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Mechanisms of Action of and Resistance to Antitubulin Agents:
Microtubule Dynamics, Drug Transport,

and Cell Death

By Charles Dumontet and Branimir I. Sikic

Purpose: To analyze the available data concerning
mechanisms of action of and mechanisms of resistance
to the antitubulin agents, vinca alkaloids and taxanes,
and more recently described compounds.

Design: We conducted a review of the literature on
classic and recent antitubulin agents, focusing particu-
larly on the relationships between antitubulin agents
and their intracellular target, the soluble tubulin/
microtubule complex.

Results and Conclusion: Although it is widely ac-
cepted that antitubulin agents block cell division by
inhibition of the mitotic spindle, the mechanism of action
of antitubulin agents on microtubules remains to be
determined. The classic approach is that vinca alkaloids
depolymerize microtubules, thereby increasing the
soluble tubulin pool, whereas taxanes stabilize microtu-
bules and increase the microtubular mass. More recent

data suggest that both classes of agents have a similar
mechanism of action, involving the inhibition of microtu-
bule dynamics. These data suggest that vinca alkaloids
and taxanes may act synergistically as antitumor agents
and may be administered as combination chemother-
apy in the clinic. However, enhanced myeloid and neu-
rologic toxicity, as well as a strong dependence on the
sequence of administration, presently exclude these
combinations outside the context of clinical trials. Al-
though the multidrug resistance phenotype mediated
by Pgp appears to be an important mechanism of
resistance to these agents, alterations of microtubule
structure resulting in altered microtubule dynamics
and/or altered binding of antitubulin agents may consti-
tute a significant mechanism of drug resistance.

J Clin Oncol 17:1061-1070. r 1999 by American
Society of Clinical Oncology.

TUBULIN-BINDING AGENTS constitute a large fam-
ily of compounds that have been used in a wide

variety of ways, including as herbicides and antiparasitics
and in human therapeutics. The first tubulin-binding agent to
be used in humans was colchicine, extracted fromColchi-
cum autumnale,which has been administered to patients
with gout since sixth centuryAD.1 The ability of colchicine
to block cells in metaphase made it a powerful tool in the
study of mitosis.2 Tubulin, the building block of microtu-
bules, was first identified as the ‘‘colchicine-binding pro-
tein.’’3 The ability of some compounds to act electively on
nonhuman cells, such as yeast, has been shown to be due to
differences in these compounds’ abilities to bind to human
versus nonhuman tubulins. Despite structural constraints,
significant variations in the primary structure of tubulin, as
well as the emergence of various isotypes, have occurred
during evolution.4

In the field of antineoplastic chemotherapy, tubulin-
binding agents constitute an important class of compounds,
with broad activity both in solid and in hematologic
neoplasias.5-11 These agents are believed to block cell
division by interfering with the function of the mitotic
spindle, blocking the cells at the metaphase/anaphase junc-
tion of mitosis.12,13 Vinca alkaloids, the earliest tubulin-
binding agents to be used in the clinic as antimitotics, have
been described as ‘‘microtubule depolymerizing agents.’’At
high concentrations, these agents reduce or abolish the

microtubule content of cells in culture and prevent polymer-
ization of purified tubulin in vitro. Conversely, the taxanes
paclitaxel and docetaxel promote the polymerization of
purified tubulin in vitro and, at high concentrations, enhance
the fraction of polymerized tubulin in cells and they have
thus been referred to as ‘‘microtubule stabilizing agents.’’

MICROTUBULE STRUCTURE AND FUNCTION

Microtubules are composed of a backbone of tubulin
dimers and microtubule-associated proteins (MAPs).14 Al-
pha- and beta-tubulin peptides, both of which have molecu-
lar masses close to 50 kd, combine stoichiometrically to
form tubulin dimers. Gamma-tubulin, which is less abun-
dant, appears to be localized in the centrosomes.15 Chaper-
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onins as well as proteins involved in tubulin folding appear
to play an essential role in the synthesis of functional tubulin
subunits.16 Alpha- and beta-tubulins have been studied in
many species, gamma-tubulin has been studied in a few, and
sequence analyses have demonstrated strong conservation
throughout evolution from yeast to human.4 Alpha- and
beta-tubulins exist under the form of isotypes, which are
distinguished by slightly different amino acid sequences.17,18

Thanks to the work of Cowan et al19-21and Dobner et al,22

six alpha- and six beta-tubulin isotypes have been described
in mammals. The analysis of human tubulin genes has been
complicated by the fact that many of the genes of the tubulin
multigene family, identified by screening of genomic librar-
ies, are in fact pseudogenes, which do not code for intact
proteins.23 The six mammalian beta-tubulin isotypes may be
grouped into six classes, according to their C-terminal
amino acid composition, which is the most highly divergent
portion between isotypes, although they are highly con-
served between species (Table 1). Posttranslational modifica-
tions have been reported, including phosphorylation and
glutamylation (reviewed in Luduena18).

The strong intraspecies conservation of beta-tubulin iso-
types has prompted a number of investigators to search for
functional differences specific to the various isotypes. Analy-
sis of tubulin isotype expression in various tissues has
demonstrated a complex pattern of distribution, suggesting
functional specificity. In neurons, there is evidence of
isotype segregation within cells, as well as differential
synthesis and phosphorylation during neurite outgrowth.24

Conversely, immunohistochemical analyses of various micro-
tubules (spindle, interphase, midbody, manchette, flagella)
have failed to show segregation of isotypes into specialized
microtubular structures, as have experiments with trans-
fected tubulin isotypes.25,26 The nature and degree of the
functional specificities of beta-tubulin isotypes remain con-
troversial.18

DYNAMICS AND FUNCTION

Microtubules are highly dynamic structures that are in
unstable equilibrium with the pool of soluble tubulin dimers

present in the cell. There is constant incorporation of free
dimers into the polymerized structures and release of dimers
into the soluble tubulin pool. Polymerization of tubulin
dimers may be influenced by a number of factors, such as
guanosine triphosphate, which binds to one exchangeable
site on beta-tubulin and one nonexchangeable site on
alpha-tubulin; the ionic environment; and MAPs. MAPs
constitute a complex family of proteins, including MAP2,
MAP4, Mip-90, tau, and STOP, many of which have been
shown to regulate tubulin polymerization and function.27-31

Many results have been reported on tubulin polymerization,
with studies using highly purified tubulin, usually obtained
from bovine brain, an abundant source. The development of
real-time contrast videomicroscopy has allowed direct visu-
alization of the behavior of individual microtubules.

Microtubule ends have the ability to switch stochastically
between growing and shortening states, both in cells and in
vitro. This phenomenon, called dynamic instability, is an
essential property that makes microtubules some of the most
plastic protein polymers in the cell.32 Microtubules have a
plus end, which is kinetically more dynamic than the other
(the minus end). Although both ends alternately grow or
shorten, net growing occurs at the plus end and net
shortening at the minus end. When both of these actions
occur simultaneously, the microtubule is said to be treadmill-
ing, a phenomenon that is believed to be critical in the polar
movement of chromosomes during anaphase.33

Microtubules are complex polymeric structures that are
involved in a number of cellular functions.3,14 They play a
critical role not only in mitosis but also in intracellular
transport, axonemal motility, and constitution of the cytoskel-
eton. The abundant amount of tubulin in neurons and the role
of microtubules in axonal transport are thought to contribute
to the neurologic toxicity of tubulin-binding agents in the
clinic.34 It is widely accepted that the antimitotic effect of the
tubulin-binding agents used as anticancer agents is due to
their effect on the mitotic spindle. However, these com-
pounds also affect microtubules in interphase cells, altering
neurite morphogenesis, as well as adhesion and locomotion
properties.35-37Other antitumor effects of taxanes have been

Table 1. Beta-Tubulin Isotypes in Vertebrates

Class

Isotype
% Homology

(mouse/ human) C-Terminal Sequence ExpressionHuman Chicken Mouse

I M40 cb7 mb5 100 EEEEDFGEEAEEEA All tissues
II hb9 cb1/cb2 mb2 100 DEQGEFEEEGEEDEA Major: neuronal, many tissues
III hb4 cb4 mb6 99 EEEGEMYEDDEEESESQGPK Minor: neuronal
IVa h5b — mb4 100 EEGEFEEEAEEEVA Major: neuronal
IVb hb2 cb3 mb3 100 EEGEFEEEAEEEVA Major: testis, many tissues
V ND cb5 ND — NDGEEEAFEDDEEEINE All tissues except in neurons
VI hb1 cb6 mb1 91 EEDEEVTEEAEMEPEDKGH Hematopoietic specific

Abbreviation: ND, not described in this species.
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described that appear to be independent of the antimitotic
activity. Paclitaxel modifies the motility of paclitaxel-
resistant ovarian carcinoma cells in vitro and displays
antiangiogenic activity in vivo.38,39 The specific action of
tubulin-binding agents on the mitotic spindle may be
attributed to the fact that mitotic microtubules are consider-
ably more dynamic than interphase microtubules, with a
much shorter half-life.40 Conversely, the absolute require-
ment of a functional spindle for the proper migration of
chromosomes during anaphase may explain why this stage
of the cell cycle is particularly vulnerable to tubulin active
agents, even though these compounds act on other cellular
microtubules as well.41

HOW TUBULIN-BINDING AGENTS WORK

Despite considerable efforts, the exact binding sites of
tubulin-binding agents on microtubules have not been
identified. However, Nogales et al42 recently presented the
results of a crystallographic analysis that defined the pacli-
taxel binding site more precisely. Although it has been
shown that tubulin dimers are the targets of these com-
pounds, whether the beta-tubulin subunit is the exclusive
binding site for these compounds has not been clearly
determined.1,43,44Although evaluation of total accumulation
of labeled compounds in cells is technically straightforward,
quantification of drug binding to microtubules is more
difficult. Cells displaying the multidrug resistance (MDR)
phenotype have a reduced amount of total drug, because of
increased drug efflux. However, to date, there are no reports
describing a specific association between resistance to
tubulin-binding agents and reduced drug binding to microtu-
bules.

Colchicine and vinca alkaloids exert their effects on
microtubules under different conditions. Unlike vinca alka-
loids, colchicine must first bind to soluble tubulin before
acting on microtubule dynamics. At substoichiometric con-
centrations (, one molecule of drug for each molecule of
tubulin), these compounds dramatically affect microtubule
dynamics, without causing depolymerization.32 It is believed
that tubulin-colchicine and tubulin–vinca alkaloid com-
plexes, and unbound vincas, bind to and ‘‘poison’’ microtu-
bule ends, changing both on- and off-rate constants, thereby
considerably reducing their ability to grow or shorten.45 At
higher concentrations, these compounds bind stoichiometri-
cally to tubulin subunits and can induce rapid polymer
disassembly, giving rise to nonmicrotubular structures such
as vincristine-induced spiral protofilaments. The net effect
of these high concentrations is a reduction or a disappear-
ance of the normal microtubule network of the cell.

Taxanes, on the other hand, bind to polymerized tubulin
only.46 There is a binding site for paclitaxel on each tubulin

dimer in microtubules, and the ability of paclitaxel to induce
polymerization is associated with stoichiometric binding of
paclitaxel to microtubules. However, at lower, substoichio-
metric, concentrations (one molecule of paclitaxel for 200 to
600 molecules of tubulin), paclitaxel suppresses microtubule
dynamics without significantly altering the microtubule
polymer mass.47,48 Paclitaxel also modifies the rigidity of
microtubules, an effect that may contribute significantly to
its effect on mitosis.49 Thus, at very low concentrations, all
of these compounds share the ability to reduce microtubule
dynamics while not significantly affecting the amount of
polymerized tubulin.

Attempts have been made to correlate the isotype compo-
sition of microtubules with their dynamic properties and/or
their different abilities to bind tubulin-binding agents. Lu-
duena et al50 reported that colchicine binding was biphasic in
preparations of bovine brain tubulin, which is a mix of
classes I, II, III, and IV, but monophasic in the case of renal
tubulin, which does not contain class III beta-tubulin.
Falconer et al51 showed that colchicine-stable microtubules
preferentially incorporate class II beta-tubulin. Lobert et al52

reported that the interaction of vinblastine with tubulin is
identical for all beta-tubulin isotypes but that class III
beta-tubulin differs from unfractionated tubulin in its ability
to associate into paclitaxel-stabilized microtubules. Laferri-
ere and Brown53 found that paclitaxel promoted the polymer-
ization and posttranslational modifications of class III beta-
tubulin in an embryonal carcinoma cell line. Panda et al54

reported that immunopurified isotypes of tubulin display
different assembly properties in vitro. Derry et al55 showed
that paclitaxel differentially modulates the dynamics of
microtubules assembled from unfractionated and purified
beta-tubulin isotypes.

Taken together, these data suggest that tubulin isotypes
may be important determinants of microtubule dynamics.
These results, as well as those showing altered tubulin
isotype content in resistant cell lines, suggest that the isotype
composition of microtubules may influence sensitivity to
tubulin-active agents. However, the tubulin isotype profile
of mammalian cells is complex and is variable from one
tissue to another. At present, no simple relationship has been
established between the level of expression of a given
tubulin isotype and the degree of sensitivity or resistance to a
given tubulin-binding agent.

MECHANISMS OF RESISTANCE TO ANTITUBULIN
DRUG TRANSPORT

At present, the best described mechanism of resistance to
tubulin-binding agents is the MDR phenotype, mediated by
the 170-kd Pgp efflux pump, encoded by themdr1 gene.56,57
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Both the vinca alkaloids and the taxanes are good substrates
for this pump.58,59In a number of cases, development of cell
lines resistant to vincristine or paclitaxel has been shown to
be associated with the expression ofmdr1.57,60 The multi-
drug resistance protein has also been shown to be an efficient
transporter of vinca alkaloids, but not taxanes.61,62Presently,
little is known concerning the significance of the MDR
phenotype in the emergence of resistant tumors in patients
treated with tubulin-binding agents. Clinical trials aiming to
sensitize MDR-positive tumors to agents such as vinblastine
with Pgp modulators have been disappointing.63

Altered metabolism and/or subcellular distribution, alter-
ations of the interaction between drugs and their target
(microtubules), and altered response to cell cycle arrest
induced by mitotic blockage are among the possible non-
MDR mechanisms of resistance to tubulin-binding agents
(Fig 1). To date, there have been no reports of cell lines that
are resistant to tubulin-binding agents because of altered
metabolism of these compounds. Regulation of glutathione
levels by buthionine sulfoximine has been reported to
influence paclitaxel-induced cytotoxicity, but it is not clear
whether this is due to an effect on drug metabolism or to a
direct interaction between glutathione and tubulin.64,65

MICROTUBULE DYNAMICS AND RESISTANCE
TO TUBULIN-BINDING AGENTS

Cabral et al66-68 described a model in which resistance to
tubulin-binding agents is associated with the presence of
alterations in microtubule stability. According to these
authors, some cells contain ‘‘hypostable’’microtubules, with
a spontaneous tendency toward depolymerization, and ‘‘hy-

perstable’’microtubules, with a relative resistance to depoly-
merization. In this model, cells with hypostable microtu-
bules are particularly susceptible to the depolymerizing
agents and display hypersensitivity to vinca alkaloids while
displaying resistance to the stabilizing agents (Fig 2).
Conversely, cells containing hyperstable microtubules are
resistant to the vinca alkaloids but relatively sensitive to the
taxanes. This model offers an explanation for the phenom-
enon of paclitaxel-dependent cell lines, in which cells do not
grow in the absence of paclitaxel.69According to this model,
the dependence on paclitaxel is due to the presence of
extremely hypostable microtubules that, in the absence of a
stabilizing agent, disassemble spontaneously and are incom-
patible with normal cell function.

Using clinically relevant concentrations of vinblastine
and paclitaxel, Jordan et al12,13,70showed that both depoly-
merizing and stabilizing agents exert antimitotic effects by
reducing spindle microtubule dynamics, with no significant
alteration in the distribution of tubulin between the soluble
and the polymerized forms. Using real-time differential-
interference contrast videomicroscopy, these authors ana-
lyzed the dynamic behavior of individual microtubules and
found that vinblastine strongly reduces microtubule dynam-
ics, without significantly modifying the length of the micro-
tubules (or absolute microtubular mass). Analyzing the
effects of paclitaxel at low concentrations, these authors
found the same effect on microtubule dynamics, with no
significant alteration in microtubule length. In terms of the
interactions of tubulin-binding agents with microtubules, the
most meaningful equilibrium to consider may therefore be
between highly dynamic microtubules and less dynamic

Fig 1. Potential mechanisms of
resistance to tubulin-binding agents
(TBA). 1: Efflux of drug by a mem-
brane pump. 2: Altered metabolism
or distribution of agent. 3: Altered
interaction of agent with microtu-
bules. 4: Inadequate induction of
apoptotic signal.
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microtubules, rather than between polymerized and soluble
tubulins (Fig 2).

These two models differ significantly in their prediction of
cross-resistance to the vinca alkaloids and the taxanes. The
Cabral model suggests that cells resistant to depolymerizing
agents may be sensitive to stabilizing agents and vice versa.
Conversely, in the Jordan and Wilson model, these two types
of compounds exert the same suppressive effects on microtu-
bule dynamics, and cells resistant to one class of compounds
may thus be cross-resistant to the other, at least in terms of
interaction with the intracellular target. However, the concen-
trations involved in the two models differ greatly, and the net
effect on microtubule polymerization, a critical parameter in
the Cabral model, probably occurs only at high concentra-
tions of drugs. These high concentrations, which may allow
stoichiometric interaction between the tubulin-binding agents
and tubulin, may be difficult or impossible to achieve
clinically.

There is a growing body of evidence suggesting that some
combinations of vinca alkaloids and taxanes may be benefi-
cial in terms of antitumor activity. Aoe et al71 reported
synergy between vinorelbine and docetaxel on a human lung
cancer cell line in vitro, and Photiou et al72 showed synergy
between paclitaxel and vinorelbine against human mela-
noma lines. In the P388 murine model, Knick et al73 reported
not only a significant percentage of long-term cures with the
combination of vinorelbine and paclitaxel, but also a re-
duced toxicity of these agents when they were used in
combination. Of note is the importance of the delay between
the administration of these two agents: the same doses were
lethal to 80% of the animals when administered 24 hours

apart but well tolerated when administered less than 6 hours
apart. Preliminary reports of combinations of vinorelbine
with paclitaxel or docetaxel in patients with advanced breast
cancer or lung cancer suggest promising activity with no
substantial increase in toxicity.74-76 Conversely, Monnier et
al,77 who studied the effects of the combination of docetaxel
and vinorelbine in 26 chemotherapy-naive patients with
non–small-cell lung carcinoma, reported substantial hemato-
logic and mucosal toxicity, with two toxic deaths, and
studies of paclitaxel-vinorelbine combinations showed se-
vere and/or frequent neurotoxicity.78,79 Additional clinical
data are clearly required to evaluate the benefit of the
combination of vinca alkaloids and taxanes, and such
combinations should not be administered outside prospec-
tive clinical trials.

TUBULIN GENES AND DRUG RESISTANCE

The available data suggest that alterations in microtubule
structure and/or function represent an important, and poten-
tially complex, mechanism of resistance to tubulin-binding
agents. A number of cell lines resistant to tubulin-binding
agents in vitro have been shown to contain tubulin alter-
ations, in terms of total tubulin content, tubulin polymeriza-
tion, or tubulin isotype content.80-82 We reported that the
KPTA5 cell line, which is exclusively resistant to taxanes,
displays increased expression of the class IVa tubulin
isotype.82 Conversely, the KCVB2 cell line, which does not
expressmdr1, is cross-resistant to vinca alkaloids and to
taxanes and has a reduced amount of total tubulin, a higher
percentage of polymerized tubulin, and a higher content of
class III tubulin isotype.83 Various investigators have re-

Fig 2. Models describing effects
of tubulin-binding agents on soluble
tubulin/microtubule complex. (A) Ca-
bral model: Equilibrium between
soluble tubulin dimers and polymer-
ized tubulin (microtubules). Hy-
postable microtubules are sensitive
to vinca alkaloids, hyperstable mi-
crotubules to taxanes. (B) Jordan
and Wilson model: Equilibrium be-
tween highly dynamic microtubules
and weakly dynamic microtubules.
Binding of a drug to microtubules
reduces or suppresses dynamics of
highly dynamic microtubules, form-
ing stabilized microtubules.
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ported altered expression of tubulin isotypes in resistant cell
lines.81,84,85Haber et al86 reported that in the murine cell line
J774, resistance to paclitaxel is associated with a 21-fold
increase in class II beta-tubulin isotype. In paclitaxel-
resistant human prostate cancer cells, on the other hand,
class III beta-tubulin appears to be overexpressed.87 Muta-
tions of tubulin isotype genes have also been reported in
paclitaxel-resistant lines.88 Reproducing resistant pheno-
types by modifying the tubulin isotype composition of cells
has proven to be difficult89 and has been impeded due to the
fact that there are often multiple alterations of the soluble
tubulin/microtubule complex in resistant lines.

PROGRAMMED CELL DEATH (APOPTOSIS)

Tubulin-binding agents induce apoptosis in tumor cells in
vitro, as do a great number of other chemotherapeutic
agents.90The mechanism by which mitotic blockage induces
apoptosis remains to be determined, although it is increas-
ingly clear that a number of regulatory molecules,91,92 as
well as oncogenes,93 bind to the mitotic apparatus. It is
highly probable, although the mechanism is poorly under-
stood, that genes that protect cells against apoptosis, such as
mutant p53, bcl-2, and bcl-x, may induce resistance to
tubulin-binding agents.94,95 MAPs are also likely to be
involved in mechanisms of resistance to drug-induced
apoptosis. MAP4, the expression of which is negatively
regulated by wild-typep53, has been shown to increase
sensitivity to paclitaxel.96,97 Tau overexpression has been
described in estramustine-resistant human prostatic carci-
noma cells.98

The relationship betweenp53 alterations and sensitivity
to antitubulin agents is complex. Functionalp53causes cell
cycle arrest in the G1 phase in case of DNA damage, thereby
allowing DNA repair and enhanced survival in normal cells.
It was thus expected that abnormalp53 would sensitize
tumor cells to DNA-damaging agents. In most cases,
however, abnormalp53was associated with drug resistance.
These unexpected findings were attributed to the fact that
tumor cells that did not express functionalp53were unable

to initiate apoptosis because of the DNA damage they had
sustained. The temporary inactivation ofp53 by acute
human papillomavirus or the permanent inactivation ob-
tained inp53-null mice is associated with increased sensitiv-
ity to paclitaxel.99,100Woods et al101suggested that paclitaxel
induces apoptosis through two different pathways: ap53-
independent pathway occurring in cells blocked in prophase,
which is observed both inp53-expressing and inp53-null
mouse embryo fibroblasts; and ap53-dependent mechanism,
which occurs in cells that accumulate in G1 and requires
functional p53. The observation by various authors that
vinca alkaloids and paclitaxel inducep53 may thus be
interpreted as a resistance mechanism of the cell against the
cytotoxic effect of paclitaxel.102,103 Paclitaxel has been
shown to modulate the level of expression of genes involved
in apoptotic regulation, such asbcl-xL.

104 The ability to
regulate gene expression appears to be an important property
of paclitaxel but not of docetaxel.105

NEW TUBULIN-BINDING AGENTS

New antitubulin agents are currently being evaluated
(Table 2). Spurred by the encouraging results obtained with
taxanes, research has continued, yielding alkylating paclitax-
els that bind irreversibly to tubulin and are active at lower
concentrations on tumor cell lines.106 Nontaxane stabilizing
agents have also been described. Estramustine suppresses
microtubule dynamics and displays synergism with vinblas-
tine.107,108 Discodermolide, extracted from the Caribbean
spongeDiscodermia dissoluta,stabilizes microtubules more
potently than paclitaxel and inhibits the growth of breast
cancer cell lines in vitro.109,110The macrolides epothilones A
and B also share the ability to arrest cells in mitosis and
promote the formation of microtubular bundles in nonmi-
totic cells.111,112 A number of peptide agents have been
shown to block cell division by interfering with microtubule
function. These include dolastatin and cryptophycin, which
behave as depolymerizing agents and inhibit the binding of
vinblastine to tubulin.113-115 Cryptophycin induced more
prolonged depletion of microtubules in vitro than did

Table 2. New Antitubulin Agents

Compound Origin
Competes

With
Range of
Activity

Sensitivity
to MDR Comments

Discodermolide Sponge (Discodermia dissoluta) Taxanes , nM Low Possibly immunosuppressive, more potent
than paclitaxel

Epothilones A and B Myxobacterium (Sorangium cellulosum) Taxanes nM Low No endotoxin-like effect; equipotent with
paclitaxel

Dolastatin Mollusk (Dolabella auricularia) Vincas mM High Peptide
Cryptophycins Cyanobacterium Vincas pM Low Peptide; active in murine models
Curacin A Cyanobacterium (Lyngbya majuscula) Colchicine nM NA Thiazoline ring–containing lipid

Abbreviation: NA, not available.
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vinblastine.116 Many of these new compounds, with the
exception of dolastatin, are weakly transported in Pgp-
expressing cells and thus retain activity in cells expressing
the MDR phenotype. Although the first tubulin-binding
agents have been extracted from plants and trees, most of the
recent and promising compounds have been found in marine
organisms.

In conclusion, tubulin-binding agents constitute a diverse
group of compounds with many applications in medicine.
Cytotoxic tubulin-binding agents are unique among antican-
cer drugs in that they target the mitotic spindle rather than
DNA. Although vincas and taxanes may differ in their gross

effect on cellular cytoskeleton in culture, these compounds
seem to share a common mechanism of action—namely, the
inhibition of microtubule dynamics. An important conse-
quence is that the understanding, and possibly the therapeu-
tic modulation, of factors influencing microtubular dynam-
ics will be essential to improve the therapeutic efficacy of
these compounds. Because of the high tubulin content in
neuronal tissues, these agents also share a common side
effect: neurotoxicity. The discovery of new marine com-
pounds that are not MDR substrates offers great hope for the
expansion of the role of this family of agents in the treatment
of cancer.
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