðXðtÞ; tÞ þ
1

2
bðXðtÞ; tÞb0ðXðtÞ; tÞ

þ bðXðtÞ; tÞZðtÞ; ð17Þ

W. Scholz et al. / Journal of Magnetism and Magnetic Materials 233 (2001) 296–304298



where we find the noise induced drift term

1

2
bðXðtÞ; tÞb0ðXðtÞ; tÞ: ð18Þ

Reversely, Eq. (14) can be written in a Stratono-
vich version as

’XðtÞ ¼ aðXðtÞ; tÞ �
1

2
bðXðtÞ; tÞb0ðXðtÞ; tÞ

þ bðXðtÞ; tÞ 3 ZðtÞ

¼ %aðXðtÞ; tÞ þ bðXðtÞ; tÞ 3 ZðtÞ: ð19Þ

Due to the different drift terms, the two
interpretations yield different dynamical properties
[3]. It #o calculus is commonly chosen on certain
mathematical grounds, since rather general results
of probability theory can then be employed. On
the other hand, white noise is usually an idealiza-
tion of physical (coloured) noise with short
autocorrelation time, in which case the two time
covariance function is given by

/ZðtÞZðtþ tÞS ¼
s2

2m
e�mjtj

with a short time constant m�1:
The Wong–Zakai Theorem [4] then says, that in

the formal zero-correlation-time limit

s-sm; m-N

the coloured noise becomes white noise and we
obtain the Stratonovich interpretation for the
stochastic differential equation. The results coin-
cide with those obtained in the limit of fluctuations
with finite autocorrelation time. Therefore, Stra-
tonovich calculus is usually preferred in physical
applications.

4. Stochastic time integration

The mere translation of a numerical scheme
valid for deterministic differential equations does
not necessarily yield a proper scheme in the
stochastic case. Depending on the selected deter-
ministic scheme its unconditional translation
might converge to an It #o solution, to a Stratono-
vich solution, or to none of them. Even if the
scheme converges in the context of stochastic
calculus, the order of convergence is usually lower
than that of the deterministic scheme. This has to

be considered, when deciding for the discretization
time step.
The stochastic Landau–Lifshitz equation (7)

may be effectively solved using the Heun method.
The improved Euler or Heun method [2] is an
example of a predictor–corrector method. The
predictor is given by a simple Euler type integra-
tion. If we consider the Langevin equation (7), the
predictor is

%Mi ¼ MiðtÞ þ AiðM; tÞDtþ BikðM; tÞDWk; ð20Þ

where Dt is the discretization time step and

DWk ¼
Z tþDt

t

Hth;kðt0Þ dt0

are Gaussian random numbers, whose first two
moments are given by

/DWkS ¼ 0; /DWkDWlS ¼ 2DdklDt;

where 2D is the variance of the stochastic thermal
field (2). The Heun scheme is then given by

Miðtþ DtÞ ¼MiðtÞ þ
1

2
Aið %M; tþ DtÞ þ AiðM; tÞ
	 


Dt

þ
1

2
Bikð %M; tþ DtÞ
	

þ BikðM; tÞ


DWk:

ð21Þ

The stochastic Heun scheme converges in quad-
ratic mean to the solution of the general system of
Langevin equations (7) when interpreted in the
sense of Stratonovich.
To conclude, there are two main reasons for the

choice of the Heun scheme for the numerical
integration of the stochastic Landau–Lifshitz
equation: First, the Heun scheme yields Stratono-
vich solutions of the stochastic differential equa-
tions without alterations to the deterministic drift
term. Secondly, the deterministic part of the
differential equations is integrated with a second-
order accuracy in Dt; which renders the Heun
scheme numerically more stable than Euler type
schemes.
The stochastic Landau–Lifshitz equation is

discretized either with a finite difference or a
finite element method depending on the particle
geometry.

W. Scholz et al. / Journal of Magnetism and Magnetic Materials 233 (2001) 296–304 299



5. Rigid magnetic moment

The time step dependence of the numerical
integration schemes has been investigated by
simulating a single rigid magnetic moment. The
material parameters were chosen as Ms ¼
1 281 197 A=m; K1 ¼ 6:9� 106 J=m3; a ¼ 0:1; and
V ¼ 1 nm3: The effective field, which is just the
anisotropy field, is then given by

Hani ¼
2K1

m0Ms
¼ 8571 kA=m:

For the time for one full precession of the
magnetization vector we obtain

T ¼
1

f
¼
2p
o

¼
2p

gHani
¼ 3:32 ps;

where o ¼ gH is the Larmor frequency. The
average magnetization in thermal equilibrium
according to

/MzS ¼

R 1

0 expðwz
2Þz dzR 1

0 expðwz
2Þ dz

¼
1=2w expðwÞ � 1½ �ffiffiffi

p
p

=2erfð1Þ
; ð22Þ

where erfðxÞ denotes the error function and

w : ¼
K1V

kBT

is given in Table 1. Eq. (22) follows from the
probability density of the magnetization angle for
a single-domain Stoner–Wohlfarth particle [2].
Fig. 1 compares the time step dependence of the

average magnetization obtained with the Heun
method and the Milshtein scheme. The Milshtein
scheme [5] is the generalization of the deterministic
Euler method taking into account the multi-
plicative noise term in Stratonovich interpretation.

With the Milshtein scheme we find the correct
values for time steps smaller than 0:01 ps, which
is about 1/300 of the precession time. The
Heun scheme is suitable for time steps, which
are 10 times larger, because it has a higher order
of convergence. As a rule, the discretization time
step should be at most 1=30th of the precession
time of the magnetization vector in the effective
field.

6. Cubic particles

Cubes are easy to handle with finite difference
packages, because they have no curved bound-
aries. The results are compared with those
of Nakatani et al. [6], whose material parameters
have been used. They are chosen as Ms ¼
0:4�106 A=m and K1 ¼ 2� 105 J=m3; A ¼
1� 10�11 J=m: In all simulations the number of
switching events was counted for at least 100 ns up
to 1 ms and the results extrapolated to 1 ms.
Figs. 2 and 3 show the time dependence of the

magnetization for a cubic particle of 32 nm edge
length at 300K. The magnetization fluctuates in
the energy minimum around 71: From time to
time reversal processes occur when the magnetiza-
tion crosses the energy barrier and switches to the
other energy minimum. The probability per unit
time, that Mz jumps over the energy barrier E in

Table 1

Average component of the magnetization parallel to the

magneto-crystalline anisotropy axis for different temperatures

calculated for a single spin

Temperature (K) /MzS=Ms

10 0.98979

50 0.94268

200 0.71976

Fig. 1. Time step dependence of numerical integration schemes.
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thermal equilibrium, is proportional to

exp �
E

kBT

� 
:

We consider a single energy barrier model and
take only the anisotropy into account. The
reciprocal of the switching probability is the
relaxation time t which can thus be written in
the form of the Arrhenius–N!eel law [7]

1

t
¼ f0 exp �

K1V

kBT

� 
; ð23Þ

where f0 is the characteristic dynamic frequency.
The original estimation of N!eel was f0E109 s�1;
but recently it has become more customary to take
f0E1010 s�1 up to f0E1012 s�1: Fig. 4 gives the
number of switching events as a function of the
particle size calculated for different damping
constants a:
If we fit the data of the smallest time step in the

linear region of Fig. 4 (a ¼ 1) with the Arrhenius–
N!eel law, we find a characteristic dynamic
frequency of f0 ¼ 3:5� 1011: The exponent is
� 4:7� 1025 V and it is in good agreement with
the value

�
K1

kBT
¼ � 4:8� 1025 m3

which we would expect for a single (anisotropy)
energy barrier.
Brown [8] has derived an analytic expression for

the high-energy-barrier approximation of the
attempt frequency (here for SI units)

f0 ¼
agm0
1þ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H3

kM2Vm0
2pkbT

s

� 1� ðH=HkÞ
2

� �
1þH=Hk

� �
: ð24Þ

For the material parameters given above we find
with

g ¼ 1:7588� 1011 1=Ts ;Hk ¼
2K1

m0Ms
¼ 795 kA=m

at zero external field H ¼ 0 an attempt frequency
of 1:97� 1012: This result differs by a factor of 4

Fig. 2. Magnetization reversal of a cubic particle for a ¼ 1:

Fig. 3. Magnetization reversal of a cubic particle for a ¼ 0:1:

Fig. 4. Dependence on damping constant for different particle

sizes.
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from the numerically found value given above.
The reason is that the cubic particle has internal
degrees of freedom and the energy barriers might
not be high enough for the approximation to be
valid.

7. Spherical particles

The mechanism of thermally activated magne-
tization switching in small spherical ferromagnetic
particles has been investigated using the finite
element method. The material parameters have
been chosen as Ms ¼ 0:4� 106 A=m; A ¼ 3:64�
10�12 J=m; a ¼ 1; and a radius R ¼ 11:5 nm; which
gives a volume of 6:37� 10�24 m3: The finite
element mesh consists of 115 nodes and 440
elements. The mean diameter of the finite elements
is 3 nm. This discretization is sufficient, if we
assume a rather low magnetocrystalline anisotro-
py. For K1 ¼ 2� 105 J=m3 we find a typical
domain wall width of

d ¼ p

ffiffiffiffiffiffi
A

K1

r
E57 nm:

The initial magnetization is homogeneous and
parallel to the easy axis of the particle. Its
magnetization distribution is destabilized by an
external magnetic field, which is parallel to the
easy axis but antiparallel to the initial magnetiza-
tion. Since this is a metastable state, we can expect
the particle to overcome the energy barrier, which
is called the activation energy, and reverse its
magnetization after some time. In contrast to
Monte Carlo simulations [9,10], we obtain not
only information about the dynamical behaviour,
but also about the switching times. The metastable
lifetime (or relaxation time) t is defined as the
time, which passes from the initially saturated
state MzðtÞ ¼ Ms until MzðtÞ ¼ 0:
In order to measure the metastable lifetime a

large number of simulations have been performed
for each set of parameters. After 200 measure-
ments a waiting time histogram was obtained. The
integral of this histogram is proportional to the
switching probability PðtÞ; that is the probability,
that the particle has switched after a certain time.
However, it is more common to draw graphs for

the (rescaled) probability of not switching (Fig. 5)
PnotðtÞ ¼ 1� PðtÞ:
The magnetization reversal process can happen

in different reversal modes. In a particle with low
anisotropy (or at low external fields) the magne-
tization rotates coherently, which means, that the
magnetization remains almost homogeneous dur-
ing the reversal process except for small thermal
fluctuations. If the anisotropy (or the external
field) is increased, it becomes favourable to form a
nucleus of reverse magnetization. Thus, a droplet
nucleates near the surface and expands until the
magnetization is completely reversed.

Fig. 5. Probability of not switching for different time step sizes.

Fig. 6. Dependence of the metastable lifetime on the external

field.
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The external field has been chosen to be
comparable to the anisotropy field

Hani ¼
2K1

m0Ms
:

Fig. 6 shows, how the metastable lifetime
decreases, when the external field is increased
(the solid line is only a guide to the eye). K1 ¼
2� 105 J=m3 and m0Hext ¼ m0Hani ¼ 1 T have been
used at a temperature of 500K.
Two different regimes, characterized by different

magnetization reversal processes can be identified.
For external fields lower than the anisotropy field
(jH joHani), magnetization reversal by coherent
rotation is found. For high external fields

(jHjbHani), the reversal process is driven by the
expansion of a nucleus of reverse magnetization.
Since the external field is higher than the

anisotropy field, there is no energy barrier any
more. The system approaches the global energy
minimum in a random walk. This happens by the
nucleation and expansion of a reverse domain
(Fig. 7).

8. Conclusions

The Langevin dynamics approach proved to be
a suitable method to model the effects of thermal
activation in magnetic materials.

Fig. 7. Nucleation of a reverse domain at an external field of �1:5T.
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* Simulations of a single rigid magnetic moment
showed, that the Heun scheme is a suitable time
integration method, which allows a time step
size one order of magnitude larger than that for
the Milshtein scheme. Moreover the stochastic
Landau–Lifshitz equation of motion in Strato-
novich interpretation leads to the correct
thermal equilibrium properties.

* The magnetization switching behaviour found
for a small cubic particle is identical for the
finite difference and finite element model, even
though their method of calculating the effective
field is substantially different. The finite element
method is better suited for the simulation of
particles with curved or very complex surfaces
and allows the modeling of polycrystalline grain
structures.

* For a small cubic ferromagnetic particle,
magnetization reversal by coherent rotation
has been found. As a result, its switching
dynamics is well described by the Arrhenius–
N!eel law for reversal over a single energy
barrier.

* Complex magnetization reversal mechanisms
have been found for small spherical magnetic
particles. The magnetocrystalline anisotropy
and the strength of the external field determine
the switching mechanism and two different
regimes have been identified. For fields, which
are smaller than the anisotropy field, magneti-
zation by coherent rotation has been observed.

If the external field is significantly higher than
the anisotropy field nucleation is the driving
reversal process.
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