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ABSTRACT 
  While GPUs have become prominent both in high performance 
computing and in online or cloud services, they still appear as 
explicitly selected ‘devices’ rather than as first class schedulable 
entities that can be efficiently shared by diverse server 
applications. To combat the consequent likely under-utilization of 
GPUs when used in modern server or cloud settings, we propose 
‘Rain’, a system level abstraction for GPU ‘hyperthreading’ that 
makes it possible to efficiently utilize GPUs without 
compromising fairness among multiple tenant applications. Rain 
uses a multi-level GPU scheduler that decomposes the scheduling 
problem into a combination of load balancing and per-device 
scheduling. Implemented by overriding applications’ standard 
GPU selection calls, Rain operates without the need for 
application modification, making possible GPU scheduling 
methods that include prioritizing certain jobs, guaranteeing fair 
shares of GPU resources, and/or favoring jobs with least attained 
GPU services. GPU multi-tenancy via Rain is evaluated with 
server workloads using a wide variety of CUDA SDK and 
Rodinia suite benchmarks, on a multi-GPU, multi-core machine 
typifying future high end server machines. Averaged over ten 
applications, GPU multi-tenancy on a smaller scale server 
platform results in application speedups of up to 1.73x compared 
to their traditional implementation with NVIDIA’s CUDA 
runtime. Averaged over 25 pairs of short and long running 
applications, on an emulated larger scale server machine, multi-
tenancy results in system throughput improvements of up to 
6.71x, and in 43% and 29.3% improvements in fairness compared 
to using the CUDA runtime and a naïve fair-share scheduler. 

Categories and Subject Descriptors 
D.4.1.e [Operating Systems]: scheduling 

General Terms 
Design, Experimentation, Performance, Measurement  

Keywords 
GPU hyperthreading, multi-tenancy, hierarchical scheduling. 

1. INTRODUCTION 
  A clear trend over the past few years is the increased deployment 
of GPUs in HPC clusters and supercomputers e.g., the Tianhe 
supercomputer. An interesting second trend is the consistent gain 
for GPU usage seen in enterprise server systems, for running 
computationally intensive image processing algorithm like video 

transcoding (e.g., for online video services) [20], other multimedia 
services (e.g., Adobe’s Photoshop.com) [19], online gaming (e.g. 
NVIDIA cloud gaming) [21], and financial algorithms [17].  

  A challenge for efficient GPU usage in server and cloud 
computing systems is that GPUs are not yet first class schedulable 
entities, in lieu of current programming models that treat them as 
target ‘devices’ selected by applications running on attached host 
machines. One consequence of using this model is likely GPU 
under-utilization, with some devices well-utilized while others 
remain idle, in part because there is considerable diversity in the 
fraction of CPU vs. GPU processing in applications. Reasons also 
include difficulties in application parallelization, limits on GPU 
use due to necessary data movements between CPU hosts and 
GPUs, as well as diversity in the mix of applications currently 
mapped to server hardware comprised of CPU-based hosts with 
attached GPUs.  

  This paper argues for GPU multi-tenancy – which we term ‘GPU 
hyperthreading’ -- to increase GPU utilization for server clusters. 
The purpose of such multi-tenancy is to service requests from 
multiple tenants of a cluster, with specific goals that include 
fairness to the different applications being run, meeting real-time 
deadlines, and high throughput. Specifically, given the diverse 
goals of multi-tenancy – or GPU hyperthreading – articulated 
above, we propose and develop flexible software, rather than 
hardware, methods for GPU sharing. These methods, realized 
with our Rain scheduling infrastructure, decompose the problem 
of managing a server’s GPU resources into two levels where (1) 
per GPU scheduling is responsible for efficiently multiplexing 
multiple requests found in its queue onto a single GPU and (2) 
higher level load balancing is responsible for appropriately 
mapping applications (and their requests) to the GPUs available 
on the underlying server hardware. 

  Rain builds on earlier work by our group like GVim [2] and 
Pegasus [10]. GVim describes the need for cluster level solutions 
of mapping jobs to potentially heterogeneous host nodes. Pegasus 
explores how to coordinate the scheduling of CPU and GPU 
resources on each cluster node. Rain extends their scheduling 
functionality (1) by considering multiple GPUs as potential targets 
for each application requesting GPU resources and (2) running at 
application level rather than in the virtualized settings in which 
GVim and Pegasus operate. For ongoing work in our group – 
termed GPGPU assemblies [5] – Rain can act as the scheduling 
framework needed to run across the logical multi-node CPU/GPU 
platforms provided by assembly software.  

Focusing on single-node scheduling, in this paper, Rain schedules 
applications’ GPU requests across the multiple GPUs present on 
high end server machines, which we emulate with a platform with 
two machines connected via a high end network interconnect, 
where each machine has two GPUs and 12 CPUs, resulting in a 
powerful platform with 4 GPUs and 24 CPUs total. 

For such high-end servers, Rain operates as follows. First, 
breaking the common GPU programing model, which allows 
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applications to explicitly select their target GPUs, we override 
their device selection calls [5], e.g., their cudaSetdevice() calls, 
and redirect them to a workload balancer. The balancer selects the 
target GPU for the application, based on available system 
information like current device loads, device capability or power, 
application characteristics, etc. Once a GPU has been assigned, 
individual requests are dispatched by lower (device) level 
scheduling. This results in the following technical contributions: 

• The Rain, a GPU aggregation and two-level hierarchical 
scheduling framework, that decouples the GPU and 
CPU components of applications in order to (1) load 
balance workload across the multiple GPUs on high end 
servers and then, (2) performs device-level scheduling 
to handle multiple applications sharing a single GPU – 
GPU multi-tenancy or ‘hyperthreading’.  

• Dynamic feedback from device-level scheduling to load 
balancing is shown to improve the latter’s decision 
making, in part because the device-level scheduler has 
detailed data about current device and application 
behavior not available to the load balancer. 

• Least-attained-service (LAS) in terms of GPU request 
servicing is a novel metric used by a new scheduling 
policy shown capable of increasing overall system 
throughput. The policy operates by monitoring the 
services attained by each application running on a GPU 
in some given period of time and then prioritizing those 
applications that have attained lesser degrees of service. 

• Three workload balancers are evaluated in detail, along 
with two device level schedulers, as well as two 
feedback policies, with the goals to achieve high 
application performance as well as high levels of system 
throughput and fairness.  

  The remainder of the paper is organized as follows. Sections 2 
and 3 motivate and elaborate on the Rain multi-level scheduling 
approach, its software architecture and its operation. Section 4 
describes the implemented scheduling policies and algorithms.  
Section 5 experimentally evaluates Rain’s basic costs and its 
diverse scheduling policies. Section 6 describes related work 
followed by conclusions and future work in Section 7. 

2. MOTIVATION 
  Need for GPU scheduling: Current GPU applications are 
written to choose some GPU device before commencing to use it.  
For multi-GPU servers, there are several problems with such a 
programmer-defined approach to selecting GPUs. First, when 
multiple applications are consolidated onto a single multi-GPU 
node, their individual target GPU selection calls, e.g., NVIDIA’s 
cudaSetDevice() calls, being agnostic of each other can compete 
for the same GPUs, e.g., the one with id 0, leaving the other GPUs 
in the node idle. This serializes each application’s GPU request 
which otherwise could have been served in parallel. We term such 
conflicts static collisions for applications’ GPU requests. Second, 
applications are diverse in their GPU characteristics, with some 
heavily using the GPU while others use it less frequently. Since 
different applications will not be aware of each other’s usage 
characteristics, they cannot assess whether they can usefully, i.e., 
without unnecessarily degrading their performance, share a single 
GPU or whether they require assignment to different GPU 
devices. We term this a character collision of applications’ GPU 
requests. Third, static and character collisions become even more 
important when nodes have heterogeneous GPUs, each with 
different capabilities in terms of their compute and memory levels 

 

Figure 1. GPU utilization with a stream of BlackScholes 
requests following negative exponential distribution of inter-
arrival time 

of GPU utilization, particularly for web applications driven 
capacities, and memory bandwidths. Fourth and perhaps most 
importantly, single applications have difficulties achieving high 
by end user requests. An illustration of this fact appears in Figure 
1, which shows the GPU utilization of a single application server 
receiving a stream of BlackScholes requests following a negative 
exponential distribution of inter-arrival times: there are substantial 
GPU idle times.  
   Given these facts, this paper argues for system-level support for 
GPU multi-tenancy: 1. to properly load balance application 
requests across the multiple GPUs present on high end server 
machines, to avoid static collisions and unnecessary GPU 
idleness, and 2. for each GPU, to schedule requests to obtain high 
application performance in lieu of potential character collisions. 
Such GPU load balancing and scheduling must take into account 
per application behavior like request frequencies and completion 
times, application throughput/performance, as well as desired 
system-level quantities like fairness, resource utilization, and 
others. We next describe Rain, the two-level scheduling approach 
to GPU multi-tenancy developed in our work. 

3. SYSTEM OVERVIEW 
  Figure 4 presents a high level overview of a high-end multi-GPU 
node, which we emulate with a two-node, tightly networked 
cluster of GPGPU-based servers. In our test bed, each such server 
has six CPU cores and two GPUs attached, creating a composite 
machine with 4 GPUs and 12 CPUs.  

3.1 Frontend and Backend Software 

 
Figure 2. Architecture of GPU Remoting  

Common to previous solutions for GPU scheduling, like GVim 
[2], Pegasus [10], rCuda [3], vCuda [7], and gVirtuS [6], is the 
separation of the GPU from the CPU components of an 
application, so that both can be managed or scheduled separately. 
Since NVIDIA’s CUDA [4] library and driver code are ‘closed’, 
i.e. there is no low-level standard interface for accessing GPUs, 
separation happens at the level of the runtime API, as shown in  

4



 

Figure 3. Architecture of Rain 

Figure 2, where the frontend is a CUDA runtime interposer library 
that dynamically links with the CUDA based application, 
intercepting or overriding the CUDA runtime API calls.  

 The backend is a daemon running on every node that has GPUs 
attached to it and interacts with the frontend, e.g., to receive 
forwarded calls. It is this backend that is responsible for 
dispatching or making the actual CUDA runtime library calls to 
the GPU and returning error codes to the frontend. The interaction 
between frontend and backend involve the interposer library 
intercepting CUDA calls, marshalling their call information and 
parameters into an RPC packet, and forwarding those to the 
backend. The backend maintains request queues, makes the 
appropriate CUDA calls with the unpacked parameters, and 
forwards error codes to the frontend. The outcome is the 
decoupling of CPU/GPU associations for GPU-based application. 
A useful side effect of the approach is that it also makes possible 
‘remote’ GPU accesses – GPU remoting – so that calls can be run 
on nodes other than where they are generated. This paper uses this 
fact to create the emulated higher end server machine used to 
evaluate Rain’s load balancing and scheduling. In associated 
work, we further develop this functionality to enable cluster-level 
GPU sharing [5]. 

3.2 GPU Pool Creation 

 
Figure 4. Logical transformations of GPU cluster after gPool 
creation 

  The Rain framework implements the following abstractions to 
realize scheduled (vs. uncontrolled) application access to GPUs, 
using the frontend/backend approach described above. First, as 
shown in Figure 4, all GPUs used for shared access are collected 
into a GPU pool, termed gPool. A simple example is a gPool 
containing the two GPUs on the small scale server used in our 
evaluation. A more interesting example is a gPool containing the 
GPUs resident on multiple nodes in a GPU cluster.  

  gPools are formed when the GPU virtualization runtime is 
started and backend daemon processes are spawned. Pool creation 
is supported by a GPU Affinity Mapper cognizant of all 
participating nodes and GPUs, which once information about all 
cluster GPUs is available, determines and broadcasts a global 
ordering of GPUs in the pool to all participating nodes. Each 
node, therefore, has a unique and globally known mapping from 
global device id to <node_id (IP address), local device_id> pair, 
which we term gMap. The cluster-level implementation of our 
work [5] permits any cluster node in the gMap to participate, by 
forwarding requests to GPUs on remote nodes via the network. 
This paper focuses on single machines, for the aforementioned 
small scale and larger scale multi-GPU server system. For 
generality, a three node system is shown in Figure 3. 

3.3 Software Architecture 
  As shown in Figure 3, the Rain load balancer and scheduler are 
comprised of several components, described next. 

3.3.1 GPU Affinity Mapper – Workload Balancing 
  This software layer has two responsibilities: (1) server-wide 
aggregation of GPUs through gPool creation and (2) selection of 
target GPUs for particular client applications, i.e., to map each 
application’s GPU component to an appropriate GPU. Such load 
balancing requires static information, like the total number of 
GPUs in the server and their respective capabilities, and dynamic 
information, like current device loads, the characteristics of the 
application currently bound to each GPU and so on. While static 
information is obtained during gPool creation, dynamic 
information is available from the affinity mapper’s own decision 
history and/or from feedback given by per GPU scheduling, which 
is discussed below in details.  
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The current implementation of the mapper ignores/overrides 
program-provided GPU selections, replacing them with its own 
decisions, taking the following steps. First, the interposer 
intercepts the cudaSetDevice() call made by an application and 
contacts the Affinity Mapper. The mapper selects an appropriate 
target GPU using the gPool and, the static and dynamic 
information available to it, and returns the global id (GID) of the 
selected GPU. Using the returned GID, the interposer inspects the 
gMap to determine the actual GPU device selected and finally, 
forwards the call to appropriate backend process and the GPU. 
The binding is removed when the application exits or makes a 
cudaThreadExit call. Interesting elements of this mapping 
process, as shown in Figure 3, include the following. First, 
detailed device information is obtained during gPool creation. 
This includes creating the unique GID and the computation of 
relative weights describing innate GPU capabilities, maintained in 
a data structure termed the Device Status Table (DST). Dynamic 
parameters in the DST, e.g., current device load, are updated at 
runtime by the Target GPU Selector (TGS), which is explained 
below. The Scheduler Feedback Table (SFT) is a history-based 
table storing information about application characteristics, like 
execution time, GPU utilization, data transfer times, etc., provided 
by the lower-level GPU scheduler. TGS is the decision engine 
responsible for computing the target GID on behalf of the 
application, using the DST, SFT, and the currently selected 
scheduling policy from the Policy Table. Affinity mapper policies 
evaluated in this paper include those based only on information 
from the DST (workload balancing policies) or from both the SFT 
and DST (feedback policies). 

3.3.2 GPU Scheduler 
  GPU scheduling decisions, based on metrics that include system 
throughput, fairness, real-time deadlines, etc., are made for all 
requests directed at some specific GPU, which are then run in 
some scheduler-determined order. It also involves feedback to 
workload balancer based on the requests being executed. These 
tasks are carried out by the following components shown in 
Figure 3. The Request Manager (RM) registers-unregisters the 
application by creating-destroying an entry in the Request Control 
Block (RCB), on cudaSetDevice() and cudaThreadExit() calls, 
respectively. The RCB stores tenant properties like the tenant id, 
tenant priority, and the application’s runtime attributes, like GPU 
service attained in a given interval, total execution time, and total 
GPU time as computed by the Request monitor (RMO). The 
Dispatcher is the entity that orders and controls the dispatching of 
GPGPU requests to the device. Using the RCB and the currently 
selected policy from Policy Table, the Dispatcher signals the 
backend threads to dispatch GPU requests to the device, by 
calling the CUDA runtime APIs. The Feedback Engine (FE) 
computes and communicates feedback information to the 
workload balancer, by retrieving this information from the RCB 
and feeding it to the SFT module of the workload balancer 
whenever an application request completes. Specifically, when the 
interposer forwards a cudaThreadExit() call to the GPU scheduler, 
the FE marshalls the feedback information along with the return 
value of the CUDA call and sends it back to the interposer, which 
then forwards the same to the workload balancer.  

3.3.3 Multi-layer Interactions 
  Load balancer and GPU schedulers have different degrees of 
visibility of the server machine. While the load balancer has a 
global knowledge of all the GPUs participating in resource 
sharing, GPU schedulers, which are running per device, have 
local information about the behavior and characteristics of the 

applications mapped to the GPU and local GPU states. Both are 
complimentary to each other and thus two layers can interact with 
one another to help each other’s scheduling. As discussed in the 
previous section, load balancer lays the ground for GPU scheduler 
by intelligently mapping GPGPU application requests to different 
GPUs in the server. More interesting is the feedback from GPU 
scheduler to the load balancer about both application behavior and 
device utilization that improves latter’s future scheduling 
decisions. Overheads associated with such actions are further 
reduced by providing feedback at somewhat coarser grain, 
controllable ‘scheduling epochs’. 

4. SCHEDULING POLICIES 

4.1 Workload Balancing Policies 
  We implement five different workload balancing policies, 
described below. 

  Global Round Robin (GRR): simply performs the round robin 
assignment of applications to the GPUs in the gPool. 

  GMin: to take into account differences in application completion 
times, GMin enhances GRR by maintaining a record of the 
number of applications mapped to a particular device in the device 
load field. When a new application arrives, TGS finds the GPU 
with the minimum device load value, increments the value by 1, 
and returns the corresponding GID. When an application exits or 
makes a cudaThreadExit() call, TGS decrements the device load 
value of the mapped GPU by 1. When serving multiple server 
machines, because accessing a remote GPU can be expensive, 
GMin gives preference to local GPUs when finding the GPU with 
minimum load.  

  Weighted-GMin: to take into account differences in innate GPU 
capabilities, the weighted-GMin (GwtMin) policy extends GMin 
by assigning relative weights to different GPUs, with weights 
calculated during initialization. 

  Two additional workload balancing policies, based on feedback, 
are described in Section 4.3 below. 

4.2 GPU Scheduling Policies 
  GPU scheduling seeks to achieve high system throughput 
without compromising fairness across multiple GPU tenants with 
different individual credits or priorities. Two scheduling policies 
evaluated in our work include Least Attained Service (LAS), a 
throughput driven policy, and True Fair-Share (TFS), a fairness 
aware policy. 

4.2.1 Least Attained Service (LAS) 
  The objective of the LAS policy is to reduce the ‘stall time’ of 
the CPU component of a GPU-based application. Such stalls or 
waits occur when the application calls cudaThreadSynchronise() 
because it cannot progress further until GPU results are available. 
LAS, therefore, seeks to maximize system throughput by 
prioritizing the jobs with the least attained service times [13]. The 
policy operates by increasing the priority levels of applications 
that have shorter GPU episodes, i.e., have attained less GPU 
service time in a given time quantum. This approach helps in 
finishing applications with smaller GPU requests, thereby 
minimizing the overall CPU stall time and maximizing system 
throughput. 

4.2.2 True Fair-share Scheduler 
  To ensure fairness and isolation across multiple tenants sharing   
the same GPU, a Real-time (RT) signal-based fair-share (FS) 
GPU scheduler performs proportionate GPU resource allocation 
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on a per-tenant basis according to their assigned weights. The 
invariant maintained by the scheduler is that at any point of time, 
at most one application backend thread is awake or is using the 
GPU and that it remains awake only for a time period that is 
proportional to their tenant weight. A signal-based 
implementation (instead of a queue-based one) is used in order to 
maintain complete isolation between different GPU applications. 
This involves using a separate backend process for each GPU 
application so that even if one of the backend threads crashes, it 
does not affect the backend threads of other applications. 

  True Fair-Share (TFS): fair share scheduling of CPU threads can 
be easily done via signaling, but on GPUs, long running vs. short 
running jobs can cause unfairness in GPU access across multiple 
tenants. The true fair-share (TFS) policy realized in our work 
reacts to this fact by taking into account the actual GPU service 
attained in every epoch. That is, if any application overshoots its 
allocated time slice, the dispatcher penalizes it in subsequent time 
slices. TFS, therefore in long run, attempts to share GPU 
resources so that all tenants receive their weighted fair shares 
when the system is heavily loaded and overall GPU utilization is 
high. It is also work conserving, because when some tenant is not 
fully utilizing its share, that share is distributed to others 
according to their respective weights. 

4.3 Feedback-based Load Balancing Policies 
  Runtime feedback (RTF): requires that GPU schedulers monitor 
the execution time of requests scheduled on the GPU and provides 
such data as feedback to workload balancer. This helps the 
workload balancer make better decision in selecting the GPU with 
minimum load in future. 

  GPU utilization feedback (GUF): this policy informs workload 
balancer how efficiently some application is using a GPU, by 
computing the application’s ratio of total GPU time to its total 
execution time. It draws on work [1] on NUMA aware thread 
placement, which shows that it is unwise to co-locate memory 
intensive threads on the same socket, since such co-location can 
lead to contention on the memory system, thereby hurting overall 
performance. GUF can provide feedback to the load balancer to 
inform it about the nature of GPU requests from different 
applications. Specifically, the RMO component monitors the GPU 
time and total execution time of each application mapped to a 
certain GPU. When an application exits, RMO calculates the 
application’s GPU utilization by taking the ratio of the cumulative 
sum of GPU time and the total virtual runtime of the application 
(system+user time). Provided such data as feedback, the workload 
balancer then avoids collocating applications with high GPU 
utilization on the same GPU. The load balancing decisions 
improve over time as it learns more about different applications’ 
GPU characteristics. 

5. EXPERIMENTAL EVALUATION 

5.1 Evaluation Metrics 
  We measure system throughput and fairness using the weighted-
speedup [14] and Jain’s fairness [16] metrics, respectively. 
Weighted-speedup measures the average of speedups experienced 
by each application in a workload sharing the GPU resource 
compared to when it is run alone. Jain’s fairness measures the 
percentage of fairness achieved when running multiple 
applications with different GPU shares. In the fairness equation 
shown below, wi is the GPU share allocated to an application and 
Ti is its total execution time. 
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5.2 Experimental Setup 
  Experiments are performed on a small-scale (two GPUs) server 
and on a higher end server (four GPUs) emulated by two 
dedicated two GPU nodes (call it NodeA and NodeB) connected 
via gigabit Ethernet. Each node has two Intel Xeon X5660 
processors for a total of 12 cores running at 2.8 GHz and 12 GB 
of main memory, and it has two attached NVIDIA FERMI GPUs. 
NodeA has a Quadro 2000 and Tesla C2050 GPU, while NodeB 
has a Quadro 4000 and Tesla C2070 GPU. The result is a 
heterogeneous higher end server where all GPUs differ in terms of 
their compute and memory bandwidth capacities. The GPU driver 
version is 295.41. Our GPGPU application service model is based 
on the SPECpower_ssj2008 [11] benchmark, which models a 
server application with large number of users. Requests coming 
from multiple users follow a negative exponential distribution, 
and are served by a finite number of server threads.  The 
exponential distribution models the intermittent bursts of load, 
when application requests queue up while other requests are being 
processed. For a particular random stream of requests, the inter-
arrival time between two consecutive requests can be calculated 
using the formula: 
T = - λ * ln(X) 
where λ is the mean inter-arrival time between consecutive 
requests in a stream, and X is a random number in the range [0.0, 
1.0]. 

NodeA and NodeB are servers processing GPU application 
requests. In our single node two GPU server experiments, we feed 
NodeA with a stream of requests following a negative exponential 
distribution with λ proportional to the application’s runtime. In the 
four GPU emulated server experiments emulating a higher end 
GPU server, we feed each of NodeA and NodeB with independent 
random streams of requests.  

5.3 Benchmarks 
  The applications from the CUDA SDK and Rodinia [18] 
benchmark suites used in our evaluation are shown in Table 1. 
They are chosen to offer a pairwise mix of short running 
(execution time between 5sec to 17sec) and long running jobs 
(execution time between 35sec to 105sec). 25 such workloads are 
used, labeled from A to Y, where A is BS-L BS-S pair, B is BS-L 
MonteCarlo pair and so on following the order in Table 1.  

5.4 Results 

5.4.1 Benefits of Workload Balancing 
We first present the performance benefits of scheduling of GPU 
requests in a single node with two GPUs in comparison with the 
bare CUDA runtime. In this set of experiments, the node receives 
a stream of requests from a particular application following a 
negative exponential distribution. We measure the average 
completion times of all requests in the stream for both the CUDA 
runtime and different load balancing policies. 
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Table 1. Benchmark Applications 

Program Description 
Kernel 
calls #

Long-running Jobs 

BlackScholes-
Large (BS-L) 

Fair price evaluation for 4M European 
options 

8192 

DXTC 
High Quality DXT Compression of 
image with 512 × 512 pixels 

262144

Histogram 
Use of NPP for equalization for 512 
MB image data. 

4096 

Eigenvalues 

Bisection algorithm to find 
eigenvalues of a tridiagonal 
symmetric matrix with 8K × 8K 
elements 

3 

Matrix 
multiplication 

Multiplication of 3 matrices of size 
480 × 480 each 

8192 

Short-running Jobs 

BlackScholes-
Small (BS-S) 

Fair price evaluation for 4M European 
options 

1024 

MonteCarlo 
Fair price evaluation for 2K European 
options 

10000

Transpose 
Transpose of a 800 × 800size square 
matrix 

10000

BFS Traverse a tree with 1M elements 12 

Gaussian 
Gaussian blur using Deriche's 
recursive method for matrix of size 50 
× 50 

8192 

 

 
Figure 5. Performance benefit of workload balancer policies 
vs. CUDA runtime in a single node with 2 GPUs 

 

Figure 5 shows the speedup achieved by three such policies 
compared to the CUDA runtime on ten benchmark applications. 
As expected, the load balancer’s dynamic distribution of GPU 
requests across all of the GPUs in a node increases overall GPU 
utilization and application performance. Averaged over all 
applications, GRR, GMin, and GWtMin, load balancing provides 
weighted speedup of 1.57x, 1.72x, and 1.73x, respectively. 

 
Figure 6. Performance benefit of GPU sharing in a 4 GPU 
server 

Results with GWtMin mostly outperform those of GMin, but there 
are cases in which the GPU weights set do not mirror relative 
differences in application performance. This is one motivation for 
using the feedback policies evaluated below. The maximum and 
minimum performance improvement across all load balancing 
policies is 2.13x and 1.17x, respectively. 

5.4.2 Benefits of GPU Sharing  
  This section describes results obtained with the emulated (two 
node) larger-scale server machine, with four GPUs total.  In these 
experiments, one node receives a stream of short running requests 
and the other receives a stream of long running requests, from two 
different applications. Using a gPool containing all GPUs, the 
load balancer dynamically distributes GPU requests across all four 
GPUs. Choosing a single node GRR policy as the baseline, Figure 
6 shows the effects of sharing GPUs between two application 
streams. Averaged over 25 workloads with short and long running 
jobs, the speedup achieved by GRR, GMin, and GWtMin policies 
are 2.89x, 3.48x, and 3.33x, respectively. This substantial 
improvement due to GPU sharing is because the peaks in GPU 
request volumes from the two statistically independent streams are 
not aligned, providing opportunities for load balancing to reap 
benefits from the distribution of GPU requests across all four 
GPUs. We also observe that of all the application pairs, maximum 
speedups are achieved for workloads (E, J, O, T, Y), when one of 
the applications is Gaussian, the shortest running job of all the 
benchmarks. This is because as Gaussian uses the GPU for a very 
short period of time, those GPUs have ample time to run the other 
applications. 
 

 
Figure 7. Performance benefit of LAS scheduling policy 
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5.4.3 Benefits of GPU Scheduling Policies 
  Two useful GPU scheduling policies are LAS and TFS. 
  LAS: As shown in Figure 7, we evaluate this throughput oriented 
scheduling policy in combination with all three load balancers. 
The baseline for this set of experiments is the single node GRR 
policy. The average weighted speedup achieved with GRR-LAS, 
GMin-LAS, and GWtMin-LAS is 4.75x, 5.4x and 5.37x, 

 
Figure 8. Fairness achieved by GPU schedulers vs. CUDA 
runtime among applications with equal GPU share 
 
respectively. The high speedup achieved by LAS is due to the fact 
that it prioritizes the GPU requests that have attained lesser GPU 
time. This speeds up completion of the short running GPU jobs, 
thus increasing overall system throughput. 
 

Fairshare Scheduler: we evaluate two fair-share GPU scheduling 
policies, FS and TFS, and compare them with the scheduler 
provided by the CUDA runtime. Figure 8 shows the fairness 
achieved in GPU resource allocation when both applications in a 
workload, sharing a single GPU, are given equal GPU share. We 
observe that TFS outperforms both the CUDA runtime and FS 
scheduling policy. Average fairness achieved by TFS is 96%, 
which is 43% and 19% better than CUDA runtime and FS 
respectively. TFS also achieves a near to ideal maximum fairness 
(99.99%). Figure 9 shows the fairness achieved when random 
GPU shares are assigned to both of the applications in a workload. 
Comparing FS and TFS, with random weight assignment, TFS 
performs 29.3% better than FS. This is because TFS maintains a 
history of GPU time attained by individual applications and 
penalizes any application in subsequent epochs that has used the 
GPU for more than its allocated share. 
 

 
Figure 9. Fairness achieved by TFS vs. FS among applications 
with random assigned GPU share  

5.4.4 Benefits of Feedback-based Load Balancing 
The benefits of workload balancing are measured relative to the 
naïve single node GRR policy. Feedback-based workload 
balancing is automatically activated when the workload balancer 
receives the required feedback information from the GPU 
scheduler.  Figure 10 shows the weighted speedup achieved by 
two feedback policies over the baseline. Average speedups are 

 
Figure 10. Performance benefit of feedback-based load 
balancing in 4 GPU server. 
 
6.16x and 6.71x for RTF and GUF, respectively. Compared to the 
highest speedup achieved by non-feedback based balancers, 
combined with LAS GPU scheduling (GMin-LAS), RTF and 
GUF achieve 14.8% and 25% improvements, respectively. This is 
because these policies make use of more detailed information 
about application characteristics compared to GWtMin, which 
relies only on the static information of assigned GPU weights. 
 

6. RELATED WORK 
Previous work on GPU resource management [12] uses 
interference-driven job scheduling, where multiple jobs share the 
same GPU respecting GPU memory constraint, and the job’s CPU 
and GPU components are scheduled on the same node. We 
separate these two components of every job and handle them 
independently; a more important difference to our work is that 
[12] uses static profiling, while we support online learning of an 
application’s GPU characteristics. 

Previous work on GPU virtualization GVim [2], Pegasus [10], 
vCuda [7], rCuda [3], gVirtuS [6] make GPUs visible from within 
the virtual machine. Rain extends such work by scheduling across 
multiple GPUs and potentially, multiple cluster nodes. vCuda and 
rCuda leverage the multiplexing mechanism of the bare CUDA 
runtime for sharing. Ravi et al [9] share GPUs by consolidation of 
the kernels invoked by multiple applications, but explore only a 
round robin policy. Their time and space sharing techniques for 
kernel consolidation are orthogonal to what is done in our work. 
Another interesting complement to our work is recent research [8] 
on managing GPU memory pressure arising from the 
consolidation of multiple applications on a single GPU. 

 

7. CONCLUSIONS AND FUTURE WORK 
This paper explores GPU multi-tenancy for GPU-based servers 
used in datacenter or cloud computing systems, implemented with 
the ‘Rain’ infrastructure. Rain i) dynamically constructs shared 
GPU pools, ii) uses multi-level scheduling by decomposing the 
problem into a combination of load balancing (across multiple 
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GPUs) and device-level scheduling, iii) evaluates a throughput 
oriented device-level scheduler favoring jobs with least-attained 
GPU service, iv) can employ feedback information from device-
level scheduling to adjust load balancing, and v) implements a 
history-based fair-share scheduler with improved fairness.  
The opportunities and costs of GPU multi-tenancy realized with 
Rain are evaluated across a wide variety of workloads and system 
configurations, and these evaluations demonstrate average 
speedup of 1.73x for a smaller scale server with two 
heterogeneous GPUs compared to using the CUDA runtime. It 
further achieves an average weighted speedup of 6.71x on a two 
node system emulating a high end server compared with 
applications confined to the resources of a single node. It also 
achieves nearly ideal levels of fairness (up to 99.99%) across 
applications from multiple tenants.  
Future work should address memory issues with GPU multi-
tenancy, and in addition, we are exploring the use of runtime 
binary translation (of GPU kernels) [15] to further broaden the 
potential targets a load balancer can choose for running GPU 
requests (e.g., by running requests on otherwise idle CPUs). 
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