
Machine Vision and Applications
DOI 10.1007/s00138-011-0393-1

SPECIAL ISSUE PAPER

Creating robust high-throughput traffic sign detectors
using centre-surround HOG statistics

Gary Overett · Lachlan Tychsen-Smith ·
Lars Petersson · Niklas Pettersson ·
Lars Andersson

Received: 30 October 2010 / Revised: 31 July 2011 / Accepted: 15 November 2011
© Springer-Verlag 2011

Abstract In this paper, we detail a system for creating
object detectors which meet the extreme demands of real-
world traffic sign detection applications such as GPS map
making and real-time in-car traffic sign detection. The result-
ing detectors are designed to detect and locate multiple traf-
fic sign types in high-definition video (high throughput)
from several cameras captured along thousands of kilome-
ters of road with minimal false-positives and detection rates
in excess of 99%. This allows for the accurate detection
and location of traffic signs in geo-tagged video datasets of
entire national road networks in reasonable time using only
moderate computing infrastructure. A key to the success of
the methods described in this paper is the use of extremely
efficient classifier features. In this paper, we identify two
obstacles to achieving the desired performance for all tar-
get traffic sign types, feature memory bandwidth require-
ments and feature discriminance. We introduce our use of
centre-surround histogram of oriented gradient (HOG) statis-
tics which greatly reduce the per-feature memory bandwidth

NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy
and the Australian Research Council through the ICT Centre of
Excellence program.

G. Overett (B) · L. Tychsen-Smith · L. Petersson · N. Pettersson ·
L. Andersson
NICTA, Locked Bag 8001, Canberra, Australia
e-mail: gary.overett@nicta.com.au

L. Tychsen-Smith
e-mail: lachlan.tychsen-smith@nicta.com.au

L. Petersson
e-mail: lars.petersson@nicta.com.au

N. Pettersson
e-mail: niklas.pettersson@nicta.com.au

L. Andersson
e-mail: lars.andersson@nicta.com.au

requirements. Subsequently we extend our use of centre-sur-
round HOG statistics to the color domain, raising the dis-
criminant power of the final classifiers for more challenging
sign types.

Keywords Sign detection · Geo-location · Color

1 Introduction

Traffic sign detection is an important application for car nav-
igation and intelligent vehicle systems. While traffic signs
are designed as geometrically consistent, distinct objects, the
task of detecting them remains a challenging problem when
the volume of input video is exceedingly large and computing
resources are divided among multiple target sign types (see
Fig. 1). Furthermore, the required computing power increases
rapidly as classifiers are pushed to achieve higher detection
rates.

At the current time several companies perform geo-tagged
video data collection on road networks across the globe. Typ-
ically, traffic signs within the data are manually detected
within the video by humans and added to maps using basic
software tools. Despite the significant cost of this human
approach, detection rates are usually around 80–85%. The
aim of this research is to significantly improve on the detec-
tion rate, reduce the cost of map creation, minimise the time
taken in creating maps, and raise the number of different
object types that can be feasibly ‘mined’ from the data. Ulti-
mately, we hope to replace all manual markup with auto-
mated traffic sign (and other road asset) detection software
and eventually perform the detection using an in-car real-time
system.

Given the importance of traffic sign detection in sev-
eral applications there is a significant amount of previous
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Fig. 1 Typical traffic signs. Signs vary in their use of shape, text and
color. While some sign types will occur with a higher frequency (e.g.
speed signs) many sign types are exceedingly rare across video frames
of a national road network (e.g. railway crossing). A desirable detec-
tion methodology will yield robust detections across a large number of
different sign styles with minimal time-to-decision

literature dedicated to the subject [1,2,4,11,15,20] though
little of this research deals with very high volumes of video
data exposed to real-world problems. Broggi et al. [4] pres-
ent a real-time road sign detector using color segmenta-
tion, shape recognition and neural network learning. More
recently, Timofte et al. [20] detailed a full sign detection
algorithm which automatically acquires a 3D localisation
(geo-location) of the detected signs. While this method does
commit to some sign-specific shape-based techniques it is
shown to produce excellent results across a range of sign
types and circumstances.

The widespread use of color in traffic sign design also
means that color has often been used in sign detection lit-
erature. This includes the use of color segmentation in a
support vector machine [5] based classifier using shape infor-
mation [11], and the use of Haar features adapted to measure
color information [2]. In the case of Bahlmann et al. [2] this
requires the creation of the precomputed datatype, the inte-
gral image [22], for each colour space used (seven in total).
This raises the issue of the time cost of referencing multiple
precomputed datatypes during classifier evaluation, an issue
we will deal with in this paper. Results in [2] indicated that
color information allowed for the reduction of false-positive
rates by one order of magnitude. More recently, Paulo and
Correia [15] have used red and blue color information as an
initial cue for a sign detection system. Signs are then further
classified using shape information into several broad sub-
categories such as ‘danger’ and ‘information’.

The work presented in this paper aims to improve an exist-
ing object detection framework which is actively employed in

Fig. 2 A successful sign detection as presented by the project detection
software

traffic sign detection for commercial applications. This exist-
ing detector creation strategy is described in Sect. 2. Results
on several sign types in numerous countries indicate that this
preexisting process is successful for a large proportion of
sign types but unfortunately not all. Typically, when classi-
fier creation fails for a given sign, its training process has
either stalled (failed to achieve reductions in error-rates with
the selection of additional features) or overgrown (it requires
too many features to achieve the desired error-rate perfor-
mance) yielding a slow, resource hungry classifier. Figure 2
shows a successful sign detection as presented by the detec-
tion software along with estimated location, height, size and
other details.

This paper makes three contributions. Firstly, we provide
a basic outline of the creation of detection classifiers using
synthetic data and discuss some of the issues of this approach.
Secondly, we introduce the use of a centre-surround image
statistic to minimise memory bottlenecks in classifier eval-
uation. Finally, we extend the use of centre-surround HOG
statistics to the color domain.

2 Detector creation

The experimentation undertaken in this paper is designed to
closely match the usual process of detector creation which is
used in our commercially deployed traffic sign detectors. It
differs somewhat from the classifier creation processes used
in some academic literature and therefore warrants descrip-
tion and justification. Figure 3 outlines the basic process of
detector creation for a given sign.

The aim of our detector creation process is ideally to yield
a three to five stage classifier with each individual cascade
stage achieving a 0.1–0.5% per-window1 false-positive rate

1 All false-positive rates indicated in this paper are calculated per-
classifier-inspected-window. A typical single frame of video may be
inspected up to a million times as the detector is run over multiple
scales and locations in the frame.
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Fig. 3 Classifier creation using synthetic training data. The degree of
desirable distortion which must be added to synthetic training data must
be adjusted to yield a sufficiently general sign detector

in tandem with a 0.1–0.3% false-negative rate. The final clas-
sifier should aim to achieve a 99% detection rate with a
false-positive rate below 10−9. If the false-positive rate is
much higher the detector will often produce more false posi-
tives than true positives due to the highly asymmetric nature
of detection problems (especially the traffic sign detection
problem where the in-car video may process several kilome-
ters without encountering a specific sign). Some applications
require false-positive rates as low as 10−11 to 10−12.

2.1 Synthetic training data

The first aspect of our detection system which warrants expla-
nation is the use of synthetic training data. Collecting labelled
examples of various sign types in multiple countries under
multiple illumination conditions is an expensive and time-
consuming task. Therefore we have adopted the use of syn-
thetic training data (see Fig. 4).

A key issue with synthetic training data is adding the
‘right’ degree of distortion to the data. If too much distor-
tion is added the training process will stall as the classifica-
tion problem becomes too difficult. Alternatively, if too little

Fig. 4 Synthetic training data for the New Zealand no entry, Italian
pedestrian crossing, and British 10 mph signs. For most sign types,
these synthetic data prove sufficient for training real-world sign detec-
tors. To generate such data we apply geometric distortions, synthesised
changes in illumination, and minor occlusions to a digital sign exem-
plar. The results are superimposed on real-world background imagery

distortion is added the resulting classifier will fail to gener-
alise its model of the given sign which leads to poor perfor-
mance on real data.

The question of how best to adjust synthetic training data
parameters between iterations (see Fig. 3) remains largely
unsolved. In brief, our approach is to start with a well-tested
but ambitious set of parameters which maximize variance
across attributes such as geometric distortion, shading, noise
levels, blur, and occlusions. This produces a dataset which is
generally more difficult2 to classify than most signs encoun-
tered in the real world. Critical to the success of this initial
synthetic set is that it must be an overcomplete set, of which
the real-world cases will form a subset. That is, if the resulting
classifier detects 99.9% of the synthetic data it should equal
or outperform this result when given real-world examples.

For difficult signs where verification fails during the
classifier creation loop, we proceed by ‘dialing’ back the
variance. Usually, this begins by reducing variance on well-
understood properties such as geometric distortion. For
example, in a first attempt at synthetic data we may apply ran-
dom horizontal-plane rotations of ±55◦. In a second attempt
at generating data we may reduce this to a more conservative
40◦ which has the known effect of reducing the classifiers
ability to detect a sign at wider angles. Since most signs will
appear in multiple video frames at various viewing angles this
is not usually a problem. For text-only signs which lack sim-
pler (low frequency) pictographic distinctions, we commonly
reduce the amount of random blurring applied in training data

2 More difficult from the viewpoint of our feature set. It is possible to
imagine feature sets which might easily distinguish our synthetic train-
ing data from real-world imagery on the basis of tell-tale signs in both
sets.
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since this can make these signs unrecognisable even to human
eyes. In practice even minor reductions in variance greatly
reduce the difficulty of the training task still allowing for a
high degree of confidence that the final synthetic training data
are overcomplete rather than deficient. For commonly occur-
ing signs this can usually be verified. For rare signs where
real-world verification is beyond practical reach it is often
possible to compare synthesis parameters to a more common
sign with similar attributes (shape, color, text, size etc), this
serves to provide reassurance that training data have at least
been created by a ‘verified’ formula.

Another problem with synthetic training data is that it
may mimic some statistical properties of real-world data dif-
ferently to others. Since different features measure different
image properties, synthetic data does not work equally well
for all feature types. For example, Haar features are more
sensitive to luminance statistics present in training data and
consequently require synthetic data to more accurately mimic
real-world luminance properties. HOG [7,28] features, on the
other hand, pay attention to aliasing effects, fringes, proper
scaling and various edge properties. Similarly, training data
for color features require a proper synthesis of the various
color properties. As we observe in Sect. 8 we may not yet
have the best ‘recipe’ for synthetic color training data.

Each of these aspects adds complexity to the task of cre-
ating synthetic training data where synthetic and real-world
validation tasks perform with comparable results.

2.2 The short cascade structure

A popular detector structure found in literature is the cascade
of classifiers [22] which has been used in a large number of
published object detectors [14,23,24,26–28]. A requirement
of all such cascade structures is that suitable termination cri-
teria must be determined for selecting the number of features
to be included in a given stage and setting appropriate deci-
sion thresholds at each stage. For example, the detectors of
[21] and [14] employ a target false-negative rate of 0.2%
with a corresponding false-positive rate of 65%. For high
accuracy sign detectors such relaxed termination criteria are
unsuitable. Under such criteria it would require nearly 50
cascade stages to achieve a false-positive rate below 10−9 ,
reducing the detection rate to around 90%. Even if the per-
stage false-negative rate was greatly reduced, improving the
overall detection rate, the resulting classifier would be very
long. In contrast, we have adopted an approach of short, low
error, cascades, using just 3–5 stages for a given detector.
This has three important advantages.

Firstly, when very high final detection rates (in excess of
99%) are desired, accurately thresholding long cascade clas-
sifiers is difficult and requires a very large population of vali-
dation data. Consider the example of a 20-stage classifier with
a 99% detection rate. In this case, each stage could afford only

a false-negative rate of 0.05% (1 in 2,000 positives). There-
fore, even with a validation population of 10,000 positive
samples, only 5 samples would be rejected in each stage.
Statistically 5 samples simply do not form a large enough
population for guaranteeing accurate thresholding. Therefore
the selected thresholds could not be relied upon to behave as
desired in the production classifier.

Secondly, between the creation of cascade stages one must
perform bootstrapping3 to find the negative training samples
which pass through the previous cascade stage. As classifiers
achieve very low false-positive rates, this requires bootstrap-
ping over very large amounts of video data captured over
tens of thousands of kilometers. A human operator must then
remove any true positives4 from the bootstrapped negatives.
It is highly desirable to minimise this required human input
to the training system. Therefore, fewer cascade stages are
desirable.

Thirdly, the final commercial detection jobs will be farmed
out to a number of servers, some of which use a GPU imple-
mentation for the detector. GPU implementations generally
require that all GPU cores execute the same function at a
given time. In our implementation, each sub window of the
input image is assigned to an individual GPU thread (core).
When evaluating the first stage in a cascaded classifier, all
the GPU cores will be running the same instructions on a
regular grid, and full GPU core utilisation is easily achieved.
After evaluating the first stage in a cascaded classifier, some
sub-windows can be rejected right away, while others need to
evaluate additional stages in the cascade to reach a decision.
In our implementation, this leads to a “fragmentation” of the
grid where some cores will be done with their sub-window
and simply stay idle while other cores continue evaluating
stages. The severity of this fragmentation depends on the par-
ticular GPU. In our configuration, if all GPU cores in a small
input image neighbourhood (i.e 32 sub-windows/patches) are
able to reject their sub-window, that particular neighbour-
hood can instantly be finalised and the GPU cores allocated
to another neighbourhood. The waste of GPU cycles mainly
occur when cascade evaluation diverges within a small image
neighbourhood. Thus, as a rule of thumb, fewer, more pow-
erful cascade stages will yield faster GPU implementations
since they will generate less stage divergence (GPU grid frag-
mentation).

Lastly, it is worth noting that short cascade structures do
have at least one disadvantage. One such disadvantage is that
the average number of features which must be evaluated by

3 Bootstrapping: A process whereby an incomplete cascade classifier
is run over in-car video data. The aim is to acquire non-sign image data
which passes through to the end of the currently incomplete cascade
detector.
4 True positives occur because the in-car video data contain images of
traffic signs. Of course, we do not have labelling of the sign locations
for our in-car video data as this is precisely what we are searching for.
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the classifier is larger. This is another strong motivation for
the fast-yet-discriminant features presented in this paper.

3 Technical considerations for high-throughput
sign detection

In this section, we introduce two concepts which motivate
our classifier design.

3.1 Memory wall

The term “memory wall” [25] is used to describe the growing
disparity between processor speeds and bandwidth to off-pro-
cessor memory. Wulf and McKee [25] predicted that as pro-
cessor speeds increased more quickly than memory speeds
one would eventually reach a point where the majority of
processing time would be wasted as the processor waited on
memory.

This effect is particularly apparent in numerous computer
vision applications, such as object detection, due to the data-
heavy nature of video and image information. Pettersson et al.
[16] observe that for a typical object detection feature, such
as the popular Haar features used in [22], the majority of the
feature evaluation time is spent waiting on memory accesses
to either the image data or a precomputed datatype such as
the integral image [22,6] or integral histogram [17].

Consider the example of any of the rectangle-based fea-
tures; Haar [22], RHOG [7,28], or region covariance [21].
Typical computing architectures will stream consecutive
memory regions with great efficiency, however, the above
features require memory access spread out over their respec-
tive precomputed datatypes. This causes a high rate of cache
misses, forcing the CPU to idle. Therefore, while many pre-
computed datatypes, including the integral image [21,22]
and the integral histogram [17], yield constant time feature
evaluation, the final system may be limited by memory per-
formance rather than the number processor instructions to be
executed.

Pettersson et al. [16] address this problem via a novel
precomputed image which they called the histogram image.
This is an “image” where each 32-bit word represents a his-
togram of oriented gradients within a 4 × 4 pixel area in the
input image. The histogram image is used in a similar way to
the precomputed images for other features, but has a major
advantage in terms of speed. A feature based on the histo-
gram image requires only a single read of a 32-bit word for
feature evaluation, as opposed to several semi-random reads
per feature.

Notwithstanding a basic change in the operation of most
computing hardware, a most apparent solution to this prob-
lem is to redesign the way in which a specific object detection
algorithm relies on memory. We demonstrate this in Sect. 4
using our centre-surround HOG statistics.

3.2 Image precomputed datatypes and multi-class detectors

Many popular features for object detection do not directly
reference the image itself but rather rely upon a precomputed
datatype. Examples include Haar features [22] and rectangu-
lar histogram of oriented gradient (RHOG) features [7,28].
For many detection applications, the time taken to create
this precomputed datatype must be considered when calculat-
ing the expected time-to-decision of a given classifier. How-
ever, when multiple classifiers each containing large numbers
of features all reference the same precomputed datatype the
overheads often become negligible.

In the case of the sign detection task being considered in
this paper we find that the time taken to create the precom-
puted datatypes is indeed negligible. This remains the case
even when a selected feature’s precomputed datatype takes
considerably more time to compute than an alternative. Con-
sequently, we find that greater effort toward the construction
of powerful precomputed datatypes to support more discrim-
inant features is a favourable approach for multi-class many-
feature detection problems.

We also note that the desirable characteristics of features
which will be evaluated early in the cascade structure are
different to the desirable characteristics at the tail-end of the
detector. For example, front-end features must evaluate in
minimal time since they will be evaluated on most of the
image data. In contrast, tail-end features must be able to ‘dig
deep’ to achieve a reasonable discriminance on more chal-
lenging image data which have passed through the earlier
stages of the cascade. Therefore, precomputed datatypes for
tail-end features can often be far more computationally inten-
sive.

4 A centre-surround HOG statistic

In this section we present the fundamental principles of a
memory efficient centre-surround image statistic, specifi-
cally we provide the background to the centre-surround HOG
statistic first presented in [16].

The notion of a centre-surround image statistic comes
about in response to observations about the bottlenecks
involved in feature evaluation. Of particular concern is the
issue of a memory wall as described in Sect. 3.1. At the
current time many image features have low feature com-
plexity relative to their memory bandwidth requirements
(see Fig. 5).

By reducing the feature evaluation memory requirement
to a single reference of adjacent bytes, we greatly improve
the time-to-decision of the final classifier. In this paper we
present a single example of a centre-surround image statistic,
however, other features taking advantage of the same feature
design properties can be developed.
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Fig. 5 Bottlenecks in the evaluation of a feature. Both CPU computa-
tion and fetching memory may combine to form bottlenecks in the eval-
uation of a feature. Many popular features used today have relatively low
computational overheads compared to their associated memory require-
ments. We anticipate that as the availability of computing power contin-
ues to outgrow memory bandwidth, that low memory overhead image
features such as centre-surround statistics may play an increased role
in computer vision

Histogram Image

32−bit histogram

b7b6b5b4b3b2b1b0

Fig. 6 Each ‘pixel’ in the histogram image encodes a histogram of the
orientations in a 4 × 4 neighbourhood. Each orientation is represented
by just 4 bits

4.1 The histogram image

The process of computing the histogram image is outlined
in [16]. However, since most readers may not be familiar
with its form, we provide an outline of the content of each
histogram image pixel.

A normal RHOG implementation [7] creates a histogram
over an arbitrary rectangular region [7]. In order to concen-
trate all the information required to evaluate a feature into a
single histogram image pixel, binning is only performed over
each 4×4 image patch for just 8 gradient orientations. Since
each gradient within the 4 × 4 region is subject to threshold-
ing, the maximum value for any histogram bin is just 16. By
reducing the occasional value of 16 down to 15, it is possible
to capture a histogram bin count in just 4 bits. This reduces
the total memory requirement for a single histogram image
pixel to just 4 × 8 bits = 32 bits. See Fig. 6.

5 The LiteHOG and HistFeat features

In this section, we provide the details of two feature types
which both make use of the same histogram image precom-
puted datatype, the HistFeat and LiteHOG features. Both fea-
tures have extremely fast evaluation times when compared
to other popular object detection features.

5.1 HistFeat

The initial evaluation of the HistFeat feature can be found
in [16]. It involves taking two orientation bins from a sin-
gle histogram image pixel (see Fig. 6). The highly simplified
evaluation of the HistFeat feature means that despite its min-
imal memory requirement it still leaves the CPU waiting on
memory, though not to the same severe degree as with Haar
and RHOG features. This suggested the formulation of an
improved feature that used the idle computational resources.
This is because the CPU is free to do additional computations
during waits for memory, providing these computations only
require memory already in the cache. The LiteHOG feature
uses this spare CPU time using all 8 orientation bins not just
2 as in the case of HistFeat.

5.2 LiteHOG

The original presentation of the LiteHOG feature and the
LiteHOG+ extension can be found in [13]. Here we provide
an extended explanation of the features design and imple-
mentation.

Creating a robust eight-dimensional model with very fast
lookup is unfortunately extremely challenging. Our solution
is to find a one dimensional linear projection from the 8 orien-
tation bins of the single histogram image pixel. This is done
using the canonical variate of Fisher’s linear discriminant
(FDA) [8],

w = S−1
w (m1 − m2) (1)

where w is the N dimensional projection matrix, Sw is the
within class scatter matrix and m1, m2 are the means of the
positive and negative classes, respectively. We consider two
feature variants, LiteHOG which uses all eight dimensions,
and an extended feature set, LiteHOG+ which uses any subset
of the eight dimensions. That is, for LiteHOG N = 8 while in
the case of LiteHOG+ N ∈ [1, 8]. Note, also that the boost-
ing algorithms employed, RealBoost [19] and LogitBoost
[9], produce a weights vector which is used in the calcula-
tion of the projection matrix w, i.e. we are using weighted
FDA. This means that new projections may be found for each
boosting training round, uncovering new information from
the same histogram image pixel according to the boosting
algorithm’s weighted priorities.

At this point we must deal with a ‘special problem’ which
arises in the histogram image. A combination of the gra-
dient magnitude thresholding (Sect. 4.1) and the low fre-
quency edges found in negative data (due to sky, road, walls
etc.) means that a common response of any given histogram
image ‘pixel’ is straight zeros. That is, all 8 directional bins
counted no edges. Over a typical video sequence up to 40% of
the histogram image ‘pixels’ may contain straight zeros. At
first sight this may seem an indication of wasted information,
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Fig. 7 Fishers linear discriminant. A projection w is found which
divides the two class populations C+ and C−. When the underlying
distributions are Gaussian the projection w provides the optimal sepa-
ration. See [3] Sect. 4.1.4

however, since many video frames contain a significant pro-
portion of either sky or road it is not unexpected. The issue
for Fishers Linear Discriminant is that it is only optimal
for a Gaussian distribution. The actual distribution at hand
is eight dimensional, concentrated at the origin and strictly
positive. Thus, we apply Fishers linear discriminant only to
those points which are not at the origin to make the distribu-
tion appear more Gaussian. No projection is needed for these
points and we want the projection calculation to ‘focus’ on
the remaining data.

Let,

Ĉi ⊆ Ci such that ∀x j ∈ Ĉi , x j �= 0 (2)

so that Ĉi is the subset of the class data Ci without the points
at the origin. Let the within-class scatter matrix Ŝw be defined
using the positive and negative class subsets,

Ŝw =
∑

n∈Ĉ1

(xn − m̂1)(xn − m̂1)
T (3)

+
∑

n∈Ĉ2

(xn − m̂2)(xn − m̂2)
T (4)

using the subset means x̂1 and x̂2.
This gives the final projection of,

ŵ = Ŝ−1
w (m̂1 − m̂2). (5)

Figure 7 shows a graphical explanation the normal behav-
iour of Fisher’s Linear Discriminant, while Fig. 8 shows how
FDA is used on the modified populations Ĉ+ and Ĉ−.

Once this projection is applied, the LiteHOG+ feature
response is able to be dealt with in a manner similar to other
scalar feature responses such as in the case of Haar-features.
In this way we can pair the basic LiteHOG+ feature with
any of the weak learners which operate on scalar feature
responses. In this paper, we combine all features with the
smooth response binning weak learner as presented in [12].

Fig. 8 Fishers linear discriminant for the LiteHOG+ feature. A
projection ŵ is found which divides the two class populations Ĉ+ and
Ĉ− which have had points at the origin removed. The underlying distri-
butions are not Gaussian and therefore the projection ŵ does not neces-
sarily provide the optimal separation. However, experiments show that
the projection ŵ provides excellent separation and is relatively simple
to calculate. Results are shown in Sect. 6

Thus the evaluation of the LiteHOG+ feature involves N
multiplications, and N − 1 additions to compute the projec-
tion, see Eq. (6).

R = w · x (6)

where x contains the N selected bins from the histogram
image. Since the LiteHOG feature space always requires an
eight-dimensional projection, it is slower to compute than the
LiteHOG+ feature space which may ignore several dimen-
sions. Additionally, the projections within the LiteHOG+ fea-
ture space are often more discriminant, making LiteHOG+
both faster to compute and more powerful on an averaged
per-feature basis. In this paper we will limit our experimen-
tation to the use of the LiteHOG+ feature rather than the
original LiteHOG feature.

Figure 9 shows the basic flow of LiteHOG+ feature eval-
uation.

6 Time-error feature performance

In this section, we provide a time–error comparison of the
LiteHOG+ and HistFeat features to the Haar and RHOG fea-
tures. The results presented here take a closer look at the
single-stage stop sign experiments presented in [13]. Read-
ers wishing to see similar analysis using alternative sign types
and a pedestrian dataset are referred to [13].

Our experimental setup in [13] did not employ our most
recent method of generating training data synthetically but
rather created it from a small population of real-world sign
examples. In the case of the stop sign results of Figs. 11 and
12, an initial population of stop sign images was expanded
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Fig. 9 LiteHOG+ feature evaluation

Table 1 Number of images used as positive training and validation data

Type Raw train Raw valid Dist train Dist valid

Stop sign 129 32 10,000 2,500

Distortions are applied to the raw images to create a larger, more
generalised dataset

Fig. 10 The minimum total error or distance to the knee. We combine
the false-positive and false-negative rates to form a single error rate.
This is plotted alongside time-to-decision in the time–error plot shown
in this Fig. 11

by applying basic distortions to the imagery. Table 1 gives
the exact numbers of training and validation data used.

For the stop sign population listed in Table 1, the Real-
Boost [19] learning algorithm was used to build 1,000 differ-
ent strong classifiers consisting of 1–1,000 features. For each
of the strong classifiers, we calculated the ROC curves and
the scan time on a typical video sequence using an AMD64
2.2GHz machine.

By pairing the ROC and scan time data we produced the
time–error curves shown in Fig. 11. In order to produce a two
dimensional time–error plot we combine the false-positive
and false-negative error rates into a single error measure, the
minimum total error, which samples the location of the ROC
curve closest to the ‘knee’. Comparison with other combined
error measures such as the area under the curve reveal equiva-
lent results for most classifiers. Figure 10 and Eq. (7) provide
the details.

 0.0001
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 1

Fig. 11 First-stage time–error plots for LiteHOG+ feature versus
Other (stop sign). The ROC performance comparison at time-to-deci-
sion =50 ms is shown in Fig. 12. LiteHOG+ is the dominant performer
for classifiers in the range 15–1,000 ms
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Fig. 12 First-stage ROC Performance at 50 ms (20 Hz) of computa-
tional time (stop sign). Again, the LiteHOG+ feature has the highest
classification performance in this CPU time budget with half the error
rate of its nearest rival, the HistFeat classifier. In this case we see a dra-
matic difference between the HistFeat and LiteHOG+ classifiers and the
Haar and RHOG rivals. Specifically, the LiteHOG+ feature achieves a
reduction in minimum total error of 10-fold over the RHOG feature
and 50-fold over the Haar feature. The number in brackets next to the
feature key is the number of features in the classifier. This very large
improvement in the time–error performance is a primary motivation for
the use of efficient centre-surround statistics as used in the HistFeat and
LiteHOG+

The minimum total error E on the ROC curve is taken to
be at the ‘knee’ of the curve, where the ROC curve is closest
to perfect classification.

E = min(

√
F2

p + F2
n ) (7)

where E is the minimum total error, Fp is the false-positive
rate and Fn is the false-negative rate
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Fig. 13 Feature reordering allows for memory to be streamed effi-
ciently from the precomputed datatype. Note, for features such as the
rectangular Haar features (integral image) or HOG features (integral
histogram [17]) no ordered evaluation can be created as individual fea-
tures rely on multiple and potentially distant locations in memory

Figure 11 shows the resulting time–error plot for various
features including HistFeat and LiteHOG+. The differences
between Haar and RHOG features and our centre-surround
HOG statistic-based features, HistFeat and LiteHOG+
become even more apparent when considering their ROC val-
idation performance for a CPU budget of 50 ms. See Fig. 12.

It is important to note that all features compared in this
plot use precomputed datatypes to achieve constant time fea-
ture evaluation, however, centre-surround features are much
faster to evaluate because of their lower memory require-
ments and ability to stream memory consecutively (see
Sect. 7 and Fig. 13). By comparison, if we had used an inte-
gral histogram [17] the time-to-decision for these classifiers
would be about four times slower and similar to that of our
RHOG classifier due to the need to reference four locations in
memory for each feature evaluation. One circumstance under
which the integral histogram would be required is if the tar-
get application needed the ability to evaluate HOG features
of arbitrary scale to achieve the desired detection rate.

7 Extending the use of centre-surround HOG statistics

In this section, we extend our preexisting use of the centre-
surround HOG statistic to the color domain. Clearly many
traffic signs make extensive use of color and therefore this
is a natural extension of our grayscale detection capabilities.
Furthermore, we note that some sign types contain differ-
ent colors whose grayscale intensities may be very similar.
Degrading the information available for detection.

The color implementation of the LiteHOG+ and Hist-
Feat features follows naturally from the original implemen-
tation. We construct histogram images using the grayscale,
red, green and blue color channels in turn. This yields four
precomputed datatypes for a single frame of video or training
image and is similar to the approach of [2]. The complicat-
ing factor which must be remembered is that the classifier
will now be referencing four adjacent sections of memory
depending on the ‘color’ of a selected feature within a classi-
fier stage. To minimise the negative effects this has on eval-
uation speeds, we sort the selected features of a classifier
according to their ‘color’ and reference location in the pre-
computed datatype (the reference location is a consequence
of the features x and y coordinates within the detection win-
dow). Figure 13 gives visual representation of how reordering
features in a classifier can ‘serialise’ the order in which mem-
ory is referenced so that memory can be efficiently ‘streamed’
to the processor.

8 Results: color versus grayscale features

In this section, we provide experimentation and analysis of
prospective color and grayscale classifiers. For our initial cas-
cade stage we created color and grayscale classifiers of up
to 35 features using the RealBoost [19] training algorithm.
This training process was repeated for the three sign types
shown in Fig. 4 using synthetic positive training data. Train-
ing data consisted of 100K synthetic positive training images
and 200K real-world negative training images. Of these train-
ing populations 20% was set aside within the training process
to report internal validation statistics. In each training round,
4,300 features were made available for selection by Real-
Boost with the feature pool being renewed after each feature
selection (this is found to be a better approach than evaluat-
ing a very large but static feature pool for multiple training
rounds).

As stated in Sect. 2 we do not normally adopt a one-
size-fits-all approach to setting classifier stage termination
criteria. Rather we customise the stage thresholds and num-
ber of features according to the reported detection perfor-
mance of prospective stages. Under ordinary circumstances
this involves allowing the classifier to grow (add features)
until such time as it is able to achieve a false-positive rate
at least lower than 0.5% with a false-negative rate of around
0.1–0.3%. The operator then sets the classifier threshold to
achieve whatever appears to be the best performance within
this range. If a given feature type does not achieve this per-
formance range before the maximum number of features (in
the first stage we set this to 35 features) is selected, the classi-
fier is considered failed. If none of our available features can
achieve a reasonable performance, we must seek out better
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Table 2 Stage 1 classifier lengths (#features) and timings

Feature #Grayscale #Color Time-to-decision (ms)

Haar 35 30 342

HistFeat 35 18 53

LiteHOG+ 35 33 102

features or extensions to existing features such as the color
extension presented here.

However, for academic comparison we must alter this
approach somewhat to yield the best color versus grayscale
comparison possible. In the first instance we proceed with
grayscale classifier creation according to the above approach.
However, after setting a grayscale classifier threshold we then
create a color classifier containing just enough features to
provide the given stage with equivalent time-to-decision as
its counterpart grayscale classifier. Table 2 shows the evalu-
ation times for Haar, HistFeat and LiteHOG+ features. Hist-
Feat, the fastest feature has the greatest difference in terms
of color versus grayscale evaluation times. This makes sense
when one considers that such low-complexity features are
memory bandwidth limited and referring to multiple color
histogram images would require a greater memory band-
width overhead (see Fig. 5).

8.1 Synthetic validation

Figure 14 shows the ROC detection performance for the pro-
spective first stages of a cascade using the LiteHOG and Hist-
Feat features using only grayscale features or a combination
of colors. This result shows very significant improvement
in performance using color classifiers, however, it is impor-
tant to bear in mind that this experiment employs the use of
synthetic data. Indeed, we find that color performance gains
weaken significantly when considering real-world validation
data (see Sect. 8.2 next).

8.2 Real-world validation

Validation of traffic sign classifiers requires that one has a
large population of real-world positive traffic sign instances.
For most traffic sign types we simply do not have such data-
sets. However, our previous commercial sign detection work
does provide us with a few large sign datasets which have
been assessed for accuracy by our customers. Of these data-
sets we have selected, the New Zealand no entry sign dataset
containing 3,274 automatically detected no entry signs from
in-car video data. Therefore, we will use the no entry signs
collected by this baseline classifier to determine the likely
detection rate of our prospective color and grayscale stages.
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Fig. 14 ROC Performance for prospective first stages of a HistFeat or
LiteHOG+ cascade (New Zealand no entry sign). Note change in scale.
Classifier performance is shown for each classifier type using all 35
features selected. We also show the performance of a truncated color
stage which will evaluate in equal computation time (see Table 2). These
results reflect the detection performance on synthetic data

The baseline classifier in question comprised of grayscale
features. This introduces the possibility of verification bias,
since no entry signs which are difficult to detect without color
cues may not be present in the dataset. However, examina-
tion of the baseline classifiers detection rate indicated that
this is quite unlikely and in any event this bias would only
have the potential to favour grayscale classifiers during val-
idation. Therefore any improvement in color classification
is likely to be at least as good as (possibly better) than the
verification process indicates.

Our verification process proceeds as follows:

1. Hits from the commercially used baseline classifier are
grouped into clusters of hits which are likely to belong
to the same single sign instance. The mean location and
scale of the overlapping hits are taken to indicate the
sign’s true location and scale (this is generally a reason-
able assumption over the verification population). This
results in 3,274 true-positive sign instances.
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Table 3 Comparison synthetic versus real-world validation data

Classifier Synthetic Real world Computation time (ms)

False-positive rate (%) Hit rate (%)a Misses Hit rate (%)a

Grayscale HistFeat 0.17 98.96 14 99.57 53

Color HistFeat 0.20 99.90 3 99.91 53

Gray LiteHOG 0.23 99.52 13 99.60 102

Color LiteHOG 0.20 99.98 2 99.94 102

Gray Haar 0.44 98.54 1,086 66.83 342

Color Haar 0.18 99.98 1 99.97 342

a Hit rates for real-world and synthetic data are not equivalent measures as the real-world hit rate is calculated by matching hits to the approximate
locations found using a baseline classifier while synthetic hit rates are calculated per synthetic training image

2. The resulting 3,274 sign instances are extracted from
their original video along with some additional bound-
ary context to yield patches containing instances of New
Zealand no entry signs in the real world.

3. Next, the prospective single-stage classifier is run at var-
ious scales and locations over the patches yielding a list
of hits (or lack thereof) for each patch.

4. Finally, we compare the hit locations found by the pro-
spective single-stage classifier against the mean location
and scale determined by the hit cluster of the baseline
classifier. A sign is considered “missed” if no hit is pro-
duced which is centred within a 20% (relative to the sign
width and height) margin of error of the baseline clus-
ter location with a corresponding scale within 20% of
the cluster scale i.e. the single-stage classifier fails to fire
within a reasonable location and scale of the sign location
obtained in step 2.

The resulting hit rate comparisons can be found in Table 3.
Comparing grayscale classifier hit rates with color classifier
hit rates (following row), we observe a clear improvement in
detection performance for the color classifiers.

8.3 Exposing the difficulties with synthetic data

The results in Table 3 reveal the hazards of using synthetic
data. For each feature and each color domain (grayscale or
color), we observe quite varied correspondences between the
calculated hit rate using synthetic validation data and the
real-world hit rate. Nonetheless, the greater pattern is clear.
Color classifiers more easily achieve higher detection rates
and more importantly, color classifiers achieve higher detec-
tion rates under equivalent time budgets.

Unfortunately, color classifiers will not see adoption
within our main classifier training work flow (Sect. 2) until we
find a reliable method of avoiding the large disparity between
synthetic and real-world classifier performance. Currently,

we rely upon reliable synthetic validation data to guide us
toward the creation of a successfully deployable classifier.

Several feasible solutions exist. Firstly, it may be possi-
ble to update our synthetic data generation to better synthe-
sise the color properties of real-world images. However, the
issue of color in computer vision is an open problem [10,18].
Accurately producing a truly realistic model of the manner
in which sign exemplar colors change under different illumi-
nation conditions is most likely a very difficult problem. An
alternative approach is to collect in incomplete pool of real-
world signs using an initial classifier trained using synthetic
data run over a subset of real-world video. Subsequently, the
incomplete pool of real-world signs may be used to train
a stronger classifier designed for the final commercial and
complete collection of signs. This second approach is con-
sidered in the next section where we test real-world training
data obtained using a classifier trained using synthetic data.

8.4 Real-world training and validation data

In this section, we consider the use of real-world training
and validation data for complete cascade training. To obtain
a real-world training and validation dataset, we rely on pre-
viously trained sign detectors which have been used on a
very large video dataset from the New Zealand national road
network. For a convenient division of training and validation
data without overlap, we select data from the north island to
be our training data with the south island data making up a
smaller validation dataset. Table 4 provides the details of the
dataset sizes obtained in this manner for three selected sign
types.

Next we train a four-stage cascade classifier for each of the
three sign types using both the HistFeat and LiteHOG+ fea-
ture sets in their grayscale and color variants. To render com-
parable results, we attempt to align the false-positive rates
and time-to-decision of each color classifier with its gray-
scale variant. The divergence between color and grayscale
variants is left to be borne out in the false-negative rate of the
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Table 4 Number of positive training (north island) and validation
(south island) images

Type North/train South/valid

No entry 2,574 699

Giveway/roundabout 40,020 13,362

Speed 57,377 21,500

Table 5 Cascade structure

#Feats False-positive rate

Per stage Total

Stage 1 35a 0.1% 0.1%

Stage 2 200 0.1% 10−6

Stage 3 400 1%, 5%b 10−8, 5 × 10−7 b

Stage 4 600 0–100%c NA

a Grayscale only. Color classifier stage lengths are varied to yield a
stage with the equivalent first-stage time-to-decision as its grayscale
counterpart
b No entry sign classification requires more relaxed threshold due to
classification difficulty
c We do not commit the final stage to a given threshold but rather pro-
duce an ROC error performance curve across a range of thresholds (see
Fig. 15)

final classifier. This yields the classifier structure outlined in
Table 5. For grayscale classifiers, we always employ an initial
stage of 35 features while color classifiers have varied ini-
tial stage lengths in order to normalise the time-to-decision
between grayscale and color counterparts.5

Between the training of each classifiers four cascade
stages we must bootstrap negative training data which passes
through the previous cascade stages. For this we use a large
library of in-car video data from various locations around
the world. Since these data are not previously tagged for
the existence of signs, the bootstrapped negatives must have
any true-positive sign instances removed manually. In the
early stages, the bootstrapping yields predominantly non-
sign instances (false positives) and therefore this manual task
is relatively simple. However, as false-positive rates approach
10−6 (after two stages are trained) the bootstrapping yields
great many true-positive instances (which must be manually
removed). Furthermore, the volume of in-car video data that
must be searched by the classifiers’ increases greatly. Indeed
as false-positive rates pass 10−9, bootstrapping must be per-
formed over several hundred Gigabytes of in-car video, a
process which requires significant computational resources
and far outstrips the resources required to actually perform
training once the negative training data have been collected.

5 For classifiers with a very low first-stage false-positive rate, the time-
to-decision is found to be almost entirely dependant on the first-stage
classifier timing.

Generally, we aim to have around 200,000 bootstrapped neg-
ative training examples available for each training stage.
However in some cases, the manual removal of true-positive
instances means that as few as 140,000 negative (non-target)
training examples are available.

Experience showed that the classifiers constructed using
the LogitBoost [9] boosting algorithm outperformed that of
the RealBoost [19] trained classifiers. Therefore the results
in this section report the performance of LogitBoost trained
classifiers. Figure 15 shows one of the results.

The ROC classifier performance for each of the three sign
types across all 4 stages yields a total of 12 ROC plots for
the HistFeat and LiteHOG+ classifiers. Since the results for
each classifier essentially shows a similar trend across its four
stages, we have selected only the ROC performance plots for
the LiteHOG+ speed sign classifier to show in Fig. 15. While
some other classifiers showed a greater relative improvement
through the use of color, the LiteHOG+ color classifier is
invariably the strongest performer. Furthermore, the speed
sign class has the largest validation population (see Fig. 4)
which also warrants its selection. The greatest reduction in
error rate across the experiments was for the LiteHOG+ gray-
scale no entry classifier versus the corresponding LiteHOG+
color classifier. In this case a 75% reduction in false-negative
rates was observed. This result however, must bear in mind
the relatively small south island ‘no entry’ sign validation
sets.

9 Conclusion

In this paper, we have detailed a system for creating traffic
sign object detectors for use in very high-throughput appli-
cations. The issues involved in constructing such detectors
with very low false-positive rates are presented. In support of
creating stronger, faster classifiers, we present our use of cen-
tre-surround HOG statistics in the HistFeat and LiteHOG+
feature type. Additionally, we expand their use along with
Haar features to include color information.

Time-error analysis shows the very significant benefit of
using centre-surround HOG statistics in creating improved
classifiers with minimal time-to-decision. For a given CPU
budget of 50 ms, the LiteHOG+ feature reduces the error by
an order of magnitude relative to an RHOG feature imple-
mentation while maintaining high detection rates. Our time-
to-decision evaluation also shows that color classifiers will
perform consistently slower than their grayscale counterparts
but that the slowdown is not extreme. This slowdown is attrib-
uted to memory overheads caused by the referencing of mul-
tiple precomputed datatypes. Despite this slowdown, color
information still yields better performance in comparable
time-to-decision. We also note that synthetic training data
should be used with caution when constructing high perfor-
mance classifiers for the real world.
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Fig. 15 Grayscale and color LiteHOG+ speed sign classifier ROC per-
formance. As the color classifier is extended to contain more stages it
begins to clearly outperform its grayscale counterpart. In stage 4 the
color LiteHOG+ classifier succeeds in achieving a 99% detection rate
in conjunction with a 10−10 false-positive rate. Note 1 The vertical line

shown in stages 1–3 represents the selected false-positive thresholding
point specified by Table 5. Note 2 Lower x-axis is labeled with the com-
pound false-positive rate while the upper x-axis shows the per-stage
false-positive rate of the data passing through the current stage only

Finally, we have demonstrated the construction of a Lite-
HOG+ traffic sign cascade classifier able to achieve a hit rate
of 99% with a false-positive rate of just 10−10 when using
color information.

10 Future work

The use of centre-surround image statistics, such as that used
in the LiteHOG+ feature, allow for the creation of powerful
(low false-positive rate) initial classifier stages for a large
variety of traffic signs. Analysis shows that such low false-
positive rates in the initial stages that significantly increas-
ing the computational complexity of subsequent stages does
not greatly affect the average time-to-decision of the over-
all classifier. However for some sign types (such as no entry
signs), the subsequent stages struggle to reduce the false-
positive rate to an acceptable level. While the inclusion of
color information closes this gap significantly there is still a
great need for more powerful classifier features to drive the
success of the tail-end classifier cascade stages.
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