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STRONG AND WEAK F-REGULARITY ARE EQUIVALENT
FOR GRADED RINGS

By GENNADY LYUBEZNIK and KAREN E. SMITH

Abstract. It is shown that the tight closure of a submodule in a Artinian module is the same as its
finitistic tight closure, when the modules are graded over a finitely generated N-graded ring over a
perfect field. As a corollary, it is deduced that for such a graded ring, strong and weak F-regularity
are equivalent. As another application, the following conjecture of Hochster and Huneke is proved:
Let (R, m) be a finitely generated N-graded ring over a field with unique homogeneous maximal
ideal m, then R is (weakly) F-regular if and only if Rm is (weakly) F-regular.

1. Introduction. Tight closure is a closure operation performed on ideals
in rings of prime characteristic, and by standard reduction to characteristic p
techniques, also for ideals in any ring containing a field. Introduced by Hochster
and Huneke in 1987, it has found powerful applications in commutative algebra.

Rings in which all ideals are tightly closed play a special role, and are called
weakly F-regular rings. The “F” here stands for the Frobenius (or pth-power)
map central to the definition of tight closure. The term “F-regular” is supposed
to hint at a class of rings similar to regular rings with respect to Frobenius. F-
regular rings enjoy nice properties such as normality, Cohen-Macaulayness, and
pseudorationality. The class of F-regular rings includes, for example, rings of
invariants for linearly reductive groups acting on regular rings.

Despite the importance of weakly F-regular rings, it is not known whether the
localization of a weakly F-regular ring is weakly F-regular. This is reminiscent of
an analogous question about regular rings finally settled independently by Serre
and by Auslander and Buchsbaum in the fifties: is the localization of a regular
ring always regular? In this paper, we prove that if R is a weakly F-regular
ring that is N -graded, then all localizations of R remain weakly F-regular; see
Corollary 4.4.

Our main theorem, Theorem 3.3, shows that the tight closure of any graded
submodule in an Artinian graded module is equal to its finitistic tight closure for
any N -graded ring over a perfect field (see Section 2 for definitions). This allows
us to deduce in Corollary 4.3 that strong and weak F-regularity are equivalent for
such graded rings. Strong F-regularity is a condition introduced by Hochster and
Huneke, who, motivated by a suspicion that it is equivalent to weak F-regularity,

Manuscript received July 24, 1998; revised March 5, 1999.
Research of both authors supported in part by the National Science Foundation.
American Journal of Mathematics 121 (1999), 1279–1290.

1279



1280 GENNADY LYUBEZNIK AND KAREN E. SMITH

observed that strong F-regularity localizes [HH1]. Hochster and Huneke also
showed that weak and strong F-regularity are equivalent for Gorenstein rings, a
result since strengthened to include rings with Q -Gorenstein singularities except
at isolated points [W], [Mac].

As a byproduct of our work, we also settle a conjecture of Hochster and
Huneke regarding F-regular graded rings. They predicted that R is weakly F-
regular if and only if Rm is weakly F-regular, where Rm is the localization of
R at its unique homogeneous maximal ideal [HH4, p. 609]. We will show in
Corollary 4.6 that this is true.

Our main theorem flows from several sources. The method of using the
finitistic tight closure to establish the equivalence of strong and weak F-regularity
was described in [S1, 7.1.2]. While there is no direct connection with [L], the
ideas of [L], especially those involved in the proof of [L, 3.4], were helpful in
proving the main theorem. The grading of R(e) as an R-module is analyzed also
in [SV, 3.1.6], to produce related finiteness results for graded rings.

2. Preliminaries. Throughout this paper, all rings are commutative, Noethe-
rian, and contain a field of prime characteristic p > 0.

We quickly recall the definitions of tight closure and related concepts. For
detailed discussions, we refer to the original sources [HH1] and [HH2]. Huneke’s
exposition [Hu] also gives a good, student friendly, account.

For any ring of prime characteristic p, the Frobenius map (or its eth-iterate)

is the ring map R Fe
�! R raising elements to their peth powers. The phrase R

is F-finite means that the Frobenius map R F
�! R is finite. One big class of

F-finite rings are the algebras essentially of finite type over a perfect field, or
even over an F-finite field. Every F-finite ring is excellent [Ku]. In particular,
the nonregular locus of the spectrum of an F-finite ring is a Zariski closed set.

2.1. The notation R(e) denotes the R-bimodule which is R as an abelian
group, has left R-structure as usual, and right R-structure via Fe. For any R-
module M, the notation Fe(M) denotes the R-bimodule R(e) 
R M. In particular,
Fe(R) is naturally isomorphic to R(e) as an R-bimodule. Note that Fe is a right
exact functor from the category of R-modules to the category of R-bimodules.

2.2. Let N � M be an inclusion of R-modules. An element � 2 M is in
the tight closure N�

M of N in M if there exists c 2 R not in any minimal prime
such that c 
 � is in the image of Fe(N) in Fe(M) for all e � 0. The finitistic
tight closure of N in M, denoted N�fg

M , is the union over all finitely generated
submodules M0 � M of the tight closures of N \ M0 in M0. It is easy to check
that N�fg

M � N�
M, but the reverse inclusion fails in general.

2.3. A ring is said to be weakly F-regular if all ideals are tightly closed. It
is not hard to see that R is weakly F-regular if and only if the local rings Rm are
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weakly F-regular for all maximal ideals m [HH2, 4.15]. However, it is not known
whether localization at an arbitrary prime ideal preserves weak F-regularity. The
term F-regular refers to weakly F-regular rings all of whose localizations are
weakly F-regular.

One property of weakly F-regular rings we will use is that they are reduced. In
fact, it is not hard to see that a ring in which all principal ideals are tight closed is
normal [HH2, 5.9]. Thus a weakly F-regular ring is a product of normal domains.

2.4. A ring R is strongly F-regular if it is a reduced, F-finite ring with the
following property: For every c not in any minimal prime of R, there exists a
q = pe such that the inclusion Rc1=q ,! R1=q splits as a map of R-modules. It is
not hard to see that strongly F-regular rings are F-regular. Furthermore, the locus
of primes P 2 Spec R such that RP is not strongly F-regular is a Zariski closed
set, so that strong F-regularity is preserved by localization [HH1]. Hochster and
Huneke conjectured that strong and weak F-regularity are equivalent (in F-finite
rings). In addition to eliminating the need for awkward adjectives, this would
imply that the property of all ideals being tightly closed passes to localizations.

The following characterization of strong F-regularity will be useful.

PROPOSITION 2.4.1. [S1, 7.1.2] An F-finite reduced local ring is strongly F-
regular if and only if the zero module is tightly closed in the injective hull of its
residue field.

Proof. Recall that if M
�
! N is an injective map of finitely generated modules

over Noetherian local ring R, then � splits if and only if the map M 
 E
�
id
���!

N 
 E is injective, where E is the injective hull of the residue field of R [HH5,
2.1e]. Let � be an element in E, the injective hull of the residue field of R. The
element � is in the tight closure of zero if and only if there exists an element c
not in any minimal prime of R such that the element c
 � is zero in the module
R(e) 
 E for all e � 0, or equivalently, if c1=q 
 � is zero in R1=q 
 E for all
q = pe � 0. Equivalently, � is in the tight closure of zero if and only if c1=q 
 �
is in the kernel of the map R
E ! R1=q
E induced by sending 1 to c1=q. Thus
the map R ! R1=q sending 1 to c1=q splits for all c and all q � 0 if and only if
zero is tightly closed in E.

To show that strong and weak F-regularity are equivalent for a local ring, it is
sufficient to show that the tight closure of zero in the injective hull of the residue
field is the same as its finitistic tight closure. This follows from the proposition
above, since it is also known that a local ring is weakly F-regular if and only if
the finitistic tight closure of zero in E [HH2, 8.23].

We will show that weak and strong F-regularity are equivalent by showing
the finitistic tight closure is equal to the tight closure for any submodule of the
injective hull of the residue field of the localization of a graded ring at its unique
maximal homogeneous ideal.
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3. The main theorem. For the remainder of the paper, we will fix the
following notation. By (R, m) we denote a finitely generated N -graded ring over
a field k of prime characteristic p, with R0 = k and m the unique homogeneous
maximal ideal �i>0Ri. Equivalently, R is a Noetherian N -graded ring with R0 = k.
We assume in this section also that R is F-finite, which is equivalent to the
assumption that the ground field k is F-finite (e.g. perfect).

Note that if R is graded, then we may regard the underlying abelian group
of R(e) (defined in x2.1) as graded in the same way, since R and R(e) are, after
all, the same abelian groups. As a left R module, R(e) is a graded R-module,
but as a right R-module it is not graded. Indeed, for r 2 R and x 2 R(e),
the element x � r has degree deg x + (pe deg r), not deg x + deg r as would be
required for a graded right R-module. Likewise, if M is a graded R-module,
this induces a natural grading on Fe(M): if r 2 R has degree d and m 2
M has degree d0, then r 
 m 2 R(e) 
 M has degree d + ped0. Again, this
grading is compatible with the left (but not the right) graded R-module
structure.

The main point is the following lemma.

MAIN LEMMA 3.1. Let R be an F-finite N -graded ring. There exists an integer
t, depending only on R, such that, whenever

M
�
! N

is a degree preserving map of graded R-modules that is bijective in degrees greater
than s, the induced map

Fe(M)
Fe(�)
���! Fe(N)

is bijective in all degrees greater than pe(s + t).

The Main Lemma follows from the following technical lemma.

LEMMA 3.2. Let R be an N -graded ring, and let L be a finitely generated R-
module that is graded as an abelian group (but not necessarily as an R-module).
Assume that there exists a positive integer d such that for all i � 0 and all j,
RiLj � Ldi+j. Then there exists a t such that whenever

M
�
! N

is a degree preserving map of graded R-modules that is bijective in degrees greater
than s, the induced map

L
R M ! L
R N
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is bijective in all degrees greater than ds + t. Here, the R-module L
R M is graded
as an abelian group with deg (x
 m) = (deg x) + d deg m.

To see that the Main Lemma follows from Lemma 3.2, we take L to be R(1).
Note that the right R-module structure of R(1) satisfies

[R(1)]jRi � [R(1)]pi+j,

so the integer d can be taken to be p. Also, because R is F-finite, the right
R-module R(1) is finitely generated.

Thus Lemma 3.2 implies that F(M)
F(�)
���! F(N) is bijective in degrees greater

than ps + t, where t is independent of the map M ! N. Applying Lemma 3.2
again, we see that

F2(M) = F(F(M)) ! F(F(N)) = F(2)(N)

is bijective in degrees larger than p(ps + t) + t. Iterating, we find that the map

F(e)(M)
Fe(�)
���! F(e)(N)

is bijective in degrees exceeding pes + pe�1t + pe�2t + � � �+ pt + t. Because (pe�1 +
pe�2 + � � � + p + 1) < pe, we conclude that

R(e) 
M
Fe(�)
���! R(e) 
 N

is bijective in degrees greater than pe(s + t). This will complete the proof of the
main Lemma, Lemma 3.1, as soon as we have established Lemma 3.2.

Proof of Lemma 3.2. Although L is not graded as an R module (unless d = 1),
we can interpret L as a graded R module by suitably regrading R. Namely, we
let R0 be the ring R graded as follows:

R0n = 0 if d does not divide n

R0n = Rn=d if d divides n.

Then L is a finitely generated graded R0-module. This means that L has a finite
homogeneous presentation: an exact sequence

(�) � R0(� cj)
 0
! �R0(� bi)

 
! L ! 0

of finitely generated graded R0-modules where the R-module maps  0 and  are
degree preserving maps of graded R0-modules and R0( � a) is defined as the R0-
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module R0 which has been graded so that [R0( � a)]n = [R0]n�a which is [R] n�a
d

if n�a
d is an integer and zero otherwise. Let t be the maximum shift that occurs,

t = maxi, jfbi, cjg.
Let M be a graded R-module. If H is a graded R0-module, remembering

that R0 = R, we can form H 
R M which is graded as an abelian group with
deg h
 m = deg h + d deg m. With this grading, if H ! H0 is a degree-preserving
map of graded R0-modules, the induced map H 
R M ! H0 
R M is a degree-
preserving map of graded abelian groups.

Now note that for any a, the induced map R0( � a) 
 M ! R0( � a) 
 N
is bijective in degrees greater than ds + a. Indeed, since R0( � a) is flat as an
R-module, the sequence

0 ! R0(�a)
(ker�) ! R0(�a)
M
1
�
���! R0(�a)
N ! R0(�a)
(coker �) ! 0

is exact. Thus it is sufficient to check that if K (for K the kernel or cokernel of �)
vanishes in degrees greater than s, then R0(� a)
 K vanishes in degrees greater
than ds + a. But if er
 x = e
 rx 2 R0(� a)
 K has degree greater than ds + a,
where e is a degree a generator of the free cyclic R0-module R0(� a), then

deg (e
 rx) = deg e + d( deg (rx)) > a + ds.

This would force rx 2 K to have degree exceeding s, contrary to our assumption.
We can now see that L 
 M ! L 
 N is bijective in degrees greater than

ds + t. This is just a matter of chasing the commutative diagram with exact rows
and degree preserving maps

�R0(� cj)
M ���! �R0(� bi)
M ���! L
M ���! 0

f1

??y f2

??y
??y

�R0(� cj)
 N ���! �R0(� bi)
 N ���! L
 N ���! 0,

keeping in mind that f1 and f2 are bijective in degrees greater than ds + t.

It is now easy to prove that tight closure and finitistic tight closure are equiv-
alent for graded modules over graded F-finite rings.

THEOREM 3.3. Let R be an N -graded F-finite ring, and let N � M be any
inclusion of Z-graded R-modules. Then

N�
M =

[

d2Z

(N�d)�M�d
,
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where M�d denotes the R-submodule of M of elements of degree d and higher. In
particular, if M is Artinian, then

N�
M = N�fg

M ,

where N�fg
M has been defined in x2.2.

Proof. First note that N�
M is a graded R-module. To check this, we may

assume without loss of generality that R is a domain: an element z 2 M is in N�
M

if and only if its image in M=PM is in the tight closure of N=PN computed over
R=P for every minimal prime P of R ([HH2, 6.25a]; the proof given there for
ideals works for arbitrary modules, as is written down in [AHH, 2.10 c1]). Now
suppose that R is a domain, and z 2 N�

M, so for some nonzero c, the element c
z
is in the image of the natural map R(e) 
N ! R(e) 
M for all large e. Since this
image module under this map is graded, then c0 
 z0 also belongs to the image,
where c0 and z0 denote the lowest degree nonzero homogeneous components of
c and z respectively. This implies that z0 is in N�

M, and by induction, that each
homogeneous component of z is in N�

M.
Let z 2 N�

M be homogeneous of degree, say, d. Let M0 � M be the submodule
of M consisting of elements of degree at least d� t (where t is as in Lemma 3.1).
Let N0 = N \M0. We claim that z 2 N0�

M0 .
To see this, note that the inclusion map M0 ,! M is bijective in degrees at

least d � t, so the induced horizontal maps

Fe(M0) ���! Fe(M)
x??

x??

Fe(N0) ���! Fe(N)

are bijective in degrees at least ped. In particular, for any c 2 R, the element
c 
 z 2 Fe(M0) has degree at least dpe, so it lies in the image of Fe(N0) if and
only if its image c
 z 2 Fe(M) lies in the image of Fe(N). This says that z 2 N�

M
if and only if z 2 N0�

M0 . We conclude that N�
M = [d(N�d)�M�d, whenever M and

N are graded R-modules.
Now, if M is Artinian, then because R is N -graded, each module M�d is

finitely generated. This implies that N�
M = N�fg

M .

Remark 3.3.1. We conjecture that N�
M = N�fg

M in general for any Artinian
module M over a Noetherian ring.

The most important example of the Theorem occurs for the case of the injec-
tive hull of the residue field. For an N -graded ring (R, m), let E denote an injective
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hull of its residue field R=m. Recall that E is an Artinian, Z-graded R module.
For basic facts on injective modules, see [Eis], including [Eis, Exercise A3.5c].

COROLLARY 3.4. If (R, m) is an F-finite N -graded ring, then 0�E = 0�fg
E , where

E is an injective hull of R=m.

This result is analogous to the fact that 0�
Hd

m(R)
= 0�fg

Hd
m(R)

where Hd
m(R) is the

highest local cohomology module of R with supports in the maximal ideal [S2,
3.3].

4. Applications. We now prove that strong and weak F-regularity are equiv-
alent in F-finite graded rings, and deduce that weak F-regularity localizes for ar-
bitrary graded rings. We also settle the conjecture of Hochster and Huneke that a
graded ring is F-regular if and only if its localization at the unique homogeneous
maximal ideal is F-regular.

First, we need two easy lemmas. The first is proved in considerably more
generality than we need, but is included at the suggestion of Mel Hochster to fill
a gap in the literature.

LEMMA 4.1. Let R ! S be a map of F-finite rings. If R ! S is flat with
geometrically regular fibers, and R is strongly F-regular, then S is strongly F-
regular. If R ! S is pure, and S is strongly F-regular, then R is strongly F-regular.

In particular, if R is an algebra essentially of finite type over a perfect field k,
and k ! L is any algebraic extension, then R is strongly F-regular if and only if
R
k L is strongly F-regular.

Proof. Assume that R ! S is flat with geometrically regular fibers (some
authors call this a regular map, the term smooth map being reserved for the case
where S is finitely presented over R). Let R be strongly F-regular.

Choose c not in any minimal prime of R (or S) such that Rc is regular.
Then Sc is also regular. It suffices to show that there exists q = pe such that the
inclusion Sc1=q ,! S1=q splits over S [HH1, 3.3]. First we consider the case where
R ! S is étale. In this case, there is a natural isomorphism R1=q 
R S �= S1=q

[HH2, 6.3]. So the R-module splitting of Rc1=q ,! R1=q can be tensored with
S to get an S-module splitting of Sc1=q ,! S 
R R1=q = S1=q. This shows that
strong F-regularity is preserved by étale maps. The case of a general regular map
R ! S follows by writing S as a filtered inductive limit of smooth (finite type)
R-algebras. (This is Popescu’s “General Néron Desingularization” [P1, P2]. The
controversy surrounding the correctness of Popescu’s arguments seems to have
been settled; see the careful exposition [Sw].) This allows us to reduce to the case
where R ! S is smooth (finite type). A smooth extension is locally a polynomial
extension followed by an étale extension, so each can be treated separately. We
have already considered the étale case. The reader will have no trouble verifying
the easy polynomial extension case, thus completing the proof that S is strongly
F-regular.
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Now assume R ! S is pure and S is strongly F-regular. Without loss of
generality, both R and S may be assumed local, so that S is a domain, and hence
its pure subring R is a domain. Given a nonzero c 2 R, we need to show that the
map Rc1=q � R1=q splits over R. Because R1=q is a finitely generated R-module,
the splitting of this map is equivalent to the purity of the map. By assumption, the
map Sc1=q ! S1=q splits over S. Because the composition Rc1=q � Sc1=q � S1=q is
a pure map of R-modules, it restricts to a pure map of R modules Rc1=q ,! R1=q.
The proof that R is strongly F-regular is complete.

The final statement follows immediately. The map k ! L is separable field
extension, and so R ! R
k L is a regular, pure map.

LEMMA 4.2. Let R be an F-finite graded ring. The radical ideal defining the
locus of points that are not strongly F-regular is homogeneous.

Proof. First assume the ground field k = R0 is infinite. In this case, an ideal
I � R is homogeneous if and only if it is preserved by the natural k�-action given
by the grading (that is, � 2 k� = k�f0g acts on a degree e element by ��r = �er).
Let I be the defining ideal for the nonstrongly F-regular locus. An element c 2 R
is in I if and only if Rc is strongly F-regular. Since each � 2 k� acts by an
automorphism of R, the ring R��c is isomorphic to Rc. Thus I is preserved by the
k� action, and so I is homogeneous.

Now assume R0 = k is finite, and let L be an algebraic closure. If Rc is
strongly F-regular, then Lemma 4.1 implies that Rc 
k L �= (R
k L)c is strongly
F-regular (where c now denotes the image of c under the inclusion R ,! R
k L).
This means that c is in the defining ideal of the nonstrongly F-regular locus of
R
k L, which is homogeneous because L is infinite. So each of the homogeneous
components ci of c are in this ideal. Thus (R 
k L)ci = Rci 
k L is strongly F-
regular, and hence Rci is strongly F-regular again by Lemma 4.1. We conclude
that if c 2 R is in the radical ideal defining the nonstrongly F-regular locus of R,
then so are each of its homogeneous components, and the ideal is homogeneous.

COROLLARY 4.3. An N -graded F-finite ring is weakly F-regular if and only if
it is strongly F-regular.

Proof. The injective hull of the residue field of Rm is the same as the injective
hull of R=m over R or over R̂m. Since elements of Rm � R act as units on E, the
reader will easily verify that the tight closure (and the finitistic tight closure) of the
zero module in E is the same whether computed over R or Rm. By Theorem 3.3,
we know then that 0�fg

E = 0�E for R or Rm.
The vanishing of 0�fg

E is equivalent to weak F-regularity of Rm [HH2, 8.23],
whereas the vanishing of module 0�E is equivalent to strong F-regularity of Rm,
as is shown in [S1, Ch 7] and also in [LS, 2.9]. By Theorem 3.3, we know that
0�fg

E = 0�E and we conclude that Rm is strongly F-regular if and only if Rm is
weakly F-regular.
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Finally, say that R is weakly F-regular. Then Rm is weakly F-regular [HH2,
4.15]. From above, we know Rm is strongly F-regular. Because the nonstrongly
F-regular locus of R is defined by a homogeneous ideal, this locus must contain
m if it is nonempty. It follows that R is strongly F-regular.

COROLLARY 4.4. A weakly F-regular N -graded ring is F-regular.

Proof. Of course, if R is F-finite, this follows immediately from Corol-
lary 4.3. We must reduce to the F-finite case. Suppose that R is weakly F-regular.
Then Rm is weakly F-regular. Let L = k1=p1 be the perfect closure of the base
field k = R0. The map Rm ! Rm 
k L is a flat, purely inseparable map such that
the maximal ideal of R expands to the maximal ideal m0 of Rm 
k L. By [HH3,
6.17b], we conclude that Rm 
k L is weakly F-regular.

The N -graded ring R 
k L is finitely generated over the perfect field L and
hence F-finite. Thus by Corollary 4.3, because Rm 
k L �= (R 
k L)m0 is weakly
F-regular, it is also strongly F-regular. Now Lemma 4.2 implies that R 
k L is
strongly F-regular. Finally, this implies that R
k L is F-regular, which is to say,
it is weakly F-regular after localization at any multiplicative system. Because the
ring R is a direct summand of R
k L (as an R-module), it follows finally that R
is F-regular.

There are several easy ways to deduce the next corollary, whose proof we
include for completeness.

COROLLARY 4.5. Let S be a local ring that is either the localization or the
completion of an N -graded ring at its unique homogeneous maximal ideal.

(1) If the ground field k is F-finite, then S is weakly F-regular if and only if S
is strongly F-regular.

(2) The ring S is weakly F-regular if and only if it is F-regular.

Proof. (1) The case where S is the localization of a graded ring R was proved
in the proof of Corollary 4.3. The statement about the completion of R at the
maximal ideal follows as well, since both 0�E and 0�fg

E are the same subsets of
E whether computed over R or over R̂ (as easily follows from considering the
grading).

Alternatively, one can check the complete case by considering the completion
map R ! S (which is pure, and flat with geometrically regular fibers). If S is
weakly F-regular, then so is its pure subring R. In this case, Corollary 4.3 implies
that R is strongly F-regular, whence so is its completion S, by Lemma 4.1.

(2) If S is the localization a graded ring R, and S is weakly F-regular, then so
is R (using Corollary 4.6 below). It follows from Corollary 4.4 that R is F-regular,
whence so is its localization S.

If S is the completion of a graded ring R, then if S is weakly F-regular, so is
R, as the completion map R ! S is pure. Then R is F-regular by Corollary 4.4
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and since the completion map R ! S has regular fibers, S also is F-regular by
[HH3, 7.3c].

Finally, we settle the conjecture of Hochster and Huneke [HH4, p. 609].

COROLLARY 4.6. An N -graded ring (R, m) is weakly F-regular if and only if Rm

is weakly F-regular.

Proof. We already know that if R is weakly F-regular, then so is Rm [HH2,
4.15]. Now assume Rm is weakly F-regular. As in the proof of Corollary 4.4, we
conclude also that Rm 
k L is weakly F-regular, where L = k1=p1 . Corollary 4.3
implies that Rm
k L is strongly F-regular, whence Lemma 4.2 implies that R
k L
is strongly F-regular, and so of course also F-regular. Therefore, its pure subring
R is F-regular, and so weakly F-regular, and the proof is complete.

We can also prove that the identity 0�E = 0�fg
E has many interesting con-

sequences in addition to the equivalence of strong and weak F-regularity. For
example, if it holds in general, then the test ideal commutes with localization.
It also implies that the test ideal commutes with completion, as conjectured in
[HH2]. In [LS], some of these consequences are described, together with a further
study of when 0�E = 0�fg

E .
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