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The temporal resolution of event-related fMRI is
limited by the low sampling rate of typical MR whole
brain protocols and by the slow rate of the BOLD
response. Within the assumptions of the General Lin-
ear Model, we explore the tolerance of regression anal-
yses of fMRI data to errors in the timing of the model
relative to the experimental data under a number of
circumstances. Given the sensitivity of the analysis to
temporal shifts of the model relative to the data, one
can search for the time a neuronal event occurs with
temporal resolution on the order of a few hundred
milliseconds with 95% confidence. This confidence
level is strongly dependent on the signal-to-noise ratio
of the observed BOLD responses (approximately �200
ms in our example of visual stimulation data collected
at 1.5 T). © 2002 Elsevier Science (USA)

INTRODUCTION

In order to study the flow of control and information
between brain structures using fMRI, fine temporal
resolution is necessary. In such studies, one would like
to know what the sequence of neuronal events is in a
particular task. The limitation of fMRI in resolving
neuronal events arises mainly from the slow hemody-
namic response observed by fMRI. The sampling rate
of the MRI scanner is also limited (it takes less than 3 s
to sample the whole brain), but luckily, since the re-
sponse function is so slow and smooth (up to 20 s in
duration), the sampling rate is still adequate under the
Nyquist sampling theorem.

Thus, two related questions often arise in the design
of an event-related functional MRI experiment. The
first is whether we can distinguish between closely
spaced events (200 ms) that happen in different brain
structures (Badre et al., 2000; Dale and Buckner, 1997;
Wagner et al., 1998; Buckner et al., 1998). In that case,
the limitations and the optimal experimental condi-
tions are also of interest. If the neuronal events were
shifted slightly in time, one would expect that a shift in
the BOLD response should also occur. The issue is
whether such a shift is observable, given the very low
amount of detectable signal of the BOLD response
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(commonly 5% or less of the MR signal intensity),
which makes the detection of the signal difficult in the
first place.

The second question concerns the tolerance to time
shifts in the model with respect to the data. This issue
arises when there is an uncertainty in the onset time of
the neuronal events or when there is lack of tight
control over the synchronization between scanner and
stimulus/response hardware. In this case, the experi-
menter expects a simpler activation pattern in the
brain and doesn’t need to distinguish between cogni-
tive subprocesses that may occur at different times, so
it would be beneficial for the investigator to have a
somewhat higher tolerance of timing errors.

The temporal characteristics of the BOLD response
have been explored previously by others. For example,
Lee and Glover (1995) observed delays of 4 to 8 s in the
vascular response to photic stimulation between voxels
in gray matter and in larger vessels. In their study,
they examined the phase of the correlation between the
data and the model. Menon et al. (1998) used a “time-
locked” approach to discriminate the difference in the
onset time of the BOLD response of the right and left
visual cortices to independent photic stimulation as
short as 120 ms apart. This first study involved very
fast imaging (TR � 100 ms) at 4 T at the expense of
spatial resolution (single slice). Acquiring five slices
(thickness 10 mm) every 480 ms, they were also able to
discriminate response onset delays between SMA and
visual and motor cortices in a visual–motor task (as
low as 28 � 11 ms). Their analysis was based on fitting
straight lines to the on-ramp BOLD response. This
approach served them quite well with the very high
signal-to-noise ratio (SNR) responses they measured.
Although perhaps not suitable for work at lower mag-
netic field and finer spatial resolution, that work dem-
onstrates that fine temporal resolution of neuronal
events can be resolved by measurements of the BOLD
response. The drawback of such “time-locked” ap-
proaches is that they limit the experimental design to
sparsely separated trials that allow for the BOLD re-
sponse to decay completely (�20 s). The current trend,
however, is to “deconvolve” the BOLD response out of
an experimental data set and a stimulus function.



These approaches include the use of a Wiener filter
(Glover, 1999), linear regression (Hinrichs, 2000), or
subtraction of the prior and future responses (Dale,
1997; Miezin, 1999). The main drawback to the decon-
volution approach is that it is quite susceptible to
noise. In the context of linear regression, it requires
fitting 20 or 30 parameters at a time, in addition to the
estimates of the confounds, which uses a lot of degrees
of freedom. In the context of a deconvolution filter, one
has to assume knowledge of the noise structure in
order to design the filter appropriately.

The present study will try to answer the questions of
sensitivity and tolerance within the framework of the
General Linear Model approach to functional imaging
data analysis and assuming knowledge of the hemody-
namic response function from previous measurements.
We’ll take a three-step approach to the question. First
we will derive an analytical equation for the correla-
tion coefficient between the model and the data as a
function of noise and time shift discrepancy, in order to
optimize the experimental design. Second, we will gen-
erate simulated data and compute the correlation co-
efficients as we introduce noise into the data and as we
introduce a time shift into the model. We will then
examine what happens to the temporal resolution
when there are errors in the model of the BOLD im-
pulse response function, the measurement of the onset
times. Third, we will test the theory on experimental
data in order to validate it.

METHODS

Analytical Approach

We derived an analytical expression for the correla-
tion between simulated real data and a model to be
tested, including terms for the dependence on the tim-
ing shift and on the noise level of the data. The under-
lying assumptions for the derivation were that the
model accounted for all sources of variance, in other
words, that the model was an exact representation of
the data, except for noise and a time shift. The second
assumption was that noise in the time series was
Gaussian and independent of the BOLD signal, and the
third assumption was that the BOLD response was
linear and time-invariant.

The derivation of the expression is as follows. The
correlation coefficient between any two functions is
usually computed by

�xy �
E��X � X� ��Y � Y� ��

��x �y�
. (1)

In our ideal case, the two functions are the BOLD
response plus noise and the model of the response,
which is assumed to be perfect except for a time offset
(the other variable we wish to study). Thus,

Y�t� � B�t� � ��t�, (2)

X�t� � B�t � T�, (3)

where B(t) is the BOLD response to a set of stimuli, T
is the time shift between the data and the model, and
�(t) is the zero-mean noise in the measurement. Since
the BOLD response is assumed to be linear and time-
invariant, the response to a set of stimuli can then
calculated by convolving the hemodynamic response
function (HRF) of choice with a train of events (delta
functions) occurring at the stimulus times, such that

B�t� � HRF�t� � �
trial

��t � Ttrial�. (4)

By substituting the BOLD response into the correla-
tion coefficient equation above, and performing a few
algebraic manipulations, one can show that

�xy �
E�B�t�B�t � T�� � B� 2

�B �� �
2 � � B

2
(5)

(B� is the average BOLD signal over the interval and �B

is its standard deviation). Note that this equation re-
quires a sufficiently large data sample such that
E[B(t)] � E[B(t � T)]. Additionally, we can compute the
corresponding t score of the correlation coefficient as a
function of the noise and the time shift between the
model. The t score is usually computed from the corre-
lation coefficient by

t �
�xy �n � 2

�1 � � xy
2

, (6)

where n is the degrees of freedom (Shott, 1990). Note
that the term E[B(t)B(t � T)] in Eq. (5) is the definition
of the autocorrelation function of B(t), so the correla-
tion coefficient equation is dominated by the shape of
the autocorrelation function of the response. Thus, the
sensitivity will be dependent on the choice of hemody-
namic response model.

Simulations

All computations were carried out using MATLAB
(Mathworks, South Natick, MA), on a Pentium III PC.

A model of the BOLD response to a set of stimuli was
created by convolution of a set of stimuli with a canon-
ical HRF. The stimuli were created by a spike train in
which the intertrial intervals (ITI) of the stimuli were
normally distributed about a mean of 16 s with a stan-
dard deviation of 4 s (the distribution was truncated to
avoid negative ITIs) over a period of 600 s. The ITI
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distribution was chosen to be Gaussian as an arbitrary
example to simply illustrate the technique, although
the 16-s mean ITI was chosen to preserve the linearity
of the BOLD response. The data were created using a
0.01-s sampling period and subsampled to match the
TR of the simulated experiment. These data were in-
tended to serve as B(t) in Eq. (5). The correlation’s t
score was computed using Eqs. (5) and (6) for several
levels of noise in the data (�� ranging from 0.3 to 3
times the amplitude of a single BOLD response) and
temporal shifts of the model (T ranging from �1 to 1 s
at 0.1-s increments).

The canonical HRF was based on two gamma variate
functions to characterize the rise and the ensuing un-
dershoot observed in event-related fMRI experiments.
This function is based on the shape of empirical data
(Friston, 1994; Lange, 1997) and given by the follow-
ing equations in the implementation of the SPM99
analysis software package (Wellcome Department of
Cognitive Neurobiology, Institute of Neurology, Uni-
versity College of London, London, UK; Evans, 1993;
Abramowitz, 1964):

HRF�t� �
l 1

	1t �	1�1�e ��l1 � t�

	�	1�
�

l 2
	2t �	2�1�e ��l2 � t�

	�	2�
, (7)

where

	�	� � �
0




t �	�1�e �tdt. (8)

In order to verify the results from Eqs. (5) and (6), a
model was created by convolving the stimulus function
and the HRF, as before, and a data set was simulated
by adding Gaussian noise to the model. Unless other-
wise indicated, we used the default parameters of the
software, which follow: 	1 � 6, 	2 � 16, l1 � 1, l2 � 1.
The model was shifted in time between �1 and 1 s at
0.1-s increments to simulate the time shift errors in
question. Thus, the correlation between the model with
different time shifts and the data sets was then calcu-
lated. The correlations were computed using a multi-
variate linear regression approach, as different noise
levels were added to the simulated data (zero mean
Gaussian noise with variance 0.3 to 3 times the ampli-
tude of a single BOLD response). Note that throughout
this paper, we will use the variance of the noise as a
measure of the noise level relative to the peak ampli-
tude of the BOLD response. All the simulations were
repeated 1000 times, and the average t scores were
computed for each noise level.

In an additional set of simulations (noise levels rang-
ing from 0 to 10 times the amplitude of a single BOLD

response), we computed the temporal shift that pro-
duced the maximum t score, in order to identify the
temporal shift of the model. After 1000 repetitions at
each noise level, we calculated the mean and standard
deviation of the results, in order to model the error of
measurements of the temporal shift in a given model.

Similar simulations of time shifts were also carried
out introducing additional discrepancies between the
model’s and the data’s parameters. The errors were
examined for two fixed levels of noise (variance 0.0001
and 3 times BOLD response), as well as in a visual
stimulation experiment’s data (described below). We
examined errors in the HRF model, the ITI, and the
number of events present in the data.

The effect of errors in the hemodynamic response
function used to model the response was studied by
varying the parameter 	1 (	1 � 5.5, 6, and 6.5 s) in the
HRF used to generate the model, while keeping it
constant in the simulated data (	1 � 6 s). The param-
eter 	1 changes both the peak time and the width of the
rising portion of HRF, according to Eqs. (7) and (8). We
examined the effect of errors in the onset times of the
events (or ITI) by adding an extra amount of Gaussian
jitter (standard deviation ranged from 0 to 1 s, mean �
0) to the timing of the events in the model relative to
the simulated data and recomputing the correlations
as before. We also examined the effect of discrepancies
between the number of events present in the model
and in the data, by adding and removing events from
the simulated data (the discrepancy in number of
events ranged from 10 to �10). Such errors can occur
if noncompliance of the subject with the task goes
unnoticed.

Experimental Data

In order to assess the validity of the simulations, a
data set from a visual stimulation experiment was
reanalyzed with different temporal shifts of the model,
as well as including the mentioned discrepancies of the
model’s parameters. Six hundred volumes taken at an
oblique angle of a subject’s visual cortex were acquired
on a 1.5-T Signa LX MR scanner (General Electric,
Milwaukee, WI). The scans were acquired using a sin-
gle-shot spiral imaging sequence (TR/TE/flip � 1000/
35/35, matrix 64 � 64 � 12 slices, FOV 200 mm, slice
thickness 3.4 mm) in a 10-min period, during which an
alternating checkerboard pattern was flashed (flicker
rate 8 Hz) in front of the subject’s eyes, using a MR-
compatible stimulus presentation system (IFIS; Psy-
chology Software Tools, Pittsburgh, PA), for 0.5 s at a
time. The intervals between stimuli were normally dis-
tributed about a mean of 16 s with a standard devia-
tion of 4 s. After reconstruction of the k space data, the
time series of images was interpolated to correct for
differences in the acquisition times of each slice within
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each image. The images were then realigned to com-
pensate for head motion and, subsequently, spatially
smoothed with a Gaussian kernel (FWHM 6 mm in all
directions) in order to increase the SNR and to better
fit the random fields theory (Peterssen, 1999; Worsley,
1996). A multivariate regression analysis was carried
out using SPM99 (Wellcome Department of Cognitive
Neurobiology, University College of London, UK), in
order to identify the voxels whose signals fit a model of
the hemodynamic response to the experimental para-
digm. The analysis included no additional linear con-
founds with the exception of baseline, in order to mimic
the simulations as close as possible. The movement
parameters were examined to verify that no gross
movements (�2 mm, or 2°) were present. Once an
active region was identified in the visual cortex, a time
series was extracted from a region of interest within
that active region, by averaging the voxels inside a
5-mm radius sphere centered on the maximum of the
activation cluster. This time series was then subjected
to the same tests as the simulated data above (tempo-
ral shifts, discrepancies in the HRF, ITI, and number
of trials).

RESULTS AND DISCUSSION

As we discussed, we examined the effects of noise
and time shifts of the model, in two ways: first, by

plotting the correlation obtained from the derived Eqs.
(5) and (6) as a function of time shift and noise level
and second, by examining the correlation between
model and simulated data. Figure 1a shows a family of
plots (corresponding to different noise levels) of the
correlation between the model and the response data
as a function of the temporal shift of the model, as
predicted by the equations. Figure 1b shows a similar
family of plots of the equations as a function of the time
offset between the model and the simulated data as we
added noise to the simulated data. Figure 1c shows the
result of analyzing the data in a voxel of interest from
the visual cortex in the visual experiment (described
under Methods) with different temporal shifts. The two
simulation plots (a and b) are in excellent agreement,
suggesting that the equations hold and can be used to
predict the sensitivity of the model to temporal shifts.
In addition, the experimental data in Fig. 1c also agree
with the predicted outcome of the analysis. By compar-
ison with the simulated data, the plot of Fig. 1c sug-
gests that the variance of the noise is in the neighbor-
hood of 50% of the amplitude of the BOLD response.
There are two points to note about these plots: First, as
the noise is incremented, the t scores are reduced and
one can see that the slope of the curve gets flatter,
indicating that there is less temporal sensitivity as the
noise level is increased (Eq. (5) predicts that the noise
acts as a scaling factor of the correlation coefficient).

FIG. 1. Simulated correlations between model and data. The t score of the correlations is plotted as a function of the temporal shift
between the model and the data, at different levels of noise present in the BOLD signal, ranging from 0.3 to 3 times the amplitude of a single
BOLD response. The t score of the correlation is reduced as the noise level is increased. Note that the rate of change of the t score as a function
of the time shift is considerably faster when the SNR is high. (A) The t scores obtained from analyzing data using a multivariate linear
regression. In (B), the plot is generated by evaluating Eqs. (5) and (6). The same statistical analyses were performed on experimental data
from the visual stimulation experiment, and the resulting scores are shown in (C). As expected, the three approaches are in excellent
agreement.

1021TEMPORAL SENSITIVITY OF EVENT-RELATED fMRI



This implies that we are more likely to cross the chosen
t-score threshold as we shift the model in time. At the
same time, the t score is not reduced more than 10% of
its value by the temporal shift in the model over the
simulated ranges, which means that event-related
fMRI experiments are quite tolerant of such timing
errors. Second, the reduction of the t score as a function
of the temporal shift of the model is symmetric within
the 2-s window explored.

As we have shown, the derived equations can be used
to examine the sensitivity of the model to temporal
shifts, given an experimental design. For example, Fig.
2 shows the effect of the choice of ITI on the temporal
resolution. The choice of ITI will have a direct impact
on the variance of the response, �B, and on the auto-
correlation function, which we showed to determine
the shape of the sensitivity curve. By inspection, one
can see that there is an optimum ITI for which the test
is more sensitive to temporal shifts of the model
around 15 s. This is not surprising, since Cox and
Bandettini (1998; Bandettini, 2000) reported an ITI of
15 s as optimum to achieve maximum statistical power
in event-related experiments, given the characteristics
of the canonical HRF, and some of the earlier plots
suggest that higher statistical significance increases
the sensitivity of the analysis to temporal shifts of the
model. Note that a shorter ITI allows for more events
to be packed in the paradigm, which increases the
energy of the model, but below a certain ITI, one starts
to approximate a blocked design with only one condi-
tion, i.e., the model becomes closer to a flat line, so the
estimate of the response amplitude becomes con-
founded with the estimate of the intercept (baseline
signal) in the general linear model. One should keep in
mind that this optimum ITI applies only to this partic-

ular trial randomization scheme and that the optimum
ITI would be different for other randomization
schemes, such as the semirandom one employed by
Dale and Buckner (1997) and Miezin et al. (2000),
which reportedly increases the statistical power of the
test. We arbitrarily chose a normal distribution of ITIs
for our studies, even if this is not optimum for statis-
tical power, but the behavior of the statistical scores
relative to the temporal shift shown here should apply
for other distributions as well.

Although one usually does not have any control over
the HRF of the subject, it is interesting to note that the
time shift sensitivity of the analysis is also dependent
on the HRF’s shape. A sharper HRF is expected to be
more sensitive than one that is slow and smooth. Equa-
tions (5) and (6) predict that the shape of the t score
will be closely linked to the shape of the autocorrela-
tion of the BOLD response function of the whole exper-
iment, which is determined by the response to a single
stimulus. This is illustrated in Fig. 3, in which the
simulations are repeated, varying the parameter 	1 in
the HRF (which determines the width of the response
and its time to peak). It should be noted that this
equation is based on the assumption that there is an
accurate measurement of the HRF. We will soon exam-
ine the effects of errors in the model of the HRF on the
temporal sensitivity of the analysis more closely.

There are a number of mathematical models for the
HRF (Cohen, 1997; Friston, 1994; Aguirre et al., 1998;
Buxton et al., 1998; Franssin et al., 1998; Hoge et al.,
1999; Boynton et al., 1996; Lange and Zeger, 1997).
Here, we have used a simple linear model based on a

FIG. 3. Plots of the correlation’s t score as a function of temporal
shift of the model, showing the dependence on the shape of the HRF,
as determined by the parameter 	 [	1 in Eq. (7)]. Longer 	 lengthens
the duration of the HRF, whereas shorter ones make it sharper, as
illustrated by the more extreme values of 	. The usual “physiological”
value used in the vast majority of fMRI analyses is 6 s.

FIG. 2. Plots of the correlation’s t score as a function of temporal
shift of the model, showing the dependence on the mean intertrial
intervals.
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gamma variate function, because it resembles the
physiological HRF and it has the flexibility to alter the
width and the delay time. However, one should note
that the same principles about time sensitivity should
still apply to other models of the HRF. Since the HRF
has been shown to exhibit nonlinear properties, one
must take these into consideration as well, but that is
beyond the scope of this study.

The simulations presented so far were performed
under the assumption that the only error in the model
was a temporal shift between the model and the data.
The following results give an indication of what hap-
pens in the presence of additional experimental errors.
Figure 4 shows a “matrix” of plots showing the depen-
dence of the regression’s t score on temporal shifts of
the model. Each column shows the results of simulat-
ing a type of error that can be potentially found in the
model in addition to the temporal shift, and each row
represents the different kinds of conditions in the sim-
ulations as well as experimental data.

The first column of plots was obtained from simula-
tions in which the HRF of the model and the HRF of
the simulated data were in disagreement. The second
was generated from data in which an extra jitter was
added to the event times in the model relative to the
data, in order to investigate the effects of inaccuracies
in the measurement of the actual ITI. The third column
explores what happens in the case in which some trials
are missed due to subject noncompliance or in which
extra events are present in the data, but not accounted
for in the model.

The first row of plots was obtained from simulations
with minimal noise levels (1–3% of the amplitude of the
HRF); the noise was increased to more realistic levels
(150% of the amplitude of the HRF) for the plots in the
second row. The third row of plots was obtained from
the visual stimulation experiment data. The fourth row
shows the effects of the errors alone in the absence of a
temporal shift in the model for both the experimental
and the simulated data. Note that the jagged appear-
ance of the simulation plots is due to the fact that a
new random noise vector was used in each simulation,
introducing variability into the correlation between
simulations, and this variability remains even after
1000 averages of the simulations.

The errors in the model’s canonical HRF are the
most significant ones. Not only do they reduce the
statistical score of the analysis, but they also cause the
time shift sensitivity curves to peak earlier or later
than one would expect. The shift of the curve is not
very surprising since a faster HRF would peak and
decay earlier. This sort of error would be very damag-
ing if we were trying to identify the exact timing of
neuronal events by this sort of “time-shifting” ap-
proach, but it means a reduction of statistical signifi-
cance only in analyses that exclusively try to identify
activation. It is a little more surprising to note that one

also gets higher t scores (although the curve is shifted)
when the HRF model is a little slower than the true
HRF than when the model and the true HRF are in
agreement. We hypothesize that, since a slower HRF
function has more energy associated with it, it is less
sensitive to noise. Thus, as the level of noise increases
in the simulations, the t score is reduced faster in the
case of a “sharper” HRF (i.e., Tau is shorter) than in
the case in which it is a slower HRF. This is apparent
comparing the plots in Fig. 4 that show the simulation
of HRF errors with and without noise (plots A and D).
In our initial simulations, we observed that all three
curves got smaller as we gradually increased the noise.
However, the curve on the left (i.e., with the errone-
ously slower HRF) did so slower than the other two.
The puzzling result is that the t score of a regression
analysis can be higher if the model HRF is too slow and
there is a temporal shift than if the model HRF is
correct and there is no temporal shift. We attribute this
to the greater amount of power in the slower HRF
models. Note that this ceases to be true as the noise in
the simulations is reduced.

Discrepancies in the ITI and in the number of events
between the model and the data result in a loss of
statistical power, but the temporal shift sensitivity
curves still peak at zero shift. In the case of extra
events (i.e., ones not included in the model) being
present in the data, the reduction of the t score is less
than in the opposite case because these events simply
contribute to the “noise,” or unaccounted variance, af-
fecting only the denominator of the t score (recall that
a t score is essentially a signal to standard deviation
ratio). In the opposite case, in which the subject misses
events, the t score is more greatly reduced, since the
variance of the data is increased and there is a reduc-
tion of the parameter estimate of the data, which af-
fects the numerator of the t-score calculation.

The results from the experimental data are in excel-
lent agreement with the simulated data, except for the
experiments regarding the number of trials present.
The reason is that the number of events was varied in
the model, rather than the data, thus affecting the
power of the regression, rather than its t score. This
results in a much faster decrease of the t score as we
introduce discrepancies in the number of events. One
must also note the slight asymmetry in the shift sen-
sitivity plots of the experimental data; these can be
blamed on erroneous parameters in the HRF model, as
discussed.

The above simulations suggest that it should be pos-
sible to determine the temporal shift between stimulus
and response with great accuracy by searching for the
temporal shift in the model that produces the maxi-
mum correlation. One can think of this approach as
fitting an additional parameter [the temporal shift, T,
in Eq. (3)] of the linear model whose slope parameters
have already been estimated. Of course, such a mea-

1023TEMPORAL SENSITIVITY OF EVENT-RELATED fMRI



FIG. 4. Each column represents a type of error that can be potentially found in the model in addition to the temporal shift, and each row
represents the different kinds of conditions in the simulations as well as experimental data. From this family of plots, we infer that all these
errors lead to a reduction in the t score. However, discrepancies between the model and the data’s HRF parameters lead to a shift of the
temporal sensitivity curves. If the HRF is modeled to be faster than it really is, the t score will peak when the model is delayed relative to
the real experimental paradigm. In other words, one will mistakenly identify the onset of the event at a later time. In the opposite case, in
which the HRF is modeled too wide, the onset of the event will appear at an earlier time and, interestingly, the reduction of the t score will
be a lot less than in the opposite case.
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surement would have a variance associated with it,
which would depend on the amount of noise present in
the data. Figure 5 shows a plot of the variance of the
model’s temporal shift as a function of the noise in the
data. The standard deviation was computed from a set
of 10,000 simulations with noise levels ranging from
0.05 to 4.05 times the size of the BOLD response, in
which the shift (T) was varied from �2 to 2 s at 0.2-s
intervals. As the noise increases, so does the standard
deviation of the measurement of the temporal shift (a
histogram of the estimates for noise variance of 3.05
can be seen in Fig. 6). In a typical fMRI experiment,
one might expect the noise to be up to three times the
size of a single BOLD response. In such a case, the
standard deviation of the temporal shift estimate
would be approximately 200 to 400 ms. In the example
of visual stimulation presented here, the noise is ap-
proximately 50% of the BOLD signal amplitude, which
suggests a standard deviation of 100 ms according to
our simulations. This in turn translates into an inter-
val of �/�200 ms certainty at the 95% confidence level.
There is a great variability of SNR depending on the
field strength, subject’s response, scanner hardware,
etc. In our experience at 3 T, it is not uncommon to see
noise levels under 10% of the BOLD response for sim-
ilar visual stimulations. On the other hand, it is well
known that other areas of the brain do not give such
clear BOLD responses, especially at lower field
strengths.

One must note that this estimate is possible only if
the hemodynamic response of the tissue is well char-
acterized. Otherwise, as indicated by the simulations
involving errors in the HRF (Fig. 4), the estimate
would be biased to an incorrect temporal shift and thus
an incorrect timing of neuronal events. Thus, if timing

of events is desired, it will be important to measure the
HRF directly using a separate paradigm designed for
that purpose.

The data presented here suggest also that regression
analyses of fMRI data are quite tolerant, although
observable, to time shifts in the experimental model.
The effect is a small reduction of the significance of the
analysis within the 2-s window explored due to the
slow hemodynamic response of the human brain. How-
ever, in the case of a small response or high amount of
noise in the data, this reduction of the significance can
cause active voxels to fail the significance test because
of a temporal shift.

The assumptions made in our model were that the
HRF was linear and time invariant, which also under-
lie the theory of the General Linear Model. These as-
sumptions have been examined by others, and they are
reasonably met under normal experimental conditions
(Boynton et al., 1996), although they do break down
under certain conditions (Buxton et al., 1998; Vazquez
and Noll, 1998). For our derivation approach, the noise
in the BOLD signal was assumed to be independent of
the signal, with a mean of zero, regardless of its dis-
tribution. The BOLD noise is made up of a number of
components, among them respiratory and cardiac mo-
tion, as well as patient motion. Depending on the par-
adigm and the subject’s compliance, this noise can have
a certain degree of correlation with the paradigm and,
consequently, the experimental model of the BOLD
signal. We believe that our assumption is reasonable,
since it is again one of the underlying assumptions for
GLM analysis.

FIG. 6. Histogram of the estimates of the temporal shift, when
the noise’s variance is 3.05 times the amplitude of the BOLD re-
sponse.

FIG. 5. Uncertainty of the estimate of the temporal shift in a
model relative to the data as a function of the amount of noise in the
data.
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SUMMARY

Event-related fMRI can resolve closely spaced (on
the order of hundreds of milliseconds) neuronal events
when the data are analyzed through an iterative pro-
cess of temporally shifting the model and computing a
linear regression statistic (General Linear Model) until
a maximum is found. This sort of technique has the
potential to resolve questions regarding the timing of
neuronal events and thus help us resolve issues of
control between brain structures. However, accurate
knowledge of the BOLD impulse response function, or
hemodynamic response function, is crucial to deter-
mine the correct event time. The HRF could be mea-
sured using time-locked averaging or deconvolution of
a simpler paradigm, as discussed in the Introduction.
Some factors that affect the temporal sensitivity of the
measurement are the intertrial interval and errors in
its measurement, the variance of the noise present in
the data, and the shape of the HRF as well as having
an accurate measurement of it.
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