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‘The definitive property of individuality at the organismal level lies in the effective
suppression of the differential propagation of subparts as a necessary strategy for
maintaining functional integrity . . . This suppression has been so effective, while the
consequences of failure remain so devastating, that human organisms have coined a
word for the cell lineage’s major category of escape from this constraint, a name with
power to terrify stable human organisms beyond any other threat to integrity and
persistence – cancer.’ (Gould, 2002, p. 695) 

This chapter will chart a path of knowledge discovery, bringing together cutting edge
experimental and computational methods in order to advance our understanding of the
structure and dynamic function of biological systems underpinning cancer pheno-
types. The aim is to provide a comprehensive overview of a very large area of current
research and to highlight key developments and challenges (it is not intended as a
detailed review of any of the specialist areas discussed and the reader is referred to the
many excellent reviews and the primary literature for in-depth study). The past decade
has seen the ascendance of high-throughput methods for measuring the global expression
of different biological components – genomics, transcriptomics, proteomics, glycomics,
metabolomics. Cancer researchers were among the first to extensively deploy these
‘omic’ technologies, and the wealth and breadth of available data (see Table 1.1 for
on-line access to genomic and transcriptomic data) and technologies now make the
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4 FROM DATA TO COMPLEX SYSTEMS MODELS OF CANCER

study of cancer from a systems perspective a paradigmatic arena in which to develop
systems science for biology and medicine. 

Systems biology aims to understand how complex molecular interactions give rise
to dynamic processes in biological systems and, because it is very difficult to directly
observe and measure dynamic processes in complex systems, the research relies on

Table 1.1 A selection of genome-focused data resources for cancer bioinformatics and systems
biology 

Focus Data source Data types URL 

Genome Cancer Genome Project 
(Sanger Centre)

Cancer Gene Census, 
COSMIC (somatic mutations), 
LOH mapping, deletion 
mapping, small intragenic 
somatic mutations

www.sanger.ac.uk/
genetics/CGP 

 Human Genome 
Resources (NCBI) 

Integrated information 
resource for human genome 
data 

www.ncbi.nlm.nih.gov/
genome/guide/human 

 Genome Browser (UC 
Santa Cruz) 

Visualization and query tools genome.ucsc.edu 

Karyotype Cancer Chromosomes 
(NCBI) 

SKY/M-FISH and CGH, 
Mitelman database, NCI 
Recurrent Aberrations in 
Cancer 

www.ncbi.nlm.nih.gov/
entrez/query.fcgi?
db=cancerchromosomes

 Progenetix (University 
of Florida) 

CGH data for different cancer 
types 

www.progenetix.net 

SNPs dbSNP (NCBI) Single nucleotide 
polymorphisms

www.ncbi.nlm.nih.gov
projects/SNP 

 SNP500cancer (NCBI) SNPs with relevance to 
epidemiology studies in cancer 

snp500cancer.nci.nih.gov

Gene 
expression

Gene Expression 
Omnibus (NCBI) 

A curated resource for gene 
expression data browsing, 
query and retrieval 

www.ncbi.nlm.nih.gov/
geo

 Oncomine (University 
of Michigan) 

Tools to locate, query and 
visualize cancer microarray 
data for a given gene or cancer 
type 

141.214.6.50/oncomine/
main/index.jsp 

 Cancer Genome 
Anatomy Project 
(CGAP) 

Integrated resource for genes, 
chromosomal aberrations, 
SNP500cancer, tissues, 
pathways, SAGE expression 
data (normal, precancer and 
cancer cells) 

cgap.nci.nih.gov

Clinical 
genomics

Cancer Molecular 
Analysis Project 
(CMAP) 

Molecular profiles, targets, 
targeted agents, trials 

cmap.nci.nih.gov
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FROM DATA TO COMPLEX SYSTEMS MODELS OF CANCER 5

data generated by ‘omic’ technologies and an integration of experimental and compu-
tational methods. Systems biology is already fundamentally changing the practice of
cancer biology and directly addresses pressing challenges in the development of new
anti-cancer therapies, particularly the lack of efficacy or toxicity due to poor under-
standing of the biological system they attempt to affect. It provides an integrative
methodology for identifying and characterizing pathways that are critical to cancer,
discovering new targets within the context of biological networks and assessing both
on- and off-target effects of therapeutics. It can confidently be expected to play an
increasingly central role in pharmacogenomics by helping to uncover sources of inter-
individual variability in treatment response, thereby supporting the promise of
individualized therapy intended to maximize effectiveness and minimize risk.
(Bogdanovic and Langlands, 2004; Birney et al., 2005; Khalil and Hill, 2005). 

Knowledge discovery needs to cut across biological levels (genome, transcriptome,
proteome, metabolome, cell; and beyond to tissue, organ and patient) and is of necessity
a multidisciplinary endeavour requiring an unprecedented level of collaboration
between clinicians and scientists from diverse disciplines (see Chapter 3). Toyoda and
Wada (2004) have coined the term ‘omic space’ – denoting a hierarchical conceptual
model linking different ‘omic’ planes – and showed that this concept helps to assimilate
biological findings comprehensively into hypotheses or models, combining higher
order phenomena and lower order mechanisms, by demonstrating that a comprehensive
ranking of correspondences among interactions in the space can be used effectively. It
also offers a convenient framework for database integration (see also omicspace.riken.jp/
gps and www.gsc.riken.go.jp/eng/gsc/project/genomenet.html). 

Furthermore, systems-based discovery has both experimental and computational
components and ideally involves an iterative cycle that integrates both ‘wet’ and ‘dry’
methods. Computational systems biology is developing a rapidly expanding methodo-
logical scope to integrate and make sense of ‘omic’ data, by relating it to higher level
physiological data and by using it to analyse and simulate pathways, cells, tissues,
organs and disease mechanisms (see Chapters 4–7). There is a diverse range of both
established and newly emerging computational methods (Ideker and Lauffenburger,
2003), and it is clear that research aimed at a systems-level understanding of cancer
requires advanced statistical analysis and mining of the large amounts of data obtained
through ‘omic’ technologies to be integrated with mathematical modelling of systems
dynamics. Computational data management, data mining and mathematical modelling
offer research tools commensurate with powerful laboratory techniques provided that
they are used appropriately (Murray, 2002; Swanson, True and Murray, 2003). 

Success will depend not only on the deployment of appropriate computational methods
but also, equally vitally, on the standardization of experimental data capture protocols,
data quality assurance and validation procedures, and data integration and sharing
standards. As discussed in the Guidance for Industry on Pharmacogenomic Data
Submissions published by the Food and Drug Administration in March 2005
(www.fda.gov/cber/gdlns/pharmdtasub.pdf), substantial hurdles exist with regard to:
laboratory techniques and test procedures not being well validated and not generalizable
across different platforms; the scientific framework for interpreting the physiological,
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6 FROM DATA TO COMPLEX SYSTEMS MODELS OF CANCER

toxicological, pharmacological, or clinical significance of certain experimental results
not yet being well understood; and the standards for transmission, processing and
storage of the large amounts of highly dimensional data generated from ‘omic’ techno-
logy not being well defined or widely tested. Standard development initiatives, such
as caCORE of the National Cancer Institute (NCI) in the USA and the Cancer
Informatics Initiative of the National Cancer Research Institute (NCRI) and Cancergrid in
the UK, therefore constitute a prerequisite for further advances in cancer research. 

In summary, wet–dry knowledge discovery cycles can be considered to serve as
fundamental frameworks for cancer research in the 21st century (Figure 1.1) whose
essential components comprise: 

• An integrative ‘complex systems’ approach (see Sections 1.1 and 1.2 and Chap-
ters 2 and 3). 

• Experimental science and technological advances (outside the scope of this book). 

• Appropriate in vivo model systems (Chapters 8 and 9). 

• Standards for experimental design and the generation of data suitable for
systems-based discovery (Chapter 3). 

• Mathematical modelling (see Section 1.3 and Chapters 4–7). 

• Bioinformatics and large-scale data mining (see Section 1.3 and Chapter 3). 

• Data/model standardization and integration (see Section 1.4 and Chapters 3, 4,
10 and 11). 

• Software design and data sharing ethics (Chapters 3 and 12–14). 
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Figure 1.1 The iterative knowledge discovery cycle 
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CONCEPTUAL FOUNDATIONS: BIOLOGICAL COMPLEXITY 7

1.1 Conceptual foundations: biological complexity 

Systems biology seeks to address the complexity of human cancer by drawing on a
conceptual framework based on the current understanding of the characteristics of
complex adaptive systems in general, regardless of whether they are physical, biological
or social in nature, e.g. ranging from cellular networks to social communities, ecological
systems and the Internet. Complex systems are composed of a huge number of compo-
nents that can interact simultaneously in a sufficiently rich number of parallel ways so
that the system shows spontaneous self-organization and produces global, emergent
structures (Holland, 1995; Depew and Weber, 1996). Self-organization concerns the
emergence of higher level order from the local interactions of system components in
the absence of external forces or a pre-programmed plan embedded in any individual
component (Holland, 1995, 1998; Mitchell, 2003). The mechanisms of self-organization
are amenable to analysis in terms of positive and negative feedback (amplification
and damping). Importantly, complex systems are ‘robust, yet fragile’ – they can often
be disabled catastrophically by even small perturbations to certain components (Csete
and Doyle, 2002). 

Cancer cells maintain their survival and proliferative potential against a wide range
of anti-cancer therapies and immunological responses of the patient. Robustness is
seen as an emergent property arising through abnormal feedback control, redundancy
and heterogeneity. These constituent characteristics result from the interplay of genomic
instability and selective pressure driven by host–tumour dynamics (see Chapter 2).
The challenge then is to identify the vulnerabilities in the system through an under-
standing of its organization and dynamic behaviour and to systematically control the
cell dynamics rather than its molecular components. 

In contrast to the systems-based framework outline above, conceptual models of the
dependency of human cancer upon one genetic abnormality or a very small number of
abnormalitic have been extremely influential in guiding single-target strategies in
therapy design. These models postulate that correction of any one key oncogenic defect,
or oncogene/pathway ‘addiction’, would be sufficient to ‘precipitate the collapse’ of
the tumour (Workman, 2003). Primarily, selection of single targets is based on criteria
such as frequency of genetic or epigenetic deregulation of the target or pathway in cancer,
demonstration in a model system that the target contributes to the malignant phenotype
and evidence of at least partial reversal of the cancer phenotype by target inhibition. 

However, there is strong evidence that several genetic abnormalities are caus-
ally involved in most human cancers and, very significantly, there may be dozens
of genes that are aberrant in copy number or structure (due to aneuploidy) and
hundreds or even thousands of genes that are abnormally expressed. The pathobi-
ology of cancer is driven by mutation in oncogenes, tumour suppressors and
stability genes needed for DNA repair and chromosomal integrity (e.g. BRCA1,
BLM, ATR). Only mutations in oncogenes and suppressors can directly affect net
cell growth. Stability genes keep genetic alterations to a minimum, and inactiva-
tion of both alleles therefore can result in an increased mutation rate in the
genome that potentially can affect any other genes in a more or less random
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8 FROM DATA TO COMPLEX SYSTEMS MODELS OF CANCER

manner. These ‘bystander mutations’ can have profound effects on the cancer
phenotype, notably also including treatment resistance (Figure 1.2). Furthermore,
epigenetic changes (covalent modifications of DNA or chromatin that are
preserved during cell division) in expression patterns can affect hundreds or even
thousands of genes as a consequence of the primary mutations and lead to a recon-
figuration of the cancer cell’s biology. At the moment when treatment is commonly
given, most tumour cells will have acquired an abnormal phenotype that embodies
complex combinations of these different types of molecular abnormality. 

Novel treatment strategies need to take into consideration the high level of
complexity of cancer cell phenotypes. The details of the scope of deregulated
wiring of signal transduction pathways in cancer, and their interdependent effects
on the cell and tumour level, are not adequately understood to make a ‘rational’
selection of treatment targets. What is more, the complex nature of underlying
genome deregulation can be expected to make a rational approach impossible in
the traditional sense. It is here where cancer systems biology seeks to make an
essential contribution through application of sophisticated computational data
analysis (data integration, bioinformatics, data mining) and mathematical model-
ling. Equally importantly, the well-orchestrated generation of high-quality
matched data sets, gathered at different ‘omic’ levels and including frequently
sampled time-series to measure response to perturbation (e.g. cytotoxic drug
exposure) in appropriate models, ought to be placed high on the research agenda
as a prerequisite for ‘systems understanding’. Owing to the heterogeneity of
cancer, this is an immense undertaking and will require a concerted international
effort, not unlike the large-scale programmes associated with genome projects,
and will depend on shared protocols and data standards (see Chapter 3). Validated
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Figure 1.2 Emergence of cancer cell phenotypes. Extensively altered circuits in signal transduction
networks arise through the interplay of genomic instability and selective pressure driven by host–
tumour dynamics. Altered signal transduction both causes and sustains cancer cell phenotypes
(together with other cell processes) (A colour reproduction of this figure can be seen in the colour section.)
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A TAXONOMY OF CANCER COMPLEXITY 9

quantitative and multiscale data so obtained can then be integrated and exploited
through data mining and mathematical modelling. 

1.2 A taxonomy of cancer complexity 

The challenges posed by the complex systems properties of cancer are several-fold
and can be thought about in terms of a ‘taxonomy of complexity’ put forward by
(Mitchell, 2003, p. 4) (Figure 1.3): 

• Constitutive complexity – organisms display complexity in structure and the
whole is made up of numerous parts in non-random organization. 

• Dynamic complexity – organisms are complex in their functional processes. 

• Evolved complexity – alternative evolutionary solutions to adaptive problems,
historically contingent. 

Constitutive complexity 

A central insight of systems biology is that no individual component is likely to be
uniquely responsible for governing a cellular response (Prudhomme etal., 2004). The
collective effects of mutations that lead to tumour development arise in the context of
complex genetic and signal transduction networks. In cancer, extensively altered
network circuits often give rise to non-intuitive cellular phenotypic outcomes because
of feedback loops and cross-talk between pathways. Dependence on biological
context and dynamic interconnectedness is at the core of biological function. Critically, in
order to advance treatment strategies through the identification of more effective
targets, analysis must be aimed at the discovery of functional links between (multiple)
cell components and processes at different levels of organization (Hanash, 2004); cellular

Organizational
complexity

Process 
complexity

Evolved
complexity

Unstable
cancer genome

Figure 1.3 Taxonomy of cancer complexity. The inter-relationship between genome instability
and the three types of complexity within cellular evolution in cancer is highlighted 
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10 FROM DATA TO COMPLEX SYSTEMS MODELS OF CANCER

networks and functional systems must be studied in multivariate mode (Prudhomme
etal., 2004). A predictive understanding of cancer cells and their response to treatment
requires a framework that can relate underlying genome structure and molecular
circuitry to time-varying expression profiles and cellular phenotypes in a mathematically
rigorous manner (Figure 1.4) (see Begley and Samson, 2004; Christopher et al., 2004;
Eungdamrong and Iyengar, 2004; Khalil and Hill, 2005). 

The role of biomolecular networks in cancer systems biology 

Metabolic and signal transduction networks are located midway between the genome
and the phenotype, and can be conceptualized as an ‘extended genotype’ or ‘elementary
phenotype’ (Huang, 2004). Thus, these networks provide a stepping stone for the integra-
tive study of gene function in complex living systems and are a major focus of systems
biology. 

Network biology, a distinct research area within systems biology, addresses the aspect
of topology (or ‘wiring’) and seeks to identify organizational rules underlying large-scale
topologies of cell networks that can provide insights into pathway and network
function. For example, protein networks contain highly connected hub proteins that have
been shown to correlate with evolutionarily conserved proteins, and in yeast with
proteins encoded by essential genes (Jeong etal., 2001). Another challenge is to
understand how representations of signalling networks can be expanded to include
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A TAXONOMY OF CANCER COMPLEXITY 11

other regulatory networks, e.g. metabolic, gene expression and cytoskeletal networks,
and how cell signalling networks can be integrated into the larger networks of interacting
cells, tissues and physiological systems. Systems biology then aims to formalize
dependencies between network topology and dynamic behaviour, with the goal of
ultimately linking dynamic network behaviour to cell function. Research in this area
is growing rapidly and the reader is referred to the body of literature. A good starting
point is the FEBS Letters special issue ‘Systems Biology Understanding the Biological
Mosaic’, 21 March 2005 (Vol. 579, Issue 8). 

Shared characteristics exhibited by networks of interacting agents ranging from
cellular networks, ecological systems to the Internet suggest a common logic in their
function, in terms of their connectivity and dynamics. As already mentioned, robust
systems are able to maintain their function in the presence of certain perturbations (such
as those frequently encountered), but are often vulnerable to other types of perturbations
(such as those they are rarely exposed to). In general, cells are highly robust to uncer-
tainty in their environments and the failure of component parts, yet can be disabled
catastrophically by even small perturbations to certain genes (mutation, dosage change),
trace amounts of toxins (drugs) that disrupt the structural elements or regulatory
control networks or inactivation of essential network components. Cancer cells recon-
figure normal cellular networks to establish a pathological kind of robustness, including
evasion of apoptosis and treatment resistance in response to selection pressure through
anti-cancer drugs or radiation therapy (Albert, Jeong and Barabási, 2000; Barabási
and Oltvai, 2004; Cork and Purugganan, 2004; Galitski, 2004; Kitano, 2004; Papin
and Subramaniam, 2004; Papin et al., 2005). 

Dynamic complexity 

Biological complexity has become associated more recently with non-linear mathematical
functions representing processes in space and time. Process complexity is linked to a
range of dynamic characteristics such as sensitivity to initial conditions, discontinuous
change (bifurcation), self-organization and negative and positive feedback control.
Striking generalities in the models of complex dynamic processes found in chemical
and physical systems have led to their increasing application to biological systems
(von Bertalanffy, 1968; Holland, 1995; Mitchell, 2003). 

To study the emergent properties of cell behaviour in relation to the function of
genes it is necessary to: interpret gene expression at the level of the transcriptome and
the proteome within the topology of gene regulatory and protein interaction networks;
and go beyond network topology and address the global dynamics of networks that
will reveal the collective behaviour of the interacting gene products (Huang, 2004).
Linking gene expression to pathway dynamics is critical as, for example, the concen-
trations of signalling proteins can have a very significant quantitative influence on the
outcome of signal transduction (see Section 1.3 and Chapter 4). There is ample evidence
that the extent of cell surface receptor expression can determine whether a cell enters
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12 FROM DATA TO COMPLEX SYSTEMS MODELS OF CANCER

the cell cycle, arrests growth or undergoes apoptosis, and the concentration of members
of signal pathways downstream of receptors can also have profound effects. Overex-
pression of MAPKK or MAPK beyond a certain optimal level can lead to signal inhibition
rather than signal enhancement (Levchenko, 2003). A number of dynamic models
have been developed already for well-characterized pathways such as the epidermal
growth factor (EGF) and the MAP kinase pathways (Bhalla and Iyengar, 1999, 2001;
Asthagiri and Lauffenburger, 2001; Schoeberl et al., 2002; Resat etal., 2003) (see
Chapter 4 and also www.cellml.org/examples/repository/index.html for further models
in CellML format and the extensive primary literature). In addition, Table 1.2 lists
various collaborative projects of interest for cancer systems biology. Dynamic pathway
models may represent theorized or validated pathways and need to have kinetic data
attached to every connection – this enables one to simulate the change in concentrations of
the components of the pathway over time when given the initial parameters. Using
standard principles of biochemical kinetics, a complex regulatory network can be
cast as a set of non-linear differential equations according to the network
topology and the types of protein–protein interactions present. Using a basal
parameter set, the equations are then solved numerically. However, for many
pathways that are highly relevant to cancer the available data are far too incom-
plete for modelling, which again highlights the necessity for systematic generation of
comprehensive data sets (including interaction and activation kinetics). 

Evolved complexity 

New insights also may be gained by approaching the subject of cancer within an
evolutionary framework. In complex adaptive systems, the regularities of experi-
ence are encapsulated in highly compressed form as a model or schema (Holland,
1995). An agent (cancer cell in the present context) must create internal models
by selecting patterns in the input it receives and then convert these patterns into
changes in its internal structure. Schemata can change to produce variants that can
compete with each other and selection will act on the agents’ internal schemata.
Changes can be either gradual or sudden, and success is measured by survival. 

Table 1.2 A selection of international systems biology initiatives with relevance to cancer 

Initiative URL 

Alliance for Cellular Signaling www.signaling-gateway.org 
E-Cell www.e-cell.org, ecell.sourceforge.net
Institute for Systems Biology (Seattle) www.systemsbiology.org 
Systems Biology Institute (Tokyo) www.systems-biology.org/index.html
Computational and Systems Biology (MIT) csbi.mit.edu 
TUMATHER calvino.polito.it/~mcrtn 
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A TAXONOMY OF CANCER COMPLEXITY 13

Cells are linked to their environments through feedback loops that enable adaptive
modification and reorganization. Selection acts on cancer cells and selects for altered
internal schemata (genome mutations and changes in cellular network structure and
dynamics) that form the basis of altered signal processing by intracellular networks and
the abnormal cancer phenotype (Hanahan and Weinberg, 2000) (Figures 1.2 and 1.3).
Change in cell function emerges from gradual accumulation of small alterations (multiple
mutations over extended time) or simultaneous large-scale change (aneuploidy). 

Progression from normal tissue to malignancy is associated with the evolution of
neoplastic cell lineages with multiple genetic lesions that are not present in the normal
tissues from which the cancers arose. Cellular evolution, at a vastly accelerated rate
and guided by natural selection, transforms normal cells into malignant cells. Multiple
neoplastic clones may coexist and compete with each other for resources and space
during the progression to malignancy. In this evolutionary process neoplastic cells
develop genome-wide instability and variants are selected, leading to the emergence
of clonal populations with multiple genomic abnormalities and selective proliferative
advantages, including, for example, the evasion of cell death and anti-cancer treatment
resistance. This can be exacerbated by exerting selective pressure through exposure to
therapeutic agents (Nowell, 1976; Novak, Michor and Iwasa, 2003; Maley etal., 2004). 

Genomes are dynamic entities at evolutionary and developmental time-scales. In
cancer, dynamic structural rearrangements occur at dramatically increased frequency –
an unstable genome is a distinguishing characteristic of most types of cancer (Nygren
and Larsson, 2003; Vogelstein and Kinzler, 2004). In addition to mutations in individual
oncogenes and tumour suppressors, extensive gross chromosomal change (aneuploidy,
which is quantitatively measurable through cytogenetic analysis, including new high-
throughput chip-based methods) is observed in liquid and nearly all solid tumours.
The most common mutation class among the known cancer genes is chromosomal.
Copy-number changes, such as gene amplification and deletion, can affect several
megabases of DNA and include many genes. These large-scale changes in genome
content can be advantageous to the cancer cell by simultaneous activation of oncogenes,
elimination of tumour suppressors and the production of variants that can rapidly
evolve resistance to drug exposure. 

Given the irreversible nature of evolutionary processes, the randomness of mutations
relative to those processes and the modularity by which complex wholes are composed
of simpler parts, there exists in nature a multitude of ways to ‘solve’ the problems of
survival and reproduction (Mitchell, 2003, p. 7). Because each patient’s cancer cells
evolve through an independent set of mutations and selective environments, the
resulting cell population in each patient will be heterogeneous and will exhibit certain
unique features. The fact that the population of cells includes significant heteroge-
neity means that they will be unlikely to respond to therapy in a uniform manner and
that most treatments will not eradicate all the cells. Furthermore, this also implies that
we are unlikely to find general treatments that will work for all or even most patients. 

These challenges, which in significant part arise from the processes of cellular
evolution decoupled from controls normally operating in multicellular organisms
(Buss, 1987; quote in Gould, 2002, p. 696), have given rise to the new field of
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14 FROM DATA TO COMPLEX SYSTEMS MODELS OF CANCER

‘pharmacogenomics’, which has as its ultimate aim the design of individualized
treatments based on a patient’s (and his or her tumour’s) molecular characteristics.
Motivated by an evolutionary perspective on the complexity of cancer, the methods of
systems biology can be applied to address three fundamental questions underlying
pharmacogenomics. Firstly, can we discover key features of the ‘evolutionary logic’
of cancer cell and tumour systems emerging from the interplay between the unstable
cancer genome, higher level cellular systems and the tumour microenvironment
(including exposure to drugs)? A systems-based approach to finding answers to this
question extends biomarker identification and molecular profiling as presently practised,
because its aim would be not only to show statistical dependence relationships
between a small number of markers and high-level physiological phenomena, but to
provide explanatory power in terms of biological process. One of the challenges
involved is to develop methods for integrative analysis encompassing different levels
of ‘omic space’ within cells (Toyoda and Wada, 2004) and selection dynamics within
the tumour microenvironment. This is a tall order and progress also will involve inno-
vative application of established methods, such as multivariate techniques, Bayesian
networks, cellular automata and agent-based modelling for example, and integration
of models representing different aspects of cell and tumour biology (see Section 1.3
regarding the requirement for prediction and modelling from vertically integrated data
sets). The second, and of course related, question concerns a formalized methodology
for the discovery of system vulnerabilities from investigations of this kind. Here,
general systems theory and control systems engineering are already finding useful
cross-disciplinary application (Ogunnaike and Ray, 1995). The third question, which
also requires extensive multidisciplinary attention, relates to the major scientific, medical
and social changes that will be precipitated by the integration of systems-based
pharmacogenomics in preclinical therapy development, clinical trials and clinical
practice (see also Chapters 3 and 14). 

1.3 Modelling and simulation of cancer systems 

Increasing use of mathematics is inevitable as biology becomes more complex and
more quantitative, as has been stated very eloquently by Murray et al. (1998): 

‘We suggest that mathematics, rather theoretical modeling, must be used if we ever
hope to genuinely and realistically convert an understanding of the underlying mecha-
nisms into a predictive science. Mathematics is required to bridge the gap between the
level on which most of our knowledge is accumulating (...cellular and below) and the
macroscopic level of the patterns we see. In wound healing and scar formation, for
example, a mathematical approach lets us explore the logic of the repair process. Even
if the mechanisms were well understood – and they certainly are far from it at this
stage – mathematics would be required to explore the consequences of manipulating
the various parameters associated with any particular scenario. In the case of such
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MODELLING AND SIMULATION OF CANCER SYSTEMS 15

things as wound healing – and now in angiogenesis with its relation to possible cancer
therapy – the number of options that are fast becoming available to wound and cancer
managers will become overwhelming unless we can find a way to simulate particular
treatment protocols before applying them in practice.... The very process of
constructing a mathematical model can be useful in its own right. Not only must we
commit to a particular mechanism, but we are also forced to consider what is truly
essential to the process, the central players (variables) and mechanisms by which they
evolve. We are thus involved in constructing frameworks on which we can hang our
understanding. The model equations, the mathematical analysis and the numerical
simulations that follow serve to reveal quantitatively as well as qualitatively the conse-
quences of that logical structure’ [italics added].

The translation of highly detailed knowledge of the molecular changes in cancer
into new treatments requires a synthesis of knowledge and data only attainable through
computational methods. Eventually, the predictive power of mature models of cancer
systems may greatly enhance target identification, therapy development, diagnostics
and treatment by focusing attention on particular molecules and pathways, while avoiding
unnecessary tests and procedures. 

Mathematical modelling provides a formal language for the expression of
complex biological knowledge, assumptions and hypotheses in a form amenable
to logical analysis and quantitative testing. This is increasingly necessary as the
scope and depth of information and knowledge, with the accompanying uncer-
tainty, surpass the analytical capabilities of the unaided human mind (Swanson
et al., 2003; Rao, Lauffenburger and Wittrup, 2005). Computational models, by
their nature, serve as repositories of the current knowledge, both established and
hypothetical (Figure 1.1). 

Within the knowledge discovery cycle, mathematical modelling can make a
major contribution to hypothesis-driven research (Swanson, True and Murray,
2003) (Figure 1.1): isolation of key steps in the process under study (drawing on
prior experimental results and domain knowledge); formulation of a model mecha-
nism (equations) that reflects these key elements and involves actual biological
quantities; mathematical investigation of the theoretical model and generation of
solutions with biologically realistic boundary and initial conditions; and, iteratively,
in the light of the theoretical results, return to the biology with predictions and
suggestions for illuminating experiments that will help to elucidate the underlying
mechanisms. Models can be especially useful if they are designed to represent
competing mechanisms proposed by different sources, so that a set of criteria
allowing one to distinguish between different hypotheses can be formulated based
on the underlying computational predictions (Levchenko, 2003). Alternatively,
data-driven approaches include the application of data mining technologies to
large-scale ‘omic’ data sets in order to identify key molecular features and correla-
tions between system components, and subsequently ‘reverse-engineer’ models
from the observed data (Figure 1.1). 

c01.fm  Page 15  Friday, December 16, 2005  10:46 AM



16 FROM DATA TO COMPLEX SYSTEMS MODELS OF CANCER

Vertical genomics: data mining and systems modelling in tandem 

Mining of the large amounts of data obtained through omic technologies, already an
essential methodology for contemporary target discovery, will become even more
critical for systems-based discovery. Data mining seeks new knowledge via an iterative
execution of several knowledge discovery steps. Each step focuses on a specific
discovery task that is accomplished through the application of a suitable discovery
technique. Neural networks, decision trees, Bayesian techniques, hierarchical and
fuzzy clustering and classical statistics are commonly applied (Brenner and Duggan,
2004; Prendergast, 2004) (the reader is also referred to the very large literature on data
mining, e.g. for DNA microarray data). Systems-based discovery faces an urgent
challenge because available techniques will need to be tested rigorously and, if
necessary, extended for application to increasingly more complex, particularly multiscale,
data sets generated by systems biology. A particular challenge is posed by the need
for software tools that can effectively visualize, analyse and model both the functional
and dynamic relationships between genome structure, expression and dynamic cell proc-
esses. Integrative in silico environments are needed that can jointly deploy data mining
tools and mathematical modelling of pathway, cell and, eventually, tumour dynamics. 

This vision lies at the heart of the Systems Complexity Interface for pathways
(SCIpath) project, which delivers an object-oriented framework acting as an integrative
hub together with data mining, modelling and visualization tools and Systems Biology
Markup Language (SBML)-enabled software connectivity (Table 1.3). The SCIpath
project is specifically designed to facilitate the exploitation of data sets that are vertically
matched across ‘omic space’ (Toyoda and Wada, 2004) and may include karyotype,
transcriptome, proteome and cell physiology data (Figure 1.5a). Several object-oriented
analysis and visualization tools for vertically integrated analysis of cell signalling have
been built already and new java tools tailored to user needs can be integrated easily
with existing features. Currently implemented tools include (Figures 5b–5e): 

• Custom-designed pathway mapping, automated layout and pathway merging. 

• Easy upload of SBML-compliant pathways (see also Section 1.4). 

• Pathway sharing with other SBML-compliant applications (e.g. Virtual Cell,
E-Cell, Gepasi). 

• Links to external databases facilitating bioinformatics analysis of pathway nodes. 

• Data normalization and statistical testing for gene expression microarrays. 

• Analysis of gene expression on pathways (customized for Affymetrix data and
also applicable to dual-channel technology). 

• Interactive visualization. 

• Visualizations can be overlaid with other data types, e.g. gene copy number and
proteomics data.
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cell behaviour

proteome

transcriptome

karyotype
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(b)

Figure 1.5 The SCIpath project. (a) Software is specifi-
cally designed to facilitate the exploitation of vertically inte-
grated data sets. (b) Differential gene expression ratios
(relative up- or down-regulation, relative size of turquoise

and purple circles) based on microarray data can be mapped to
user-defined pathways 
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Figure 1.5 (Continued) (c) Visualizations can be
overlaid with other data types, e.g. proteomic data
(orange bars). (d) Genome scanning data (e.g. from
array Comparative Genome Hybridization experi-
ments, aCGH) can be mapped to pathways. The chro-
mosomal location (single band resolution) of each
node’s gene locus is shown by colour-coded stylized
chromosomes and copy number changes of associated
genomic regions can be visualized (here, size of
yellow circles represents relative increase in copy
number). (e) Fuzzy k-means clustering can reveal
complex co-expression relationships between pathway
nodes dependent on biological context. The colour-
coded ‘pie chart’ mapped to each node represents
membership scores related to a node’s three top
scoring fuzzy clusters. Shared context-dependent cluster
membership between nodes can be identified easily by
segments of the same colour (A colour reproduction of
this figure can be seen in the colour section.) 
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20 FROM DATA TO COMPLEX SYSTEMS MODELS OF CANCER

• Data mining tools written in java can be plugged into the SCIpath framework to
take advantage of data sharing functionality and visualization tools aiding
complex visual reasoning. 

• Linkage to SBW (Systems Biology Workbench)-powered simulator modules for
dynamic pathway and cell system modelling. 

• Fuzzy k-means clustering: identification of complex co-expression patterns. 

• Data mining based on the Gene Ontology (GO) hierarchies. 

The SBW (Sauro et al., 2003; Table 1.3) is one of the foremost efforts to bring
data and visualization integration to bioinformatics. It provides support for a
variety of different programming languages on the most popular platforms and is
therefore the most powerful open-source integration package for bioinformatics to
date. The SBW architecture rests on a broker service that, through providership,
offers application services to other SBW-enabled modules. The user can therefore,
quite seamlessly, borrow the functionalities of multiple modules without having
to open up a multitude of new applications manually to get the desired result. As
far as programming SBW compatibility goes, the designers have provided a
simple interface-writing approach for java developers and ample documentation
at their website. This simple yet robust approach presents the opportunity to make
effective use of a wide range of otherwise quite specialized applications. Many
third-party, SBW-enabled modules already exist and new programs are in develop-
ment (for an up-to-date list, please see sbw.sourceforge.net/sbw/software/
index.shtml). 

1.4 Data standards and integration 

We are currently not in a position to make maximal use of the existing or future data
sets for computational analysis and mathematical modelling, because data have not
yet been standardized in terms of experimental and clinical data capture (protocols,
data reproducibility and quality) and computational data management (data formats,
vocabularies, ontologies, metadata, exchange standards, database interoperability)
(Figure 1.6). Integration of different data types, spanning the range from molecular to
clinical and epidemiological data, poses another challenge. 

Data integration initiatives 

In order for the potential of cancer bioinformatics and in silico systems analysis to be
fulfilled, the basic requirements are the generation of validated high-quality data sets
and the existence of the various data sources in a form that is intelligible to computa-
tional analysis. This has been well recognized, as is amply demonstrated by the aims
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DATA STANDARDS AND INTEGRATION 21

and activities of a collaborative network of several large initiatives for data integration
within the cancer domain that work towards shared aims in a coordinated fashion (the
initiatives mentioned below are meant to serve as example projects and do not
represent the sum total of these efforts on an international scale). 

The National Cancer Institute Center for Bioinformatics (NCICB) in the USA has
developed caCORE, which provides an open-source suite of common resources for
cancer vocabulary, metadata and data management needs (biological and clinical),
and the latest release (Version 3.0) achieves semantic interoperability across disparate
biomedical information systems. It uses concepts from description logic thesauri to
build up the data classes and attributes in Unified Modelling Language (UML)
information models. The models are registered in a metadata registry and then turned
into model-driven data management software. The caCORE Software Development
Kit gives any developer the tools needed to create systems that are consistent and
interoperable with caCORE (for detailed information and access to the caCORE
components, see ncicb.nci.nih.gov/core). The caCORE infrastructure plays an essen-
tial integrative role for the Mouse Models of Human Cancers Consortium (see
Chapter 9) and the cancer Biomedical Informatics Grid (caBIG), a voluntary network
connecting individuals and institutions to enable the sharing of data and tools,
creating a ‘World Wide Web of cancer research’ whose goal is to speed up the
delivery of innovative approaches for the prevention and treatment of cancer
(cabig.nci.nih.gov). 

In the UK, the National Cancer Research Institute (NCRI) is developing the
NCRI Strategic Framework for the Development of Cancer Research Informatics in
the UK (www.cancerinformatics.org.uk/index.html; see also Chapter 3). The ultimate
aim is the creation of an internationally compatible informatics platform that would
facilitate data access and analysis. The NCRI Statement of Intent projects that
‘enabling this sharing of knowledge across disciplines, from genomics through to
clinical trials, will benefit patients and researchers by channelling the development
of novel therapeutics and diagnostics in a more effective way’ (published in Nature

Algorithms
New methods and tools
Mining of complex data
Knowledge management
Conceptual integration
Mathematical models

Cancer systems

Study design
Technological hurdles

Quantitative data capture
Reproducibility

Data quality
Data standardization

Data integration

Reciprocal relationship

Data standards In silico oncology

Figure 1.6 Reciprocal relationship between standard development and cancer systems biology
and bioinformatics 
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22 FROM DATA TO COMPLEX SYSTEMS MODELS OF CANCER

and the British Medical Journal in March 2004). CancerGRID develops open stan-
dards and information management systems (XML, ontologies and data objects,
web services, GRID technology) for clinical cancer informatics, clinical trials,
multi-site development and distributed computing, integration of molecular profiles
with clinical data and effective translation of clinical trials data to bioinformatics
and genomics research (www.cancergrid.org). The Clinical E-Science Framework
(CLEF) aims to implement a high-quality, safe and interoperable information
repository derived from operational electronic patient records to enable ethical and
user-friendly access to the information to support clinical care and biomedical
research, and is also designing complementary information capture and language
tools (www.clef-user.com). 

Semantic web technologies 

Using simple page layout information, the current web represents information using
natural language, numerical data, graphics, multimedia, etc. in a way that often
requires humans to process this information by deducing facts from partial informa-
tion, creating mental associations and integrating various types of sensory informa-
tion. In addition, data that a user wishes to integrate are often presented in
incompatible formats and undefined nomenclature at distributed sites. In spite of these
difficulties, humans can combine data reasonably easily even if different terminol-
ogies and presentation formats are used. 

However, to make a global cancer data grid a reality, data need to be accessed, inte-
grated and processed automatically by computers. Therefore, web service technology
and high-bandwidth data grids need to comply with standards for the ‘Semantic Web’,
which can be defined as a metadata-based infrastructure for reasoning (www.w3.org/
2001/sw). The Semantic Web provides a common framework that allows data to be
shared and reused across application, institution and community boundaries and is based
on the Resource Description Framework (RDF), which integrates a variety of applications
using XML for syntax. 

Within this framework, the data resource provides information about itself, i.e.
metadata, in a machine-processable format, and an agent accessing the resource should
be able to reason about the (meta)data. To make metadata machine-processable, a
common data model for expressing metadata (i.e. RDF) and defined metadata vocab-
ularies and concept relationships are needed. 

Ontologies for translational cancer research 

Ontologies (formal representations of vocabularies and concept relationships) and
common data elements based on these definitions are prerequisites for successful data
integration and interoperability of distributed data sources. Various standard vocabularies
and object models have been developed already for genomics, molecular profiles,
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certain molecular targeted agents, mouse models of human cancer, clinical trials and
oncology-relevant medical terms and concepts (SNOMED-RT/CT, ICD-O-3, MeSH,
CDISC, NCI Health Thesaurus, caCORE, HUGO). There are also existing ontologies
describing histopathology (standards and minimum data sets for reporting cancers,
Royal College of Pathologists; caIMAGE, National Cancer Institute). The European
Bioinformatics Institute (EBI) is developing standards for the representation of
molecular function (Gene Ontology) and the Microarray Gene Expression Data
(MGED) Society is developing MIAME, MAGE and the MAGE ontology, a suite of
standards for microarray users and developers including an object model, document
exchange format, toolkit and an ontology. However, significant gaps still exist and eventu-
ally all cancer-relevant data types (see the NCRI Planning Matrix, www.cancerinfor-
matics.org.uk/planning_matrix.htm) will need to be formalized in ontologies. These
efforts are ongoing and pursued by a large community of researchers (see above and
ftp1.nci.nih.gov/pub/cacore/ExternalStds for further details on available standards). 

Protégé-2000 Protégé is a freely available tool that allows users to construct domain
ontologies, customize data entry forms and enter data. It is also a platform that can be
extended easily to include graphs and tables, media such as sound, images and video,
and various storage formats such as OWL, RDF, XML and HTML (protege.stanford.edu/
index.html). Protégé is a mature technology and it is especially appropriate for know-
ledge acquisition from domain experts and the design of sharable ontologies because
of its emphasis on flexibility and extensibility. Protégé supports the development of
knowledge bases in a fashion that facilitates the reuse of encoded knowledge for a
variety of purposes. 

The OWL format unifies frame and description logics into one language. Its
encoding to RDF schema makes it a semantic metadata language for the web and it
supports the goals of the Semantic Web initiative for languages, expressing informa-
tion in a machine-processable form (www.w3.org/TR/owl-features). By offering
these capabilities, OWL is establishing itself as the current state-of-the-art ontology
exchange language. It facilitates greater machine interpretability of web content than
that supported by XML, RDF and RDF Schema (RDF-S) by providing vocabulary
along with a formal semantics. 

XML exchange standards for pathways and models 

An increasing number of model building tools include integrated databases of
genomic, proteomic and/or other information, or provide close links to such data, and
these need to be standardized for input into models; XML exchange standards are
being developed in areas such as transcriptomics (e.g. MAGE-ML) and proteomics
(e.g. PSI, PEDRO, BioPAX), which will enable increased efficiency and automation
of data use. 

Information standards are also needed if the models themselves are to be shared,
evaluated and developed cooperatively. A uniform Systems Biology Markup
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24 FROM DATA TO COMPLEX SYSTEMS MODELS OF CANCER

Language (SBML) has therefore been developed to facilitate data and model
exchange, and closely allied initiatives are also underway (Table 1.3). SBML is a
computer-readable format for representing models of biochemical reaction networks,
and is applicable to metabolic networks, cell-signalling pathways, regulatory networks
and many others (sbml.org/index.psp). It is currently supported by over 80 software
systems and its widespread adoption enables the use of multiple tools without
rewriting network models for each tool, supports network model sharing between
different software environments and ensures the survival of models beyond the
lifetime of the software used to create them. The purpose of CellML is to store and
exchange computer-based mathematical models and it includes information about
model structure (how the parts of a model are organizationally related to one
another), mathematics (equations describing the underlying processes) and metadata
(additional information about the model that allows scientists to search for specific
models or model components in a database or other repository) (http://www.cellml.
org/public/about/what_is_cellml.html). CellML includes mathematics and metadata
by leveraging existing languages, including MathML (http://www.w3.org/Math/) and
RDF. AnatML is aimed at exchanging information at the organ level, and FieldML
is appropriate for storing geometry information inside AnatML, the spatial distribution
of parameters inside compartments in CellML or the spatial distribution of cellular
model parameters across an entire organ (http://www.cellml.org/public/about/
what_is_cellml.html). 

1.5 Concluding remarks 

Cancer systems biology seeks to elucidate complex cell and tumour behaviour
through the integration of many different types of information. Enhanced under-
standing of how genome instability and complex interactions within cells and
tissues give rise to cancer, and its confounding heterogeneity, through a hierarchy
of biochemical and physiological systems is expected to improve prevention, diag-
nosis and treatment. Advanced experimental technologies and computational
methods need to be applied together in mutually complementary fashion to address
the challenges ahead. The classical techniques of statistics and bioinformatics for
analysis of the genome, biological sequences, large-scale ‘omic’ data sets and
protein three-dimensional structure will continue to form an indispensable back-
bone for computational cancer research, whereas new systems-based approaches
will extend our knowledge of the organization and dynamic functioning of the
implicated biological systems. Cancer systems biology is already addressing
pressing challenges in the development of new anti-cancer therapies and is poised
to take an even more leading role in our quest for deeper insights into the biological
complexity of cancer. Complementing the methods of systems biology, new data
management technologies to enable the integration and sharing of data and models
are also a prerequisite for advancement. 
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