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Alterations in immune function 
during exercise in the heat have 

important implications for athletes, 
military personnel, and firefighters.

Abstract: During exercise, body tem-
perature rises as a result of increased 
energy metabolism and heat absorbed 
from the environment. In response to 
this rise in body temperature, blood 
flow increases and stress hormones 
are released. Together, blood flow and 
stress hormones stimulate increases 
in the number of circulating leuko-
cytes and alterations in various aspects 
of immune function, including cyto-
kine production. The extent of changes 
in leukocyte numbers, cytokine con-
centrations, and immune cell function 
depends on how high body tempera-
ture rises and the intensity and dura-
tion of exercise. In general, increases 
in body temperature of ≤1.8°F (1°C) 
induce mild changes in immune func-
tion, and such changes are unlikely 
to increase the risk of illness in ath-
letes, firefighters, and military per-
sonnel who regularly exercise in hot 
conditions. More severe immune dis-
turbances during exercise in extreme 
heat (≥106°F or 41°C) may contribute 
to classical symptoms of heatstroke.

Keywords: hyperthermia; heat-
stroke; cytokines; inflammation; 
lipopolysaccharide

During exercise in hot weather, the 
body absorbs heat from the envi-
ronment (Figure 1). In addition, 

metabolic reactions to sustain energy pro-
duction during exercise raise body 

temperature. Approximately 40% of 
energy derived from the metabolism of 
glucose and free fatty acids is used to 
fuel muscle contractions, whereas the 
remaining 60% is converted to body heat. 
In response to increases in body tem-
perature during exercise, cardiac output 
increases to deliver more blood to con-
tracting muscle and also to the skin for 
convective and evaporative cooling.

Alterations in immune function dur-
ing exercise in the heat have important 
implications for athletes, military person-
nel, and firefighters. Strenuous exercise 

•	 Stress hormones released indepen-
dently of changes in body temperature

•	 Blood flow and leukocyte trafficking
•	 Oxidative stress
•	 A combination of these factors.

Particular attention has focused on 
the role of stress hormones in regulat-
ing changes in the immune system during 
exercise in hot conditions. Catecholamines 
released from the adrenal medulla, such 
as epinephrine and norepinephrine, regu-
late changes in cardiac output and blood 
flow during exercise in the heat (Figure 
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can increase the risk of developing upper 
respiratory illness,1-4 and immune changes 
during exercise in the heat may con-
tribute to the symptoms of heatstroke.5 
Immune changes in response to exercise 
in the heat may be due to a variety of 
factors, which include the following6:

•	 A direct effect of elevated body 
temperature

•	 Stress hormones released in response 
to elevated body temperature

1). Exercise in the heat also stimulates the 
release of cortisol from the adrenal cortex 
and growth hormone from the pituitary 
gland. These physiological responses to 
exercise in the heat influence the immune 
system during exercise in the heat in 2 
main ways. First, increased blood flow 
and stress hormones mobilize leukocytes 
from bone marrow and also from the 
endothelial surface of blood vessels 
in the lungs. Second, by binding to sur-
face receptors on immune cells, stress 
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Figure 1.

Flow diagram indicating processes of heat gain, hormonal changes, and blood flow that regulate immune changes during exercise 
in the heat. A rise in body temperature stimulates the hypothalamus and adrenal gland to release stress hormones such as 
catecholamines, growth hormone, and cortisol. These stress hormones alter cardiac output and blood flow to the gastrointestinal 
tract, skeletal muscle, and skin. Increased blood flow mobilizes leukocytes from bone marrow and the endothelial lining of 
blood vessels. Cytokines, such as interleukin-6, are also released from muscle into the circulation. Lower blood flow to the 
gastrointestinal tract may cause leakage of lipopolysaccharide into the circulation, which may in turn stimulate leukocytosis 
and systemic cytokine production. 

hormones alter signaling pathways within 
these cells that modulate the functional 
activity of these cells. Cytokines produced 
by immune cells in response to a rise in 
body temperature may also influence cir-
culating leukocyte numbers and immune 
cell activity in an autocrine and paracrine 
manner. Exercise in hot conditions also 
increases oxidative stress,7 and oxidative 

stress may alter some aspects of immune 
function, such as cytokine production.8,9

The purpose of this review is to pro-
vide a brief summary of the effects of 
heat stress and exercise on the distribu-
tion and activity of various types 
of immune cells. The potential role of 
exercise-induced immune changes in 
heat injury is also discussed. Interested 

readers are directed to other reviews for 
more comprehensive information.5,6

Passive Heating and 
Circulating Leukocytes

To understand the influence of body 
temperature on the immune system, 
several studies have investigated the 
influence of passive heating of humans on 
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the number of various different cell types 
in the circulation. In general, these stud-
ies have investigated changes in circulat-
ing leukocyte numbers between sitting in 
air or water 95°F to 113°F (34.5°C-45°C). 
Among these studies (see Table 1), cir-
culating leukocyte numbers appear to 
increase only when body temperature 
exceeds 100°F (38°C), which is similar to 
body temperatures observed during stren-
uous exercise.10-13 Changes in the numbers 
of lymphocytes, granulocytes, and mono-
cytes with passive heating are variable; 
none of these cell types are individually 
responsive to heat stress. Growth hormone 
and the chemokine granulocyte- 
colony stimulating factor (G-CSF) medi-
ate the leukocytosis that occurs with pas-
sive heating in humans14 and mice.15 In 
contrast, cortisol and b-adrenergic and 
b-endorphin receptors do not influence 
leukocytosis to the same extent.14,15

Passive Heating and 
Circulating Cytokines

Cytokines represent a group of proteins 
that mediate cross-talk between 
different cells of the immune system and 

the release of immune cells from bone 
marrow. They are an integral component 
in the inflammatory responses to infec-
tion and tissue injury. Passive heating 
of humans for 1 to 2 hours at 101°F to 
103°F (38.5°C-39.5°C; raising body tem-
perature to ≥101°F or 38.5°C) increases 
the plasma concentrations of the proin-
flammatory cytokines interleukin (IL)-1b, 
tumor necrosis factor (TNF)-a, and IL-6 
and the chemokines G-CSF and IL-8.12,16 
The cellular sources of these cyto-
kines likely include T helper 1 lympho-
cytes and macrophages.17 G-CSF and IL-8 
mobilize neutrophils in the circulation18,19 
and may therefore partially regulate the 
neutrophilia that occurs with a rise in 
body temperature.15

Passive Heating and 
Immune Cell Function

The effects of passive heating on neu-
trophil function are equivocal. Some 
researchers have reported that 2 hours 
of passive heating of humans at 101°F 
(38.5°C; raising body temperature to 
101°F or 38.5°C) reduces neutrophil
production of the proteolytic enzyme 

elastase.12 In contrast, others have 
reported that 6 hours of passive heat-
ing of cancer patients at 107°F (41.5°C) 
raises neutrophil bactericidal capacity,20 
whereas 2 hours of passive heating of 
humans at 103°F (raising body tempera-
ture to 103°F) does not alter neutrophil 
production of reactive oxygen species.21 
Some of this disparity may be due to dif-
ferences in the temperature and period 
of heat exposure. The effects of pas-
sive heating on lymphocyte, monocyte, 
and natural killer cell functions are more 
consistent. Hyperthermia increases the 
production of the cytokines IL-1, IL-2, 
and interferon (IFN)-g by lymphocytes 
and monocytes stimulated with mito-
gens in both healthy humans and cancer 
patients.11,22 Hyperthermia also stimu-
lates natural killer cell activity.13,22,23 These 
immune-stimulatory effects of hyper-
thermia may be useful in the treatment 
of cancer patients. The systemic factors 
that enhance the function of lymphocyte, 
monocyte, and natural killer cells follow-
ing hyperthermia are uncertain. Blocking 
the actions of stress hormones does not 
alter natural killer cell activity in response 
to passive heating.14 Autocrine or para-
crine factors may therefore play a role.

Exercise, Heat Stress, and 
Circulating Leukocytes

Compared with passive heating, exer-
cise in hot conditions raises body tem-
perature to at least the same extent but 
stimulates a stronger stress hormone 
response.24 This greater stress hormone 
response to exercise likely reflects greater 
demand for blood flow to contracting 
skeletal muscle to support oxygen, fuel 
mobilization, and provide nutrient supply 
and also to the skin for cooling. Several 
studies have investigated whether exer-
cise in the heat promotes leukocytosis. 
The results from these studies gener-
ally demonstrate that circulating leu-
kocyte numbers increase when body 
temperature increases ≥1.8°F (1°C) dur-
ing exercise in the heat (Table 2).10,25-

27 Lymphocytes and monocytes tend to 
increase to a greater extent than neutro-
phils following exercise in the heat. In 
contrast, more mild heat stress during 

Table 1.

Effects of Passive Heating on Circulating Leukocyte Subsets

 
 
Passive Heating

Difference 
in Body 

Temperature

% Difference in Cell 
Counts Immediately 

After Heating

 
 

Reference

1 h 20 min sitting in 
water at 102°F vs 73°F 
(39°C vs 23°C)

3°F (1.6°C) Lymphocytes 20% 
    higher
Neutrophils 15% higher
Monocytes 75% higher

10

3 h sitting in air at 
104°F vs 73°F (40°C 
vs 23°C)

1.6°F (1°C) Lymphocytes similar
Neutrophils similar
Monocytes similar

27

2 h sitting in water at 
101°F vs 96°F (38.5°C 
vs 35.3°C)

4°F (2.3°C) Neutrophils 60% higher 12

2 h sitting in water at 
103°F vs 94°F (39.5°C 
vs 34.5°C)

5°F (2.3°C) Lymphocytes 30% 
    higher
Neutrophils 40% higher
Monocytes similar

13
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exercise does not promote any significant 
leukocytosis.28-31 The rise in body temper-
ature and stress hormones accounts for 
most of the increase in circulating leu-
kocyte numbers during exercise in the 
heat.10,26 In the hours after exercise in the 
heat, circulating leukocytes either remain 
higher or return to baseline in a similar 
manner to that after exercise in thermo-
neutral conditions.* Leukocyte responses 
to repeated bouts of exercise in short 
succession (45-minute rest) are generally 
greater in hot conditions.27

Exercise, Heat Stress, and 
Circulating Cytokines

Fewer studies have investigated the 
effects of exercise in the heat on circu-
lating cytokines. Cytokine responses to 
exercise in hot conditions are poten-
tially important because cytokines reg-
ulate leukocyte trafficking and function. 
IL-6 is the most commonly measured 
cytokine after exercise in the heat, but 
the magnitude of changes in IL-6 varies 
widely between studies (Table 3). This 
variability may relate to differences in 
ambient temperature and the duration 
and intensity of exercise. Perhaps not 
surprisingly, plasma cytokine concen-
trations increase to a greater extent dur-
ing exercise in the heat at ≥70% VO

2max
 

compared with ≤60% VO
2max

. Plasma IL-6 
concentration increases during exercise 
in the heat,12,33-35 most likely in response 
to greater depletion of muscle glyco-
gen.36,37 IL-6 may stimulate production of 
IL-10 and IL-1ra during the latter stages 
of exercise.38 The plasma TNF-a con-
centration also increases during exercise 
in hot conditions,28,34,35 but the cellu-
lar source of TNF-a is unknown.35,39 
The chemokines G-CSF and IL-8 also 
increase during exercise in the heat, 
but they play a limited role in regu-
lating changes in circulating neutro-
phils.12,28 Extracellular heat shock protein 
70 is classified as a chaperokine,40 and it 
increases within the circulation follow-
ing exercise in the heat.41

Exercise, Heat Stress, and 
Immune Cell Function

Alterations in circulating leukocytes and 
cytokines during exercise in the heat may 

Table 2.

Effects of Exercise in the Heat on Circulating Leukocytes

 
 
Exercise

Difference 
in Body 

Temperature

% Difference in Cell 
Counts Immediately 

After Exercise

 
 

Reference

40 min cycling at 75% 
VO2max in water at 102°F 
vs 73°F (39°C vs 23°C)

	2.3°F (1.3°C) Lymphocytes 30%  
    higher
Neutrophils similar
Monocytes similar

10

40 min cycling at 75% 
VO2max in water at 102°F 
vs 73°F (39°C vs 23°C)

	3.1°F (1.7°C) Lymphocytes 10%  
    higher
Neutrophils 30% higher
Monocytes similar

26

30 min cycling at 50% 
VO2max in air at 104°F vs 
73°F (40°C vs 23°C)

1.3°F (0.7°C) Lymphocytes 40%  
    higher
Neutrophils similar
Monocytes 40% higher

27

1 h cycling at 60% 
VO2peak in air at 100°F vs 
64°F (46°C vs 8°C)

	 1.8°F (1°C) Lymphocytes 60%  
    higher
Neutrophils 20% higher

30

1 h 30 min cycling at 
60% VO2max in air at 
90°F vs 64°F (32°C vs 
18°C)

	0.5°F (0.9°C) Lymphocytes 10%  
    higher
Neutrophils 10% higher
Monocytes similar

28

1 h 15 min cycling at 
55% VO2peak in air at 
100°F vs 72°F (38°C vs 
22°C)

	2.2°F (1.2°C) Lymphocytes 10%  
    higher
Neutrophils 25% higher

25

1 h cycling at 55% VO2peak 
in water at 95°F vs 64°F 
(35°C vs 18°C)

	 2°F (1.1°C) Lymphocytes similar
Neutrophils similar
Monocytes similar

33

2 h cycling at 60% VO2max 
in water at 86°F vs 68°F 
(30°C vs 20°C)

	1.1°F (0.6°C) Lymphocytes 10% lower
Neutrophils 20% higher
Monocytes 25% higher

32

2 h running at 58% 
VO2max in water at 101°F 
vs 96°F (38.5°C vs 
35.3°C)

	3.6°F (2.3°C) Neutrophils similar 12

1 h 30 min cycling at 
70% VO2peak in air at 
95°F vs 59°F (35°C
vs 15°C)

	1.4°F (0.8°C) Lymphocytes similar
Neutrophils similar
Monocytes similar

35

1 h running at 90% 
anaerobic threshold 
in air at 82°F vs 64°F 
(28°C vs 18°C)

	 2°F (1.1°C) Lymphocytes similar
Neutrophils similar
Monocytes similar

29

*References 12, 25, 26, 29, 30, 32.
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influence the functional activity of vari-
ous immune cells. As a marker of neutro-
phil activation, plasma myeloperoxidase 
concentration increases to a similar 
extent after exercise in hot and thermo-
neutral conditions.28,29 Similarly, neutro-
phil production of elastase decreases 
after exercise in both hot and thermo-
neutral conditions.31 In contrast, neutro-
phil superoxide production25 and plasma 
calprotectin concentrations are higher 
after exercise in the heat compared with 
exercise in thermoneutral conditions.28 
Exercise in hot conditions differentially 
influences specific lymphocyte 

functions. Lymphocyte proliferation 
decreases or increases,25,27 whereas 
immunoglobulin production increases 
after exercise in the heat compared with 
exercise in thermoneutral conditions.27 
These divergent responses may reflect 
differences in the relative proportions of 
circulating lymphocyte subsets between 
exercise in hot versus thermoneutral con-
ditions.25,27 Natural killer cell activity is 
similar after exercise in hot and thermo-
neutral conditions.25,30,33 Finally, the sal-
ivary immunoglobulin A secretion rate 
decreases after exercise in both hot and 
thermoneutral conditions.42

Exercise in the Heat and 
Susceptibility to Illness

Evidence implicating immune changes 
in severe heat injury comes from stud-
ies of military personnel and individu-
als on religious pilgrimages to Mecca. 
Lymphocyte activation is suppressed in 
military recruits with exertional heat injury 
(body temperature 104.7°F or 40.4°C) 
compared with military recruits without 
exertional heat injury (body temperature 
101.5°F or 38.6°C).43 The number of cir-
culating leukocytes, T-suppressor (CD8+), 
and natural killer (CD16+, CD56+) cells 
are higher, whereas the number of 
T-helper (CD4+) and B cells are lower in 
individuals with heatstroke (body temper-
ature 106.6°F or 41.4°C).44,45 Furthermore, 
in individuals with heatstroke, the num-
ber of T-suppressor cells correlates with 
body temperature (Pearson correlation 
r = 0.75, P = .007, n = 11).45 Some of 
these lymphocyte responses may result 
from systemic cytokine release during 
heatstroke.46-48

A dual pathway model has been pro-
posed to account for the role of cytokines 
in the etiology of heatstroke.5 The first 
pathway suggests that elevated circulating 
concentrations of pyrogens such as gram-
negative bacteria (eg, lipopolysaccha-
ride) during exercise in the heat stimulate 
a systemic inflammatory response.5 This 
may occur as a result of reduced blood 
flow (hypoxia) and opening of tight junc-
tions in the gastrointestinal tract during 
exercise (Figure 1).49 Lipopolysaccharide 
activates the complement cascade and the 
synthesis of prostaglandin E

2
 and pyro-

genic cytokines such as IL-1 and TNF-
a. Prostaglandin E

2
 and cytokines then 

stimulate the hypothalamus, resulting in 
a febrile response.50 The second path-
way suggests that exercise itself—if suffi-
ciently intense or prolonged—suppresses 
the production of T-helper cytokines (eg, 
IL-2, TNF-a, IL-12) and promotes the pro-
duction of T-helper 2 cytokines (eg, IL-6, 
IL-10). This shift in the Th1/Th2 balance 
may increase susceptibility to leakage of 
lipopolysaccharide into the circulation 
during exercise.5

No research has directly examined 
whether exercise in the heat increases 
the risk of viral infection. Addressing this 

Table 3.

Effects of Exercise in the Heat on Circulating Cytokines

 
 
 
Exercise

 
Difference 

in Body 
Temperature

% Difference 
in Cytokines 

Immediately After 
Exercise

 
 
 

Reference

1 h cycling at 55% VO2peak 
in water at 95°F vs 64°F 
(35°C vs 18°C)

2°F (1.1°C) IL-6 50% higher 33

1 h running at 90% 
anaerobic threshold in 
air at 82°F vs 64°F (28°C
vs 18°C)

2°F (1.1°C) IL-6 40% higher 29

40 min cycling at 75% 
VO2max in water at 102°F 
vs 73°F (39°C vs 23°C)

3.1°F (1.7°C) IL-6 50% higher
IL-1ra 3× higher
TNF-a 15× higher
IL-12 12× higher

34

2 h running at 58% VO2max 
in water at 101°F vs 
96°F (38.5°C vs 35.3°C)

3.6°F (2.3°C) IL-6 1.6× higher
G-CSF 8× higher

12

1 h 30 min cycling at 
60% VO2max in air at 90°F 
vs 64°F (32°C vs 18°C)

0.5°F (0.9°C) IL-6 15% higher
IL-1ra 70% higher
TNF-a 15% higher
IL-8 25% higher
IL-10 120% higher
G-CSF 70% higher

28

1 h 30 min cycling at 
70% VO2peak in air at 95°F 
vs 59°F (35°C vs 15°C)

1.4°F (0.8°C) IL-6 3.5× higher
TNF-a 1.6× higher

35

Abbreviations: G-CSF, granulocyte-colony stimulating factor; IL, interleukin; TNF, tumor necrosis 
factor.
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issue is problematic for 2 reasons. First, 
in a field setting, it is difficult to sepa-
rate the effects of exercise and added 
heat stress on the immune system. 
Furthermore, viral infection is unpre-
dictable, and large numbers of sub-
jects would be required to capture and 
evaluate the incidence of infection fol-
lowing exercise in the heat in a field set-
ting. Second, inducing viral infection in 
humans following exercise in hot con-
ditions raises ethical issues. Our current 
knowledge is therefore limited to in vitro 
research, which indicates that kidney 
cells exposed to ~108°F (42°C) for
6 hours are more susceptible to viral 
infection compared with kidney cells 
not exposed to this form of heat shock.51 
Other research indicates that acute infec-
tion before exercise in the heat increases 
the severity of heat illness, possibly by 
raising basal hyperthermia.52

Gastrointestinal illness is common 
among military personnel who exercise 
in hot conditions.53 This illness may be 
linked, in part, to the presence of bacte-
ria in the gastrointestinal system and the 
circulation. The role of lipopolysaccha-
ride as a factor driving cytokine responses 
to exercise is controversial. A number 
of studies have reported that prolonged 
endurance exercise increases plasma lipo-
polysaccharide concentration.47,54-61 In 
contrast, others have found no change 
in plasma lipopolysaccharide concen-
tration after a 100-mile footrace, despite 
high plasma cytokine concentrations after 
the race.62 Doubts exist concerning the 
specificity of laboratory methods used 
to measure plasma lipopolysaccharide 
concentration.63

Conclusion

Exercise in the heat induces major 
changes in blood flow and a robust stress 
hormone response. These physiological 
responses induce modest changes in cir-
culating leukocyte numbers and cytokine 
concentrations and alter the activity of 
some immune cells. The relatively small 
body of existing literature does not sup-
port the concept that athletes, firefighters, 
or military personnel are at greater risk of 
illness following exercise in the heat 

compared with exercise in more moderate 
temperatures. More research is required 
to examine whether exercise in hot con-
ditions increases the risk of viral infec-
tion and bacteria-related gastrointestinal 
illnesses. A critical threshold for the rise 
in body temperature during exercise may 
exist, perhaps ~6°F (3.5°C), beyond which 
systemic inflammatory responses may 
contribute to symptoms of heatstroke. 
Further work is warranted, particularly in 
the field, to improve our understanding of 
the effects of heat stress during exercise 
on the immune system. AJLM
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