
Time-Space Lower Bounds for Satisfiability∗

Lance Fortnow

University of Chicago

Richard Lipton

Georgia Institute of Technology

Dieter van Melkebeek†

University of Wisconsin

Anastasios Viglas

University of Sydney

September 7, 2004

Abstract

We establish the first polynomial time-space lower bounds for satisfiability on general models
of computation. We show that for any constant c less than the golden ratio there exists a positive
constant d such that no deterministic random-access Turing machine can solve satisfiability in
time nc and space nd, where d approaches 1 when c does. On conondeterministic instead of
deterministic machines, we prove the same for any constant c less than

√
2.

Our lower bounds apply to nondeterministic linear time and almost all natural NP-complete
problems known. In fact, they even apply to the class of languages that can be solved on a
nondeterministic machine in linear time and space n1/c.

Our proofs follow the paradigm of indirect diagonalization. We also use that paradigm to
prove time-space lower bounds for languages higher up in the polynomial-time hierarchy.

∗This paper combines extended abstracts that appeared in the Proceedings of the 40th IEEE Symposium on

Foundations of Computer Science [LV99] and in the Proceedings of the 15th IEEE Conference on Computational

Complexity [FvM00].
†Partially supported by NSF Career award CCR-0133693.

1

1 Introduction

Proving lower bounds remains the most difficult of tasks in computational complexity theory.
Even for satisfiability, the seminal NP-complete problem of deciding whether a given propositional
formula has at least one satisfying assignment, little is known. While we expect satisfiability to
take exponential time in the worst case and to require a linear exponent in the number of variables
of the formula, we do not even know how to rule out the existence of a linear-time algorithm on a
random-access Turing machine. Obviously, linear time is needed since we have to look at the entire
formula in the worst case. To date no better time lower bound than the trivial one is known on
unrestricted random-access machines.

However, if we limit the amount of work space a machine solving satisfiability is allowed to use
then we can establish nontrivial lower bounds on its running time. Fortnow [For00b] established a
slightly super-linear time lower bounds for such machines: For any positive constant ǫ, satisfiability
cannot be solved on a deterministic random-access Turing machine in time n1+o(1) and space n1−ǫ.
In this work, we improve Fortnow’s result and obtain a polynomial lower bound of constant degree
larger than 1 for the same type of machines; the degree approaches the golden ratio φ ≈ 1.618 when
the space bound becomes subpolynomial. More precisely, we obtain the following result.

Theorem 1.1 Let φ
.
= (

√
5 + 1)/2 denote the golden ratio. For any constant c < φ there exists a

positive constant d such that satisfiability cannot be solved on a deterministic random-access Turing
machine in time nc and space nd. Moreover, d approaches 1 from below when c approaches 1 from
above.

Deterministic time-space lower bounds for satisfiability relate to the P-versus-NP problem. Sim-
ilarly, in the context of the NP-versus-coNP problem, one can establish time-space lower bounds
for satisfiability on conondeterministic machines. In fact, Fortnow’s lower bound also holds for
conondeterministic machines [For00b]. Our techniques allow us to improve that lower bound from
slightly superlinear to a polynomial of constant degree larger than 1, albeit a smaller degree than
in the deterministic case.

Theorem 1.2 For any constant c <
√

2 there exists a positive constant d such that satisfiability
cannot be solved on a conondeterministic random-access Turing machine in time nc and space nd.
Moreover, d approaches 1 from below when c approaches 1 from above.

Our results as well as the earlier ones by Fortnow exploit the tight relationship between satisfi-
ability and nondeterministic linear time. Satisfiability is complete for nondeterministic quasi-linear
time under reductions that use quasi-linear time and logarithmic space [Coo88]. Time-space lower
bounds for satisfiability and for nondeterministic linear time are equivalent up to polylogarithmic
factors. The equivalence holds not just for satisfiability but for all natural NP-complete problems
we know of. Thus, our lower bounds for satisfiability actually apply to all these problems.

Our proofs can be characterized as indirect diagonalization arguments. By way of contradic-
tion, we assume we can simulate nondeterministic linear time efficiently on deterministic (in the
case of Theorem 1.1) or conondeterministic (in the case of Theorem 1.2) machines. We view that
hypothesis as an unlikely inclusion of complexity classes and use it to derive more and more unlikely
inclusions of complexity classes up to the point where we reach a contradiction with a direct diag-
onalization result. Kannan [Kan84] used a similar approach in his investigation of the relationship
between nondeterministic and deterministic linear time. His results do not imply lower bounds for

2

satisfiability but we will cast his argument in such a way that we can use it as a starting point for
our exposition.

We can get lower bounds for nondeterministic linear time even if we restrict the amount of space
the nondeterministic machine can use. For example, we show that for every constant c less than the
golden ratio there exists a positive constant d and a language computable by a nondeterministic
machine in linear time and n1/c space that cannot be computed by deterministic machines that
run in time nc and space nd. A similar lower bound for conondeterministic instead of deterministic
simulations holds for every constant c less than

√
2. These are instantiations of more general

tradeoffs between the various time and space parameters. They constitute the first nontrivial
time-space lower bounds for nondeterministic linear-time computations with sublinear space.

Our approach applies to languages higher up in the polynomial-time hierarchy as well. We show
that ΣℓTIME[n] cannot be solved in deterministic time nc and space nd for c < ℓ and some positive
constant d (depending on c).

1.1 Organization

Section 2 contains some preliminaries, including a description of the machine model we focus on
in our proofs, the direct diagonalization results we need, and constructibility conventions we use
throughout the paper.

In Section 3, we argue that time-space lower bounds for satisfiability and for nondeterministic
linear time are equivalent up to polylogarithmic factors and that the same holds for all natural
NP-complete problems we know of. Whereas in this section we have stated our main results in
terms of satisfiability, in the rest of the paper we will think in terms of nondeterministic linear
time.

Section 4 describes the proof paradigm of indirect diagonalization in more detail. It provides
the structure and basic ingredients for all our arguments.

We derive our lower bounds for nondeterministic linear time on deterministic machines in Section
5. We start out by casting Kannan’s result about nondeterministic versus deterministic linear time
as an indirect diagonalization argument. We then develop our indirect diagonalization approach
and derive explicit relationships between the constants c and d in the time and space bounds of
Theorem 1.1, as well as further strengthenings. In Section 6, we do the same for our lower bounds
for nondeterministic linear time on conondeterministic machines as stated in Theorem 1.2. Section
7 contains the application of our approach to complexity classes other than nondeterministic linear
time.

Finally, we discuss some related subsequent work and directions for further research in Section
8.

2 Preliminaries

In this section, we describe our machine model, the direct diagonalization results we need, and
constructibility conventions we assume in the rest of the paper. We refer the reader to the textbooks
by Balcázar, D́ıaz and Gabarró [BDG95], and by Papadimitriou [Pap94] for general background on
computational complexity and for notation.

3

2.1 Machine model

Up to polylogarithmic factors, our results are robust with respect to the choice of random-access
machine model. Our arguments work for all models we know; for some models extra polylogarithmic
factors arise in the analysis due to simulations of machines within the model. In this paper, we
choose the particular model below. It has the advantage that simulations can be done with only
constant factor overheads in time and space, which keeps the analysis clean.

We use random-access Turing machines with an arbitrary number of tapes. A machine can have
two types of tapes: non-index tapes and index tapes. Every non-index tape T except the output
tape has an associated index tape I. The machine can move the head on T in one step to the
position indexed by the contents of I. The contents of I is erased in such a step.

The input tape is read-only and has an associated index tape; the output tape is write-only,
has no index-tape, and is one-directional. The input and output tapes do not count towards the
space usage of the machine. Non-index tapes contribute the largest position ever read (indexed) to
the space usage.

Note that according to our definition the space can be exponential in the running time. However,
by using an appropriate data structure to store the contents of the tape cells accessed, we can
prevent the space from being larger than the running time without blowing up the running time
by more than a polylogarithmic factor.

A configuration of a machine M consists of the internal state of M , the contents of the work
and index tapes, and the head positions on the index tapes. We use the notation C ⊢τ

M,x C
′ to

denote that machine M on input x can go from configuration C to configuration C ′ in τ steps. The
computation tableau of M on input x is a representation of the entire computation. It consists of
a table in which successive rows describe the successive configurations of M on input x, starting
from the initial configuration of M . If M runs in time t and space s, each configuration has size
O(s) and the computation tableau contains at most t rows.

Based on our machine model, we define complexity classes in the standard way. Apart from the
usual acronyms, we also employ the following notation: DTISP[t, s] for the class of languages that
can be accepted by a deterministic machine running in time O(t) and space O(s), and NTISP[t, s]
for the corresponding nondeterministic class. ΣℓTIME[t] stands for the class of languages computed
by Σℓ-machines that run in time O(t). Using Πℓ-machines instead of Σℓ-machines yields the class
ΠℓTIME[t].

2.2 Diagonalization results

Most of our indirect diagonalization arguments use the following straightforward direct diagonaliza-
tion result. It states that, for a fixed number of alternations, switching from universal to existential
initial states and allotting a little bit more time allows us to do something what we could not do
before. We include a proof sketch for completeness.

Theorem 2.1 Let ℓ be a positive integer and t a time constructible function. Then

ΣℓTIME[t] 6⊆ ΠℓTIME[o(t)].

Proof: Fix a positive integer ℓ. Paul, Prauß, and Reischuk [PPR80] show, for the multitape Turing
machine model, that every Σℓ-machine running in time τ with an arbitrary number of tapes can

4

be simulated in time O(τ) by a Σℓ-machine with a fixed number of tapes. The same holds for our
model of computation.

Let M denote the Σℓ-machine that takes an input x and runs the above simulation of the Σℓ-
machine described by x on input x; clock M such that it runs in time t. The language L defined
by M lies in ΣℓTIME[t].

Consider any Πℓ-machine N that runs in time o(t). Then there are infinitely many strings
x that describe a Σℓ-machine that does the opposite of N . For large enough strings x in that
sequence, M will finish its computation on input x before the clock kicks in, and therefore do the
opposite of what N does on that input. Since M accepts L, N cannot accept L. Thus, L is not in
ΠℓTIME[o(t)]. �

Except in Section 7, we will apply Theorem 2.1 with ℓ = 1, i.e., we will use the fact that
NTIME[t] 6⊆ coNTIME[o(t)].

A similar result to Theorem 2.1 also holds in the time-space bounded setting. We will only use
the instance for ℓ = 1:

Theorem 2.2 Let t and s be functions that are (t, s) time-space constructible. Then

NTISP[t, s] 6⊆ coNTISP[o(t), o(s)].

Proof: Fortnow and Lund [FL93] argue that the result of Paul, Prauß, and Reischuk for multitape
Turing machines also holds in the time-space bounded setting. Their proof carries over for our
model of computation. The rest of the argument is the same as in the proof of Theorem 2.1. �

One of our results (part of Theorem 6.2) relies on a more intricate direct diagonalization result,
namely the nondeterministic time hierarchy theorem.

Theorem 2.3 ([SFM78, Ž83]) Let t1(n) and t2(n) be functions with t2(n) time constructible. If
t1(n+ 1) ∈ o(t2(n)) then

NTIME[t1] (NTIME[t2].

2.3 Constructibility Issues

Unless stated otherwise, a function will always denote a function from the natural numbers to the
natural numbers. Let f , t, and s be functions. We say that f is (t, s) time-space constructible if
there exists a deterministic machine that outputs 1f(|x|) on input x and runs in time O(t) and space
O(s).

Constructibility conditions are needed when we do time and/or space bounded simulations, as
in the diagonalization results above or in padding results like the following.

Theorem 2.4 Let f , t, s, s′, and σ be functions such that f(n) > n + 1 and is (f, s′) time-space
constructible and s′ = O(σ(f)). Then

NTISP[n, σ] ⊆ coNTISP[t, s]

implies
NTISP[f, σ(f)] ⊆ coNTISP[t(f) + f, s(f) + s′].

5

We will not explicitly state the constructibility conditions in the rest of this paper. We tacitly
assume that the bounds in the general formulations of our results satisfy these requirements. We
also assume that they are at least logarithmic, nondecreasing and do not grow too fast in the sense
that f(O(n)) ⊆ O(f(n)). The bounds we use in our concrete results will be polynomials, which are
sufficiently smooth to meet all these conditions.

3 Satisfiability versus Nondeterministic Linear Time

This section discusses the tight connection between satisfiability and nondeterministic linear time
as far as time-space lower bounds are concerned.

Cook’s Theorem states that satisfiability (SAT) is NP-complete. Gurevich and Shelah [GS89]
show that, in fact, satisfiability is complete for nondeterministic quasi-linear time under quasi-linear
reductions. Recall that “quasi-linear” means O(n logO(1) n). Therefore, proving time lower bounds
for satisfiability and for nondeterministic linear time are equivalent up to polylogarithmic factors.

We are interested in simultaneous time and space bounds, though. Since satisfiability lies in
nondeterministic quasi-linear time, time-space lower bounds for satisfiability also hold for nonde-
terministic linear time modulo polylogarithmic factors. The converse is also true but does not
immediately follow from the completeness result by Gurevich and Shelah. The problem is that
we do not have the space to store the result of the reduction of a problem in nondeterministic
quasi-linear time to satisfiability, nor the time to redo the whole reduction each time we need a
piece of it. The way around it is to construct a reduction each bit of which can be computed on
the fly in polylogarithmic time using logarithmic work space. This leads to the following result.

Theorem 3.1 There exists a constant r such that the following holds. If

SAT ∈ DTISP[t, s],

then
NTIME[n] ⊆ DTISP[t(n logr n) · logr n, s(n logr n) + log n].

We include a detailed proof of Theorem 3.1 in Section 3.1.
Theorem 3.1 allows us to translate time-space lower bounds for nondeterministic linear time

into the same time-space lower bounds for satisfiability up to polylogarithmic factors. In particular,
for polynomial bounds we obtain:

Corollary 3.2 Let c and d be constants. If

NTIME[n] 6⊆ DTISP[nc, nd],

then for any constants c′ < c and d′ < d

SAT 6∈ DTISP[nc′ , nd′].

The simple reductions to satisfiability that underly Theorem 3.1 also exist to all of the standard
natural NP-complete problems. In fact, to the best of the authors’ knowledge, all known natural NP-
complete problems in nondeterministic quasi-linear time share the latter property. Consequently,
Theorem 3.1 and Corollary 3.2 hold if we replace satisfiability by any of these problems. They also
hold if we replace DTISP by coNTISP in both hypothesis and conclusion.

From now on, our goal will be to obtain time-space lower bounds for nondeterministic linear
time. Results for satisfiability and other NP-complete problems then follow from Theorem 3.1 or
Corollary 3.2 and their variants.

6

3.1 Proof of Theorem 3.1

Gurevich and Shelah [GS89] show how to simulate nondeterministic random-access machines by
multitape Turing machines. Their proof builds on Schnorr’s result [Sch78] that one can sort in
quasi-linear time on a nondeterministic multitape Turing machine.

Theorem 3.3 (Gurevich-Shelah [GS89]) There exists a constant r such that every language
that is accepted by a nondeterministic random-access Turing machine using time t is also accepted
by a nondeterministic multitape Turing machine using time O(t logr t).

Because of Theorem 3.3 the following theorem finishes the proof of Theorem 3.1.

Theorem 3.4 There exists a constant r such that the following holds. If

SAT ∈ DTISP[t, s],

then every language accepted by a linear-time nondeterministic multitape Turing machine belongs
to

DTISP[t(n log2 n) · logr n, s(n log2 n) + log n].

Proof: Let M be a deterministic random-access Turing machine deciding satisfiability in time t
and space s.

Consider an arbitrary language L accepted by a linear-time nondeterministic multitape Turing
machine. Hennie and Stearns [HS66] show that there exists an oblivious 2-tape nondeterministic
Turing machine that accepts L in time O(n log n). Cook [Coo88], building on work by Pippenger
and Fischer [PF79], uses this result to construct for a given input x of length n, a Boolean formula
φ such that φ ∈ SAT iff x ∈ L. The formula φ has size m = dn log n for some constant d depending
on L, only depends on n, and uses the bits xi of the input x as well as some some additional Boolean
variables y. More precisely, φ is of the form (∧n

i=1xi = yi) ∧ ψ where ψ only uses the variables y.
Given a pointer to a bit of ψ, we can compute that bit in simultaneous time O(logr1 m) = O(logr1 n)
and space O(logm) = O(log n) for some constant c1 independent of L.

The following algorithm decides L in time O(t(n log n) · logr n) and space O(s(n log n) + log n)
on a deterministic random-access Turing machine for some constant r independent of L. We will
simulate runningM on input φ without storing φ in memory and without recomputing all of φ each
time we have to access one of its bits. When given φ, running M on φ takes time t(dn log n) and
space s(dn log n). Whenever M needs a bit from ψ, we compute that individual bit from scratch
in time O(logr1 n) and space O(log n), without moving the input tape head above x. During the
periods when M is accessing the part of φ that depends on the input x, the easy structure of that
part allows us to compute the bit of φ we need in time O(logr2 n) and space O(log n) for some
constant r2 independent of L. This operation may require moving the input tape head above x. All
together, we can simulate M on φ with a multiplicative time overhead of O(logr n) and an additive
space overhead of O(log n), where r = max(r1, r2). �

4 Structure of Our Arguments

All time-space lower bounds for nondeterministic linear time to date share the same high-level struc-
ture, which can be characterized as indirect diagonalization. This section describes the paradigm

7

and the main ingredients for its application in this paper. We refer to the survey paper by Fortnow
[For00a] for other applications of indirect diagonalization.

Indirect diagonalization is a technique to separate complexity classes. In our case, we would
like to obtain separations of the form NTIME[n] 6⊆ DTISP[t, s] for some interesting values of the
parameters t and s (t should be at least linear and s at least logarithmic).

The proofs go by contradiction and have the following outline:

1. We assume that the separation does not hold, i.e., we assume the unlikely inclusion NTIME[n]
⊆ DTISP[t, s].

2. Next, using our hypothesis, we derive more and more unlikely inclusions of complexity classes.

3. We keep on doing this until we reach a contradiction with a direct diagonalization result.

We first describe the two techniques we will apply to derive more inclusions in step 2, namely
trading alternations for time and trading time for alternations. Then we will see how to combine
these techniques to obtain a contradiction, and thereby refute the hypothesis made in step 1.

4.1 Trading Alternations for Time

Trading alternations for time means reducing the running time by allowing more alternations. We
know how to do this in general for space-bounded computations using a divide-and-conquer strategy.
The technique has been known for a long time and has been applied extensively in computational
complexity, for example, in the proof of Savitch’s theorem.

Suppose we have a deterministic machine M that runs in space S. We are given two configu-
rations C and C ′ of M on an input x, and would like to know whether M goes from C to C ′ in
T steps. One way to do this is to run the machine for T steps from configuration C and check
whether we end up in configuration C ′. In other words, we fill in the whole tableau in Figure 1(a)
row by row.

Using the power of alternation, we can speed up this process as follows. We can break up the
tableau into b equal blocks, guess the configurations C1, C2, . . . , Cb−1 at the common borders of the
blocks, treat each of the blocks i, 1 6 i 6 b, as a subtableau and verify that M on input x goes
from configuration Ci−1 to Ci in T/b steps. See Figure 1(b).

In terms of logical formulas, we are using the following property of configurations:

C ⊢T C ′ ⇔ (∃C1, C2, . . . , Cb−1)(∀ 1 6 i 6 b)Ci−1 ⊢T/b Ci, (1)

where C0
.
= C and Cb

.
= C ′. We can perform this process on a Σ2-machine using time O(bS) for

guessing the b− 1 intermediate configurations of size S each in the existential phase, time O(log b)
to guess the block i we want to verify in the universal phase, and time O(T/b) to deterministically
run M for T/b steps to verify the ith block. Since the O(log b) term can be ignored, we obtain

DTISP[T, S] ⊆ Σ2TIME[bS + T/b]. (2)

The running time of the Σ2-machine is minimized (up to a constant) by choosing b =
√

T/S,
resulting in

DTISP[T, S] ⊆ Σ2TIME[
√
TS]. (3)

8

?

6

T

� -
S

C ′

C

(a)

?

6

T

� -
S

?

6
T/b

?

6
T/b

?

6
T/b

Cb = C ′

Cb−1

...

C2

C1

C0 = C

(b)

Figure 1: Tableaus of a computation using time T and space S

The final deterministic phase of our simulation consists of an easier instance of our original problem.
Therefore, we can apply the divide-and-conquer strategy again, and again. Each application in-
creases the number of alternations by 2. k recursive applications with block numbers b1, b2, . . . , bk,
respectively, yield:

DTISP[T, S] ⊆ Σ2kTIME[(
∑

i

bi)S + T/(
∏

i

bi)]. (4)

The running time of the Σ2k-machine is minimized (up to a constant) by picking the block numbers
all equal to (T/S)1/(k+1). We obtain:

DTISP[T, S] ⊆ Σ2kTIME[(TSk)1/(k+1)]. (5)

We point out for later reference that minimizing the running time of the Σ2k-machine may not be
the best thing to do if this simulation is just an intermediate step in a derivation. In particular, in
the proofs of Theorems 1.1 and 1.2 the block numbers are not all equal.

4.2 Trading Time for Alternations

The other tool we will use to derive more unlikely inclusions of complexity classes from our hypoth-
esis NTIME[n] ⊆ DTISP[t, s] consists of the opposite of what we just did. We will now see how we
can trade time for alternations, i.e., how we can get rid of alternations by – moderately – increasing
the running time.

In general, we only know how to remove one alternation at an exponential cost in running
time. However, our hypothesis implies that NTIME[n] is included in DTIME[t]. If t is small, this
means that we can simulate nondeterminism deterministically and thus eliminate alternations at a
moderate expense.

9

For example, it follows that for any function τ

Σ2TIME[τ] ⊆ Σ1TIME[t(n + τ)]. (6)

Proof: Consider a Σ2-machine running in time τ on an input x of length n. Its acceptance criterion
can be written as

(∃ y1 ∈ {0, 1}τ) (∀ y2 ∈ {0, 1}τ)R(x, y1, y2)
︸ ︷︷ ︸

(α)

, (7)

where R denotes a predicate computable in deterministic linear time. Part (α) of (7) defines a
conondeterministic computation on input x and y1. The running time is O(τ), which is linear
in the input length n + τ . Therefore, our hypothesis implies that we can transform (α) into a
deterministic computation on input x and y1 taking time O(t(n + τ)). All together, (7) then
describes a nondeterministic computation on input x of time complexity O(τ + t(n+ τ)) = O(t(n+
τ)). �

Note that (6) also follows from the weaker hypothesis NTIME[n] ⊆ coNTIME[t]. Then (α) in (7)
can only be transformed into a nondeterministic instead of a deterministic computation running in
time O(t(n+τ)), but (7) as a whole still remains a nondeterministic computation taking O(t(n+τ))
time. The same argument also works for a larger number of alternations.

Lemma 4.1 Let a > 2 be an integer and t and τ functions. If

NTIME[n] ⊆ coNTIME[t]

then
ΣaTIME[τ] ⊆ Σa−1TIME[t(n+ τ)].

In particular, in case t is of the form t(n) = nc for some constant c and τ is at least linear, we can
eliminate an alternation at the cost of raising the running time to the power c.

4.3 Obtaining a Contradiction

So far we have seen techniques:

1. to trade alternations for time, and

2. to trade time for alternations.

What remains is to combine them in the right way so as to reduce both resources enough and
obtain a contradiction with a direct diagonalization result.

The two most obvious ways of combining the techniques are to apply the first one and then the
second one, or vice versa.

• Fortnow [For00b] first traded time for alternations, and then alternations for time. We refer
the reader to a survey paper by Van Melkebeek [vM04] for this view of Fortnow’s approach.

• Kannan [Kan84] did it the other way around. His approach forms the basis for our results
and we will discuss it in the next section.

10

5 Lower Bounds for Nondeterministic Linear Time on Determin-

istic Machines

This section covers our time-space lower bounds for nondeterministic linear time on deterministic
machines. Our starting point is an indirect diagonalization argument used by Kannan [Kan84]. We
show how to modify his argument and add some more ingredients to obtain the golden ratio time
lower bound for subpolynomial space bounds. We then derive our time lower bound for general
space bounds, quantify the tradeoff in Theorem 1.1, and further strengthen it.

5.1 Kannan’s Argument

Kannan [Kan84] investigates the relationship between deterministic time O(t) and nondeterministic
time O(t) for various time bounds t, in particular for polynomials. In the case of linear t, he shows
that NTIME[n] 6⊆ DTISP[n, o(n)] using essentially1 the following argument. We cast the argument
in the indirect diagonalization paradigm presented at the beginning of Section 4.

Step 1 We assume by way of contradiction that

NTIME[n] ⊆ DTISP[n, o(n)]. (8)

Step 2 Consider the class DTISP[τ, o(τ)] for some super-linear function τ . By first trading alter-
nations for time as in (3) and then time for alternations as in (6), we obtain the following
unlikely inclusion:

DTISP[τ, o(τ)] ⊆ Σ2TIME[o(τ)] ⊆ NTIME[o(τ)]. (9)

Step 3 The hypothesis (8) padded to time τ , closure under complementation of DTISP classes,
and (9) yield:

NTIME[τ] ⊆ DTISP[τ, o(τ)] = coDTISP[τ, o(τ)] ⊆ coNTIME[o(τ)].

This is a contradiction with Theorem 2.1 for, say, τ(n) = n2.

Kannan uses this argument to derive other results about the relationship between DTIME[t] and
NTIME[t] for nonlinear t. We do not discuss these results but move on to our modification of the
argument.

5.2 The Road to The Golden Ratio

We want to rule out deterministic simulations of nondeterministic linear time that use more time
but less space than in Kannan’s original setting. For ease of exposition, we focus on subpolynomial
space bounds first. We present the general analysis in Section 5.3. Thus, we would like to establish
results of the form

NTIME[n] 6⊆ DTISP[nc, no(1)], (10)

where c is a constant larger than 1.
Let us run through the argument of Section 5.1 with the modified parameters.

1Kannan uses the nondeterministic time hierarchy theorem instead of Theorem 2.1.

11

Step 1 Assume that NTIME[n] ⊆ DTISP[nc, no(1)].

Step 2 For any function τ(n) > n2,

DTISP[τ, τ o(1)] ⊆ Σ2TIME[τ
1
2
+o(1)] ⊆ NTIME[τ

c

2
+o(1)].

Step 3 For any function τ(n) > n2/c,

NTIME[τ] ⊆ DTISP[τ c, τ o(1)] = coDTISP[τ c, τ o(1)] ⊆ coNTIME[τ c2/2+o(1)].

We obtain a contradiction with Theorem 2.1 as long as c2/2 < 1.

We conclude that (10) holds for any constant c <
√

2.
In order to establish (10) for constants c >

√
2, one might try to improve Step 2 by applying

the divide-and-conquer strategy of Section 4.1 recursively. That is, we use more alternations, as in
(4), to reduce the running time further and then remove them using Lemma 4.1 repeatedly. We
obtain the following substitute for Step 2 by choosing the block numbers bi in (4) optimally.

Lemma 5.1 Suppose that
NTIME[n] ⊆ DTIME[nc]

for some constant c > 1. Then for any function T and any positive integer k

DTISP[T, T o(1)] ⊆ NTIME[T ek+o(1)]

provided T ek(n) > nc2k−1
, where

e1 = c/2
ek+1 = c2ek/(1 + cek).

The sequence (ek)k converges monotonically to the positive fixed point of the transformation e →
c2e/(1 + ce), i.e., to e∞

.
= c− 1

c .
Unfortunately, using Lemma 5.1 in Step 2 does not yield stronger results. Indeed, for k levels

of recursion we obtain in Step 3 that for any sufficiently large polynomial τ

NTIME[τ] ⊆ DTISP[τ c, τ o(1)] = coDTISP[τ c, τ o(1)] ⊆ coNTIME[τ cek+o(1)].

We reach a contradiction with Theorem 2.1 as long as c ·ek < 1 for some positive integer k. Because
of the monotonicity of the sequence (ek)k we only have to check the starting point e1 = c/2, which
we already dealt with, and the limit value e∞ = c− 1

c . However,

c · e∞ < 1 ⇔ c2 < 2 ⇔ c · e1 < 1.

In other words, recursion does not help. Each additional level of recursion allows us to further
reduce the running time of the intermediate alternating machine. The latter also uses two more
alternations, though. We have to eliminate these alternations subsequently, which involves, for
each extra alternation, raising the running time of the simulation to the power c. Both effects even
out.

However, we can achieve the same savings in the running time of the intermediate alternating
machine with only half as many alternations. In order to do so, we exploit the closure under

12

complementation of deterministic complexity classes, or equivalently, the following property of
deterministic computations.

C ⊢T C ′ ⇔ (∀C ′′ 6= C ′)C 0T C ′′. (11)

That is, a deterministic machine M goes from a configuration C to a configuration C ′ in T steps
iff for every configuration C ′′ different from C ′, M cannot reach C ′′ from C in T steps. To verify
the latter we use the divide-and-conquer strategy of Section 4.1. We replace the matrix of (11) by
the negation of the right-hand side of (1) and rename C ′′ to Cb for convenience.

C ⊢T C ′ ⇔ (∀Cb 6= C ′)(∀C1, C2, . . . , Cb−1)(∃ 1 6 i 6 b)Ci−1 0T/b Ci, (12)

where C0 denotes C. In terms of the tableau of Figure 2, M reaches C ′ from C in T steps iff

?

6

T

� -
S

?

6
T/b

?

6
T/b

?

6
T/b

Cb 6= C ′

Cb−1

...

C2

C1

C0 = C

Q
QQk

Q
Q

Q
BUG!

Figure 2: Saving alternations

the following holds. If we break up the tableau into b blocks then for every choice of intermediate
configurations Ci, 1 6 i 6 b − 1, and of a final configuration Cb other than C ′, there has to be a
block i that cannot be completed in a legitimate way.

Applying this idea recursively amounts to replacing the matrix Ci−1 0T/b Ci of the Π2-formula
(12) by a Σ2-formula which is the negation of a formula of the same type as the whole right-hand
side of (12). The existential quantifiers merge and the resulting formula is of type Π3. In general, k
recursive applications result in a Πk+1-formula. If we denote the block numbers for the successive
recursive applications by b1, b2, . . . , bk, we conclude in a similar way as in Section 4.1 that

DTISP[T, S] ⊆ Πk+1TIME[(
∑

i

bi)S + T/(
∏

i

bi)]. (13)

So, we achieve the same speed-up as in (4) but with only half as many alternations. An improvement
of Lemma 5.1 follows.

Lemma 5.2 Suppose that
NTIME[n] ⊆ DTIME[nc]

13

for some constant c > 1. Then for any function T and any integer k > 0

DTISP[T, T o(1)] ⊆ coNTIME[T fk+o(1)]

provided T fk(n) > nck

, where
f0 = 1

fk+1 = c · fk/(1 + fk).
(14)

For future reference, we point out some properties of the sequence (fk)k, the first few terms of
which are f0 = 1, f1 = c/2, f2 = c2/(2 + c), etc. The fact that the transformation x→ x/(1 + x) is
monotone increasing for x > 0 implies that (i) for each k > 1, fk is a monotone increasing function
of c for c > 1, and (ii) for each fixed c > 1, the sequence (fk)k monotonically converges to the fixed
point of the transformation f → c · f/(1 + f), i.e., to f∞

.
= c− 1. The sequence (fk)k is decreasing

iff f0 > f1, or equivalently, iff c < 2. An explicit expression for the sequence is:

fk =

{

1/(k + 1) if c = 1
(c− 1) · 1

1− 2−c

ck

if c > 1.

Since fk has value 1/(k + 1) 6 1 for c = 1 and monotonically grows unbounded for k > 1, the
transformation c → 1/fk has a unique fixed point c > 1. The fixed point depends on k and
monotonically increases to the fixed point c > 1 of c → 1/f∞, which is the golden ratio φ as φ
satisfies φ(φ− 1) = 1.

We will prove a generalization of Lemma 5.2 in Section 5.3. Applying Lemma 5.2 in a similar
way as Lemma 5.1, Step 3 reads

NTIME[τ] ⊆ DTISP[τ c, τ o(1)] ⊆ coNTIME[τ cfk+o(1)],

for any integer k > 0 and sufficiently large polynomial τ . Thus, we obtain a contradiction with
Theorem 2.1 as long as c · fk < 1 for some positive integer k. The latter is the case iff c · f∞ =
c(c− 1) < 1. We conclude that

NTIME[n] 6⊆ DTISP[nc, no(1)]

for any constant c < φ.

5.3 The General Lower Bound

We now derive our time-space lower bounds for nondeterministic linear time on deterministic ma-
chines in their most general form and establish Theorem 1.1 as well as some other results.

We start with a version of Lemma 5.2 for arbitrary space bounds. We also weaken its hypoth-
esis somewhat, reflecting the fact that trading time for alternations only requires simulations of
nondeterministic computations on conondeterministic (as opposed to deterministic) machines.

Lemma 5.3 Suppose that
NTIME[n] ⊆ coNTIME[nc]

for some constant c > 1. Then for any functions T and S and any integer k > 0

DTISP[T, S] ⊆ coNTIME[(T · Sk)fk + (n+ S)c
k

],

where fk is given by (14).

14

The proof of Lemma 5.3 essentially uses (13) and optimizes the number of blocks b1, b2, . . . ,
bk at the successive levels of recursion. We obtained (5) by setting these numbers the same at
every level. Intuitively, this isn’t optimal because the subsequent trading of time for alternations
raises the contributions of later blocks to the running time more often to the power c than the
contributions of earlier blocks. Thus, later levels should have fewer blocks than earlier ones. The
precise balance is determined in the next proof.

Proof of Lemma 5.3: We give a proof by induction on k. The base case k = 0 trivially holds.
For the induction step k → k+1, since DTISP[T, S] is closed under complementation, it suffices

to show that
DTISP[T, S] ⊆ NTIME[(T · Sk+1)fk+1 + (n+ S)c

k+1
] (15)

assuming that statement of the lemma holds for k.
Consider a deterministic machine M that runs in time T and space S on an input x of length

n. Let us analyze the simulation defined by (1) when we apply the induction hypothesis to the
matrix:

(∃C1, C2, . . . , Cb−1) (∀ 1 6 i 6 b) Ci−1 ⊢T/b Ci.
︸ ︷︷ ︸

(α)
︸ ︷︷ ︸

(β)
︸ ︷︷ ︸

(γ)

Part (α) corresponds to a deterministic computation on input x, Ci−1, and Ci with the following
parameters:

input size: n+ 2S
running time: O(T/b)

space used: O(S).

By the induction hypothesis, we can turn (α) into a conondeterministic computation running in
time

O((T/b · Sk)fk + (n+ S)c
k

).

Thus (β) becomes a conondeterministic computation on input x and C0, C1, . . . , Cb with the fol-
lowing parameters:

input size: n+ (b+ 1)S

running time: O(log b+ (T/b · Sk)fk + (n+ S)c
k

).

Along the lines of Section 4.2, the hypothesis of the lemma allows us to transform this conondeter-
ministic computation into a nondeterministic one resulting in a nondeterministic simulation of (γ)
taking time

O
(

(b− 1)S +
(

n+ (b+ 1)S + log b+ (T/b · Sk)fk + (n+ S)c
k
)c)

.

The latter expression simplifies to big O of

(bS + (T/b · Sk)fk)c + (n+ S)c
k+1

. (16)

Our goal is to minimize (16) up to constant factors by picking b appropriately. Note that the
first term in (16) increases with b whereas the second one decreases with b; the other terms are

15

independent of b. Thus, without any constraints on b, (16) is minimized up to a factor of 2 by
equating the first two terms. If the resulting value b∗ is smaller than 1, the best we can do is
setting b = 1. In that case, the first term dominates the second one and is dominated itself by
the term independent of b. If b∗ exceeds T , the resulting simulation becomes trivial since it runs
in time more than bS > T . If b∗ lies in the range [1, T], rounding b∗ to the nearest integer affects
the value of the objective function by only a constant factor. Thus, in each case we can obtain a
nondeterministic simulation that runs in time a constant factor times the value of (16) for b = b∗.

Solving bS = (T/b · Sk)fk for b results in the following expression for (16):

2 · (T · Sk+1)cfk/(1+fk) + (n + S)c
k+1

.

This establishes (15) since fk+1 is given by (14). �

Plugging in Lemma 5.3 into our indirect diagonalization approach yields the following general
result.

Theorem 5.4 For any constant c > 1 and functions t and s,

NTIME[n] 6⊆ coNTIME[nc] ∩ DTISP[t, s] (17)

if for some integer k > 0

(t · sk)fk + sck

= o(n), (18)

where fk is given by (14).

Proof: Assume that
NTIME[n] ⊆ coNTIME[nc] ∩ DTISP[t, s] (19)

for some integer k > 0 such that (18) holds. For any function τ(n) > n, we have

NTIME[τ] ⊆ DTISP[t(τ), s(τ)] (by padding (19))

⊆ coNTIME[(t(τ) · s(τ)k)fk + (n+ s(τ))c
k

] (by Lemma 5.3)

= coNTIME[(t(τ) · s(τ)k)fk + s(τ)c
k

] (provided t(τ(n))fk > nck

)

⊆ coNTIME[o(τ)] (by (18)),

which is a con tradition with Theorem 2.1. Note that we can assume without loss of generality that
t(n) > n so there exists a function τ such that t(τ(n))fk > nck

, e.g., a polynomial of sufficiently
large degree. �

One instantiation of Theorem 5.4 states that either NTIME[n] is not in logspace or else there
exists a constant c > 1 such that NTIME[n] is not contained in coNTIME[nc]. Fortnow [For00b]
already proved that instantiation. In general, Theorem 5.4 implies quantitative improvements over
Fortnow’s results but in this particular case the improvement is hidden in the statement, namely
in the dependence of the constant c on the running time of the presumed logspace algorithm for
nondeterministic linear time. Say that running time is O(na) for some constant a. A careful
analysis of Fortnow’s technique rules out any c such that c < 2k−1

√

(k + 1)/a for some integer
k > 1. Theorem 5.4 rules out any c < 1 + 1/a, which is a stronger statement.

We can use Theorem 5.4 to obtain the following lower bound on the time-space product of any
deterministic simulation of nondeterministic linear time.

16

Corollary 5.5 If NTIME[n] ⊆ DTISP[t, s] then ts 6= o(n
√

2).

Proof: Assume that NTIME[n] ⊆ DTISP[t, s]. Let c > 1 be any constant and k > 0 an integer. We
consider three cases:

• If t 6= O(nc) then ts 6= o(nc).

• If sck 6= o(n) then ts 6= o(n1+1/ck

) since without loss of generality t(n) > n.

• If t = O(nc) and sck

= o(n) then by Theorem 5.4 tsk 6= o(n1/fk) and therefore ts 6=
o(n1/(kfk)t1−1/k) and thus ts 6= o(n1−1/k−1/(kfk)).

We conclude that ts 6= o(na) for a = maxc>1 min(c, 1 + 1/ck, 1 − 1/k − 1/(kfk)). The latter
expression turns out to be maximized for k = 1, yielding a = maxc>1 min(c, 1 + 1/c, 2/c) =
maxc>1 min(c, 2/c) =

√
2. �

Theorem 5.4 naturally gives lower bounds on tsk for DTISP[t, s]-simulations of nondeterministic
linear time for values of k larger than 1. As an example, we state the result for k = 2.

Corollary 5.6 If NTIME[n] ⊆ DTISP[t, s] then ts2 6= o(na), where a is the positive solution of
a(a2 − 1) = 2, about 1.521.

Proof: The same approach as in the proof of Corollary 5.5 leads to optimal results for k = 2.
It results in the lower bound ts2 6= o(na) for a = maxc>1 min(c, 1 + 2/c2, (2 + c)/c2). Since
(2 + c)/c2 6 1 + 2/c2 for c > 1, a is the positive solution to c = (2 + c)/c2. �

Similar statements follow from Theorem 5.4 for larger values of k. Letting k grow to infinity
leads to the result we obtained at the end of Section 5.2, namely that NTIME[n] 6⊆ DTISP[nc, no(1)]
for any constant c < φ. In fact, we can show the stronger statement given in Theorem 1.1, the
quantitative proof of which we embark on next.

We can simplify the statement of the general lower bound of Theorem 5.4 as follows in the case
where t(n) = O(nc).

Theorem 5.7 For any constant c > 1 and integer k > 1,

NTIME[n] 6⊆ DTISP[nc, o(nd)],

where
d = min((1/fk − c)/k, 1/ck) (20)

and fk is defined by (14).

We observe that d = 1 for c = 1, giving Kannan’s result from Section 5.1. For a given value of
k, the right-hand side of (20) is positive as long as c is less than the fixed point of c → 1/fk for
c > 1. Note also that d < 1 for c > 1.

Proof of Theorem 5.7: Theorem 5.4 with t = nc and s = o(nd) gives us the separation as long as

n(c+kd)fk + ndck

= O(n). The latter condition is equivalent to d being at most the right-hand side
of (20). �

Which value of k realizes the maximum of (20) depends on the value of c. The bound for k = 2
turns out to be always at least as good as the one for k = 1. We explicitly state the bound obtained
for k = 2.

17

Corollary 5.8 For any constant c > 1,

NTIME[n] 6⊆ DTISP[nc, o(n
1
2
(c+2

c2
−c))].

Note that Corollary 5.8 yields nontrivial statements as long as c+2
c2

− c > 0, or equivalently, c is
less than the fixed point of c→ 1/f2. This condition works out to c(c2 − 1) < 2, or approximately,
c 6 1.521.

Since the fixed point of c → 1/fk converges to the golden ratio for k → ∞, Theorem 5.7 gives
interesting results for c up to the golden ratio, as stated in Theorem 1.1.

Proof of Theorem 1.1: The statement trivially holds for c < 1. For c > 1 the proof follows from
Theorem 5.7. The expression (20) is positive as long as there exists some k such that c · fk < 1.
Since fk monotonically decreases to f∞ = c− 1, the latter condition is equivalent to c(c − 1) < 1,
i.e., to c < φ.

By considering, for example, k = 1, one can see that the value of d approaches 1 when c does. �

Theorem 5.7 also lets us improve the lower bound on the time-space product of Corollary 5.5
in the case of polynomial time bounds.

Corollary 5.9 If NTIME[n] ⊆ DTISP[t, s] for some t of the form t = nc then ts 6= o(n1.573).

Proof: A trivial bound is ts 6= o(nc). Theorem 5.7 tells us that for every integer k > 1, ts 6= o(na)
where a = c + min((1/fk − c)/k, 1/ck). This gives us a better bound than the trivial one as long
as c · fk < 1. The minimum over c > 1 of the resulting compound bound is maximized for k = 4,
namely at c ≈ 1.4572, resulting in a ≈ 1.5738. �

6 Lower Bounds for Nondeterministic Linear Time on Cononde-

terministic Machines

Our indirect diagonalization approach lends itself to establishing time-space lower bounds for non-
deterministic linear time on conondeterministic machines as well. The results are somewhat weaker
than for deterministic machines. We derive them in this section.

As the first step we assume by way of contradiction that

NTIME[n] ⊆ coNTIME[nc] ∩ coNTISP[t, s] (21)

for some constant c. The two techniques we developed in Sections 4.1 and 4.2 to derive more
unlikely inclusions apply to the nondeterministic setting, too.

In particular, the divide-and-conquer strategy (1) works for nondeterministic machines M .
Breaking up the computation into b equal blocks leads to the inclusion

NTISP[T, S] ⊆ Σ3TIME[bS + T/b].

Note that we have one more alternation than in (2) because the matrix predicate on the right-hand
side of (1) becomes Σ1 in case of nondeterministic machines M . This is one reason why we obtain
weaker results.

18

As in Section 4.1, we can apply the divide-and-conquer strategy recursively. Corresponding to
(4) we obtain

NTISP[T, S] ⊆ Σ2k+1TIME[(
∑

i

bi)S + T/(
∏

i

bi)].

In Section 5.2, we showed how to achieve the same speed-up as in (4) using only half the number
of alternations. However, (13) does not carry over to the nondeterministic setting because NTIME

classes are not known to be closed under complementation. In terms of the exposition in Section
5.2, property (11) fails for a generic nondeterministic machine because nondeterministic machines
may be able to reach more than one configuration on a given input in T steps. This is the other
reason why we cannot quite match the deterministic results of the previous section.

There are no complications as far as trading time for alternations is concerned. We observed in
Section 4.2 and already used in Section 5.3 that (6) follows from the hypothesis that NTIME[n] ⊆
coNTIME[t].

Combining these ingredients as before we obtain the following counterpart to Lemma 5.3.

Lemma 6.1 Suppose that
NTIME[n] ⊆ coNTIME[nc]

for some constant c > 1. Then for any functions T and S and any integer k > 0

NTISP[T, S] ⊆ NTIME[(T · Sk)gk + (n+ S)c
2k

],

where
g0 = 1

gk+1 = c2gk/(1 + cgk).
(22)

The sequence (gk)k starts out with g0 = 1, g1 = c2/(1 + c), etc. Similar arguments as the ones
we made for the sequence (fk)k exhibit the following properties: For each k > 1, gk is a monotone
increasing function of c for c > 1. For each fixed c > 1, the sequence (gk)k monotonically converges
to the fixed point of the transformation g → c2g/(1+ cg), i.e., to g∞

.
= c− 1/c. The sequence (gk)k

is decreasing iff g0 > g1, or equivalently, iff c < φ. For each k, the transformation c → 1/gk has a
unique fixed point c > 1, which monotonically increases to the fixed point of c → 1/g∞, namely√

2. An explicit expression for the sequence is:

gk =

{
1/(k + 1) if c = 1
(c− 1

c) · 1

1− 1+c−c2

c2k+1

if c > 1.

Proof of Lemma 6.1: The proof goes by induction on k. As usual, the base case trivially holds.
For the induction step k → k + 1, consider a nondeterministic machine M that runs in time

T and space S on an input x of length n. As in the deterministic case, we analyze the simulation
defined by (1) when we apply the induction hypothesis to the matrix:

(∃C1, C2, . . . , Cb−1) (∀ 1 6 i 6 b) Ci−1 ⊢T/b Ci.
︸ ︷︷ ︸

(α)
︸ ︷︷ ︸

(β)
︸ ︷︷ ︸

(γ)

19

Part (α) defines a nondeterministic computation on input x, Ci−1, and Ci with the following
parameters:

input size: n+ 2S
running time: O(T/b)

space used: O(S).

By the induction hypothesis combined with the hypothesis of the lemma, we can turn (α) into a
conondeterministic computation running in time

O(((T/b · Sk)gk + (n+ S)c
2k

)c).

This way, (β) becomes a conondeterministic computation on input x and C0, C1, . . . , Cb with the
following parameters:

input size: n+ (b+ 1)S

running time: O(log b+ ((T/b · Sk)fk + (n+ S)c
k

)c).

Applying the hypothesis of the lemma once more, we can transform this conondeterministic com-
putation into a nondeterministic one and thus obtain a nondeterministic simulation of (γ) taking
time

O
(

(b− 1)S +
(

n+ (b+ 1)S + log b+ ((T/b · Sk)fk + (n+ S)c
k

)c
)c)

.

The latter expression simplifies to big O of

(bS + (T/b · Sk)cgk)c + (n + S)c
2(k+1)

. (23)

A similar argument as in the proof of Lemma 5.3 shows that the best running time we can realize
is within a constant factor of (23) when we equate the first two terms, i.e., when we set bS =
(T/b · Sk)cgk . That value equals

2 · (T · Sk+1)c
2gk/(1+cgk) + (n + S)c

2(k+1)
,

which finishes the induction step as gk+1 satisfies the recurrence (22). �

Lemma 6.1 corresponds to Step 2 of our indirect diagonalization approach from Section 5.1. In
Step 3, we aim for a contradiction with a direct diagonalization result. So far we used Theorem 2.1
to do so. We could equally well have used the nondeterministic time hierarchy theorem (Theorem
2.3). In the setting of this section, the application of our two direct diagonalization tools leads to
different results. The one using Theorem 2.1 will turn out to be critical for the proof of Theorem
1.2 but we state both.

Theorem 6.2 For any constant c > 1 and functions t and s,

NTIME[n] 6⊆ coNTIME[nc] ∩ (NTISP[t, s] ∪ coNTISP[t, s])

if for some integer k > 0

(t · sk)gk + sc2k

= o(n), (24)

where gk is given by (22).

20

Proof: We first prove the coNTISP result by obtaining a contradiction with Theorem 2.1 from the
assumption that

NTIME[n] ⊆ coNTIME[nc] ∩ coNTISP[t, s] (25)

for some integer k > 0 for which (24) holds. For any function τ(n) > n, we have

NTIME[τ] ⊆ coNTISP[t(τ), s(τ)] (by padding (25)) (26)

⊆ coNTIME[(t(τ) · s(τ)k)gk + (n+ s(τ))c
2k

] (by Lemma 6.1)

= coNTIME[(t(τ) · s(τ)k)gk + s(τ)c
2k

] (provided t(τ(n))gk > nc2k

)

⊆ coNTIME[o(τ)] (by (24)).

Note that there exists a function τ such that t(τ(n))gk > nc2k

. For example, a polynomial of
sufficiently large degree will do since we can assume without loss of generality that t(n) > n. Thus,
we obtain the contradiction with Theorem 2.1 we need.

The NTISP result is similar but starts with an NTISP simulation instead of a coNTISP simu-
lation in step (26) and obtains a contradiction with the nondeterministic time hierarchy theorem
instead of Theorem 2.1. �

The instantiation of Theorem 6.2 for logarithmic space s implies that either NTIME[n] is not in
nondeterministic logspace or else there exists a constant c > 1 such that NTIME[n] is not contained
in coNTIME[nc]. As in the deterministic case, Fortnow [For00b] already proved this instantiation
and we get an improvement in the dependence of the constant c on the running time, O(na), of the
presumed nondeterministic logspace algorithm for nondeterministic linear time. A careful analysis
of Fortnow’s technique rules out any c such that c < 2k

√

(k + 1)/a for some integer k > 1, whereas
letting k grow to infinity in Theorem 6.2 and using the fact that gk converges to c− 1/c rules out
any c for which c < 1/c + 1/a.

Similar to Corollary 5.5 for deterministic simulations, we obtain the following bound on the
time-space product of any conondeterministic simulation of nondeterministic linear time.

Corollary 6.3 If NTIME[n] ⊆ coNTISP[t, s] then ts 6= o(na), where a is the positive solution of
a(a2 − 1) = 1, about 1.324.

Proof: A similar analysis as in the proof of Corollary 5.5 leads to the lower bound ts 6= o(na)
where a = maxc>1 min(c, 1 + 1/c2k, 1 − 1/k − 1/(kgk)). The latter expression turns out to be
maximized for k = 1, yielding a = maxc>1 min(c, 1 + 1/c2, (1 + c)/c2). Since the second term is
at least as large as the third one for c > 1, we have that a is the positive solution to c = (1+c)/c2. �

Multiple applications of the divide-and-conquer strategy (1) allow us to establish larger lower
bounds on tsk where k denotes the number of applications.

For conondeterministic simulations with running times of the form t(n) = O(nc) for some
constant c, Theorem 6.2 implies the following simpler statement.

Theorem 6.4 For any constant c > 1 and integer k > 1,

NTIME[n] 6⊆ coNTISP[nc, o(nd)],

where
d = min((1/gk − c)/k, 1/c2k) (27)

and gk is defined by (22).

21

Note that d = 1 for c = 1 and that d < 1 for c > 1. A given value of k yields nontrivial results
iff c is less than the fixed point of c→ 1/gk for c > 1.

Proof of Theorem 5.7: Analogous to the proof of Theorem 5.7 but use the coNTISP part of The-
orem 6.2 instead of Theorem 5.4. �

Considering the case k = 1 in (27), we have:

Corollary 6.5 For any constant c > 1,

NTIME[n] 6⊆ coNTISP[nc, o(n
1+c

c2
−c)].

Depending on c, larger values of k may give stronger results than Corollary 6.5. In particular,
Corollary 6.5 only gives nontrivial results in case 1+c

c2
− c > 0. The latter condition is equivalent to

c being less than the fixed point of c→ 1/g1, i.e., to c(c2 − 1) < 1, and implies an upper bound for
c of about 1.324.

Since the fixed point of c → 1/gk converges to
√

2, Theorem 6.4 gives interesting results for
values of c up to

√
2.

Proof of Theorem 1.2: The proof is similar to the proof of Theorem 1.1 but uses the sequence gk

instead of fk. Since the sequence gk is monotone, the condition that there exists an integer k for
which c · gk < 1 is equivalent to the condition that c · g0 < 1 or c · g∞ < 1. Since g∞ = c− 1/c, we
end up with the condition c <

√
2. �

In particular, Theorem 1.2 implies that NTIME[n] 6⊆ coNTIME[nc, no(1)] for any c <
√

2.
We point out the crucial role of Theorem 2.1 in the results of this section. If our strategy was

to obtain a contradiction with the nondeterministic time hierarchy theorem instead of Theorem 2.1
in the proof of Theorem 5.7, we would have needed one more application of our hypothesis that
NTIME[n] ⊆ coNTIME[nc] to transform the final conondeterministic simulation into a nondeter-
ministic one. Since the latter transformation raises the running time to the power c, the condition
in the proof of Theorem 1.2 would become c2 · g∞ < 1, or equivalently, c(c2 − 1) < 1. The use of
Theorem 2.1 allows us to relax the latter condition to c2 − 1 < 1, resulting in an increase in the
bound on c from about 1.324 to

√
2 ≈ 1.414.

Similar to the deterministic case, Theorem 6.4 allows us to improve the lower bound on the
time-space product of Corollary 6.3 in the case of polynomial time bounds.

Corollary 6.6 If NTIME[n] ⊆ coNTISP[t, s] for some t of the form t = nc then ts 6= o(n1.406).

Proof: The result follows from the solution of a similar optimization problem as in the proof of
Corollary 5.9. Replacing the term fk by gk and ck by c2k in that proof leads to optimal choices of
k = 4 and c ≈ 1.3841 resulting in the lower bound ts 6= o(na) for a = 1.4064. �

7 Lower Bounds for Other Complexity Classes

In this section, we apply our indirect diagonalization argument to obtain time-space lower bounds
for complexity classes other than nondeterministic linear time. We first strengthen some of the
lower bounds of Sections 5 and 6 by showing that they hold not just for NTIME[n] but even for
NTISP[n, na] for some a < 1. Then we apply our technique to classes higher up in the polynomial-
time hierarchy.

22

7.1 Nondeterministic Linear Time and Sublinear Space

The crux of our lower bounds for nondeterministic linear time in Sections 5 and 6 are careful simu-
lations that follow from hypotheses like NTIME[n] ⊆ DTISP[nc, nd] or NTIME[n] ⊆ coNTISP[nc, nd].
As we will see next, the amount of space we need for these simulations is typically only about t1/c,
where t denotes the running time of the simulation. It follows that several of our previous lower
bounds even hold for NTISP[n, n1/c].

We revisit both the deterministic and the conondeterministic lower bounds for nondeterministic
linear time from this perspective. We start by analyzing the space needed for the transformations
underlying Lemma 5.3.

Lemma 7.1 Suppose that
NTISP[n, σ] ⊆ coNTISP[nc, ρ] (28)

for some constant c > 1 and functions σ and ρ. Then for any functions T and S and any integer
k > 1

DTISP[T, S] ⊆ coNTISP[R,R1/c + ρ(R1/c)],

where R
.
= (T · Sk)fk + (n+ S)c

k

and fk is defined by (14), provided that

S = O(σ(R1/ck

))

n1/c + ρ(n1/c) = O(σ(n)). (29)

Condition (29) is not required for k = 1.

Proof: We follow the induction proof of Lemma 5.3 but start with k = 1 as the base case. For
easy reference, we recall the key notation from that proof:

(∃C1, C2, . . . , Cb−1) (∀ 1 6 i 6 b) Ci−1 ⊢T/b Ci.
︸ ︷︷ ︸

(α)
︸ ︷︷ ︸

(β)
︸ ︷︷ ︸

(γ)

For k = 1, we view (β) as a conondeterministic computation on input x and C0, C1, . . . , Cb with
the following parameters:

input size: n+ (b+ 1)S
running time: O(T/b)

space: O(S).

Setting bS = T/b as in the proof of Lemma 5.3 and noting that R = (TS)c/2+(n+S)c, (β) becomes
a conondeterministic computation on an input of size O(R1/c) that runs in time O(R1/c) and space
O(S). Provided S = O(σ(R1/c)), we can apply (28) to transform (β) into a nondeterministic
computation taking time O(R) and space O(ρ(R1/c)). This way, (γ) becomes a nondeterministic
computation that runs in time O(bS+R) = O(R) and space O(bS+ ρ(R1/c)) = O(R1/c + ρ(R1/c)),
the additional time and space being for guessing and storing the intermediate configurations. This
takes care of the base case k = 1.

For the induction step k → k + 1, we first need to transform (α) into a conondeterministic

computation. We can use the induction hypothesis to do so provided S = O(σ(R̃1/ck

)), where

23

R̃ = ((T/b) · Sk)fk + (n + S)c
k

. We thereby turn (β) into a conondeterministic computation with
the following parameters:

input size: n+ (b+ 1)S

running time: O(R̃)

space: O(R̃1/c + ρ(R̃1/c)).

Provided the latter space bound is O(σ(n+ bS + R̃)), we can apply (28) to turn (β) into a nonde-
terministic computation that runs in time O((n+ bS+ R̃)c) and space O(ρ(n+ bS+ R̃)). With the
settings as in the proof of Lemma 5.3, we have that R = Θ((n+ bS + R̃)c). Thus, (29) guarantees
that the provision for applying (28) is met. We end up with a nondeterministic simulation of (γ)
that runs in time O(bS+R) = O(R) and space O(bS+ρ(R1/c)) = O(R1/c +ρ(R1/c)). This finishes
the induction step. �

In Section 5, we combined Lemma 5.3 with Theorem 2.1 to obtain separations of the form (17).
Similarly, by combining Lemma 7.1 with Theorem 2.2 we can derive separations of the form

NTISP[n, σ] 6⊆ coNTISP[nc, ρ] ∩ DTISP[t, s] (30)

for some constants c > 1 and interesting functions σ, ρ, s, and t. This leads to a strengthening of
Theorem 5.4. We refrain from stating that general result because it involves too many parameters.
Instead, we immediately state the corresponding strengthening of Theorem 5.7, where we restrict
attention to time bounds t(n) = O(nc) and space bounds s = O(ρ).

How much we can restrict the space bound σ depends on the choice of the space bound ρ.
Because condition (29) is not needed for k = 1, the case k = 1 allows for a more relaxed relationship
between σ and ρ than other values of k. We state the result for k = 1 first.

Theorem 7.2 For any constants c > 1 and d 6 2/c − c,

NTISP[n, n
c+d

2] 6⊆ DTISP[nc, o(nd)]. (31)

Proof: Assume for contradiction that NTISP[n, na] ⊆ DTISP[nc, o(nd)]. By Lemma 7.1 with k = 1,
σ(n) = na and ρ(n) = o(nd) we have that for a sufficiently large polynomial τ

NTISP[τ, τa] ⊆ DTISP[τ c, o(τd)] ⊆ coNTISP[o(R), o(R1/c)] (32)

provided that τd = O(Ra/c), where R = τ (c+d)c/2. We obtain a contradiction with Theorem 2.2 as
long as R = O(τ) and R1/c = O(τa). The conditions we need are equivalent to d 6 2/c − c and
a > (c+ d)/2. �

The interesting values of c in Theorem 7.2 are in the range 1 6 c <
√

2. For large values of k,
we can let c approach the golden ratio φ.

Theorem 7.3 For any integer k > 1 and constants c > 1 and d 6 min(1
k (1

fk
− c), cfk

ck−kfk

),

NTISP[n, na] 6⊆ DTISP[nc, o(nd)],

where a = max(1
c ,

ckd
(c+kd)fk

) and fk is given by (14).

24

Proof: We follow the same proof outline as for Theorem 7.2. Inclusion (32) now follows provided

that τd = O(Ra/ck

) and n1/c = O(na) where R = τ (c+kd)fk + τ ckd. The contradiction requirements
R = O(τ) and R1/c = O(τa) remain. Let r = max((c + kd)fk, c

kd). The conditions we get are
equivalent to r 6 1, a > 1/c and a > ckd/r. Note that if ckd > (c+kd)fk then r = ckd and the last
requirement for a implies that a > 1. In that case, we do not get an improvement over Theorem 5.7.
Therefore, we additionally impose the condition ckd 6 (c + kd)fk. In that case, the requirement
r 6 1 simplifies to (c+kd)fk 6 1. Solving for d yields the bound in the statement of the theorem. �

As the above proof shows, the discrepancy in the bound on d in Theorems 5.7 and 7.3 for a
given value of k is solely due to our desire to obtain a simpler expression for a in the case where
we can obtain a strengthening of Theorem 5.7. In cases where the bounds effectively differ, our
approach does not allow us to derive lower bounds for NTISP[n, σ] for sublinear σ.

An analysis of the expressions involved in the statement of Theorem 7.3 shows that for k 6 3,
the bounds on d in Theorems 5.7 and 7.3 coincide and equal the fixed point of c→ 1/fk. For k 6 2,
the expression for a in Theorem 7.3 simplifies to a = 1/c for the entire range of d. For k = 1,
Theorem 7.2 allows a value of a = (c + d)/2, which can be seen to be at most 1/c. Therefore,
Theorem 7.2 is stronger than Theorem 7.3 for k = 1. Using the simplified bounds for k = 2,
Theorem 7.3 implies the following strengthening of Corollary 5.8.

Corollary 7.4 For any constant c > 1,

NTISP[n, n1/c] 6⊆ DTISP[nc, o(n
1
2
(c+2

c2
−c))].

For higher values of k, the range of d may be more restricted (although still nontrivial) and the
value of a may be larger than 1/c for a subrange of d. However, for small enough d (depending on
k), the value of a in Theorem 7.3 equals 1/c. Thus, we can strengthen Theorem 1.1 as follows.

Corollary 7.5 For any constant c < φ there exists a positive constant d such that

NTISP[n, n1/c] 6⊆ DTISP[nc, nd]. (33)

Moreover, d approaches 1 from below when c approaches 1 from above.

Proof: Since the statement trivially holds for c < 1, we only need to consider the case where c > 1.
For 1 6 c < φ, there exists an integer k such that d∗

.
= 1/fk − c > 0. By picking d 6 d∗ small

enough but still positive, we can ensure that ckd/((c + kd)fk) 6 1/c. Then Theorem 7.3 implies
(33).

The fact that d approaches 1 when c does follows from the proof of Theorem 1.1 since there are no
more constraints on the relationship between c and d than in the proof of that theorem for k = 1. �

We can also strengthen the results from Section 6 to lower bounds for conondeterministic
simulations of NTISP[n, σ] for sublinear σ.

A space analysis of Lemma 6.1 shows the following stronger result. The proof is analogous to
the one of the strengthening of Lemma 5.3 given in Lemma 7.1.

Lemma 7.6 Suppose that
NTIME[n, σ] ⊆ coNTIME[nc, ρ] (34)

25

for some constant c > 1 and functions σ and ρ. Then for any functions T and S and any integer
k > 1

NTISP[T, S] ⊆ NTISP[R,R1/c + ρ(R1/c)], (35)

where R
.
= (T · Sk)gk + (n+ S)c

2k

and gk is defined by (22), provided that

S = O(σ(R1/c2k

))

ρ(n1/c) = O(σ(n))

n1/c = O(σ(n)).

The last condition is not required for k = 1.

The NTISP hierarchy theorem [BM80] implies that NTISP[t, s] 6⊆ NTISP[o(t), o(s)] provided t
and s are sufficiently nice functions that don’t grow too fast. Note that (35) by itself does not
contradict the NTISP hierarchy theorem for c > 1. For some settings of the parameters in Lemma
7.6, the time on the right-hand side of (35) is little o of the time on the left-hand side, but the space
on the right-hand side always exceeds the space on the left-hand side. Under the hypothesis (34),
Lemma 7.6 lets us simulate nondeterministic time T and space S in less time but somewhat more
space. The hypothesis (34) itself allows us to do the opposite – increase time but reduce space –
at the cost of switching from nondeterministic to conondeterministic computations. By combining
the two we get a contradiction with Theorem 2.2 and thereby refute hypothesis (34).

This is how we can strengthen our conondeterministic lower bounds from Section 6. We do not
state the strengthening of Theorem 6.2 in its full generality because there are too many parameters
involved. We do spell out the strengthening of Theorem 6.4 and some corollaries. The proofs are
analogous to those of the corresponding deterministic results we just covered.

For the same reason as before, we single out the case k = 1.

Theorem 7.7 For any constants c > 1 and d 6 (1 + c)/c2 − c,

NTISP[n, nc(c+d)/(c+1)] 6⊆ coNTISP[nc, o(nd)].

As a corollary, we can strengthen Corollary 6.5 as follows.

Corollary 7.8 For any constant c > 1,

NTISP[n, n1/c] 6⊆ coNTISP[nc, o(n
1+c

c2
−c)].

For general k, we obtain the following counterpart to Theorem 7.7.

Theorem 7.9 For any integer k > 1 and constants c > 1 and d 6 min(1
k (1

gk

− c), cgk

c2k−kgk

),

NTISP[n, na] 6⊆ DTISP[nc, o(nd)],

where a = max(1
c ,

c2kd
(c+kd)gk

) and gk is given by (22).

Analogous remarks as we made about the phrasing of Theorem 7.3 are in place here. An analysis
of the expressions involved shows that for k 6 2, the bound on d in Theorem 7.9 coincides with
the one given in Theorem 6.4 and equals the fixed point of c → 1/g1. For k = 1, the value of a in
Theorem 7.9 equals 1/c for the entire range of d. Since c(c+d)/(c+1) 6 1/c for d 6 (1+ c)/c2 − c,
this implies that Theorem 7.7 is stronger than the general Theorem 7.9 for k = 1.

Theorem 7.9 allows us to strengthen Theorem 1.2.

26

Corollary 7.10 For any constant c <
√

2 there exists a positive constant d such that

NTISP[n, n1/c] 6⊆ DTISP[nc, nd].

Moreover, d approaches 1 from below when c approaches 1 from above.

7.2 Higher Levels of The Polynomial-Time Hierarchy

We end with a simple application of our indirect diagonalization argument to linear-time classes in
higher levels of the polynomial-time hierarchy.

Theorem 7.11 For any integer ℓ > 2, if ΣℓTIME[n] 6⊆ DTISP[t, s] then tsℓ−1 6= o(nℓ).

Proof: Assume that ΣℓTIME[n] ⊆ DTISP[t, s]. Applying (13) with k = ℓ− 1, T = t and S = s, we
have that

ΣℓTIME[n] ⊆ ΠℓTIME[(

k∑

i=1

bi)s+ t/(

k∏

i=1

bi)].

The running time of the Πℓ simulation is minimized up to a constant factor by picking bi equal to
b where b is such that b · s = t/bk, i.e., b = (t/s)1/(k+1). This setting results in a running time of
O((t · sk)1/(k+1)). Thus, we get that

ΣℓTIME[n] ⊆ ΠℓTIME[(tsℓ−1)1/ℓ],

which contradicts Theorem 2.1 as long as tsℓ−1 = o(nℓ). �

Corollary 7.12 For any integer ℓ > 2 and constant ǫ > 0,

ΣℓTIME[n] 6⊆ DTISP[nℓ−ǫ, o(nǫ/(ℓ−1))].

8 Further Research

The obvious open problem is to improve the quantitative results we get, in particular the golden
ratio exponent in Theorem 1.1 and the

√
2 exponent in Theorem 1.2. There seems to be room for

improvement as the ingredients we use in our indirect diagonalization argument are rather simple
and we combine them in a straightforward way.

On the other hand, some complexity theorists feel that improving the golden ratio exponent
beyond 2 would require a breakthrough. One can ask about the limits of indirect diagonalization in
showing time-space lower bounds for NP-complete problems, or more generally, about its limitations
as a proof technique in computational complexity. Note that indirect diagonalization provides the
opportunity to exploit nonrelativizing inclusion results. In that sense, it does not suffer from oracle
objections as direct diagonalization does.

Another direction for further research are time-space lower bounds for satisfiability and other
NP-complete problems on randomized machines with bounded two-sided error. Theorem 1.2 imme-
diately implies time-space lower bounds for satisfiability on randomized machines that only err on
the no-side. This is because the latter type of machine is a conondeterministic machine. However,

27

we currently do not see how to apply our techniques to randomized computations with two-sided
error or with one-sided error on the yes-side.

We should point out that Beame et al. [BSSV03], building on earlier work by Ajtai [Ajt99],
establish nonuniform time-space lower bounds for a problem in P based on binary quadratic forms.
They show that any branching program for that problem that uses only space n1−ǫ for some positive
constant ǫ takes time

Ω(n ·
√

log n/ log log n), (36)

and manage to extend their lower bounds to randomized computations with two-sided error. As
we argued in Section 3, time-space lower bounds for problems that are easier than satisfiability
imply time-space lower bounds for satisfiability provided the problems have the property that each
bit of the translation to satisfiability can be computed on the fly in a time and space efficient way.
The latter is the case for all problems in nondeterministic linear time. However, it does not seem
like the results of Beame et al. carry over to satisfiability in this way. First, since their bound
(36) is only slightly superlinear, an extremely efficient reduction of the problem they consider to
satisfiability is needed in order to obtain nontrivial lower bounds for satisfiability. The reduction
we described in Section 3 (Theorem 3.1) would not do. Moreover, their problem does not appear
to be in nondeterministic quasi-linear time. As far as we know, nothing nontrivial is known about
time-space lower bounds for satisfiability on randomized machines with two-sided error.

Another related work is by Allender et al. [AKR+01], in which these authors establish time-
space lower bounds on randomized machines with unbounded error but for a problem that is harder
than satisfiability. They consider the problem MAJ-MAJ-SAT consisting of all Boolean formulas
ψ(x, y) such that for a majority of assignments to x, a majority of the assignments to y satisfies
ψ(x, y). They show that no randomized machine with unbounded error can solve MAJ-MAJ-SAT
in time n1+o(1) and space n1−ǫ for any positive constant ǫ. More generally, they establish time-
space lower bounds for simulations of the second level of the counting hierarchy on randomized
machines with unbounded error. Their proofs use our indirect diagonalization paradigm. Roughly
speaking, whereas our deterministic results can be viewed as lower bounds for complete problems
for the first level of the polynomial-time hierarchy on machines that correspond to the zero-th level
of the polynomial-time hierarchy, the results by Allender et al. can be regarded as lower bounds
for complete problems of the second level of the counting hierarchy on machines that correspond
to the first level of the counting hierarchy.

Time-space lower bounds for satisfiability on nonuniform models form another topic for further
investigation. Time-space lower bounds for deterministic machines straightforwardly translate into
size-width lower bounds for sufficiently uniform circuits, and into depth-logarithm-of-the-size lower
bounds for sufficiently uniform branching programs. Logtime uniformity is good enough for all of
our results to carry over without any changes in the parameters. Fortnow shows how to apply
his technique to logspace-uniform NC

1 circuits [For00b]. Allender et al. [AKR+01] extend this
result to logspace-uniform SAC

1 circuits and their negations, and Fortnow [For00b] states it for
logspace-uniform branching programs. Van Melkebeek [vM04] derives all these circuit results as
instantiations of a general theorem, and shows directly that in each case NTISP[nO(1), n1−ǫ] unifor-
mity for any positive constant ǫ suffices. Tourlakis [Tou01] argues that the arguments of Fortnow
[For00b] carry through when the machines receive subpolynomial advice. The same holds for our
results.

An appealing feature of the lower bounds in this paper is their robustness – they hold for
virtually any reasonable general model of computation. On the other hand, they do not yield

28

any lower bounds for algorithms for satisfiability that use linear space, such as algorithms that
explicitly store an assignment to the given formula. Another line of research tries to establish
pure time lower bounds for satisfiability but on more restricted models of computation. Van
Melkebeek and Raz [vMR04] build on our techniques to obtain such bounds on Turing machines
with one d-dimensional work tape and random access to the input. They show that no such machine
can solve satisfiability in time nc for c <

√

(d+ 2)/(d + 1) deterministically, and for c such that
c3 < 1 + c/(d+ 1) conondeterministically.

Acknowledgments

DvM would like to thank Rahul Santhanam, Madhu Sudan, and Iannis Tourlakis for discussions
about the topic of this paper and/or comments on earlier drafts. He is grateful to Steve Cook for
bringing him into contact with Iannis Tourlakis.

References

[Ajt99] M. Ajtai. A non-linear time lower bound for Boolean branching programs. In Proceedings
of the 40th IEEE Symposium on Foundations of Computer Science, pages 60–70. IEEE,
1999.

[AKR+01] E. Allender, M. Koucky, D. Ronneburger, S. Roy, and V. Vinay. Time-space tradeoffs in
the counting hierarchy. In Proceedings of the 16th IEEE Conference on Computational
Complexity, pages 295–302. IEEE, 2001.

[BDG95] J. Balcázar, J. D́ıaz, and J. Gabarró. Structural Complexity I, volume 11 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1995.

[BM80] A. Bruss and A. Meyer. On time-space classes and their relation to the theory of real
addition. Theoretical Computer Science, 11:59–69, 1980.

[BSSV03] P. Beame, M. Saks, X. Sun, and E. Vee. Time-space trade-off lower bounds for ran-
domized computation of decision problems. Journal of the ACM, 50(2):154–195, 2003.

[Coo88] S. Cook. Short propositional formulas represent nondeterministic computations. Infor-
mation Processing Letters, 26:269–270, 1988.

[FL93] L. Fortnow and C. Lund. Interactive proof systems and alternating time-space com-
plexity. Theoretical Computer Science, 113:55–73, 1993.

[For00a] L. Fortnow. Diagonalization. Bulletin of the European Association for Theoretical
Computer Science, 71:102–112, 2000.

[For00b] L. Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer and System
Sciences, 60:337–353, 2000.

[FvM00] L. Fortnow and D. van Melkebeek. Time-space tradeoffs for nondeterministic computa-
tion. In Proceedings of the 15th IEEE Conference on Computational Complexity, pages
2–13. IEEE, 2000.

29

[GS89] Y. Gurevich and S. Shelah. Nearly-linear time. In Proceedings, Logic at Botik ’89,
volume 363 of Lecture Notes in Computer Science, pages 108–118. Springer-Verlag,
1989.

[HS66] F. Hennie and R. Stearns. Two-tape simulation of multitape Turing machines. Journal
of the ACM, 13:533–546, 1966.

[Kan84] R. Kannan. Towards separating nondeterminism from determinism. Mathematical Sys-
tems Theory, 17:29–45, 1984.

[LV99] R. Lipton and A. Viglas. On the complexity of SAT. In Proceedings of the 40th IEEE
Symposium on Foundations of Computer Science, pages 459–464. IEEE, 1999.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PF79] N. Pippenger and M. Fischer. Relations among complexity measures. Journal of the
ACM, 26:361–381, 1979.

[PPR80] W. Paul, E. Prauß, and R. Reischuk. On alternation. Acta Informatica, 14:243–255,
1980.

[Sch78] C. Schnorr. Satisfiability is quasilinear complete in NQL. Journal of the ACM, 25:136–
145, 1978.

[SFM78] J. Seiferas, M. Fischer, and A. Meyer. Separating nondeterministic time complexity
classes. Journal of the ACM, 25:146–167, 1978.

[Tou01] I. Tourlakis. Time-space lower bounds for SAT on nonuniform machines. Journal of
Computer and System Sciences, 63(2):268–287, 2001.

[vM04] D. van Melkebeek. Time-space lower bounds for NP-complete problems. In G. Paun,
G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical Computer Sci-
ence, pages 265–291. World Scientific, 2004.

[vMR04] D. van Melkebeek and R. Raz. A time lower bound for satisfiability. In Proceedings of
the 31st International Colloquium On Automata, Languages and Programming, pages
971–982. Springer-Verlag, 2004.

[Ž83] S. Žàk. A Turing machine time hierarchy. Theoretical Computer Science, 26:327–333,
1983.

30

