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a b s t r a c t

Materials modeling and numerical formulations were conducted to describe the complex
material behavior upon strain path change in order to enhance the prediction accuracy
of springback in advanced high strength steels (AHSS). An approach without kinematic
hardening rule, or the homogeneous anisotropic hardening (HAH) model, was incorporated
to the newly conceived quasi-plastic–elastic strain (QPE) formulations. The HAH model is
able to capture complex plastic flow behavior of sheet metals such as the Bauschinger
effect, transient behavior, work-hardening stagnation and permanent softening. The QPE
approach was developed to reproduce the nonlinear elastic behavior during unloading
and reloading. The two models were independently validated for predicting springback,
with better performance than conventional constitutive models. In this study, the two
models are combined and extended to enhance the prediction capability of springback in
AHSS. For this purpose, fully implicit numerical algorithms were re-formulated to link
the two modeling approaches using general anisotropic yield function and hardening for
shell element. The original model was only valid for continuum isotropic element with
analytical stress integration procedure. Simulations of 2D draw bending test were per-
formed to validate the developed approach for two AHSS, DP780 and TRIP780, sheets.
The springback prediction was significantly improved if most of the complex material
behavior relating to elasticity and plasticity were taken into account in the finite element
simulations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In sheet metal forming, springback – undesired shape changes due to elastic recovery – is one of the most critical prob-
lems to be solved during process optimization. The springback is more pronounced when materials have higher strength
and/or lower elastic modulus. For example, among recent emerging materials, advanced high strength steels (AHSS) produce
larger springback than conventional mild steels because of their much higher strength, while aluminum and magnesium
alloys do because of their lower elastic moduli. For this reason, considerable efforts have been made to predict
springback accurately by numerical simulation in the tool design stage. For a better prediction of springback with finite
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element (FE) analysis, two main factors have been investigated. These efforts have addressed the numerical parameters,
which include the number of integration points, element type, mesh size and the numerical integration scheme (Li et al.,
2002), as well as the constitutive laws used for the simulations. The material modeling has become especially important be-
cause newly emerging materials exhibit more complex deformation behavior with loading path changes (Barlat et al., 2011;
Chung et al., 2005; Geng et al., 2002; Lee et al., 2007). The complex material response during loading–unloading–reverse
loading needs to be considered for accurate simulation of springback, involving the exact modeling of anisotropic plastic
hardening (Lee et al., 2011) and nonlinear elastic unloading/reloading response (Sun and Wagoner, 2011; Yoshida et al.,
2002).

Sheet materials in typical sheet forming processes experience continuous bending–unbending with superimposed tensile
force. Therefore, the material behavior under reverse loading must be known in addition to the usual monotonic uniaxial
behavior. A typical stress–strain curve under loading–reverse loading has four main characteristics; (1) The Bauschinger ef-
fect (early re-yielding when the load is reversed), (2) transient behavior (rapid hardening in the elastic–plastic transient re-
gion towards the forward flow stress curve), (3) work-hardening stagnation (lower or stagnating work hardening rate), and
(4) permanent softening (existence of a permanent gap between forward and reversed flow curves) (Yoshida and Uemori,
2002). Because these deformation characteristics cannot be captured by the classical isotropic hardening law, simple linear
kinematic hardening models were proposed by Prager (1956) and Ziegler (1959) to represent the Bauschinger effect. A better
description of reversed flow stress curve was later proposed by Armstrong and Frederick (1966) introducing a nonlinear
kinematic hardening approach with the addition of the so-called dynamic recovery term. Furthermore, Chaboche (1986) im-
proved it to describe ratcheting effects during cyclic loading. Many improved kinematic hardening laws have been imple-
mented into FE simulation for sheet metal forming applications to predict springback or formability (Aretz, 2008; Choi
et al., 2006a, b; Chung et al., 2005; Lee et al., 2005a,b, 2007; Oliveira et al., 2007; Yoshida and Uemori, 2002).

With the increasing complexity of material deformation behavior, other approaches not based on fully kinematic hard-
ening behavior have been proposed. The distortional hardening approach combined with the conventional kinematic hard-
ening is an example in this category (Feigenbaum and Dafalias, 2007, 2008; François, 2001; Hill et al., 1994; Kurtyka and
_Zyczkowski, 1996; Vincent et al., 2002; Voyiadjis and Foroozesh, 1990; Wu, 2002). For instance, Wu (2003, 2007) explained
the nonlinear distortion and translation of the yield surface using the convected coordinate systems. More recently, without
using the kinematic hardening concept, the homogeneous yield function-based anisotropic hardening (HAH) was proposed
(Barlat et al., 2011). When a material is subjected to a monotonic deformation, the HAH model describes a plastic deforma-
tion as an expansion of the yield locus exactly the same way as the classical isotropic hardening law near the loading direc-
tion, but its opposite side is distorted or flattened. In order to describe the effect of strain path change, this model introduces
the microstructure deviator variable, which tracks the previous loading history and determines the evolution of the yield
surface distortion. Moreover, any isotropic or anisotropic yield function can be incorporated in order to describe the isotropic
or anisotropic yielding behavior for orthotropic materials. The HAH model was implemented into the FE software ABAQUS
successfully, and used in the simulation of the U-draw bending for AHSS sheets to predict springback (ABAQUS, 2010; Lee
et al., 2012a,b). More recently, the HAH model was extended to describe the material behavior on the complex strain path
changes such as cross-loading effect (Barlat et al., 2012).

As the strength of automotive steels increases with higher springback, knowledge of the material’s elastic behavior be-
comes essential. This is related to the increase of plastic potential at unloading, which results in more pronounced elastic
deformation during unloading. Moreover, recent experimental studies have shown that the elastic deformation during
unloading (or reloading) is not perfectly linear but the slope continuously decreases as the unloading (or reloading) proceeds
(Andar et al., 2010; Chatti and Hermi, 2011; Cleveland and Ghosh, 2002; Eggertsen and Mattiasson, 2010; Geng and
Wagoner, 2002; Morestin and Boivin, 1996; Sun and Wagoner, 2011; Yamaguchi et al., 1998; Yang et al., 2004). One of
the practical approaches to incorporate the change of unloading elastic modulus is so-called chord modulus concept. The
chord modulus is defined as the slope of a straight line between the stress point before unloading and the zero stress point
after unloading. It is also reported that the chord modulus decreases as the plastic pre-strain increases. The chord modulus
tends to be saturated at about 20% of the initial Young’s modulus after a strain of about 10% for many sheet steels. An
advantage of the chord modulus concept is the easy implementation into FE analysis. The simulations with chord modulus
approach produced remarkable improvement in springback prediction (Fei and Hodgson, 2006; Yoshida et al., 2002; Yu,
2009; Zang et al., 2007).

Although the chord modulus approach has improved the modeling ability for the nonlinear elastic unloading, there is an
issue to be resolved. With this approach, upon springback, the stress does not always completely vanish like it is done in the
simplified one-dimensional case. In other words, the residual stress over the whole volume must be non-zero in real
formed parts after springback. In order to compensate this disadvantage of the chord model, a new concept called quasi-
plastic–elastic model (QPE model) was proposed (Sun and Wagoner, 2011). The QPE model was conceived from the two-
yield-surface theory. One surface represents nonlinearity of elastic deformation, and, the other, the plastic deformation. This
model was able to describe the complex unloading behavior more accurately and successfully applied to predict the
springback in draw-bend test.

The objective of this paper is to enhance the modeling accuracy to a higher level than ever before. Thus, the main con-
tribution of the present study is to present a unified theory for plasticity and elasticity for the finite element analysis of sheet
metal forming process. The plasticity theory includes material’s anisotropy and anisotropic hardening behavior, and the
elasticity is not just constrained within the constant elastic properties but nonlinearity during unloading and reloading is
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considered as well. For this purpose, the two recently proposed modeling approaches, HAH and QPE models, will be com-
bined, extended, numerically formulated and validated. The HAH model is able to predict the complex anisotropic behavior
of sheet metals upon reverse loading, and the QPE model can precisely reproduce the nonlinear elastic unloading/reloading
behavior. The main improvements developed in the present study are:

� The formulations for the QPE approach were generalized for any anisotropic yield function to be implemented into the FE
modeling. The original QPE model used only von-Mises isotropic yield function for simplicity, thus analytical stress inte-
gration could be available. This constraint was removed in this study and the overall formulations were modified to make
the theory more general.
� All numerical formulations were developed on the basis of the implicit algorithm. In the original QPE approach, the stress

update algorithm and the QPE algorithm were based on isotropic quadratic yield function under three-dimensional con-
dition, so that the derivation was made analytically. This is no longer valid for general non-quadratic anisotropic yield
function and anisotropic hardening model like the HAH approach.
� The implementation was applied to the shell element formulation. In the original work, all springback simulations were

done using continuum element. But, for future applications to realistic part forming simulations, the shell element is
more efficient. Here, all formulations were developed under the plane stress condition.

In Section 2, the main features of the HAH and QPE model are reviewed. In Section 3, a finite element implementation of
the constitutive models is investigated with a special attention to combining the two models. In Section 4, the developed
numerical implementation is validated with simple boundary conditions. Finally, springback predictions in the U-draw
bending are made by applying the current models and comparing with experiments. In particular, in addition to conven-
tional U-draw bending with as-received sheet material, springback experiments with pre-strained sheets are also conducted
in this study. The approach is illustrated using, two advanced high strength steels, DP780 and TRIP780 steel sheets.

2. Description of the constitutive models

2.1. Homogeneous yield function-based anisotropic hardening (HAH)

The following yield function, denoted as HAH, was proposed by Barlat et al. (2011)

UðrÞ ¼ /q þ /q
h

� �1
q ¼ /q þ f q

1 jĥs : s� jĥs : sjjq þ f q
2 jĥs : sþ jĥs : sjjq

� �1
q ¼ �rðrÞ ð1Þ

The yield function is a combination of a stable function / and a fluctuating function /h. The stable component can be any
isotropic or anisotropic yield function with first degree homogeneity. The fluctuating component is a function of the stress
deviator s, microstructure deviator ĥs and state variables, f1 and f2. The microstructure deviator ĥs which represents the pre-
vious deformation history is defined as the normalized quantity of the traceless tensor hs.

ĥs ¼ hsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
3 hs

: hs
q ð2Þ

The initial ĥs is the stress deviator s corresponding to the initial plastic deformation increment. The state variables f1 and
f2 in Eq. (1) are functions of two variables, g1 and g2.

fi ¼ ðg�q
i � 1Þ

1
q for i ¼ 1 or 2 ð3Þ

In the initial state, f1 and f2 are zero, and have no contribution to the yield surface. When the material is plastically de-
formed with a loading history, the state variables and the microstructure deviator are updated according to the following
relationships.

dg1

d�e
¼

k2 k3
Hð0Þ
Hð�eÞ � g1

� �
if ĥs : s P 0

k1
g4�g1

g1
if ĥs : s < 0

8<
: ð4Þ

dg2

d�e
¼

k1
g3�g2

g2
if ĥs : s P 0

k2 k3
Hð0Þ
Hð�eÞ � g2

� �
if ĥs : s < 0

8<
: ð5Þ

dg3

d�e
¼ 0 if ĥs : s P 0

k5ðk4 � g3Þ if ĥs : s < 0

(
ð6Þ
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dg4

d�e
¼ k5ðk4 � g4Þ if ĥs : s P 0

0 if ĥs : s < 0

(
ð7Þ

dĥs

d�e
¼

k ŝ� 8
3 ĥs ĥs : ŝ
� �� �

if ĥs : s P 0

k �ŝþ 8
3 ĥs ĥs : ŝ
� �� �

if ĥs : s < 0

8><
>: ð8Þ

where ŝ is the normalized quantity of s as in Eq. (2), H(�e) is the classical isotropic hardening curve, and k and k1–5 are material
constants. Two additional state variables, g3 and g4, are introduced in order to describe permanent softening. When the
material has no permanent softening, k4 or k5 = 0 and g3 = g4 = 1.

The material parameters for the stable function in Eq. (1) and the monotonic hardening curve can be obtained by uniaxial
tensile tests with various loading directions. Other mechanical tests such as bulge and disk compression tests can be used
also if necessary, depending on the stable function. The parameters for the fluctuating part can be calculated from forward
and reverse loading tests, for instance, uniaxial tension–compression or forward shear–reverse shear tests. More complex
loading paths such as series of two-stage tension test can be also used for obtaining the parameters (Ha, 2012).

2.2. Quasi-plastic–elastic (QPE) model

Generalizing from uniaxial tension, the total strain increment de can be decomposed into three parts (Sun and Wagoner,
2011)

de ¼ dee þ dep þ deQPE ð9Þ

where dee is the elastic strain, dep is the plastic strain and deQPE is the so-called QPE strain. Fig. 1(a) shows the stress–strain
curve and a schematic view of the conceptual strain decomposition in Fig. 1(b) shows the continuous changes of slope during
unloading and reloading. The elastic strain is calculated from the initial slope E0 of the stress–strain curve as shown in
Fig. 1(b). The other component of reversible strain, originating from the nonlinearity, is defined as the QPE strain. The
QPE strain exhibits two fundamental properties, namely, recovery property energy dissipation.

In order to develop the QPE model, the concept of the two-yield-surface plasticity theory was applied. The inner and outer
yield surfaces are the basic structure of the two-yield surface theory. The inner surface controls the nonlinear elastic behav-
ior, and the outer surface governs the plastic behavior. When the QPE and the HAH models are used simultaneously, only the
inner surface (QPE surface) translates in order to reproduce the nonlinear elastic behavior in the stress–strain curve during
unloading and reloading.

Fig. 2 shows an example of the two-surface QPE model based on the HAH yield condition. From the two-surface theories
(Dafalias and Popov, 1976; Geng and Wagoner, 2002; Lee et al., 2007; Yoshida et al., 2002), it is convenient to let the inner
surface take the same shape as the outer surface.

H1ðr� a; �eÞ ¼ U1ðr� aÞ � H1ð�eÞ ¼ 0 ð10Þ

H2ðr; �eÞ ¼ U2ðrÞ � H2ð�eÞ ¼ 0 ð11Þ

T
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e 
st

re
ss

True strain

ε
eε

QPE

Slope : E
0

ε
p

(a) (b)

Fig. 1. (a) Stress–strain relation and (b) schematic view of the strain decomposition.
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where H1 and H2 represent the size of the QPE and yield surfaces, H1 and H2, respectively. The tensor a defines the center of
the QPE surface. The variable �e is the equivalent plastic strain defined for the proposed yield function (see Barlat et al. (2011)
and Lee et al. (2012a)). Given the applied stress r (it may be anywhere inside the QPE surface for purely elastic deformation,
or on the QPE surface, otherwise, as shown in Fig. 2), r⁄ is the associated stress on the yield surface, sharing the same normal
direction, i.e., n = n⁄.

If the stress r is inside the QPE surface H1 and dr projects inward, it is in elastic deformation mode. During this mode, the
center a and the size of each surface, i.e., H1 and H2, are unchanged. The total strain increment is, therefore, only the elastic
strain increment.

de ¼ dee ð12Þ

dr ¼ C0 : dee ð13Þ

where C0 is the classical, isotropic elastic stiffness tensor.
The QPE strain deQPE occurs when the following three conditions are satisfied: (1) the applied stress r is on the surface H1,

(2) the incremental stress dr is outward (dr: dn > 0), (3) the inner surface, H1, and the yield surface, H2, are not in contact.
The total strain increment is, in this QPE mode,

de ¼ dee þ deQPE ð14Þ

Dr ¼ C : de ð15Þ

where C is the elastic–QPE transition stiffness tensor as explained below.
The size of the inner surface is constant, but the location of its center moves during the QPE deformation. The evolution

rule for the center of inner surface a is as follows.

da ¼ dlðr� � rÞ ð16Þ

r� a
H1

¼ r�

H2
ð17Þ

An apparent modulus E, which represents the slope of stress–strain curve in uniaxial tension, is changed considering both
the elastic and QPE strains.

E ¼ E0 � E1 1� exp �c
Z
kde� depk

� �� �
ð18Þ

where E0 is the traditional Young’s modulus, and E1 and c are material coefficients. The integral in Eq. (18) is initiated when-
ever the new QPE loading process has taken place. The isotropic elastic stiffness matrix C is expressed by an apparent mod-
ulus for the QPE state.

Cijkl ¼
mE

ð1þ mÞð1� 2mÞ ðdijdklÞ þ
E

ð1þ mÞ ðdikdjl þ dildjkÞ ð19Þ

where dij is the Kronecker delta and the Poisson’s ratio m is assumed to be constant.

σn

QPE surface

Normalized stress  in RD

N
or

m
al

iz
ed

 s
tr

es
s i

n 
T

D
Yield surface

n=n* σ*

α

Fig. 2. Description of the QPE model coupled with the HAH model.
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If the inner surface H1 is in contact with the yield surface H2, necessarily, at the same stress point (r = r⁄), and the incre-
mental stress dr is outward, plastic deformation occurs. The total strain increment is composed of the plastic, elastic and
QPE strain increments. The size of inner surface increases in order to keep contact with the yield surface H2, which evolves
according to the plastic hardening law, Eq. (11). The size of the inner surface H1 in Eq. (10) is assumed to follow the Voce
equation with the equivalent plastic strain.

H1ð�eÞ ¼ A1ð1� B1 expð�D1�eÞÞ ð20Þ

where A1, B1 and D1 are material coefficients which can be determined by monotonic loading–unloading–reloading
experiments.

3. Combined QPE and HAH numerical formulations

The HAH and QPE models were implemented in the FE code using the material subroutines of the commercial software
ABAQUS/Standard and Explicit (ABAQUS, 2010). The total strain increment, De, consists of the elastic Dee and plastic Dep

parts.

De ¼ Dee þ Dep ð21Þ

The equivalent plastic strain increment, D�e, is obtained using the property of a first-degree homogeneous function
�rðrÞ ¼ r : @�r

@r and the associated flow rule

D�e ¼ r : Dep

�rðrÞ ¼
r : Dc @�r

@r

�rðrÞ ¼ Dc
�rðrÞ
�rðrÞ ¼ Dc and ð22Þ

Dep ¼ Dc
@�r
@r
¼ D�e

@�r
@r

ð23Þ

The state variables in the HAH model are updated with Eqs. (4)–(8) when the equivalent plastic strain increment, D�e, is
obtained. The unknown parameter D�e can be found with numerous numerical schemes in the elasto-plastic formulations (De
Borst and Feenstra, 1990; Dutko et al., 1993; Park and Lee, 1996; Simo and Hughes, 1998; Tugcu and Neale, 1999; Yoon et al.,
1999b).

3.1. Fully implicit formulation: general closest point projection

The general closest point projection scheme has been commonly used upon considering the accuracy and efficiency in
determining the solution. It leads a fully implicit procedure to impose the normality rule at the final iteration.

For a given Den+1 at the current time step n + 1, a trial stress is calculated with the linear elasticity law

rT
nþ1 ¼ rn þ Cn : Denþ1 ð24Þ

where Cn is the elastic stiffness matrix, defined in Eq. (19) at the previous step, the superscript T denotes the trial state, and
the subscripts n and n + 1 represent respectively the previous and present time steps.

When the trial stress satisfies the following condition,

H2ðrT
nþ1; �enÞ ¼ U2ðrT

nþ1Þ � H2ð�enÞ > 0 ð25Þ

Plastic deformation occurs. The plastic flow residual R1, yield condition residual R2 and other state variable residuals are
specified from the previous Eqs. (4)–(8) and (23) for a sub-step k,

R1 D�eðkÞnþ1

� �
¼ �DepðkÞ

nþ1 þ D�eðkÞnþ1

@U2 rðkÞnþ1

� �
@rðkÞnþ1

ð26Þ

R2 D�eðkÞnþ1

� �
¼ U2 rðkÞnþ1

� �
� H2 �en þ D�eðkÞnþ1

� �
ð27Þ

Rlþ2 D�eðkÞnþ1

� �
¼ gðkÞl;nþ1 � gl;n � Dgl D�eðkÞnþ1

� �
for l ¼ 1 � 4 ð28Þ

R7 D�eðkÞnþ1

� �
¼ ĥsðkÞ

nþ1 � ĥs
n � Dĥs D�eðkÞnþ1

� �
ð29Þ

By applying Taylor’s expansion in Eqs. (26) and (27), the linearized residuals for the sub-step k at the current time are
obtained as follows
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R1 D�eðkÞnþ1

� �
þ N�1

n D�eðkÞnþ1

� �
: d Drnþ1ð Þðkþ1Þ þ

@U2 rðkÞnþ1

� �
@rðkÞnþ1

d D�enþ1ð Þðkþ1Þ ¼ 0 ð30Þ

R2 D�eðkÞnþ1

� �
þ
@U2 rðkÞnþ1

� �
@r

d Drnþ1ð Þðkþ1Þ � H02 �eðkÞnþ1

� �
d D�enþ1ð Þðkþ1Þ ¼ 0 ð31Þ

where H02 is the slope of the monotonic flow curve H2. In Eqs. (30) and (31), the following quantities

NnðxÞ ¼ Sn þ D�eðkÞnþ1

@2U2 rðkÞnþ1

� �
@r@r

0
@

1
A
�1

; �eðkÞnþ1 ¼ �en þ D�eðkÞnþ1; ð32Þ

are introduced with Sn ¼ C�1
n denoting the compliance tensor. Solving Eq. (30) for dðDrnþ1Þðkþ1Þ leads to

d Drnþ1ð Þðkþ1Þ ¼ Nn D�eðkÞnþ1

� �
: �R1 D�eðkÞnþ1

� �
�
@U2ðrðkÞnþ1Þ
@rðkÞnþ1

d D�eðkþ1Þ
nþ1

� � !
ð33Þ

By substituting Eq. (33) into Eq. (31) the variation of the equivalent plastic strain increment dD�e becomes

d D�enþ1ð Þðkþ1Þ ¼
R2 D�eðkÞnþ1

� �
� R1 D�eðkÞnþ1

� �
: Nn D�eðkÞnþ1

� �
:
@U2 rðkÞ

nþ1

� �
@r

@U2 rðkÞ
nþ1

� �
@rðkÞ

nþ1

: Nn D�eðkÞnþ1

� �
:
@U2 rðkÞ

nþ1

� �
@rðkÞ

nþ1

þ H02 �eðkÞnþ1

� � ð34Þ

Finally, the plastic multiplier and the other plastic state variables are updated for step (k + 1) with Eqs. (4)–(8) and the
updated effective and plastic strains.

D�eðkþ1Þ
nþ1 ¼ D�eðkÞnþ1 þ d D�enþ1ð Þðkþ1Þ ð35Þ

epðkþ1Þ

nþ1 ¼ epðkÞ

nþ1 þ d D�enþ1
@U2 rnþ1ð Þ
@rnþ1

� �ðkÞ
ð36Þ

This iterative cycle continues until the size of each residual Ri (i = 1–7) becomes smaller than a prescribed tolerance (e.g.,
10�6).

In the fully implicit formulation with non-quadratic yield function, a divergence problem may occur for some stress state.
In such case, the multi-step return mapping approach proposed by Yoon et al. (1999a) can be efficiently introduced. More-
over, for this particular distortional hardening model another sub-stepping algorithm has been proposed to calculate the gra-
dient of distorted yield surface to relieve another type of divergence. For more details on the whole derivations and analysis
with iso-error map scheme, refer to Lee et al. (2012c).

3.2. Semi-explicit formulation: cutting-plane algorithm

Ortiz and Simo (1986) proposed the cutting-plane algorithm to eliminate the need for computing the second
derivative in the calculation of the plastic strain increment D�e, Eq. (32). From the consistency condition for plastic
yielding,

H2 ¼ U2ðrþ Dr; f1 þ Df1; f2 þ Df2; ĥs þ DĥsÞ � H2ð�eþ D�eÞ ¼ 0 ð37Þ

Applying the Taylor’s expansion,

H2 þ DH2 ¼ H2 þ
@H2

@D�e
dðD�eÞ ¼ 0 ð38Þ

dðD�eÞ ¼ �H2
@H2
@r

@r
@D�eþ

@H2
@H2

@H2
@D�e

with
@H2

@r
¼ @U2

@r
;
@H2

@H2
¼ �1 and

@H2

@D�e
¼ �C

@U2

@r
ð39Þ

If the trial stress defined in Eq. (24) meets the condition of H2 > 0 at the current time step n + 1, the variation of equivalent
plastic increment for sub-step k is obtained from Eq. (39),

dðD�enþ1Þðkþ1Þ ¼ H2

@U2 rðkÞ
nþ1

� �
@r Cn

@U2 rðkÞ
nþ1

� �
@rðkÞ

nþ1

þ H02 �eðkÞnþ1

� � ð40Þ
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Then, the plastic multiplier and other state variables are updated for step (k + 1) with Eqs. (4)–(8), (35) and (36). The iter-
ation continues until |H2| < TOL (a prescribed numerical tolerance) is satisfied. The gradient of the yield function, @U2

@r , should
be carefully determined by the multi-step Newton–Raphson method proposed by Lee et al. (2012a) because of the distortion
of the yield surface in the HAH model.

3.3. Implicit elastic–QPE transition algorithm

If the trial stress given in Eq. (24) satisfies the following condition

f2 rT
nþ1; �en

� �
¼ /2 rT

nþ1

� �
� H2ð�enÞ 6 0 ð41Þ

the trial state is considered as elastic and the stress is either purely elastic or QPE. When both Eq. (41) and

f1 rT
nþ1 � an; �en

� �
¼ /1 rT

nþ1 � an
� �

� H1ð�enÞ < 0 ð42Þ

are satisfied, the trial stress is purely elastic and the stress and the center a are updated as

rnþ1 ¼ rT
nþ1; anþ1 ¼ an ð43Þ

If the condition in Eq. (42) is not met, the trial stress is in the QPE state. In this case the trial stress is located outside of the
inner surface and inside of the yield surface. The elastic stiffness matrix Cn+1 is updated with Eqs. (18) and (19) and the up-
dated stress and the center a are calculated with Eqs. (16) and (17).

rnþ1 ¼ rn þ Cnþ1 : Denþ1 ð44Þ

anþ1 ¼ an þ dan ¼ an þ dl R2 � R1

R1
rn �

R2

R1
an

� �
ð45Þ

In order to obtain the value dl, the Newton–Raphson method is used under the consistency condition

f1 ¼ /1ðrnþ1Þ � H1ð�enÞ ¼ 0 ð46Þ

where rnþ1 is rnþ1 � an � dan.
By applying Talyor’s expansion,

f1 þ
@f1

@rnþ1

@rnþ1

dðdlÞdðdlÞ ¼ 0 ð47Þ

dðdlÞ ¼ �f1
@f1
@rnþ1

@rnþ1
dðdlÞ

ð48Þ

where @rnþ1
dðdlÞ ¼

R2�R1
R1

rn � R2
R1

an. Note that the derivative of the inner surface, @f1
@rnþ1

, is calculated in the same way as @U2
@r in

Eq. (40).
Iterations continue until the value d(dl) becomes within a prescribed tolerance. an+1 is obtained after substituting the

solution of Eqs. (46)–(48) into (45).

4. Applications

The parameters for the QPE and HAH models were determined by the Nelder and Mead simplex algorithm (1965). This
algorithm is a robust method for parameter optimization because it does not require the first derivative of the objective func-
tion in contrast to the frequently used nonlinear least-square or Newton–Raphson methods. In order to optimize N param-
eters, N + 1 arbitrary initial sets are determined. Because the simplex algorithm can give local optimized values, several sets
of initial estimates are tried. The objective function is the sum of absolute difference between the experimental data and the
predicted results at each iteration. The iteration continues until the standard deviation, is less than a prescribed numerical
tolerance, e.g., 10�6.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNþ1
i¼1 ðhi � hmeanÞ

N þ 1

s
6 TOL ð49Þ

where hi is the objective function value and hmean is the average value from the objective function.

4.1. Prediction of 1-D stress–strain curve for TRIP780 and DP780 steel sheets

For the experimental part of this study, a 1.4 mm thick DP780 dual-phase steel sheet and a 1.2 mm thick TRIP780 (trans-
formation-induced plasticity) steel sheet were selected. The basic mechanical properties of these materials are listed in
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Table 1. The uniaxial tension and in-plane tension–compression–tension (TCT) tests for DP780 were taken from the NUMI-
SHEET (2011) benchmark report. In-plane TCT experiments were conducted for five different reversal strains, approximately
2%, 5%, 7%, 9% and 11%. For TRIP780, uniaxial tension tests were conducted with an MTS universal machine. Forward–reverse
shear tests were performed using the equipment described by Lee et al. (2012a).

The monotonic stress–strain curves under loading–unloading–reloading were also conducted for TRIP780 steel sheet,
Fig. 3(a). The TRIP780 steel sheet sample exhibits nonlinear stress–strain behavior and energy dissipation during elastic
unloading and reloading. Fig. 3(b) and (c) show the amount of the elastic and QPE strains, and the dissipated energy at each
loading–unloading–reloading loop with respect to the unloading stress. The dissipated energy and QPE strain were observed
to increase with strain.

The FE simulations were carried out with ABAQUS/Standard and the user material subroutine UMAT. The 4-nodes shell
element with reduced integration point (S4R) was adopted. In the applications, the non-quadratic anisotropic yield function
Yld2000-2d (Barlat et al., 2003) was applied as a stable component in Eq. (1), except as otherwise indicated.

Table 1
Mechanical properties of TRIP780 and DP780 steel sheets.

Material Direction (from the RD) E0, GPa Poisson’s ratio aYield stress, MPa Unif. Elong. Total Elong. r value (ep = 0.1)

TRIP780 0� (RD) 198.5 0.3 486 0.17 0.22 0.79
45� 493 0.17 0.23 0.93
90� (TD) 500 0.16 0.21 0.82
Bulge test 525 0.83b

DP780c 0� 198.8 0.3 452 0.13 0.20 0.78

a Yield stress: 0.2% offset.
b r value is defined in balanced biaxial tension test as deTD

deRD
.

c Material data were taken from the NUMISHEET2011 benchmark report.
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Fig. 3. (a) Results of uniaxial stress–strain curves for TRIP780 steel sheet under loading–unloading–reloading cycle; (b) QPE strain and elastic strain with
respect to the unloading stress; and (c) dissipated energy during loading–unloading with respect to the unloading stress.
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The uniaxial tensile deformation behavior for TRIP780 steel sheet was not well approximated with either the Swift or
Voce hardening laws. Therefore, the combined Swift–Voce or Hollomon–Voce isotropic hardening law was used for the yield
surface H2 in Eq. (11) (Sung et al., 2010).

H2ð�eÞ ¼ LðKðe0 þ �eÞnÞ þ ð1� LÞðA2ð1� B2 expð�D2�eÞÞÞ ð50Þ

where K, e0, n, A2, B2, D2 are material parameters and L is a weight parameter. Fig. 4 compares the experimental and predicted
flow stress curves for the optimum parameters listed in Table 2. For DP780 steel sheet, the Swift hardening law was adopted
and the corresponding material parameters are listed in Table 3.

Additionally, the chord elastic modulus at various pre-strains, determined as the slope of a straight line from stress at
unloading to zero, is described as a continuous function of pre-strain as follows

E ¼ E0 � ðE0 � EaÞð1� expð�n�eÞÞ ð51Þ

where E0, Ea and n are material parameters and listed in Tables 2 and 3. The first two are the initial and saturated Young’s
moduli, respectively as shown in Fig. 5. In the early stage of equivalent plastic strain the chord elastic modulus of DP780 steel
sheet decreases faster than that of TRIP780 steel sheet, as indicated by Fig. 5.

The coefficients of the HAH and QPE models, listed in Tables 2 and 3, were obtained from the experimental TCT and load-
ing–unloading–reloading curves. Because there is a difference of plastic strain between the HAH model with or without the
QPE, the corresponding coefficients are slightly different. Figs. 6 and 7 shows the predictions of the stress–strain curves for
forward-reverse shear and TCT tests using the HAH model combined either with the chord or QPE models. These figures indi-
cate that the Bauschinger effect, transient behavior and permanent softening are well captured by the HAH model.

Fig. 8 shows the overall approximation of the unloading–reloading experimental data for the TRIP780 steel sheet with the
QPE model. The QPE model captured the nonlinear behavior for all loading–unloading–loading loops, although the QPE
parameters were calculated using the sixth unloading–reloading cycle. Fig. 9 represents the approximation of experimental
data for the DP780 steel sheet at 11% pre-strain by the QPE model. Again, the QPE model captured the nonlinear elastic
behavior satisfactorily.

An error parameter was defined as

eað%Þ ¼

PN
i¼1

hi
model�hi

expj j
hi

exp

� �
N

� 100 ð52Þ

where N is the number of points, and hmodel and hexp are the strains taken at the same stress level from the simulation and
experiment, respectively. ea provided, in Table 4, quantitative value of the error between predicted and experimental loops in
Fig. 8. The errors with the chord modulus were about four times as large as those of the QPE model at every strain level.

4.2. Prediction of springback in U-draw bending

In order to validate the proposed models in U-draw bending, as received and 8% pre-strained specimens, were prepared
for TRIP780 steel sheet. For the base material, 350 mm (RD) by 45 mm (TD) rectangular shaped specimens were prepared as
shown in Fig. 10(a). For the pre-strained material 450 mm by 45 mm, specimens were first deformed in tension with a MTS
universal material testing machine. A 28 mm grip displacement was applied at a strain rate of about 10�3/s and resulted in
approximately 8% engineering strain schematically represented at the specimen center as measured with an extensometer in
Fig. 10(b). U-draw bending tests, in Fig. 11(a), were conducted with a holding force of 20 kN. The punch velocity was
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Fig. 4. Equivalent plastic stress–strain curves for TRIP780 steel sheet.
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1.0 mm/s and the stroke was 70 mm. For lubrication, P340 N (rust-preventive oil) was applied to the surface of the speci-
mens and tools. The Coulomb friction law was assumed with the coefficient 0.14 between the blank and the tools. After
the tests, the springback profiles and the three parameters proposed in the NUMISHEET (1993) benchmark, as shown in
Fig. 11(a), were determined.

For the DP780 steel sheet, the condition for U-draw bending was slightly different from that of TRIP780 (NUMISHEET,
2011). 360 mm (RD) by 30 mm (TD) rectangular specimens were used for both as-received and pre-strained 7.8% materials.
Fig. 11(b) shows the dimension of the tools and three parameters measured after springback according to NUMISHET 2011.

Table 2
Constitutive model parameters for TRIP780 steel sheet.

Chord model Ea (GPa) n

161.3 59.1
QPE model A1 (MPa) B1 D1 E0 (MPa) E1 (MPa) C

196.96 0.523 4.3 198500 95000 354
Hardening law K (MPa) e0 n A2 (MPa) B2 D2 L

1424.2 0.003 0.20 1033.3 0.505 15 0.35
HAH – Chord q k k1 k2 k3 k4 k5

2 30 33 80 0.6 0.9 10
HAH – QPE q k k1 k2 k3 k4 k5

2 30 30 80 0.6 0.9 10
Yld2000-2d Exponent a1 a2 a3 a4 a5 a6 a7 a8

6 1.007 0.947 0.943 1.001 1.023 1.054 1.004 1.033

Table 3
Constitutive model parameters for DP780 steel sheet.

Chord model Ea (GPa) n

152.1 96.5
QPE model A1 (MPa) B1 D1 E0 (MPa) E1 (MPa) C

96.9 0 0 198800 95000 254
Hardening law K (MPa) e0 n

1280.23 0.0008 0.146
HAH – Chord q k k1 k2 k3 k4 k5

2 30 100 90 0.6 0.9 30
HAH – QPE q k k1 k2 k3 k4 k5

2 30 125 90 0.6 0.9 30
Yld2000-2d Exponent a1 a2 a3 a4 a5 a6 a7 a8

6 0.928 1.024 0.962 0.988 1.004 0.917 1.004 1.032
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Fig. 5. Chord elastic modulus as a function of equivalent plastic strain for (a) TRIP780 and (b) DP780 steel sheets.
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The holding force was 2.94 kN. The punch velocity was set to 1 mm/s and the punch stroke to 71.8 mm. The Coulomb friction
law was assumed with the coefficient 0.1 between the blank and the tools.

The finite element simulations for the U-draw bending process were performed with ABAQUS implicit and explicit codes.
The implicit code was used for solving pre-straining and springback, and the explicit code was used for solving the U-draw
bending forming stage. The semi-implicit algorithm was used for the forming simulation, while the fully implicit algorithm
was used for the springback. The main reason why the semi-implicit algorithm (or cutting plane algorithm) is applied for the
forming simulation is to relieve computational complex but without deteriorating the accuracy of the calculated stresses. It
has been well known that the cutting plane algorithm does not need the derivative of plastic strain rate (or second derivative
of yield surface with respect to the stress) and does consider only consistency. However, this simplification does not follow
the minimum plastic work path under the incremental deformation theory and also violates the normality condition at the
current state. However, when the algorithm is coupled with explicit FE code, the solution by the tangent cutting plane algo-
rithm seems to converge to the solution by the fully implicit algorithm due to its tiny time step for the stabilized solution.
This approach might be a good compromise in both accuracy and computational efficiency. Although the accuracy of the cut-
ting plane algorithm is guaranteed in the explicit time integration scheme, it should be carefully used for the springback sim-
ulation. In the implicit FE scheme, the time step is much larger than that of the explicit scheme, and most of commercial (or
even in-house) FE codes use automatic time stepping strategy. Preliminary analyses to validate the accuracy of the two stress
integration algorithms, which include the analyses of r-value, stress, and error maps showed that fully implicit stress inte-
gration algorithm should be preferably used for accurate springback results. For more details, refer to either Lee et al.(2012c)
for HAH approach or Cardoso and Yoon (2009) for isotropic–kinematic hardening approach.

Taking symmetry into consideration, only a quarter of the whole blank was modeled. The tools were constructed with
analytical rigid body surface. The blank was modeled using shell element with reduced integration point (S4R) and 9 inte-
gration points through thickness. The mesh size, determined through convergence tests, was 1 mm by 1.5 mm and 0.5 mm
by 0.75 mm (length by width) for TRIP780 and DP780 steel sheets, respectively.
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For DP780 steel sheet, the final experimental and predicted profiles after springback for as-received and pre-strained
materials are presented in Fig. 12. For comparison purpose, the simulation result for isotropic hardening with the chord
model (IH-Chord) is also shown in Fig. 12. In Fig. 13, detailed values of the three springback parameters are compared. This
Fig. 12 indicates that the chord model tends to over-predict springback. The QPE model also over-estimates springback in the
case of as-received materials, but the difference is smaller than that of the chord model. In particular, in the sidewall curl
region, the QPE predictions are in good agreements with experimental data. Because the side-wall curl region experiences
bending, unbending and stretching during forming, it is important for the plastic hardening models to capture the Bausch-
inger effect, transient behavior and permanent softening. Nevertheless, the simulations show that not only plastic hardening
but also elastic models are important in predicting springback phenomena accurately.

For TRIP780 steel sheet, larger springback predictions are observed as shown in Fig. 14. The classical isotropic hardening
model (IH-Chord) in Fig. 14 over-estimates the experimental springback in both cases. Fig. 14(a) shows that the HAH model
tends to predict larger springback than the actual amount for as-received material. In contrast, the springback predicted with
the HAH model is in favorable agreement with the measurements for the pre-strained samples. The predictions using the
QPE model are in slightly better agreement with the experiments than those with the chord model (see Fig. 15).

5. Discussion

In the previous section, the proposed material models and FE implementation were well validated for the U-draw bending
springback of two AHSS with similar strength. In terms of the prediction capability, an interesting result was found; i.e., sim-
ulated springback was always over-predicted but even more so with the as-received TRIP780 steel sheet. Two factors can be
considered to explain these results, namely, friction and temperature. In the present study, the Coulomb friction law was
assumed and the friction coefficient was measured using a standard tester. However, this simple friction approach might
not be very accurate because the friction behavior is influenced by other factors such as the strain rate, pressure and tem-
perature (Darendeliler et al., 2002; Matuszak, 2000). The topic of friction modeling will be further investigated as a follow-up
of the present research.
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Fig. 8. (a) QPE model predictions with the experimental data for loading–unloading–reloading test; (b) third cycle with the simulation results; (c) fifth cycle
with the simulation result; and (d) sixth cycle with the simulation results.
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Kim et al. (2009) found that the temperature of AHSS sheet during forming increases up to a significant level. In order to
roughly estimate the temperature rise, a coupled thermal–mechanical FE analysis of U-draw bending was carried out for the
as-received TRIP780 sheet. To simplify the problem, only isotropic hardening with von-Mises yield function was used for the
material description. The result of this analysis showed that the average temperature for the blank in the die corner and side
wall region increased to about 55 �C from room temperature (RT). Therefore, bulge tests under isothermal condition were
carried out for three different temperatures namely, 20, 50 and 100 �C, and the resulting stress–strain curves are shown
in Fig. 16. For both materials, as temperature increases, the flow stress decreases by an amount which is significant for
the TRIP780 steel sheet. For this material, this is due to the combined effect of temperature increase and lower transforma-
tion kinetics (Lee et al., 2010). For DP780, the flow stress drop is only due to the usual temperature effect. In addition, the
transformed volume fraction of austenite in TRIP780 steel sheet measured by magnetic saturation method is also presented
in Fig. 16(b). The fraction of austenite transformed after uniaxial tension at room temperature saturates after about 10% plas-
tic strain. Considering this temperature effect on the flow stress, springback simulations were performed again for DP780
and TRIP780 steel sheets as explained in the next paragraph.

For DP780 steel sheet, all FE simulations in Fig. 12 were performed using the stress–strain curve measured at room tem-
perature TR, which follows the segment O–B in Fig. 17(a). However, under the forming condition used in this study, there is a
temperature increase of about 55 �C, which is denoted as T⁄ in the schematic drawing of Fig. 17. Therefore, in the real forming
experiment, the final stress of the blank before springback is likely to be close to B1 for the as-received material. For the pre-
strained material, the situation is slightly different. The stress–strain response during pre-strain follows segment O–A be-
cause tension was applied at room temperature. Point U is the start point of the U-draw bending for the pre-strained
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Fig. 9. (a) QPE model prediction for DP780 for the TCT test with 11% pre-strain; (b) first unloading with the simulation results; (c) second unloading with
the simulation results.

Table 4
Errors in unloading–reloading loop prediction in Fig. 8.

Pre-strain 5% (Fig. 8(b)) 11% (Fig. 8(c)) 13% (Fig. 8(d))

Error in Chord model 0.41% 0.23% 0.2%
Error in QPE model 0.12% 0.04% 0.05%
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material. After U-draw bending, as a rough simplification the flow stress is assumed to be close to the segment A1–B1. Since
the difference in flow curves measured at RT and 50 �C is not significant for DP780, the springback predictions shown in
Fig. 12 are not likely to be affected by temperature.

The same analysis was done for TRIP780 steel sheet. For the pre-strained material, the flow stress is assumed to be close
to the segment A2–B2 in Fig. 17(b) during forming stage because the transformation is almost completed during the first

GripGrip

Cutting

350mm

Grip Grip

350mm

450mm
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350mm

(a)

(b)

Fig. 10. TRIP780 specimens for U-draw bending (a) as-received and (b) pre-strained by 8%.

Fig. 11. Tool geometry and measurement of springback for (a) TRIP780 and (b) DP780 steel sheets.
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tensile loading. Then, temperature is not a critical factor for springback prediction like for DP780. However, for the as-re-
ceived material the flow stress can be close to the segment O–B1 in Fig. 17(b) during forming. Because the flow curves of
TRIP780 measured at RT and 50 �C are significantly different, temperature, which is not taken into account in the predictions
shown in Fig. 14(a), is likely to influence springback.

Fig. 18 shows the springback predictions for the as-received TRIP780 steel sheet considering the temperature effect. The
same HAH and QPE parameters were used excepted for the isotropic hardening curve, which was that measured at 50 �C for
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Fig. 14. Springback profile of TRIP780 steel sheet for (a) as-received specimen and (b) pre-strained specimen.
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TRIP780 steel in Fig. 16(b). Fig. 18 shows that the temperature effect leads to a better prediction of springback. The
residual between predicted and experimental springback is likely due to friction effect. For a thorough investigation
using thermo-mechanical simulations, forward–reverse loading experiments at different temperatures are necessary
(Piao et al., 2012).
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Fig. 15. Springback parameters of TRIP780 steel sheet for (a) as-received specimen and (b) pre-strained specimen.
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Fig. 16. Bulge stress–strain curves at different temperatures for (a) DP780 and (b) TRIP780 steel sheets. The volume fraction of transformed austenite is
only for the room temperature.
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6. Conclusions

In this work, the quasi-plastic–elastic (QPE) model was extended and combined with the homogeneous anisotropic hard-
ening model (HAH). The corresponding fully implicit numerical algorithm for plane stress condition was proposed. By com-
bining the two modeling approaches, the Bauschinger effect, transient behavior, permanent softening and plasticity-induced
elastic modulus degradation could be accurately simulated. Moreover, the stress integration algorithm for the coupled elas-
tic–plastic modeling approach could be applied with a general non-quadratic anisotropic yield function. Accounting for the
nonlinear elastic unloading/reloading behavior and the complex plastic flow stress upon load reversal with QPE and HAH
models, respectively, enhanced accuracy in springback predictions.

The material parameters for the advanced material models were obtained by the Nelder–Mead simplex algorithm. Finite
element simulations using simple boundary conditions were carried out for DP780 and TRIP780 steel sheets. These simula-
tions validated the proposed HAH–QPE approach and its numerical implementation by reproducing a few stress–strain
curves cycles for both materials. In particular, the QPE approach could well capture the nonlinear unloading behavior com-
pared with the frequently used linear ‘‘Chord’’ type approach.

Finally, finite element simulations of U-draw/bending were carried out for the springback prediction for as-received spec-
imen and pre-deformed AHSS sheets deformation. It was found that the prediction of springback was improved when the
advanced models for both plastic flow stress and elastic unloading were taken into account.

Although the present FE simulations using the combined HAH–QPE model resulted in good predictions for most of the
cases, the springback of TRIP780 steel sheet with as-received specimen was initially overestimated. This significant discrep-
ancy between simulation and experiment for the TRIP780 steel sheet was analyzed by introducing the temperature effect on
the phase transformation from austenite to martensite. The measured stress–strain curve at different temperatures and the
transformed volume fraction of retained austenite could provide reasonably good explanation on the reason of the
discrepancy.
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