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Abstract

This study attempts to demystify a powerful neural network approach for modelling non-linear hysteretic
systems and in turn to streamline its architecture to achieve better computational efficiency. The recently
developed neural network modelling approach, the Volterra/Wiener neural network (VWNN), demon-
strated its usefulness in identifying the restoring forces for hysteretic systems in an off-line or even in an
adaptive (on-line) mode, however, the mechanism of how and why it works has not been thoroughly
explored especially in terms of a physical interpretation. Artificial neural network are often treated as
‘‘black box’’ modelling tools, in contrast, here the authors carry out a detailed analysis in terms of problem
formulation and network architecture to explore the inner workings of this neural network. Based on the
understanding of the dynamics of hysteretic systems, some simplifications and modifications are made to
the original VWNN in predicting accelerations of hysteretic systems under arbitrary force excitations.
Through further examination of the algorithm related to the VWNN applications, the efficiency of the
previously published approach is improved by reducing the number of the hidden nodes without affecting
the modelling accuracy of the network. One training example is presented to illustrate the application of the
VWNN; and another is provided to demonstrate that the VWNN is able to yield a unique set of weights
when the values of the controlling design parameters are fixed. The practical issue of how to choose the
values of these important parameters is discussed to aid engineering applications.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

The modelling of non-linear physical phenomena is of great significance in many fields of
engineering. In applied mechanics, the modelling of the dynamic response of hysteretic systems
has a wide range of applications. Relevant problems include the behavior of building structures
under earthquake excitation as well as many vibration problems with mechanical systems
especially the joints of aerospace structures under working loads. In this paper, a study will be
presented to predict accelerations of hysteretic systems with discrete degrees-of-freedom under
known force excitations.
An artificial neural network (ANN) modelling approach will be adopted in this study. In

contrast with the way ANNs are often used as a powerful ‘‘black box’’ modelling tool whose inner
workings are not well understood, here the authors will explore in detail, fundamental network
application issues (such as initial network design and non-uniqueness of solutions) by relating
them to the fundamentals of mechanics as well as the mathematical foundation of neural
networks.
This study builds on a recently published neural network approach [1]. In that study the

dynamic response of non-linear hysteretic dynamic systems was modelled using a newly developed
ANN system identification approach which used measurement data of the force excitation and the
acceleration response at discrete locations. The Volterra/Wiener neural network (VWNN) as it
was called, has demonstrated its power in modelling hysteretic systems in an off-line or even
adaptive (on-line) mode.
The VWNN consists of a dynamic linear module in series with a static neural network module,

where the former is a linear filter interconnected in series and the latter is a linear-in-the-weights
neural network. An illustration of this architecture is shown in Fig. 1. Symbolically, the dynamic
module can be represented by n ¼ HðsÞf; where f is the input vector to the VWNN, n is the output
of the linear module and HðsÞ is a stable transfer function matrix (here, s denotes the Laplace
operator). The linear-in-the-weights neural network is described as g ¼ WT/ðnÞ; where g is the
output of the neural network,W denotes the matrix of the synaptic weights of the neural network,
n is the output of the linear filter, and / is a vector of the non-linear activation functions of the
neural network.
The adaptive capability of the VWNN modelling technique distinguishes the method from

typical slow training often associated with neural networks. The feature of on-line prediction of
the system response also is of great significance in the field of system identification as well as
robust adaptive control. Unfortunately, the mechanism of why and how the VWNN works was
not thoroughly explained especially in terms of a physical interpretation, and therefore the
VWNN was basically treated as a ‘‘black box’’ in that study. This has prompted the authors to
explore the reasons which make the VWNN work, especially those which can be categorized as
physical explanations. As a byproduct of understanding the VWNN, the authors find that the
computational efficiency of the published approach can also be improved by eliminating some
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Fig. 1. Block diagram of the VWNN.
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high order terms in the hidden layer of the VWNN without affecting the performance of the
network. To aid engineering applications, a detailed analysis of the architecture and design
parameters of the VWNN will be presented together with some training examples.

2. Demystifying Volterra/Wiener neural networks

2.1. Problem formulation

One of the main goals of this study is to predict the accelerations for hysteretic systems, and
thus simulate the system response to known (or measured) force excitations. Such a predictive
property is also an essential element for adaptive control applications. For this study it is assumed
that no a priori knowledge is available on the dynamics of the system under consideration. Based
on limited input–output measurements of the system, identification is carried out to model the
system. Based on this model, the future outputs of the system can then be predicted for any given
future input which is within the same range of the inputs used in the original modelling stage. The
input–output pairs to be considered in this study are excitation forces and response accelerations.
In general, for a multi-degree-of-freedom (MDOF) system subjected only to force excitation,

the equations of motion can be written as

M11 .x1ðtÞ þ rðtÞ ¼ f1ðtÞ; ð1Þ

whereM11 has the same meaning as the more typicalM notation of the mass matrix. The vectors
.x1ðtÞ and f1ðtÞ represent acceleration and excitation force, respectively; and they are the original
input and output measurements available for the identification. The first subscript 1 denotes the
active degrees of freedom, and a 0 subscript would refer to a support motion (this notation follows
that used in Ref. [1]). Specifically, one has

x1ðtÞ ¼ ½x11ðtÞ;y;x1n1ðtÞ�
T; ’x1ðtÞ ¼ ½ ’x11ðtÞ;y; ’x1n1ðtÞ�

T; .x1ðtÞ ¼ ½ .x11ðtÞ;y; .x1n1ðtÞ�
T

and

f1ðtÞ ¼ ½ f11ðtÞ;y; f1nf
ðtÞ�T;

where n1 denotes the number of active degrees of freedom, nf the number of active degrees of
freedom under force excitations and nf pn1: Displacements and velocities, x1ðtÞ and ’x1ðtÞ; do not
appear in Eq. (1) because they are not directly available from the measurements. rðtÞ denotes the
restoring force that is considered to be a function of many unknown quantities in an unknown
format. Modelling this restoring force for hysteretic systems is the focus of this study.
Eq. (1) holds true at any time instance. The task of predicting the acceleration at the next time

step given the acceleration at the current time step can be expressed in a generic format: to solve
.x1ðtnþ1Þ given .x1ðtnÞ and the time history of f1ðtÞ; where n ¼ 1;y;N and N is the total number of
the given input–output pairs minus 1.
Applying Eq. (1) at the time instance tnþ1; pre-multiplying the new equation by M�1

11 and
rearranging it results in the following:

.x1ðtnþ1Þ ¼ �M�1
11 rðtnþ1Þ þM�1

11 f1ðtnþ1Þ: ð2Þ

ARTICLE IN PRESS

J.-S. Pei et al. / Journal of Sound and Vibration 275 (2004) 693–718 695



It can be seen that the estimation of the restoring force at time instance tnþ1 is the key in
predicting the acceleration at tnþ1; assuming that the time history of the excitation force, f1ðtÞ is
available and M11 are just coefficients to be identified.
Prior work on predicting restoring forces for hysteretic systems by the authors and others has

noted that the idea of mapping restoring force in terms of displacement and velocity alone is often
found to be insufficient to model hysteretic systems. A representation which better reflects, in
particular, the hysteretic phenomenon for restoring forces is given in a non-linear differential
equation of the form [2–4]

’rðtÞ ¼ QðrðtÞ;x1ðtÞ; ’x1ðtÞÞ; ð3Þ

whereQ is an unknown non-linear function involving matrix operations. Note that this formula is
not exhaustive; more terms could be added into the variable list to capture more complicated non-
linearities (Ref. [3] for example). However, this general formula has been applied in various
hysteretic systems and has provided a good modelling framework. Therefore, it is chosen as the
theoretical foundation in this study to guide the identification architecture and detailed
arrangement.
We apply Eq. (3) to the time instance tn and write its left-hand side using the one-step forward

difference ’rðtnÞ ¼ ðrðtnþ1Þ � rðtnÞÞ=ðtnþ1 � tnÞ: Furthermore, it is assumed that the sampling time
tnþ1 � tn can be taken as a constant for a given data set or in the real sampling. After some
rearranging and substitutions (see Ref. [5]), one has

.x1ðtnþ1Þ ¼ %%Qðx1ðtnÞ; ’x1ðtnÞ; .x1ðtnÞ; f1ðtnÞ; f1ðtnþ1ÞÞ; n ¼ 1;y;N; ð4Þ

where %%Q is another unknown non-linear function involving matrix operations.
The symbolic representation shown in Eq. (4) indicates that the problem can be formulated to

approximate the unknown function %%Q by fitting the neural network input–output pairs, pðtnÞ and
gðtnÞ; which are shown in Block 3 ‘‘final input–output used in identification’’ of Table 1, where
n ¼ 1;y;N covers all of the measurement data. In the table, the inputs and outputs are related
back to the corresponding quantities in Ref. [1] whenever possible. Note that %%Q is targeted to be a
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Table 1

Input–output as defined in different stages before identification, where n ¼ 1;y;N and N is the total number of the

given input–output pairs minus 1

1. Original input–output measurements

Input .x1ðtÞ ½ .x11ðtÞ;y; .x1n1 ðtÞ�
T

Output f1ðtÞ ½ f11ðtÞ;y; f1n1 ðtÞ�
T

2. Reorganized input–output measurements (i.e., input–output before pre-processing)

Input, denoted as f in Ref. [1] ½ .x1ðtnÞ
T; f1ðtnÞ

T; f1ðtnþ1Þ
T�T

Targeted output, i.e., gðtnÞ or denoted as g in Ref. [1] .x1ðtnþ1Þ

3. Final input–output used in identification (i.e., input–output after pre-processing)

Input, i.e., #pðtnÞ or denoted as n in Ref. [1] ½ #x1ðtnÞ
T; #’x1ðtnÞ

T; .x1ðtnÞ
T; f1ðtnÞ

T; f1ðtnþ1Þ
T�T

Targeted output, i.e., gðtnÞ or denoted as g in Ref. [1] .x1ðtnþ1Þ
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single-valued function and it will be true if the use of Eq. (3) is accurate enough for a given
hysteretic system.

2.2. Pre-processing and design parameter a

Table 1 summarizes how the original input–output pairs are modified to yield the final input–
output pairs which are directly used in the identification algorithm. The inputs and outputs in the
table are related to the corresponding quantities in Ref. [1] whenever possible. Such pre-
processing is quite common in system identification applications, as long as critical signature
information is not lost from any pre-filtering or manipulation.
The first step is to rearrange the original input–output pairs of f1ðtnÞ and .x1ðtnÞ: Then it can be

seen clearly from the formulation of the problem, i.e., Eq. (4), that pre-processing is needed to
prepare displacement and velocity, x1ðtnÞ and ’x1ðtnÞ; as part of the inputs used in the identification.
Some difficulties involved with the numerical integration of acceleration measurements are

discussed in Refs. [5,6]. In a separate case study, it was recognized that there is a strong influence
on the final parametrically identified results from the numerical integration scheme used in
conjunction with band pass filtering for measurement noise removal [5]. In general therefore, the
errors resulting from the numerical integration are expected to have an influence on the identified
results. However, the identification approach which will be adopted in this study is a non-
parametric rather than a parametric technique. Realizing this difference, the authors reckon that
the identified model based on ‘‘imperfect’’ measurements of acceleration may still be used in the
prediction of the system response.
In this study, a simple rule of integration is used to estimate displacement and velocity from

acceleration measurements. It can be expressed as

#’x1ðtnÞ ¼ #’x1ðtn�1Þ þ a .x1ðtnÞ; #x1ðtnÞ ¼ #x1ðtn�1Þ þ a #’x1ðtnÞ; ð5Þ

where the notations #’x1ðtnÞ and #x1ðtnÞ represent the approximated velocity and displacement,
respectively. It is assumed that the initial values of these two quantities are zero based on the fact
that the system is at rest before the excitation starts, which is assumed to be the situation in all the
cases under consideration. The scalar a in the equation is the size of the time step. Note that the
same time step sizes are used in integrating both velocity and displacement, which is just for
convenience at this stage of study. Issues can be further explored with regard to the details of the
integration process and are discussed in Ref. [5].
The role played by this pre-processing stage is similar to that of the dynamic linear module (see

Fig. 1) in the VWNN [1], however, there are important differences in details. Many filters can be
used in the dynamic module of the VWNN and they are connected to each other in a cascaded
sequence. One may think of the first filter as the analogue of the acceleration and excitation force
at one step before the current time step, and the mth filter, the analogue of those two quantities at
the mth step before the current time step. The number m needs to be determined separately
beforehand. This design consideration differs from the idea of forming the current velocity and
displacement, although Eq. (3) was also used as the theoretical basis for the VWNN. The authors
feel that having more than two filters in the VWNN may not be consistent with Eq. (3). This
adjustment from the previous work may be considered as one of the efforts to making the black-
box type of identification procedure ‘‘translucent’’.
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2.3. Overview of neural estimator

A neural network approach is adopted in this study to approximate the unknown function %%Q in
Eq. (4). The mathematical foundation for applying neural networks in function approximation is
proven theoretically and independently in Refs. [7,8]. It is said that a finite linear sum of
continuous sigmoidal functions (with the limits of 0 and 1 when the variable approaches �N and
þN) can approximate any continuous scalar function to any desired degree of accuracy.
Application of the theorem to neural networks is illustrated by an example in Fig. 2, where a
feedforward network with one hidden layer (i.e., the architecture of ‘‘input–hidden–output’’) is a
universal approximator provided that no constraints are placed on the number of nodes and size
of the weights (i.e., nh). All the weights and biases are obtained from training using the data set of
the input p and output GðpÞ (the approximated output is ZðpÞ). The outputs of the hidden layer
can be considered as basis functions which are decided by the weights and biases in Layer 1, while
the weights in Layer 2 are the coefficients of the linear combination. Having examined the
dynamic module of the original VWNN in Ref. [1], it will be shown that the static module (see
Fig. 1) of the VWNN is in fact linearly parameterized. The beauty of it is that the basis functions
are formed corresponding to Volterra series expansion: It has been proven through function
analysis in Ref. [1] that the linear parameterization of this set of basis functions can form a
universal approximator.
The theorem in Refs. [7,8] ties in with the general structure of the so-called ‘‘black box’’ models

of non-linear systems based on function analysis [9], where the concepts of functional space and
regressors are used to generalize the modelling problems into a parameterized function expansion.
Without getting into too many details of function analysis, it may be proper to express the
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idea simply as

gðj; yÞ ¼
Xn

l¼1

alhlðjÞ; y ¼ ½a1 ? an�T; ð6Þ

where the non-linear mapping gðj; yÞ is the non-linear mapping to be identified, the vector j is the
regressors, hl’s are the basis functions and y is the parameterization. The format shown in Eq. (6)
is not unfamiliar to researchers in system identification in the applied mechanics field. For
example, the studies presented in Refs. [10,11] demonstrate the usefulness of linearly parametrized
Bouc-Wen model [10] in on-line identification for hysteretic systems (in this case, the parameters
to be identified can be related to some physical/or graphical meaning). The benefit of having such
linearly parametrized estimators is to make it possible to apply recursive on-line linear estimation
schemes that lead to fast identification, as indicated in Ref. [10]. There are many more examples
but with different basis functions [12,3]. For the purpose of structural health monitoring and
damage detection, the determination of parameters with physical or near physical meaning is
crucial for real-world applications using model-based system identification approaches. To
examine how the VWNN [1] works through some intuitive physical interpretations for a potential
wide range of applications in health monitoring and damage detection, the architecture of its
static module will be examined and modified based on the framework of this linear
parameterization or equivalently, the universal approximator of a feedforward neural network
with one hidden layer.
Fig. 3 presents the architectures of the VWNN in this study (left edge) and of that in Ref. [1]

(right edge) by relating both of them to each other and to the universal approximator (center).
The dynamic module is transformed into the pre-processing stage as discussed in Section 2.2,
while the static module is ‘‘reorganized’’ and modified by reflecting more ‘‘transparent’’ features
and physical interpretations. Compared with the universal approximator, in short, Layer 1 and
the hidden layer of the VWNN are constructed in a totally different manner by introducing first
and high order terms. Also, the weights of Layer 1 are pre-fixed and controlled by one design
constant l; while only the weights of Layer 2 are trained using the input–output data stream, thus
the latter are the unique results from training. Based on some graphical explanations, it will be
explored why a fixed value of l may be sufficient to capture typical non-linearities through both
first and high order terms and what the challenges are in real training. Details of the neural
estimator in Fig. 3 are elaborated on here:

Input layer: The input vector, #pðtnÞ ¼ ½ #x1ðtnÞ
T; #’x1ðtnÞ

T; .x1ðtnÞ
T; f1ðtnÞ

T; f1ðtnþ1Þ
T�T is obtained

from pre-processed signals and is denoted as n in the original VWNN (also see Table 1). The
number of input nodes equals to 3n1 þ 2nf ; where n1 denotes the degrees of freedom of the system
and nf the degrees of freedom under force excitations.

Output layer: The targeted output vector is obtained directly from the original data, gðtnÞ ¼
.x1ðtnþ1Þ; and is denoted as g in the original VWNN (see Table 1). The number of output nodes
equals to n1:

Hidden layer: One of the main features of the VWNN is the inclusion of high order nodes in the
hidden layer. Hidden nodes are composed of first and high order terms, where the latter are
derived from the first order nodes (see Section 2.4 for the advantage of including high order terms
especially for hysteretic systems). The number of first order nodes is exactly the same as that of the
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input nodes, 3n1 þ 2nf ; because the first order nodes are obtained directly from passing the input
nodes through a hyperbolic tangent sigmoidal function separately,

hð piÞ ¼
2

1þ e�2lpi
� 1; i ¼ 1;y; 3n1 þ 2nf ; ð7Þ
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where n1 denotes the degrees of freedom of the system and nf the degrees of freedom under force
excitations. In Eq. (7), also note that zero bias and a design constant l as the weight are applied to
all the connections; this simplicity and unification is another feature of the VWNN. It can be seen
that a vector with all the hidden nodes (all first and high order terms) as its components, is the
vector fðxÞ in the VWNN.

Layer 1: Layer 1 spans from the input to the hidden layer. Direct connections are only made
from the input nodes to the first order nodes. Also, the connections are one to one rather than
‘‘full’’ connection, where ‘‘full’’ connection refers to the condition where each input node is
connected to all the hidden nodes and vice versa. Although no visible flow lines are shown
between the input nodes and high order nodes, invisible connections do exist and the
corresponding ‘‘invisible’’ weights are non-linear based on the way in which the high order
nodes are derived from the first order nodes (see Section 2.4).

Layer 2: Layer 2 spans from the hidden to the output layer. The output nodes are fully connected
to all the hidden nodes including the first and high order terms; the corresponding weights form a
weighting matrix W: Based on the architecture of a universal approximator, all the hidden nodes
can be considered to be non-linear basis functions and the linear weighting matrix W; the
coefficients, in approximating the output vector. A normalized gradient adaptive law with
projection [13] will be adopted to minimize the normalized output error where the weights W are
updated using the training data, i.e., the input #pðtnÞ and targeted output gðtnÞ; and n takes from 1 up
to N: There are several parameters which control the minimization process, however, the most
influential is the adaptive learning gain, g:Details of the training process will be given in Section 2.5.
With a set of fixed values of the controlling design constants, a (see Section 2.2), l (see Section 2.4)

and g (see Section 2.5), the trained linear weights W in Layer 2 are unique. This overcomes the
problem of non-uniqueness. It should be noted that this non-uniqueness is, strictly speaking,
conditional and depends on the chosen values of the controlling design constants. If these values
vary, the identified weighting matrix W will also change accordingly. The choice of proper values
for the design constants thus presents a significant challenge. While this could be done through a
laborious trial and error approach, some guidance on their proper selection, through the
minimization of certain performance indices, will be given in Section 2.5.

2.4. Design parameter l and high order terms

A common problem for the universal approximator with the architecture of ‘‘input–hidden–
output’’ is how to determine the number of hidden nodes. Normally, training can start with
several numbers of hidden nodes either based on empirical experience or just an arbitrary guess.
When the desired performance is not obtained, more nodes are added into the hidden layer.
However, the way in which hidden nodes are added is totally different in the VWNN [1]. In the
VWNN, the number of hidden nodes may start with the first order nodes only. When more nodes
are added, they will not be added one by one. Instead, they will be inserted in batches including all
the nodes belonging to a certain high order.
As defined in Ref. [14], high order terms can be considered as the power terms of the first order

terms themselves as well as their cross terms. Several examples are provided in Ref. [5] to show
what the corresponding first and high order terms should be. For the formulation considered here,
the total number of nodes belonging to the mth order terms is the different combinations of m out
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of 3n1 þ 2nf different things, at a time, with repetitions, where 3n1 þ 2nf is the dimension of the
input vector to the neural network, which is the same as that of the first order hidden nodes.
Forming these terms systematically requires an efficient numerical scheme especially for the cases
where the degrees of freedom (n1 or nf ) is high or the required power ðmÞ is high, and this issue will
be addressed later. Note that high order terms differ from sigma–pi units as commonly defined
[15,16]; comparison has been made in Ref. [5].
Neural networks are considered to be non-parametric identification tools because the weights of

both Layers 1 and 2 in the adopted architecture can hardly be related to the physical properties
of the system modelled/identified by the neural networks. As presented above, however, the effects
of the weights can be visualized based on a linear parameterization: the weights of Layer 1 define
the non-linear basis functions and those of Layer 2 are related to the coefficients. In the VWNN,
the weights in a not fully connected Layer 1 are unified to l (see Fig. 3). It is then worth exploring
why a unified l value is sufficient and how the value of l can influence the profile of the non-linear
basis functions.
For the first order nodes, Fig. 4 indicates that a small value of the weight coefficient tends to

flatten out the S shape while the large value tends to make a hyperbolic tangent function
saturated. The bias defines the shift of the center of the antisymmetrical shape of the hyperbolic
tangent function from ð0; 0Þ: It can be seen that a linear function can be formed by simply
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choosing a very small weight and zero bias, while a sign function can be obtained as the result of a
very large weight.
For the high order terms, the linear weights l in the first order terms will propagate into the

high order terms as non-linear weights. Serving as quick examples, Figs. 5 and 6 study the one- or
two-input cases with the same input range. Fig. 5 shows the approximated and exact polynomial
terms side by side. The comparison indicates how conveniently and efficiently the polynomial
basis functions can be formed from the corresponding high order terms. As long as the first term is
a rough approximation of a straight line (which can be done by choosing a small value for l), the
resulting high order terms will be good approximations of the polynomial terms. This is because
the approximation error in the first order term, which is less than 1, decreases when the power is
increased. Here, hyperbolic tangent sigmoidal functions are used to demonstrate polynomial
approximation. For the capabilities of logistic sigmoidal functions in approximating polynomials,
reference can be made to Ref. [5] for a detailed theoretical study. Since the polynomials play an
important role in approximating typical non-linear restoring forces for hysteretic systems [17,3],
the capability of approximating polynomials makes it possible for the VWNN to be an efficient
approach in handling on-line prediction of accelerations of hysteretic systems.
The effectiveness of the VWNN is however not only limited to approximating polynomial-type

non-linearities. It has been shown in Fig. 4 that the hard limiting basis function is readily available
when l is chosen to have a high value. As further indicated in Fig. 6, where three different values
of l and several different powers of high order terms are tried, the feature of dead-space non-
linearity as often observed for hysteretic systems with slip can be captured by the hidden nodes of
the VWNN. A localized peak or valley can also be mimicked when the power is taken to be an
even number. A one-variable case is considered in this figure and the output range of interest is
assumed to be ½�1;þ1�: The output range is emphasized here because the numerical errors can
jeopardize good identification results when the hidden node outputs are too small.
Figs. 5 and 6 give some clear indications on how the value of l can affect the types of non-linear

basis functions formed by the hidden nodes in the VWNN. Note that in both figures, the input
ranges are the same for multi-inputs. This is designed only for convenience in a simplified
preliminary trial. When using real data, the situation will be somewhat different. Normally, within
the input vector #pðtnÞ ¼ ½ #x1ðtnÞ

T; #’x1ðtnÞ
T; .x1ðtnÞ

T; f1ðtnÞ
T; f1ðtnþ1Þ

T�T; the magnitude of acceleration,
velocity and displacement differ from each other in orders of magnitude. This is due to the
different units they adopt and the frequency range of the dynamic response.
Fig. 7 demonstrates the effect of different input ranges on the output of the high order terms

when the same value is chosen for l: The first and second order terms of two different inputs (p1
and p2) having different orders of magnitudes, are compared with each other when two different
values of l are adopted. It can be seen that a smaller l value can make the high order terms of p1
approximate polynomials well, while the high order terms of p2 are almost zero. But if the output
range is still insensitive to numerical error, the high order terms of p2 can be considered to be a
good approximation of polynomials as shown in the localized view. When a larger l value is
chosen, the high order terms of p2 can approximate polynomials well. However, those of p1 lose
their previous ability of mimicking polynomials.
Examples in Fig. 7 highlight the difficulties of handling the inputs with different input ranges

especially when the small output resulting from small input is enough to cause numerical error.
When the smallest output has not caused numerical error, it may be wise to choose a l value
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mainly to make the input with the largest range behave most like the desired non-linear basis
function. This comment is not exhaustive; there are many varying situations to be considered in
real applications of the VWNN. It may be worth considering having more than one l value for
different input nodes to deal with cases with different input ranges. Adjusting the a values in the
numerical integration in Eq. (5) might be another solution. By choosing proper a values, it might
be possible to scale the integrated velocity and displacement into a proper range with respect to
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the acceleration, which might in turn make adjusting l an efficient way of producing the desired
non-linear basis functions. This issue is worthy of further study.
In the real implementation of the VWNN, it is important to consider the computational aspects

of how to form high order terms. The procedure of constructing a complete list of the second and
third order terms computationally without repetition is developed in this study as illustrated by a
generic example in Fig. 8, where the analogous lattice structures are illustrated which help
programming. This work is considered as a refinement and an improvement on the basic work in
Ref. [1]. While having the same identification results, substantial computational time can be saved
since a huge number of repetitive hidden nodes are removed.
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Fig. 7. Effects of different input range, one-input case: input p1 ¼ ½�10;þ10� and input p2 ¼ ½�1;þ1� when (a)–(f )

l ¼ 0:05 and (g)–(l) l ¼ 0:5: Linear and quadratic terms are considered. The solid lines are for the hyperbolic tangent

approximations, while the dashed lines are the exact polynomials. The output range of interest is assumed to be

½�0:5;þ0:5�:
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2.5. Adaptive law and design parameter g

A normalized gradient adaptive law with projection [13] is used for the estimation of the
weighting matrix W. This adaptive law keeps the trained weights bounded regardless of the
boundedness properties of the inputs and outputs. The original formula is designed to update a
weighting vector. Based on the architecture of this neural network as shown in Fig. 3, each
weighting vector in Layer 2 related to the jth output node, wj (where j ¼ 1; 2;y; n1) can be
identified independently. With the hidden node output vector denoted as /; the adaptive law can
be expressed as

wjðtnþ1Þ ¼ wjðtnÞ þ DwjðtnÞ; ð8Þ

where

DwjðtnÞ ¼

gejðtnÞ/ðtnÞ; if jjwjðtnÞjjoM; or jjwjðtnÞjj ¼ M;

and ðgejðtnÞ/ðtnÞÞ
TwjðtnÞp0;

I�
wjðtnÞwjðtnÞ

T

wjðtnÞ
TwjðtnÞ

 !
gejðtnÞ/ðtnÞ; otherwise;

8>>>><
>>>>:

ð9Þ

where the notation jj 	 jj represents vector Euclidean norm. The vectors wjðtnÞ and /jðtnÞ are
column vectors. The identity matrix I has square dimensions which are of the same length as
vector /: The scalar ejðtnÞ is the jth normalized estimation error at time instance tn; and it is
defined as

ejðtnÞ ¼
gjðtnÞ � zjðtnÞ

1þ /ðtnÞ
T/ðtnÞ

; ð10Þ

where the scalar gjðtnÞ is the jth targeted output component, gtðtnÞ ¼ .xjðtnþ1Þ; and zjðtnÞ is the jth
network output, zjðtnÞ ¼ #.xjðtnþ1Þ:
Scalars M and g in Eq. (9) are design constants. The former is the bound in the projection

method and has to be chosen to be a large positive value. The latter, g; is the adaptive gain, which
is an important parameter equivalent to the gradient in the gradient method. If this value is
chosen to be too small, the convergence of wj’s will be very slow. But if it is chosen to be too large,
the wj’s values may become unstable. There is a proper range for the value of g to ensure the
stability and fast rate of convergence of the identified values of wj’s.
The root-mean-square (RMS) output error is chosen to be the performance index. The values of

the three design constants, a; l and g; need to be predetermined based on minimizing this
performance index.

3. Application to a non-linear structure

The methodology presented above is applied to a simulated three-dimensional tripod structural
system with nine degrees of freedom. This system is described in detail in Ref. [18]. Only three
degrees of freedom are excited with random excitation. Two identification models are tested in
this study; one considers high order terms up to second order and another up to third order. Two
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situations are considered in each model, one with training on and the other with training off, where
training off refers to the case when the final trained weights obtained in training on are frozen and
used throughout the response for validation purposes. The value of M in Eq. (9) is chosen to be
105 throughout the training.
The values of a; l and g are determined beforehand. The value of a should be selected relative

to (i.e., the same as, or some fraction thereof ) the sampling rate used in the simulation (which in
this case is 0.005 seconds), while the values of l should cause no saturation of the maximum values
of the acceleration, velocity and displacement, as a conclusion of the discussion of Fig. 7. Since the
velocity and displacement data are integrated from the acceleration with small time step size, only
the range of the acceleration is considered in choosing a proper l value. Fig. 9 illustrates the
profiles of the output of the first order hidden node of the acceleration when l takes different
values. It can be seen that l ¼ 0:005 may be a proper choice. The selection of the g value can be
based on trial and error. By adopting the RMS error as commonly defined, a parametric study is
run to study the influence of varying a; l and g on the final RMS error. For example, the results
of the second order model at the 2000th time step when the training is on are shown in Fig. 10. It
can be seen that both l and g values have a significant impact on the performance.
When the parameters a; l and g take the values of 0.005, 0.005 and 1.2, respectively, the RMS

errors at the 2000th time step of the second and third order models are presented in Table 2. Both
cases of training on and training off are considered for each model. The corresponding time history
of both the real and estimated acceleration are compared and presented from Figs. 11–14. The
user-specified design parameters for this example include a relatively high learning rate, g; which
yields excellent output tracking performance. The cost for this performance is that given a
relatively high gain, the model parameters will exhibit overly sensitive adaptation, and hence, will
often not converge to stable values. This explains why here the training off case does not model the
system well, because the fixed model parameters are those chosen from a time instant during a
relatively unstable convergence of the model parameters. In contrast, a low learning rate would
produce smoother parameter convergence but also poorer output tracking, however, the training
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off case is able to model the system better. This can be verified by choosing g ¼ 0:3 and the results
are shown in Table 2. It can also be observed from these time history plots that the mean of the
estimate errors tends to be non-zero for the second order model, while that for the third order
model tends to be zero. This indicates that the third order model better captures the system
dynamics. The problem dealt with is not the force-state mapping problem but could be related to
it. This result is not surprising, given that typical restoring force phenomena exhibits odd function
behavior. Therefore, even modelling terms from the second order powers will not fit the system
response well, and will hence produce a biased error. Another advantage of including third order
high order terms is a better training off estimate, however, the computational time is increased
significantly because many more nodes have to be included.

4. Discussion

Three simulation experiments are performed to further explore the convergence nature of the
weights. For convenience of presentation, an imaginary SDOF system is adopted with up to
second order terms. According to Table 3, there are 20 nodes in the network model. Therefore,
there are 20 weights to be trained.

Case 1: Using a wideband random signal with zero mean and standard deviation of one as the
excitation force (denoted as f%1 ) and the values of the weighting vector shown as ‘‘exact’’ values in
Table 3, the acceleration ‘‘measurement’’ (denoted as .x%1 ) can be calculated. The values of the
parameters involved are a ¼ 0:005 and l ¼ 0:001: The excitation force, f%1 ; and acceleration, .x%1 ;
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Table 2

RMS of estimation error, where a ¼ 0:005; l ¼ 0:005; M ¼ 105

Training

mode

RMS error in 2nd order model

594
 9 hidden nodes in total

RMS error in 3rd order model

6578
 9 hidden nodes in total

g ¼ 1:2 g ¼ 0:3 g ¼ 1:2 g ¼ 0:3
Training on 0.048 0.098 0.049 0.086

Training off 0.356 0.263 0.234 0.150
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Fig. 10. Influence of varying a; l and g on RMS error, second order model with training on: (a) l ¼ 0:005; g ¼ 1:2;
M ¼ 105; (b) a ¼ 0:005; g ¼ 1:2; M ¼ 105; (c) a ¼ 0:005; l ¼ 0:005; M ¼ 105:
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the different output range at each channel. (a)–(i) correspond to channels 1–9.
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Note the different output range at each channel. (a)–(i) correspond to channels 1–9.
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Fig. 13. Time-history of the real (solid lines) and estimated (dashed lines) accelerations at all nine channels, third order model with training on. Note

the different output range at each channel. (a)–(i) correspond to channels 1–9.
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Fig. 14. Time-history of the real (solid lines) and estimated (dashed lines) accelerations at all nine channels, third order model with training off. Note

the different output range at each channel. (a)–(i) correspond to channels 1–9.
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of 1000 time steps each are plotted in Fig. 15. The weight vector in this case, in fact, is obtained
from freezing the final trained values of the weights of another set of random wideband excited
signal with zero mean and standard deviation of one and of 100 time steps. The parameter values
used there are: a ¼ 0:005; l ¼ 0:001; and g ¼ 2
 105:

Case 2: The wideband excitation force, f%1 and the corresponding acceleration, .x%1 ; derived in
Case 1 are used in the training. The weights to be trained are all initialized to zero. When
a ¼ 0:005; l ¼ 0:001; and g ¼ 3
 105; the RMS error at the 1000th time step is considered
acceptable. The final trained weights are shown in Table 3. Note that the same values of a and l
are used in both Cases 1 and 2. Since the value of a and l control the input layer and Layer 1 as
shown in Fig. 3; the similarity of the weights in Cases 1 and 2 indicates that a unique solution can
be obtained in this case. The time history of the trained weights is illustrated in Fig. 16. It can be
seen that the trained weights converge to the exact values for the dominating weights in terms of
magnitude. Almost all the weights converge very fast; however, two weights out of the twenty
become unstable. These two weights, however, correspond with terms which yield a negligible
contribution to the network output. It also seems that the two weights may be related to the
numerical integration scheme in Eq. (5); further work being undertaken to study these unstable
weights.

Case 3: While the same input and output to the neural network are used as in Case 2, the values
of the three design constants are different. All the weights are initialized to zero. It can be seen
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Table 3

Summary of the values of the weights for the imaginary SDOF system

Serial Exact value in Case 1 Learned value in Case 2 Learned value in Case 3

number of a ¼ 0:005; l ¼ 0:001 RMS error ¼ 0:0741 RMS error ¼ 0:0836
weights a ¼ 0:005; l ¼ 0:001 a ¼ 0:05; l ¼ 0:05

g ¼ 3
 105 g ¼ 80

1 4.7481
 10�6 5.8162
 10�6 1.0376
 10�7

2 �9.6241
 10�2 �9.6241
 10�2 �1.9261
 10�3

3 �1.5458
 10�2 �1.5458
 10�2 �3.0929
 10�4

4 �4.4409
 10�8 5.1862
 10�8 �2.5951
 10�8

5 �8.3404
 10�9 1.2711
 10�9 �3.6726
 10�7

6 �1.4190
 10�12 �7.5765
 10�13 �3.3230
 10�13

7 1.0486
 10�8 5.9206
 10�9 6.6442
 10�9

8 �1.1669
 10�4 �8.1795
 10�5 �1.1239
 10�5

9 �3.9996
 10�9 5.1521
 10�9 5.9356
 10�9

10 �8.6292
 10�5 �8.2892
 10�5 �5.1505
 10�5

11 �7.3933
 10�5 �1.4600
 10�4 �1.5017
 10�5

12 �2.5090
 10�14 �6.3401
 10�15 �3.5611
 10�14

13 1.1157
 10�10 5.0896
 10�11 9.9564
 10�10

14 �1.8323
 10�10 �7.1022
 10�11 2.9314
 10�10

15 2.6984
 10�16 �9.1984
 10�17 1.9276
 10�13

16 �6.7156
 10�16 �2.2546
 10�17 �2.0204
 10�13

17 �3.8225
 10�13 2.4335
 10�12 �2.2762
 10�10

18 �6.7676
 10�12 �5.1323
 10�12 �5.0012
 10�10

19 4.8487
 10�17 �1.4650
 10�18 2.0710
 10�12

20 7.9820
 10�18 2.5570
 10�18 3.3372
 10�11
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that the final trained weights are very different from those in Case 2, although the RMS errors in
both cases are comparable. This indicates the non-uniqueness of the neural network solution,
when varying the values of a and l:

5. Conclusions

This study makes an attempt to demystify the inner-workings of a powerful VWNN in terms of
problem formulation and network architecture and also improves its computational efficiency. A
training example using generic data demonstrates that the VWNN is able to yield a unique set of
weights when the values of the controlling parameters a and l are fixed. Meanwhile, the design
parameters a and l; as well as the network architecture, can be related to the non-linearities of the
dynamics system to be modelled. A training example using simulation data shows the efficiency of
this neural network in predicting accelerations. The advantages of the VWNN indicate the
potential of applying such highly flexible non-parametric identification techniques (namely, neural
networks) in a parametric fashion to structural health monitoring and damage detections. Further
work is needed to better control this VWNN in order to better perform on-line identification of
non-linear systems.
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Fig. 15. Time-history of (a) the wideband excitation force and (b) the calculated acceleration of an imaginary SDOF

system.
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Fig. 16. Time-history of the trained weights in Case 2 of Table 3. Note the different orders of magnitude of these

weights. (a)–(t) correspond to w1–w20:
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