
Multi-tenancy on GPGPU-based Servers
Dipanjan Sengupta

Georgia Institute of Technology
dsengupta6@gatech.edu

Raghavendra Belapure
Georgia Institute of Technology
rbelapure3@gatech.edu

Karsten Schwan
Georgia Institute of Technology

karsten.schwan@cc.gatech.edu

ABSTRACT
 While GPUs have become prominent both in high performance
computing and in online or cloud services, they still appear as
explicitly selected ‘devices’ rather than as first class schedulable
entities that can be efficiently shared by diverse server
applications. To combat the consequent likely under-utilization of
GPUs when used in modern server or cloud settings, we propose
‘Rain’, a system level abstraction for GPU ‘hyperthreading’ that
makes it possible to efficiently utilize GPUs without
compromising fairness among multiple tenant applications. Rain
uses a multi-level GPU scheduler that decomposes the scheduling
problem into a combination of load balancing and per-device
scheduling. Implemented by overriding applications’ standard
GPU selection calls, Rain operates without the need for
application modification, making possible GPU scheduling
methods that include prioritizing certain jobs, guaranteeing fair
shares of GPU resources, and/or favoring jobs with least attained
GPU services. GPU multi-tenancy via Rain is evaluated with
server workloads using a wide variety of CUDA SDK and
Rodinia suite benchmarks, on a multi-GPU, multi-core machine
typifying future high end server machines. Averaged over ten
applications, GPU multi-tenancy on a smaller scale server
platform results in application speedups of up to 1.73x compared
to their traditional implementation with NVIDIA’s CUDA
runtime. Averaged over 25 pairs of short and long running
applications, on an emulated larger scale server machine, multi-
tenancy results in system throughput improvements of up to
6.71x, and in 43% and 29.3% improvements in fairness compared
to using the CUDA runtime and a naïve fair-share scheduler.

Categories and Subject Descriptors
D.4.1.e [Operating Systems]: scheduling

General Terms
Design, Experimentation, Performance, Measurement

Keywords
GPU hyperthreading, multi-tenancy, hierarchical scheduling.

1. INTRODUCTION
 A clear trend over the past few years is the increased deployment
of GPUs in HPC clusters and supercomputers e.g., the Tianhe
supercomputer. An interesting second trend is the consistent gain
for GPU usage seen in enterprise server systems, for running
computationally intensive image processing algorithm like video

transcoding (e.g., for online video services) [20], other multimedia
services (e.g., Adobe’s Photoshop.com) [19], online gaming (e.g.
NVIDIA cloud gaming) [21], and financial algorithms [17].

 A challenge for efficient GPU usage in server and cloud
computing systems is that GPUs are not yet first class schedulable
entities, in lieu of current programming models that treat them as
target ‘devices’ selected by applications running on attached host
machines. One consequence of using this model is likely GPU
under-utilization, with some devices well-utilized while others
remain idle, in part because there is considerable diversity in the
fraction of CPU vs. GPU processing in applications. Reasons also
include difficulties in application parallelization, limits on GPU
use due to necessary data movements between CPU hosts and
GPUs, as well as diversity in the mix of applications currently
mapped to server hardware comprised of CPU-based hosts with
attached GPUs.

 This paper argues for GPU multi-tenancy – which we term ‘GPU
hyperthreading’ -- to increase GPU utilization for server clusters.
The purpose of such multi-tenancy is to service requests from
multiple tenants of a cluster, with specific goals that include
fairness to the different applications being run, meeting real-time
deadlines, and high throughput. Specifically, given the diverse
goals of multi-tenancy – or GPU hyperthreading – articulated
above, we propose and develop flexible software, rather than
hardware, methods for GPU sharing. These methods, realized
with our Rain scheduling infrastructure, decompose the problem
of managing a server’s GPU resources into two levels where (1)
per GPU scheduling is responsible for efficiently multiplexing
multiple requests found in its queue onto a single GPU and (2)
higher level load balancing is responsible for appropriately
mapping applications (and their requests) to the GPUs available
on the underlying server hardware.

 Rain builds on earlier work by our group like GVim [2] and
Pegasus [10]. GVim describes the need for cluster level solutions
of mapping jobs to potentially heterogeneous host nodes. Pegasus
explores how to coordinate the scheduling of CPU and GPU
resources on each cluster node. Rain extends their scheduling
functionality (1) by considering multiple GPUs as potential targets
for each application requesting GPU resources and (2) running at
application level rather than in the virtualized settings in which
GVim and Pegasus operate. For ongoing work in our group –
termed GPGPU assemblies [5] – Rain can act as the scheduling
framework needed to run across the logical multi-node CPU/GPU
platforms provided by assembly software.

Focusing on single-node scheduling, in this paper, Rain schedules
applications’ GPU requests across the multiple GPUs present on
high end server machines, which we emulate with a platform with
two machines connected via a high end network interconnect,
where each machine has two GPUs and 12 CPUs, resulting in a
powerful platform with 4 GPUs and 24 CPUs total.

For such high-end servers, Rain operates as follows. First,
breaking the common GPU programing model, which allows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VTDC’13, June 18, 2013, New York, NY, USA.
Copyright © 2013 ACM 978-1-4503-1985-0/13/06...$15.00.

3

applications to explicitly select their target GPUs, we override
their device selection calls [5], e.g., their cudaSetdevice() calls,
and redirect them to a workload balancer. The balancer selects the
target GPU for the application, based on available system
information like current device loads, device capability or power,
application characteristics, etc. Once a GPU has been assigned,
individual requests are dispatched by lower (device) level
scheduling. This results in the following technical contributions:

• The Rain, a GPU aggregation and two-level hierarchical
scheduling framework, that decouples the GPU and
CPU components of applications in order to (1) load
balance workload across the multiple GPUs on high end
servers and then, (2) performs device-level scheduling
to handle multiple applications sharing a single GPU –
GPU multi-tenancy or ‘hyperthreading’.

• Dynamic feedback from device-level scheduling to load
balancing is shown to improve the latter’s decision
making, in part because the device-level scheduler has
detailed data about current device and application
behavior not available to the load balancer.

• Least-attained-service (LAS) in terms of GPU request
servicing is a novel metric used by a new scheduling
policy shown capable of increasing overall system
throughput. The policy operates by monitoring the
services attained by each application running on a GPU
in some given period of time and then prioritizing those
applications that have attained lesser degrees of service.

• Three workload balancers are evaluated in detail, along
with two device level schedulers, as well as two
feedback policies, with the goals to achieve high
application performance as well as high levels of system
throughput and fairness.

 The remainder of the paper is organized as follows. Sections 2
and 3 motivate and elaborate on the Rain multi-level scheduling
approach, its software architecture and its operation. Section 4
describes the implemented scheduling policies and algorithms.
Section 5 experimentally evaluates Rain’s basic costs and its
diverse scheduling policies. Section 6 describes related work
followed by conclusions and future work in Section 7.

2. MOTIVATION
 Need for GPU scheduling: Current GPU applications are
written to choose some GPU device before commencing to use it.
For multi-GPU servers, there are several problems with such a
programmer-defined approach to selecting GPUs. First, when
multiple applications are consolidated onto a single multi-GPU
node, their individual target GPU selection calls, e.g., NVIDIA’s
cudaSetDevice() calls, being agnostic of each other can compete
for the same GPUs, e.g., the one with id 0, leaving the other GPUs
in the node idle. This serializes each application’s GPU request
which otherwise could have been served in parallel. We term such
conflicts static collisions for applications’ GPU requests. Second,
applications are diverse in their GPU characteristics, with some
heavily using the GPU while others use it less frequently. Since
different applications will not be aware of each other’s usage
characteristics, they cannot assess whether they can usefully, i.e.,
without unnecessarily degrading their performance, share a single
GPU or whether they require assignment to different GPU
devices. We term this a character collision of applications’ GPU
requests. Third, static and character collisions become even more
important when nodes have heterogeneous GPUs, each with
different capabilities in terms of their compute and memory levels

Figure 1. GPU utilization with a stream of BlackScholes
requests following negative exponential distribution of inter-
arrival time

of GPU utilization, particularly for web applications driven
capacities, and memory bandwidths. Fourth and perhaps most
importantly, single applications have difficulties achieving high
by end user requests. An illustration of this fact appears in Figure
1, which shows the GPU utilization of a single application server
receiving a stream of BlackScholes requests following a negative
exponential distribution of inter-arrival times: there are substantial
GPU idle times.
 Given these facts, this paper argues for system-level support for
GPU multi-tenancy: 1. to properly load balance application
requests across the multiple GPUs present on high end server
machines, to avoid static collisions and unnecessary GPU
idleness, and 2. for each GPU, to schedule requests to obtain high
application performance in lieu of potential character collisions.
Such GPU load balancing and scheduling must take into account
per application behavior like request frequencies and completion
times, application throughput/performance, as well as desired
system-level quantities like fairness, resource utilization, and
others. We next describe Rain, the two-level scheduling approach
to GPU multi-tenancy developed in our work.

3. SYSTEM OVERVIEW
 Figure 4 presents a high level overview of a high-end multi-GPU
node, which we emulate with a two-node, tightly networked
cluster of GPGPU-based servers. In our test bed, each such server
has six CPU cores and two GPUs attached, creating a composite
machine with 4 GPUs and 12 CPUs.

3.1 Frontend and Backend Software

Figure 2. Architecture of GPU Remoting

Common to previous solutions for GPU scheduling, like GVim
[2], Pegasus [10], rCuda [3], vCuda [7], and gVirtuS [6], is the
separation of the GPU from the CPU components of an
application, so that both can be managed or scheduled separately.
Since NVIDIA’s CUDA [4] library and driver code are ‘closed’,
i.e. there is no low-level standard interface for accessing GPUs,
separation happens at the level of the runtime API, as shown in

4

Figure 3. Architecture of Rain

Figure 2, where the frontend is a CUDA runtime interposer library
that dynamically links with the CUDA based application,
intercepting or overriding the CUDA runtime API calls.

 The backend is a daemon running on every node that has GPUs
attached to it and interacts with the frontend, e.g., to receive
forwarded calls. It is this backend that is responsible for
dispatching or making the actual CUDA runtime library calls to
the GPU and returning error codes to the frontend. The interaction
between frontend and backend involve the interposer library
intercepting CUDA calls, marshalling their call information and
parameters into an RPC packet, and forwarding those to the
backend. The backend maintains request queues, makes the
appropriate CUDA calls with the unpacked parameters, and
forwards error codes to the frontend. The outcome is the
decoupling of CPU/GPU associations for GPU-based application.
A useful side effect of the approach is that it also makes possible
‘remote’ GPU accesses – GPU remoting – so that calls can be run
on nodes other than where they are generated. This paper uses this
fact to create the emulated higher end server machine used to
evaluate Rain’s load balancing and scheduling. In associated
work, we further develop this functionality to enable cluster-level
GPU sharing [5].

3.2 GPU Pool Creation

Figure 4. Logical transformations of GPU cluster after gPool
creation

 The Rain framework implements the following abstractions to
realize scheduled (vs. uncontrolled) application access to GPUs,
using the frontend/backend approach described above. First, as
shown in Figure 4, all GPUs used for shared access are collected
into a GPU pool, termed gPool. A simple example is a gPool
containing the two GPUs on the small scale server used in our
evaluation. A more interesting example is a gPool containing the
GPUs resident on multiple nodes in a GPU cluster.

 gPools are formed when the GPU virtualization runtime is
started and backend daemon processes are spawned. Pool creation
is supported by a GPU Affinity Mapper cognizant of all
participating nodes and GPUs, which once information about all
cluster GPUs is available, determines and broadcasts a global
ordering of GPUs in the pool to all participating nodes. Each
node, therefore, has a unique and globally known mapping from
global device id to <node_id (IP address), local device_id> pair,
which we term gMap. The cluster-level implementation of our
work [5] permits any cluster node in the gMap to participate, by
forwarding requests to GPUs on remote nodes via the network.
This paper focuses on single machines, for the aforementioned
small scale and larger scale multi-GPU server system. For
generality, a three node system is shown in Figure 3.

3.3 Software Architecture
 As shown in Figure 3, the Rain load balancer and scheduler are
comprised of several components, described next.

3.3.1 GPU Affinity Mapper – Workload Balancing
 This software layer has two responsibilities: (1) server-wide
aggregation of GPUs through gPool creation and (2) selection of
target GPUs for particular client applications, i.e., to map each
application’s GPU component to an appropriate GPU. Such load
balancing requires static information, like the total number of
GPUs in the server and their respective capabilities, and dynamic
information, like current device loads, the characteristics of the
application currently bound to each GPU and so on. While static
information is obtained during gPool creation, dynamic
information is available from the affinity mapper’s own decision
history and/or from feedback given by per GPU scheduling, which
is discussed below in details.

5

The current implementation of the mapper ignores/overrides
program-provided GPU selections, replacing them with its own
decisions, taking the following steps. First, the interposer
intercepts the cudaSetDevice() call made by an application and
contacts the Affinity Mapper. The mapper selects an appropriate
target GPU using the gPool and, the static and dynamic
information available to it, and returns the global id (GID) of the
selected GPU. Using the returned GID, the interposer inspects the
gMap to determine the actual GPU device selected and finally,
forwards the call to appropriate backend process and the GPU.
The binding is removed when the application exits or makes a
cudaThreadExit call. Interesting elements of this mapping
process, as shown in Figure 3, include the following. First,
detailed device information is obtained during gPool creation.
This includes creating the unique GID and the computation of
relative weights describing innate GPU capabilities, maintained in
a data structure termed the Device Status Table (DST). Dynamic
parameters in the DST, e.g., current device load, are updated at
runtime by the Target GPU Selector (TGS), which is explained
below. The Scheduler Feedback Table (SFT) is a history-based
table storing information about application characteristics, like
execution time, GPU utilization, data transfer times, etc., provided
by the lower-level GPU scheduler. TGS is the decision engine
responsible for computing the target GID on behalf of the
application, using the DST, SFT, and the currently selected
scheduling policy from the Policy Table. Affinity mapper policies
evaluated in this paper include those based only on information
from the DST (workload balancing policies) or from both the SFT
and DST (feedback policies).

3.3.2 GPU Scheduler
 GPU scheduling decisions, based on metrics that include system
throughput, fairness, real-time deadlines, etc., are made for all
requests directed at some specific GPU, which are then run in
some scheduler-determined order. It also involves feedback to
workload balancer based on the requests being executed. These
tasks are carried out by the following components shown in
Figure 3. The Request Manager (RM) registers-unregisters the
application by creating-destroying an entry in the Request Control
Block (RCB), on cudaSetDevice() and cudaThreadExit() calls,
respectively. The RCB stores tenant properties like the tenant id,
tenant priority, and the application’s runtime attributes, like GPU
service attained in a given interval, total execution time, and total
GPU time as computed by the Request monitor (RMO). The
Dispatcher is the entity that orders and controls the dispatching of
GPGPU requests to the device. Using the RCB and the currently
selected policy from Policy Table, the Dispatcher signals the
backend threads to dispatch GPU requests to the device, by
calling the CUDA runtime APIs. The Feedback Engine (FE)
computes and communicates feedback information to the
workload balancer, by retrieving this information from the RCB
and feeding it to the SFT module of the workload balancer
whenever an application request completes. Specifically, when the
interposer forwards a cudaThreadExit() call to the GPU scheduler,
the FE marshalls the feedback information along with the return
value of the CUDA call and sends it back to the interposer, which
then forwards the same to the workload balancer.

3.3.3 Multi-layer Interactions
 Load balancer and GPU schedulers have different degrees of
visibility of the server machine. While the load balancer has a
global knowledge of all the GPUs participating in resource
sharing, GPU schedulers, which are running per device, have
local information about the behavior and characteristics of the

applications mapped to the GPU and local GPU states. Both are
complimentary to each other and thus two layers can interact with
one another to help each other’s scheduling. As discussed in the
previous section, load balancer lays the ground for GPU scheduler
by intelligently mapping GPGPU application requests to different
GPUs in the server. More interesting is the feedback from GPU
scheduler to the load balancer about both application behavior and
device utilization that improves latter’s future scheduling
decisions. Overheads associated with such actions are further
reduced by providing feedback at somewhat coarser grain,
controllable ‘scheduling epochs’.

4. SCHEDULING POLICIES

4.1 Workload Balancing Policies
 We implement five different workload balancing policies,
described below.

 Global Round Robin (GRR): simply performs the round robin
assignment of applications to the GPUs in the gPool.

 GMin: to take into account differences in application completion
times, GMin enhances GRR by maintaining a record of the
number of applications mapped to a particular device in the device
load field. When a new application arrives, TGS finds the GPU
with the minimum device load value, increments the value by 1,
and returns the corresponding GID. When an application exits or
makes a cudaThreadExit() call, TGS decrements the device load
value of the mapped GPU by 1. When serving multiple server
machines, because accessing a remote GPU can be expensive,
GMin gives preference to local GPUs when finding the GPU with
minimum load.

 Weighted-GMin: to take into account differences in innate GPU
capabilities, the weighted-GMin (GwtMin) policy extends GMin
by assigning relative weights to different GPUs, with weights
calculated during initialization.

 Two additional workload balancing policies, based on feedback,
are described in Section 4.3 below.

4.2 GPU Scheduling Policies
 GPU scheduling seeks to achieve high system throughput
without compromising fairness across multiple GPU tenants with
different individual credits or priorities. Two scheduling policies
evaluated in our work include Least Attained Service (LAS), a
throughput driven policy, and True Fair-Share (TFS), a fairness
aware policy.

4.2.1 Least Attained Service (LAS)
 The objective of the LAS policy is to reduce the ‘stall time’ of
the CPU component of a GPU-based application. Such stalls or
waits occur when the application calls cudaThreadSynchronise()
because it cannot progress further until GPU results are available.
LAS, therefore, seeks to maximize system throughput by
prioritizing the jobs with the least attained service times [13]. The
policy operates by increasing the priority levels of applications
that have shorter GPU episodes, i.e., have attained less GPU
service time in a given time quantum. This approach helps in
finishing applications with smaller GPU requests, thereby
minimizing the overall CPU stall time and maximizing system
throughput.

4.2.2 True Fair-share Scheduler
 To ensure fairness and isolation across multiple tenants sharing
the same GPU, a Real-time (RT) signal-based fair-share (FS)
GPU scheduler performs proportionate GPU resource allocation

6

on a per-tenant basis according to their assigned weights. The
invariant maintained by the scheduler is that at any point of time,
at most one application backend thread is awake or is using the
GPU and that it remains awake only for a time period that is
proportional to their tenant weight. A signal-based
implementation (instead of a queue-based one) is used in order to
maintain complete isolation between different GPU applications.
This involves using a separate backend process for each GPU
application so that even if one of the backend threads crashes, it
does not affect the backend threads of other applications.

 True Fair-Share (TFS): fair share scheduling of CPU threads can
be easily done via signaling, but on GPUs, long running vs. short
running jobs can cause unfairness in GPU access across multiple
tenants. The true fair-share (TFS) policy realized in our work
reacts to this fact by taking into account the actual GPU service
attained in every epoch. That is, if any application overshoots its
allocated time slice, the dispatcher penalizes it in subsequent time
slices. TFS, therefore in long run, attempts to share GPU
resources so that all tenants receive their weighted fair shares
when the system is heavily loaded and overall GPU utilization is
high. It is also work conserving, because when some tenant is not
fully utilizing its share, that share is distributed to others
according to their respective weights.

4.3 Feedback-based Load Balancing Policies
 Runtime feedback (RTF): requires that GPU schedulers monitor
the execution time of requests scheduled on the GPU and provides
such data as feedback to workload balancer. This helps the
workload balancer make better decision in selecting the GPU with
minimum load in future.

 GPU utilization feedback (GUF): this policy informs workload
balancer how efficiently some application is using a GPU, by
computing the application’s ratio of total GPU time to its total
execution time. It draws on work [1] on NUMA aware thread
placement, which shows that it is unwise to co-locate memory
intensive threads on the same socket, since such co-location can
lead to contention on the memory system, thereby hurting overall
performance. GUF can provide feedback to the load balancer to
inform it about the nature of GPU requests from different
applications. Specifically, the RMO component monitors the GPU
time and total execution time of each application mapped to a
certain GPU. When an application exits, RMO calculates the
application’s GPU utilization by taking the ratio of the cumulative
sum of GPU time and the total virtual runtime of the application
(system+user time). Provided such data as feedback, the workload
balancer then avoids collocating applications with high GPU
utilization on the same GPU. The load balancing decisions
improve over time as it learns more about different applications’
GPU characteristics.

5. EXPERIMENTAL EVALUATION

5.1 Evaluation Metrics
 We measure system throughput and fairness using the weighted-
speedup [14] and Jain’s fairness [16] metrics, respectively.
Weighted-speedup measures the average of speedups experienced
by each application in a workload sharing the GPU resource
compared to when it is run alone. Jain’s fairness measures the
percentage of fairness achieved when running multiple
applications with different GPU shares. In the fairness equation
shown below, wi is the GPU share allocated to an application and
Ti is its total execution time.

Weighted Speedup =
ଵ

ே
כ ∑ ்

ೌ

்
ೞೌೝ

ே
ୀଵ

Jain’s Fairness =
൬∑

ೈ

ಿ
సభ ൰

మ

ேכ∑ ൬

ೈ

൰
మ

ಿ
సభ

5.2 Experimental Setup
 Experiments are performed on a small-scale (two GPUs) server
and on a higher end server (four GPUs) emulated by two
dedicated two GPU nodes (call it NodeA and NodeB) connected
via gigabit Ethernet. Each node has two Intel Xeon X5660
processors for a total of 12 cores running at 2.8 GHz and 12 GB
of main memory, and it has two attached NVIDIA FERMI GPUs.
NodeA has a Quadro 2000 and Tesla C2050 GPU, while NodeB
has a Quadro 4000 and Tesla C2070 GPU. The result is a
heterogeneous higher end server where all GPUs differ in terms of
their compute and memory bandwidth capacities. The GPU driver
version is 295.41. Our GPGPU application service model is based
on the SPECpower_ssj2008 [11] benchmark, which models a
server application with large number of users. Requests coming
from multiple users follow a negative exponential distribution,
and are served by a finite number of server threads. The
exponential distribution models the intermittent bursts of load,
when application requests queue up while other requests are being
processed. For a particular random stream of requests, the inter-
arrival time between two consecutive requests can be calculated
using the formula:
T = - λ * ln(X)
where λ is the mean inter-arrival time between consecutive
requests in a stream, and X is a random number in the range [0.0,
1.0].

NodeA and NodeB are servers processing GPU application
requests. In our single node two GPU server experiments, we feed
NodeA with a stream of requests following a negative exponential
distribution with λ proportional to the application’s runtime. In the
four GPU emulated server experiments emulating a higher end
GPU server, we feed each of NodeA and NodeB with independent
random streams of requests.

5.3 Benchmarks
 The applications from the CUDA SDK and Rodinia [18]
benchmark suites used in our evaluation are shown in Table 1.
They are chosen to offer a pairwise mix of short running
(execution time between 5sec to 17sec) and long running jobs
(execution time between 35sec to 105sec). 25 such workloads are
used, labeled from A to Y, where A is BS-L BS-S pair, B is BS-L
MonteCarlo pair and so on following the order in Table 1.

5.4 Results

5.4.1 Benefits of Workload Balancing
We first present the performance benefits of scheduling of GPU
requests in a single node with two GPUs in comparison with the
bare CUDA runtime. In this set of experiments, the node receives
a stream of requests from a particular application following a
negative exponential distribution. We measure the average
completion times of all requests in the stream for both the CUDA
runtime and different load balancing policies.

7

Table 1. Benchmark Applications

Program Description
Kernel
calls #

Long-running Jobs

BlackScholes-
Large (BS-L)

Fair price evaluation for 4M European
options

8192

DXTC
High Quality DXT Compression of
image with 512 × 512 pixels

262144

Histogram
Use of NPP for equalization for 512
MB image data.

4096

Eigenvalues

Bisection algorithm to find
eigenvalues of a tridiagonal
symmetric matrix with 8K × 8K
elements

3

Matrix
multiplication

Multiplication of 3 matrices of size
480 × 480 each

8192

Short-running Jobs

BlackScholes-
Small (BS-S)

Fair price evaluation for 4M European
options

1024

MonteCarlo
Fair price evaluation for 2K European
options

10000

Transpose
Transpose of a 800 × 800size square
matrix

10000

BFS Traverse a tree with 1M elements 12

Gaussian
Gaussian blur using Deriche's
recursive method for matrix of size 50
× 50

8192

Figure 5. Performance benefit of workload balancer policies
vs. CUDA runtime in a single node with 2 GPUs

Figure 5 shows the speedup achieved by three such policies
compared to the CUDA runtime on ten benchmark applications.
As expected, the load balancer’s dynamic distribution of GPU
requests across all of the GPUs in a node increases overall GPU
utilization and application performance. Averaged over all
applications, GRR, GMin, and GWtMin, load balancing provides
weighted speedup of 1.57x, 1.72x, and 1.73x, respectively.

Figure 6. Performance benefit of GPU sharing in a 4 GPU
server

Results with GWtMin mostly outperform those of GMin, but there
are cases in which the GPU weights set do not mirror relative
differences in application performance. This is one motivation for
using the feedback policies evaluated below. The maximum and
minimum performance improvement across all load balancing
policies is 2.13x and 1.17x, respectively.

5.4.2 Benefits of GPU Sharing
 This section describes results obtained with the emulated (two
node) larger-scale server machine, with four GPUs total. In these
experiments, one node receives a stream of short running requests
and the other receives a stream of long running requests, from two
different applications. Using a gPool containing all GPUs, the
load balancer dynamically distributes GPU requests across all four
GPUs. Choosing a single node GRR policy as the baseline, Figure
6 shows the effects of sharing GPUs between two application
streams. Averaged over 25 workloads with short and long running
jobs, the speedup achieved by GRR, GMin, and GWtMin policies
are 2.89x, 3.48x, and 3.33x, respectively. This substantial
improvement due to GPU sharing is because the peaks in GPU
request volumes from the two statistically independent streams are
not aligned, providing opportunities for load balancing to reap
benefits from the distribution of GPU requests across all four
GPUs. We also observe that of all the application pairs, maximum
speedups are achieved for workloads (E, J, O, T, Y), when one of
the applications is Gaussian, the shortest running job of all the
benchmarks. This is because as Gaussian uses the GPU for a very
short period of time, those GPUs have ample time to run the other
applications.

Figure 7. Performance benefit of LAS scheduling policy

8

5.4.3 Benefits of GPU Scheduling Policies
 Two useful GPU scheduling policies are LAS and TFS.
 LAS: As shown in Figure 7, we evaluate this throughput oriented
scheduling policy in combination with all three load balancers.
The baseline for this set of experiments is the single node GRR
policy. The average weighted speedup achieved with GRR-LAS,
GMin-LAS, and GWtMin-LAS is 4.75x, 5.4x and 5.37x,

Figure 8. Fairness achieved by GPU schedulers vs. CUDA
runtime among applications with equal GPU share

respectively. The high speedup achieved by LAS is due to the fact
that it prioritizes the GPU requests that have attained lesser GPU
time. This speeds up completion of the short running GPU jobs,
thus increasing overall system throughput.

Fairshare Scheduler: we evaluate two fair-share GPU scheduling
policies, FS and TFS, and compare them with the scheduler
provided by the CUDA runtime. Figure 8 shows the fairness
achieved in GPU resource allocation when both applications in a
workload, sharing a single GPU, are given equal GPU share. We
observe that TFS outperforms both the CUDA runtime and FS
scheduling policy. Average fairness achieved by TFS is 96%,
which is 43% and 19% better than CUDA runtime and FS
respectively. TFS also achieves a near to ideal maximum fairness
(99.99%). Figure 9 shows the fairness achieved when random
GPU shares are assigned to both of the applications in a workload.
Comparing FS and TFS, with random weight assignment, TFS
performs 29.3% better than FS. This is because TFS maintains a
history of GPU time attained by individual applications and
penalizes any application in subsequent epochs that has used the
GPU for more than its allocated share.

Figure 9. Fairness achieved by TFS vs. FS among applications
with random assigned GPU share

5.4.4 Benefits of Feedback-based Load Balancing
The benefits of workload balancing are measured relative to the
naïve single node GRR policy. Feedback-based workload
balancing is automatically activated when the workload balancer
receives the required feedback information from the GPU
scheduler. Figure 10 shows the weighted speedup achieved by
two feedback policies over the baseline. Average speedups are

Figure 10. Performance benefit of feedback-based load
balancing in 4 GPU server.

6.16x and 6.71x for RTF and GUF, respectively. Compared to the
highest speedup achieved by non-feedback based balancers,
combined with LAS GPU scheduling (GMin-LAS), RTF and
GUF achieve 14.8% and 25% improvements, respectively. This is
because these policies make use of more detailed information
about application characteristics compared to GWtMin, which
relies only on the static information of assigned GPU weights.

6. RELATED WORK
Previous work on GPU resource management [12] uses
interference-driven job scheduling, where multiple jobs share the
same GPU respecting GPU memory constraint, and the job’s CPU
and GPU components are scheduled on the same node. We
separate these two components of every job and handle them
independently; a more important difference to our work is that
[12] uses static profiling, while we support online learning of an
application’s GPU characteristics.

Previous work on GPU virtualization GVim [2], Pegasus [10],
vCuda [7], rCuda [3], gVirtuS [6] make GPUs visible from within
the virtual machine. Rain extends such work by scheduling across
multiple GPUs and potentially, multiple cluster nodes. vCuda and
rCuda leverage the multiplexing mechanism of the bare CUDA
runtime for sharing. Ravi et al [9] share GPUs by consolidation of
the kernels invoked by multiple applications, but explore only a
round robin policy. Their time and space sharing techniques for
kernel consolidation are orthogonal to what is done in our work.
Another interesting complement to our work is recent research [8]
on managing GPU memory pressure arising from the
consolidation of multiple applications on a single GPU.

7. CONCLUSIONS AND FUTURE WORK
This paper explores GPU multi-tenancy for GPU-based servers
used in datacenter or cloud computing systems, implemented with
the ‘Rain’ infrastructure. Rain i) dynamically constructs shared
GPU pools, ii) uses multi-level scheduling by decomposing the
problem into a combination of load balancing (across multiple

9

GPUs) and device-level scheduling, iii) evaluates a throughput
oriented device-level scheduler favoring jobs with least-attained
GPU service, iv) can employ feedback information from device-
level scheduling to adjust load balancing, and v) implements a
history-based fair-share scheduler with improved fairness.
The opportunities and costs of GPU multi-tenancy realized with
Rain are evaluated across a wide variety of workloads and system
configurations, and these evaluations demonstrate average
speedup of 1.73x for a smaller scale server with two
heterogeneous GPUs compared to using the CUDA runtime. It
further achieves an average weighted speedup of 6.71x on a two
node system emulating a high end server compared with
applications confined to the resources of a single node. It also
achieves nearly ideal levels of fairness (up to 99.99%) across
applications from multiple tenants.
Future work should address memory issues with GPU multi-
tenancy, and in addition, we are exploring the use of runtime
binary translation (of GPU kernels) [15] to further broaden the
potential targets a load balancer can choose for running GPU
requests (e.g., by running requests on otherwise idle CPUs).

8. REFERENCES
[1] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova,

and Ali Kamali. 2010. A case for NUMA-aware contention
management on multicore systems. In Proc. of PACT '10
ACM, New York, NY, USA, 557-558.

[2] Vishakha Gupta, Ada Gavrilovska, Karsten Schwan,
Harshvardhan Kharche, Niraj Tolia, Vanish Talwar, and
Parthasarathy Ranganathan. 2009. GViM: GPU-accelerated
virtual machines. In Proc. of HPCVirt '09 ACM, New York,
NY, USA, 17-24.

[3] J. Duato et al. 2010. rCUDA: Reducing the number of GPU-
based accelerators in high performance clusters. In Proc. of
HPCS’10, 224-231.

[4] NVIDIA CORP. NVIDIA CUDA Compute Unified Device
Architecture. http://tinyurl.com/cx3tl3.

[5] Alexander M. Merritt, Vishakha Gupta, Abhishek Verma,
Ada Gavrilovska, and Karsten Schwan. 2011. Shadowfax:
scaling in heterogeneous cluster systems via GPGPU
assemblies. In Proc. of VTDC '11. ACM, New York, NY,
USA, 3-10.

[6] gVirtuS: http://osl.uniparthenope.it/projects/gvirtus.

[7] L. Shi, H. Chen, and J. Sun. 2009. vCUDA: GPU accelerated
high performance computing in virtual machines. In Proc. of
IPDPS '09, Washington, DC, USA, pp. 1-11.

[8] Michela Becchi, Kittisak Sajjapongse, Ian Graves, Adam
Procter, Vignesh Ravi, and Srimat Chakradhar. 2012. A
virtual memory based runtime to support multi-tenancy in
clusters with GPUs. In Proc. of HPDC '12. ACM, New
York, NY, USA, 97-108.

[9] Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, and
Srimat Chakradhar. 2011. Supporting GPU sharing in cloud
environments with a transparent runtime consolidation
framework. In Proc. of HPDC '11. ACM, New York, NY,
USA, pp. 217-228.

[10] V. Gupta, K. Schwan, N. Tolia, et al. Pegasus: Coordi- nated
scheduling for virtualized accelerator-based systems. In
USENIX ATC, Portland, USA, 2011.

[11] Design document SSJ workload, SPECpower_ssj2008:
http://www.spec.org/power/docs/SPECpower_ssj2008-
Design_ssj.pdf.

[12] Rajat Phull, Cheng-Hong Li, Kunal Rao, Hari Cadambi, and
Srimat Chakradhar. 2012. Interference-driven resource
management for GPU-based heterogeneous clusters. In Proc.
of HPDC '12. ACM, New York, NY, USA, 109-120.

[13] R. Righter and J. Shanthikumar. Scheduling multiclass single
server queueing systems to stochastically maximize the
number of successful departures. Probability in the
Engineering and Information Sciences, 3:967–978, 1989.

[14] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for
a simultaneous multithreading processor. In ASPLOS-IX,
2000.

[15] G. Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili,
and Nathan Clark. 2010. Ocelot: a dynamic optimization
framework for bulk-synchronous applications in
heterogeneous systems. In Proceedings of PACT '10. ACM,
New York, NY, USA, 353-364.

[16] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of
fairness and discrimination for resource allocation in shared
computer systems", DEC Research Report TR-301, 1984.

[17] Zillians: http://www.zillians.com/solutions/.

[18] Rodinia: http://tinyurl.com/bkqzaou.

[19] Adobe Photoshop.com: http://www.photoshop.com/.

[20] Elemental Technologies: http://tinyurl.com/bcj3jet.

[21] NVIDIA cloud gaming: http://www.nvidia.com/object/cloud-
gaming.html.

10

