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17  Health Risk Analysis for Risk Management Decision-Making 

 Louis Anthony (Tony) Cox, Jr.  

 

ABSTRACT 

Health risk assessment offers a framework for applying scientific knowledge and data to improve 

“rational” (consequence-driven) risk management decision-making when the consequences of 

alternative decisions are uncertain. It does so by clarifying both:  (a) The probable consequences 

of alternative decisions (usually represented by conditional probabilities of different 

consequences occurring, given specified current information and probabilistic risk models); and 

(b) How current uncertainties about probable consequences might change as more information 

is gathered. This chapter summarizes methods, principles, and high-level procedures for using 

scientific data (e.g., biological and epidemiological knowledge) to assess and compare the 

probable human health consequences of different exposures to hazards (i.e., sources of risk); to 

predict likely changes in exposures and risks caused by alternative risk management 

interventions; and to evaluate and choose among interventions based on their probable health 

consequences. The usual goal of these methods is to identify and select actions or interventions 

that will cause relatively desirable probability distributions of human health consequences in 

affected populations. We discuss the steps of hazard identification (including causal analysis of 

data), exposure assessment, causal dose-response modeling, and risk and uncertainty 

characterization for improving health risk management decision-making. 
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Public health risk analysis deals with decisions about which of a set of available risk 

management interventions (usually including the status quo or “do-nothing” option) should be 

implemented. For example, should cell phone use in cars be banned? Under what conditions, if 

any, should cattle be imported from countries with low levels of diseases such as BSE? Should 

antibiotics used in human medicine be prohibited from uses in food animals, even if doing so can 

cause more sick animals (and hence perhaps more sick people), in order to preserve the 

effectiveness of the antibiotics in treating human patients? To what extent should industrial 

emissions of specific compounds be restricted? 

Health risk analysis provides a set of methods, principles, and high-level procedures for 

using scientific data (e.g., biological and epidemiological knowledge) to assess and compare the 

probable human health consequences of different exposures to hazards (i.e., sources of risk); to 
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assess the likely changes in exposures and risks arising from alternative risk management 

interventions; and to evaluate and choose among alternative risk management interventions 

based on their probable health consequences. The goal is usually to identify and select actions or 

interventions that will cause relatively desirable (e.g., stochastically undominated) probability 

distributions of human health consequences in the affected population. Health risk analysis is 

often divided into the overlapping stages of risk assessment risk management, and risk 

communication, organized as an iterative process. Table 1 summarizes several traditionally 

defined steps in this process.  

Hazard identification deals with how to establish cause-and-effect relations from data. 

Exposure assessment quantifies the changes in exposures caused by alternative interventions, 

while dose-response modeling (or exposure-response modeling) quantifies the causal relation 

between changes in exposures and probable resulting changes in adverse consequences. Finally, 

risk characterization integrates the preceding components to predict the probable changes in 

health that will be caused by a risk management action that changes exposures.  

Health risk assessment uses available facts, data, and models to estimate the health risks to 

individuals, to an entire population, and to selected subpopulations (e.g., infants, the elderly, 

immunocompromised patients, and so forth) caused by hazardous exposures and by the decisions 

and activities that create them. Health risks of sporadic illnesses due to exposures to chemicals, 

radiation, bacteria, or other hazards are measured quantitatively by the changes in the 

frequencies and severities of adverse health effects caused by the exposures.  

  Quantitative Definition of Health Risk 

For sporadic illnesses (as opposed to epidemics), individual and population health risks can be 

defined as follows: 
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• The individual risk of sporadic illnesses (or accidents, injuries, or other adverse outcomes) 

caused by an exposure can be represented by the frequency and severity of additional adverse 

health effects per capita-year caused by that exposure.   It can often be tabulated or plotted as 

the expected number of cases per capita-year in each severity category—e.g., mild, moderate, 

severe, or fatal, as defined in Buzby, et al. (1996) based on illness-days and mortality. To 

avoid having to carefully define, describe, and compare the severities of different illnesses, 

one can simply use days of illness per year for each category of illness (e.g., mild, moderate, 

or severe) to summarize morbidity impacts, perhaps broken down by different age groups or 

other population sub-groups.  

Table 17.1. Traditional Steps in Health Risk Analysis 

Step Purpose and Description Relevant information and techniques 
Hazard 
identification 

Identify potential sources of 
harm or loss. These sources 
are called hazards. Hazard 
identification identifies 
possible adverse health 
effects of activities or 
exposures and possible 
causes of observed adverse 
effects. 

• Human data: Epidemiology, clinical 
and public health statistics; 
surveillance data 

• Animal tests and bioassays 
• In vitro tests  
• Structure-activity patterns, molecular 

modeling, pattern recognition and 
statistical classification techniques 

Exposure 
assessment 

Quantify the number of 
people receiving various 
levels or intensities of 
exposure to a hazard over 
time. Relevant exposure 
metrics may depend on 
dose-response relations. 

• Environmental fate and transport 
models, possibly summed over 
multiple media (paths) and sources. 

• Studies of human activity patterns. 
• Biological monitoring of exposed 

individuals and receptors. 

Quantitative 
exposure-
response and 
dose-response 
modeling 

Quantify the magnitude of 
risk created by exposure of 
a target to a hazard. 
Characterize the probable 
frequency and severity of 
adverse health outcomes or 
losses caused by exposure 
to the hazard. 

A quantitative risk assessment (QRA) 
runs multiple exposure scenarios 
through dose-response models to 
predict likely health impacts. 
Statistical, simulation, or 
biomathematical models of biological 
processes are used to quantify dose-
response relations. 
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Risk 
characterization 
and uncertainty 
analysis 

Combine estimated 
probabilities and severities 
of health harm (adverse 
consequences), together 
with indications of 
uncertainty or confidence, 
to create an overall 
summary and presentation 
of risk. 

Monte Carlo simulation calculates risks 
by sampling many scenarios. Risk 
profiles, probability distributions, and 
trade-off and sensitivity analyses 
display risk, uncertainty, and 
variability. 

Risk 
communication 

Deals with how to present 
risk information to 
stakeholders. Considers how 
different types of recipients 
perceive risks and 
internalize/act on messages 
about them, in deciding 
what messages to send via 
what media.  

Psychological theories and models and 
behavioral/experimental findings on 
risk perception and effective risk 
communication  

Risk 
management 
decision-making 

Decide what actions to take 
to control risks and hazards 
– i.e., accept, ban, abate, 
monitor, further research, 
reduce, transfer, share, 
mitigate, or compensate. 

Risk-cost-benefit analysis, formal 
decision analysis for groups and 
individuals, risk quantification and 
comparison  

Alternatively, and often more conveniently, the loss due to increased mortality and morbidity 

can be expressed in terms of quality-adjusted life-years (QALYs), which can serve as a 

single summary measure of severity if the required preference-independence conditions 

justifying QALYs are accepted (Hazen, 2003; Miyamoto, 1999). Individual risk is then given 

by the joint probability distribution of the number of cases per capita per year and the 

associated severities (i.e., QALYs lost per case).  

• Population risks are described by the sum (or, in more detail, by the frequency distribution) 

of individual risks over all person-years in the population. They can be expressed as numbers 

of additional adverse health effects per year (of each type or severity category) occurring in 

the population. Population risks can also be further characterized by identifying 

subpopulations with especially high individual risks. 
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Technical Note: Use of Expected Values. Use of the expected number of events per year to 

quantify risk is justified for sporadic illnesses that occur independently, or with only weak 

statistical dependence, in large populations, when the Poisson approximation (Janson, 1994) or 

the compound Poisson approximation (Barbour and Mansson, 2000) holds. The expected number 

of cases per year then determines the full probability distribution of the number of illnesses per 

year, to a close approximation (made precise in the above references). Moreover, the Poisson 

probability distribution is stochastically increasing in its mean; thus, larger numbers of expected 

cases correspond to less preferred distributions for all decision-makers who prefer fewer cases 

per year to more. The formulae Individual risk = expected number of additional illnesses per 

year × expected QALYs lost per illness and Population risk = sum of individual risks are useful 

for sporadic illnesses, although they must be generalized for other types of risks, e.g., to allow 

for risk aversion (Cox, 2001).  

  The main goals of risk assessment are to produce information to improve risk management 

decisions by identifying and quantifying valid cause-effect relations between alternative risk 

management decisions and their probable total human health consequences, and by identifying 

decisions that make preferred outcomes more likely. Health risk assessments typically use 

explicit – and, if possible, validated – analytic models (e.g., statistical, biomathematical, or 

simulation models) of causal relations between actions and their probable health effects. In 

general, quantitative risk assessment applies specialized models and methods to quantify likely 

exposures and the frequencies and severities of their resulting health consequences.  

 

Example:  Statistical and Causal Risk Relations May Have Opposite Signs 
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As illustrated by the following (perhaps counter-intuitive) example, there is no necessary 

relation between statistical exposure-risk associations and the change in risk that would be 

caused by changing exposure. As a simple counterexample, consider a hypothetical population in 

which 100% of men and 0% of women are exposed (i.e., Exposure = 1 for men, Exposure = 0 for 

women); and in which Risk = 0 for women, Risk = 100% for unexposed men, and Risk = 10% 

for exposed men. In this example, exposure reduces risk, but the statistical association between 

them is positive. The statistical relation between exposure and risk in this population is: 

 Risk = 0.1 × Exposure, 

That is, when Exposure = 1, Risk = 10% (for exposed men), and when Exposure = 0, Risk = 0 

(for unexposed women.) Yet, the causal effect of reducing Exposure is to increase risk in the 

population, by shifting men from the lower-risk exposed group to the higher-risk unexposed 

group. The causal relation between Exposure and Risk in this population is thus: 

 Risk = 1 – 0.9 × Exposure for men; Risk = 0 for women. 

In general, fitting a simple reduced-form statistical model to data does not allow one to correctly 

predict the effects of changing the independent variables on resulting changes in the dependent 

variable (Shipley, 2000; Freedman, 2004). [This example is motivated by empirical relations 

found in a real data set collected by CDC (Friedman et al., 2000) for the foodborne bacterial 

pathogen Campylobacter. Men do appear to have greater susceptibility to campylobacteriosis 

than women; they do appear to have greater exposure to risk factors such as eating undercooked 

meat in restaurants and swimming in untreated water; and exposure to chicken (e.g., buying and 

handling raw chicken, preparing and eating chicken at home, etc.) does appear to reduce risk of 

campylobacteriosis, for both sexes. The above counterexample exaggerates these empirical 
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patterns to extremes to provide a simple illustration of the disconnect between statistical and 

causal relations.]   

A Bayesian Network Framework for Health Risk Assessment 

To support effective risk management decisions, human health risk assessments must 

characterize known or suspected potential causal relations between risk management actions 

(including the status quo or “do-nothing” option), on the one hand, and probable resulting human 

health consequences on the other. Actions typically affect exposures to sources of risk (i.e., 

hazards), while consequences typically include changes in the frequency or severity of resulting 

illnesses or deaths in affected populations. Hazard identification identifies causal relations 

(possibly including causal paths) leading from risk management actions to their human health 

consequences. Hazard identification often precedes any plan to develop a risk management 

strategy, as effective risk management is often impossible if causal relations are not understood. 

Figure 17.1 outlines a causal graph (Shipley, 2000; Greenland and Brumback, 2002) for 

assessing risks to humans from changes in exposures to hazards. In this template, risk 

management actions can change exposures of individuals to potentially harmful agents (the 

hazards). Changes in exposures, in turn, change expected illness rates and hence adverse health 

consequences (e.g., illness-days or early deaths per capita-year) in susceptible members of the 

exposed population. If desired, different human health consequences can be aggregated into a 

single summary measure, such as quality-adjusted life-years (QALYs), if the required preference 

conditions hold (Hazen, 2003), but this is optional. The effects of such changes on the number of 

QALYs lost per year in the population can be mediated by individual behaviors or attributes 

(e.g., immune status, age, gender, diet, behaviors, and other covariates that affect susceptibility 
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to infections). These covariates may also influence each other (indicated by the brackets [] 

around them in Figure 17.1. For example, an AIDS patient may have food consumption and 

preparation behaviors and medical treatments that differ from those of a non-AIDS patient. Risk 

assessment helps to identify risk management options (acts) that decrease adverse health 

consequences, taking into account the distribution of covariates in the population.  

Act → Δ Exposure  →  Δ Illnesses→   Δ Consequences → ΔQALYs 

       ↑         ↑           ↑ 

           [Behavior       Susceptibility    Treatment] = type of case 

Figure 17.1 A causal graph for health risk analysis 

Technical note:  Influence diagram interpretation.  Figure 17.1 can be interpreted as a Bayesian 

belief network or causal graph model (Greenland and Brumback, 2002; Chang and Tian, 2002). 

In this framework, each variable to which arrows point is interpreted as a random variable with a 

conditional probability distribution that is completely determined by the values of the variables 

that point into it. Because this diagram has a decision node (“act”) and a value node 

(“ΔQALYs”), it is an example of an influence diagram (Owens et al., 1997). Important details 

are represented only implicitly, by conditional probability distributions. Algorithms to identify 

possible causal graph structures from data (and hence to test whether hypothesized causal 

theories are consistent with data) have been developed (e.g., Tsamardinos et al., 2003), but are 

not yet routinely applied in risk assessment. Such causal graph models are useful because 

effective algorithms exist to (a)  Quantify the conditional probability distributions of any subset 

of their variables, given observed values of the rest; and (b)  Solve for acts that give maximum 

expected utility (once a utility function has been defined for outcomes such as ΔQALYs) (see 

Crowley, 2004, http://www.cs.ubc.ca/~crowley/academia/papers/aiproj.pdf). 

http://www.cs.ubc.ca/%7Ecrowley/academia/papers/aiproj.pdf
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Each choice of a risk management act in Figure 17.1 generates a corresponding random 

number of incremental illness cases (“responses”) caused or prevented each year in each severity 

class of consequences (e.g., mild, moderate, severe, fatal) in the population (and in each 

subpopulation, if there are several). The expected health consequences of this change can be 

calculated from the following three submodels, which are common to most risk assessments: 

• An exposure model (the “act → Δexposure” link in Figure 1) that quantifies the amounts of 

exposure received per unit time by exposed individuals.  

• A dose-response or exposure-response model (the “Δexposure → Δillnesses” link in Figure 

1) that quantifies the probability of illness, or the expected incremental number of cases at 

each given severity level, per unit of exposure. In general, this relation may depend on the 

individual’s “type (i.e., on the combination of covariate values that influence risk for that 

individual), as well as on the dose (units of exposure) received.  

• A health consequence model (the “Δillnesses → Δconsequence” link in Figure 1) quantifying 

the conditional probabilities of different health outcomes (e.g., survival vs. fatality, or 

number of QALYs lost) from each case. These outcome probabilities may depend on factors 

such as physician prescription behavior or hospital infection-control standards.  

These three submodels determine the expected illnesses and QALYs lost per year in each 

severity class for each act. Multiple exposure pathways and at-risk populations (perhaps 

including groups receiving different medical treatments) can be included to quantify the total 

human health impact of different acts. Summing health impacts over all distinct combinations of 

hazards, exposure routes, and target populations (each corresponding to an instance of Figure 1) 

gives the total probable change in human health consequences for the act. 
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Technical Note: Monte Carlo simulation. If there are too many combinations of hazards, 

exposure routes, and target populations for explicit summation over all of them to be practical, 

then Monte Carlo simulation can be used to obtain accurate numerical approximations of the 

average risk (and the distribution of health effects). For example, suppose that risk is given by 

f(x1, x2… xn) = f(x), and that one can sample from the joint probabilitity density function (PDF) 

of the xi, Pr(x1, x2… xn) = Pr(x1) Pr(x2 | x1)…Pr(xn | x1, …, xn-1). Then Markov Chain Monte 

Carlo (MCMC) simulation techniques such as Gibbs sampling (Andrieu et al., 2003; Lange, 

2003 can be used to generate random samples from the joint PDF of x. Taking a simple 

arithmetic average of the values of f(x) obtained for a sufficiently large random sample of x 

values will give an accurate estimate of the true average risk EPr(x)[f(x)] implied by f(x) and 

Pr(x). Commercial risk analysis software tools such as Analytica™, @RISK™, and Crystal 

Ball™ include Monte Carlo simulation routines that can generate estimated means, confidence 

bands, and entire estimated probability distributions for f(x). Vose (1998) provides a basic 

introduction to Monte Carlo simulation in spreadsheet models for microbial risk assessment and 

Cassin et al. (1998) discusses how to use Monte Carlo simulation for tasks such as priority-

setting and risk management. 

 The conceptual framework in Figure 1 can be implemented with greater or lesser degrees of 

sophistication. Perhaps the simplest approach is to generate point estimates for each risk 

management act and exposure pathway for each of the following:  

• Exposure factor = units of exposure received per capita per year;  

• Dose-response factor = expected cases of illness per unit of exposure; 



Advances: Health Risk Analysis Page 12 of 39 Ch 17 060502 V07 

• Health consequence factor = expected QALYs lost (or illness-days created, etc.) per case of 

illness. (Alternatively, a vector of expected numbers of different health outcomes can be 

estimated; e.g., mild, moderate, severe, and fatal outcomes per case.) 

In this approach, each sub-model (corresponding to a horizontal arrow in Figure 1) is represented 

by a single number. One can then multiply these numbers together, and multiply by the number 

of people affected, for each causal path and each risk management action. (Causal paths may 

include not only different exposure paths, but may encompass all three links.)  Summing the 

results over all causal paths provides an estimate of the total human health impact per year for 

each action. A more refined calculation can be made by considering how these factors might 

change over time, and then summing over time periods (perhaps with discounting).  

At the other end of the spectrum, Figure 1 can be applied to risk estimation using 

conditional probability algorithms developed for Bayesian networks and causal graphs (Chang 

and Tian, 2002). In this case, hazard identification can be thought of as identifying instances of 

Figure 17.1 that are consistent with available data. Statistical methods are available to test 

whether specified causal graph models are indeed consistent with data (Greenland and 

Brumback, 2002; Shipley, 2000), and practical algorithms have been developed to identify 

potential causal graph models from multivariate data (Aliferis et al., 2003; Tsamardinos et al., 

2003). The remaining steps in the risk assessment process can then be interpreted as quantifying 

and applying the resulting Bayesian network. In this framework, the simple approach of 

multiplying exposure, dose-response, and consequence factors generalizes to allowing arbitrary 

probability distributions for inputs and conditional probability relations to be combined via 

Monte Carlo simulation (Andrieu et al., 2003) to derive the joint probability distributions of the 

outputs.  
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Bayesian network methods – combined with objective statistical tests for potential causality, 

such as conditional independence tests (Shipley, 2000; Greenland and Brumback, 2002) – appear 

promising for providing more effective, data-driven risk assessments, while also allowing for the 

use of expert judgment when necessary. See for example Parsons et al., 2005 for preliminary 

work on Bayesian networks and related methods for risk assessment.  

 
Hazard Identification 

 

Risk assessment begins with hazard identification the process of specifying the scope of the 

assessment and summarizing the available empirical evidence that exposure to a specific 

“hazard” causes specified adverse health effects in exposed individuals or populations. Thus, 

hazard identification can serve to:   

1. Rapidly screen potential hazards by identifying whether available data support the 

hypothesis that the hazard might cause specific adverse health effects (possibly using formal 

statistical methods of causal analysis; e.g., Shipley, 2000.  

2. Identify causal relations between specific hazards and specific adverse human health effects.  

3. Identify risk factors, behaviors, and exposure conditions that increase risks to specific 

exposed populations (e.g., the old, the young, the immuno-compromised, etc.) 

4. Summarize empirical evidence both for and against the hypothesis that exposures to specific 

hazards cause specific adverse human health effects (Patton, 1993.)  

In reality, of course, joint causation is common; i.e., observed adverse consequences are 

often due to a combination of a hazardous agent, activities resulting in exposures to that agent, 

failure to undertake protective actions, and possibly other confounding factors, such as decreased 

immunity in a sub-population. In general, any event or condition that hastens the occurrence of 

an adverse effect or increases its likelihood can be viewed as a contributing “cause” of the effect. 
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For more on the philosophical definition and ambiguities of “causation”, see Williamson (2005). 

Thus, “the cause” of an adverse health effect is often not uniquely defined. Nonetheless, for 

purposes of risk management, it often suffices to predict the effects of alternative risk 

management interventions on the rates of adverse events of different severities. Hazard 

identification helps to identify such interventions. 

Table 17.2 below outlines steps for forming and testing causal hypotheses about exposure-

response relations using epidemiological data. As more of these steps are completed, the 

empirical support increases for a causal relation between exposure and risk. Most statistical 

methods in epidemiological risk analysis focus on steps 1-3; i.e., identifying non-random 

associations, and then eliminating potential biases and confounders as likely explanations. These 

steps can often be carried out using observational data, even without experimental controls, by 

using the refutationist approach (Maclure, 1990, 1991). This systematically enumerates possible 

competing explanations for the observed data, and then eliminates each of those potential non-

causal explanations (if possible) using statistical tests on the available data.  

Table 17.2. Steps to Establish a Causal Exposure-Risk Relation 

1. Identify a statistically significant exposure-response association; e.g., using case-control, 

prospective cohort, or other cross-sectional or longitudinal epidemiological data.  

2. Eliminate confounding as a possible explanation of the association, by accounting for factors 

such as lifestyle, age, or exposure to other hazards, e.g., using conditional independence tests 

(Grimes and Shulz, 2002; Feldman, 1998; Greenland and Morgenstern, 2001).  

3. Eliminate biases in sampling, information collection, and modeling choices as possible 

explanations for the association (Choi and Noseworthy, 1992; Deeks et al., 2003).  

4. Test and confirm hypothesized causal and conditional independence relations, for example, 

by showing that the response is not conditionally independent of the hypothesized exposure 

that causes it, given other variables (Shipley, 2000; Friedman, 1996; Frey et al., 2003). 
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5. Confirm efficacy of interventions, e.g., by experimental manipulations and/or intervention 

and change point analyses of time-series data (e.g.., Swanson et al., 2001; Green, 1995). 

6. Identify and elucidate causal mechanism(s), identified from experimental data and/or from 

generally accepted principles. 

 

Many epidemiologists have recognized that, to draw valid causal inferences, it is necessary to 

refute competing (non-causal) hypothesized explanations for observed exposure-response 

associations (Maclure, 1990, 1991). Table 3 summarizes common competing explanations 

(mainly, confounding and/or sampling, information, or modeling biases), and some suggested 

statistical methods to refute them (Cox, 2001, Chapter 3).  

Table 17.3. Potential Non-Causal Explanations for Exposure-Response Associations 

Potential Non-Causal 
Explanations 

Methods to Refute Potential Explanations 

Modeling Biases  
Variable selection bias (includes 
selection of covariates in model)  

Bootstrap, Bayesian model averaging (BMA), and cross-
validation for variable selection (Wang et al., 2004).  

Omitted explanatory variables 
(including omitted confounders) 

Include potential confounders in an explicit causal graph 
model; test for unobserved latent variables 

Variable coding bias (coding may 
affect apparent risk) 

Don’t discretize continuous variables. Use automated 
variable-coding methods (e.g., classification trees). 

Aggregation bias/Simpson’s 
paradox 

Test hypothesized relations at multiple levels of 
aggregation, down to individual-level data.  

Multiple testing/comparisons bias Adjust p-values (Romano and Wolf, 2005). 
Choice of exposure and dose 
metrics; choice of response effect 
definitions  

Use multiple exposure indicators (e.g., concentration and 
time). (Don’t combine.) Use survival functions and/or 
transition rates among observed health states. 

Model form selection bias; 
uncertainty about correct model  

Use flexible non-parametric models (e.g., smoothers, 
wavelets) and BMA for multiple models. Report model 
diagnostics and sensitivities of results to model forms 
(Greenland, 1989). 

Missing data  Use data augmentation, expectation maximization (EM) 
algorithm, MCMC algorithms (Schafer, 1997). 

Measurement and 
misclassification errors in 
explanatory variables 

Use Bayesian measurement error models, data 
augmentation, missing-data techniques (Schafer, 1997; 
Ibrahim et al., 2005). 

Unmodeled heterogeneity in 
individual response parameters 

Latent variable and finite mixture distribution models, 
frailty models of inter-individual variability.  
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Biases in interpreting and 
reporting results  

Report results (e.g., posterior PDFs) conditioned on data, 
models, and statistical methods. Show sensitivities. 

Sample Selection Biases  
Sample selection (sample does 
not represent population) 

Randomly sample all cohort members if possible. 

Data set selection bias (i.e., 
selection of studies may affect 
results)  

Meta-analysis of sensitivity of conclusions to studies. 
Use causal graph models to integrate diverse data sets. 

Health status confounding, 
hospital  admission/referral bias 

If possible, use prospective cohort design and population-
based cases and controls (Choi and Noseworthy, 1992). 

Selective attrition/survival (e.g., if 
exposure affects attrition rates) 
Differential follow-up loss 

Use a well-specified cohort. "Include non-surviving 
subjects in the study through proxy interviews" (Choi and 
Noseworthy, 1992). Compare counter-factual survival 
curves. 

Detection/surveillance bias Match cases to controls (or exposed to unexposed 
subjects) based on cause of admission. 

Membership bias (e.g., lifestyle 
bias, socioeconomic history) 

• In cohort studies, use multiple comparison cohorts.  
• Hard to control in case-control studies. 

Self-selection bias; 
Response/volunteer bias 

Achieve response rate of at least 80% by repeated efforts. 
Compare respondents with sample of non-respondents. 

Information Collection Biases  
Intra-interviewer bias Blind interviewers to study hypotheses, subject 

classifications. 
Inter-interviewer bias Use same interviewer for study and comparison groups. 
Questionnaire bias Mask study goals with dummy questions; avoid leading 

questions/response options. 
Diagnostic suspicion bias 
Exposure suspicion bias 

Hard to prevent in case-control studies. In cohort studies, 
make diagnosis and exposure assessments blind to each 
other. 

As stated by Savitz et al. (1990), "Biases that challenge a causal interpretation can always 

be hypothesized…  It is essential to go beyond enumerating scenarios of bias by clearly 

distinguishing the improbable from the probable and the important from the unimportant."  

Fortunately, well-developed statistical methods and algorithms are now available to: (a) identify 

significant statistical associations from data showing spatial and temporal associations between 

exposures and health effects (e.g., Mather et al., 2004); and (b) screen them for potential 

causality based on the above criteria. 

Technical Note:  Statistical tests for assessing potential causality. Over the past forty years, 

intuitive criteria for causality used in in epidemiology (such as the Bradford Hill criteria, 
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emphasizing strength, consistency, biological gradient, coherence, etc. of an association) have 

been made more rigorous, general, and quantitative by advances in applied decision sciences. For 

example, an approach based on information theory proposes that, roughly speaking, a data set 

provides evidence that exposure variable X is a potential cause of response variable Y if and 

only if X is:  (a)  INFORMATIVE about Y, i.e., the mutual information between X and Y, 

denoted by I(X; Y) and measured in bits (Cheng et al., 2001), is positive in the data set. (This 

allows for non-linear and even non-monotonic relations.) (b)  UNCONFOUNDED:  X provides 

information about Y that cannot be removed by conditioning on other variables, i.e., I(X; Y | Z) 

> 0 for all subsets of variables Z disjoint from X and Y. (c)  PREDICTIVE: Past values of X are 

informative about future values of Y, even after conditioning on past values of Y. (This 

generalizes the concept of Granger causality for time series, e.g., Guatama and Van Hulle, 

2003.)  (d) CAUSALLY ORDERED: Y is conditionally independent of the parents of X, given 

X, i.e., I(P ; Y | X) = 0, for any parent or ancestor P of X.. These principles yield practical 

algorithms (e.g., BayesiaLab™, Tsamardinos et al., 2003) for detecting potential causation in 

cohort, case-control, and time series data sets, even if the functional relations involved are 

nonmonotonic. (Causation may be present even if these conditions are not satisfied, but then the 

data do not provide evidence of it.)   Formal tests for statistically significant associations 

between the timing of one event (e.g., introduction or cessation of exposures) and subsequent 

changes in a series of measurements (e.g., human illness rates in a surveillance program) can be 

based on intervention analysis and change point analyses (Green, 1995) for time series. These 

methods for testing for potential causality are entering common biostatistical and risk analysis 

practice only slowly, but appear to be very promising (Shipley, 2000).  

 

http://www.bayesia.com/
http://www.callisto.si.usherb.ca:8080/bshipley/my book.htm
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  Exposure Assessment 

For environmental risk assessment, US EPA experts have stated that “Questions raised in the 

exposure analysis concern the likely sources of the pollutant… its concentration at the source, its 

pathways (air, water, food) from the source to target populations, and actual levels impacting 

target organisms” (Patton, 1993). Similarly, for microbial hazards, the US FDA has defined 

exposure assessment as “A component of a risk assessment that characterizes the source and 

magnitude of human exposure to the pathogen”. The magnitude of human exposure, also called 

the dose, is defined as “The amount or number of a pathogen that is ingested or interacts with an 

organism (host)” (http://www.foodsafety.gov/~dms/lmriskgl.html).  

Exposure assessment seeks both to identify exposed subpopulations at risk from exposures 

to hazards and also to identify conditions leading to high-risk exposures. It describes the extent 

of exposures (frequency and magnitude of individual exposures in the population in relation to 

susceptibility and covariates) and uses models to predict how risk management decision options 

will probably affect them.  A successful exposure assessment should describe the frequency 

distribution of exposures received by members of exposed populations and subpopulations and 

should show how these distributions change for different risk management decisions. The 

descriptions should contain enough detail to discriminate among different exposure distributions 

that would cause significantly different health outcomes. This information is used, together with 

dose-response information, to characterize risks 

The shape of the frequency distribution of exposures relative to the dose-response relation 

(e.g., how frequent are exposures that are likely to cause illness?) drives quantitative risk. It is 

common for exposures to be very uncertain, especially if they depend on unmeasured and/or 

highly variable processes. The exposure assessment influence diagram may then look like this: 

http://www.foodsafety.gov/%7Edms/lmriskgl.html


Advances: Health Risk Analysis Page 19 of 39 Ch 17 060502 V07 

Act → exposures → illnesses ← individual covariates 

             ↓ 

 measured exposure surrogates 

 

For example, available data may consist of surrogate measurements (e.g., contaminant levels in 

exposure pathways) rather than direct measurements at the point of exposure. True exposures 

then play the role of latent variables in causal modeling, i.e., they affect observed outcomes but 

are not observed themselves. Appropriate statistical techniques for causal diagrams with latent 

variables (e.g., Shipley, 2000 for linear models; Pearl, 2002 and Hartemink et al., 2001 for more 

general Bayesian Network models) can be applied to the above diagram with surrogate 

measurements of exposure for data. Software such as WinBUGS helps to automate the required 

computations for inference with missing data and unobserved or surrogate variables.  

Exposure models describe the transport and distribution of hazardous materials through 

different media and pathways (e.g., air, foods, drinking water) leading from their source(s) to 

members of the exposed population. In addition, exposure models may consider the distribution 

over time of human populations among locations and activities result in exposures. Simulation 

models of transport and behavioral processes, often developed using discrete-event simulation 

software, can be used to estimate frequency distributions of population exposures from 

assumptions about or sub-models of the more detailed micro-processes involved. 

 

Example: Simulation of Exposures to Pathogens in Chicken Meat 

The World Health Organization (WHO) has described a process simulation model of human 

exposures to the foodborne pathogen Salmonella as follows:   

http://www.mrc-bsu.cam.ac.uk/bugs/overview/contents.shtml
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The exposure assessment of Salmonella in broiler chickens mimics the movement of 

Salmonella-contaminated chickens through the food chain, commencing at the point 

of completion of the slaughter process. For each iteration of the model, a chicken 

carcass was randomly allocated an infection status and those carcasses identified as 

contaminated were randomly assigned a number of Salmonella organisms. From 

this point until consumption, changes in the size of the Salmonella population on 

each contaminated chicken were modeled using equations for growth and death. The 

growth of Salmonella was predicted using random inputs for storage time at retail 

stores, transport time, storage time in homes, and the temperatures the carcass was 

exposed to during each of these periods. Death of Salmonella during cooking was 

predicted using random inputs describing the probability that a carcass was not 

adequately cooked, the proportion of Salmonella organisms attached to areas of the 

carcass that were protected from heat, the temperature of exposure of protected 

bacteria, and the time for which such exposure occurs. The number of Salmonella 

consumed were then derived using a random input defining the weight of chicken 

meat consumed, and the numbers of Salmonella cells in meat as defined from the 

various growth and death processes. Finally, in the risk characterization, the 

probability of illness was derived by combining the number of organisms ingested 

(from the exposure assessment) with information on the dose-response relationship 

(hazard characterization).” 

(www.who.int/foodsafety/publications/micro/Salmonella/en/). 

http://www.who.int/foodsafety/publications/micro/Salmonella/en/
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The results of the Monte Carlo simulation exposure modeling are presented as: (a) an 

estimated 2% prevalence of contaminated chicken servings; and (b) the following conditional 

frequency distribution for the dose (CFUs)-per-serving from contaminated servings:  

 

Source: http://www.who.int/foodsafety/publications/micro/Salmonella/en/  

Figure 17.2. Average CFU per cooked chicken serving 

This frequency distribution shows how large an exposure a person is likely to receive from a 

serving of contaminated, undercooked broiler chicken. This is the main output of the exposure 

assessment and the main input to the dose-response model for calculating illness risk per serving. 

 

Example: Mixture Distributions and Unknown Exposure-Response Models 

Unknown or uncertain exposure-response relations in a population can often be estimated by 

decomposing the risk as follows: 

Pr(Illness | exposure = x) = ΣrPr(Illness | exposure = x & response type = r) × Pr(response type 

= r). 

Here, “response type” is an unobserved (latent) variable summarizing all of the missing 

information needed to predict the probability of illness from a known level of exposure. (For 

http://www.who.int/foodsafety/publications/micro/salmonella/en/
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example, if each individual has an unknown threshold number of bacteria that must be ingested 

in one meal to cause illness, then r would be that threshold number. If there is a continuum of 

response “types”, the above sum is replaced by an integral.)  A useful development in 

mathematical statistics is the recognition that the uncertain quantities Pr(response type = r) can 

be interpreted as statistical coefficients to be estimated directly from data on the aggregate 

number of responses observed in populations for different exposure conditions, while the 

conditional response probabilities that are paired with these coefficients, Pr(illness | exposure = 

x, type = r) can be estimated simultaneously from the same data (provided that technical 

identifiability conditions are met. These are automatically satisfied by many families of 

statistical distributions.)  The required statistical methodology is that of finite mixture 

distribution models if the number of types is finite; or continuous mixture models if types are 

continuous. Well-developed computational Bayesian algorithms can be applied to estimate the 

number of components in the mixture (i.e., the number of statistically significantly different 

“types”) and the corresponding coefficients and conditional response probabilities (see e.g., 

Richardson and Green, 1997; Stephens, 2000; Miloslavsky and van der Laan, 2003.)  In this 

construction, the exposure variable x can be any measured quantity that can be paired with 

corresponding illness rates. All unobserved details are absorbed into the latent “type” variable, r. 

Missing values and errors in measured values of x can also be handled within the computational 

Bayesian framework (e.g., using the data augmentation algorithm, Schafer, 1997) to allow the 

conditional distributions of outputs given observed data to be quantified, even when other data 

are missing. There is thus great flexibility within simulation approaches to use all available data 

(via conditioning), but without requiring use of unavailable data. 
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Dose-Response Modeling 

Dose-response models quantify the conditional probability of illness caused by each level of 

exposure; thus, the term exposure-response model is also appropriate. Figure 17.2 shows an 

example of a dose-response model developed for Listeria monocytogenes in ready-to-eat foods. 

A specific parametric dose-response model was assumed (an exponential model) and fit to 

epidemiological data for immunocompromised (“High risk”) and non-immunocompromised 

(“Normal”) subpopulations. The dark solid curve in Figure 2 is the estimated dose-response 

model for the “Normal risk” subpopulation. The dashed line above and to the left of it is the 

dose-response model for the “High risk” subpopulation. The lighter gray curves indicate 

estimated statistical confidence bands around these best-estimate curves – an upper confidence 

band for each (corresponding to the upper end of the 95% confidence interval estimated for the 

parameter of the exponential dose-response model), and a lower 95% confidence band for the 

right-most (Normal) dose-response model. 

As in Figure 17.3, it is often necessary to fit separate dose-response models to “normal” and 

“susceptible” subpopulations within the general population to account for inter-individual 

variability in dose-response relations. While more than two gradations of susceptibility can be 

modeled using finite mixture distributions, distinguishing between only two levels or response 

“types” in the population, i.e., susceptible and normal, often suffices to explain most of the 

variability in the data. If different degrees or severities of illness are distinguished, ranging from 

mild through severe to fatal, then a health consequence model describing the conditional 

probabilities of different levels or severities of health outcomes, given that illness occurs, is 

needed to augment the conditional probability of illness as a function of exposure. In general, 
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risk characterization requires describing the severities as well as the frequencies of adverse 

health outcomes caused by exposures. 

 

Figure 17.3 Example Dose-Response Function for Listeria monoctogenes 

 

In practice, biologically motivated parametric dose-response models are the most common, 

and usually the best justified, models in widespread use. They are typically fit to data by a 

combination of maximumum likelihood estimation (MLE) for point estimates and 

computationally intensive resampling techniques (e.g., bootstrapping algorithms) for confidence 

intervals, simultaneous confidence bands around the dose-response curve, and joint confidence 

regions for model parameters (e.g., Haas et al., 1999, Chapter 7, c.f. p. 293).  

Source:  FAO/WHO, 2001. http://www.who.int/foodsafety/publications/micro/en/may2001.pdf  

 

Example:  Best-Fitting Parametric Models May Not Fit Adequately 

Figure 17.4 for Salmonella feeding trial data show that even the best-fitting model in a certain 

class of parametric models (here, the approximate Beta-Poisson dose-response family, widely 

http://www.who.int/foodsafety/publications/micro/en/may2001.pdf
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used in microbial risk assessment) may not adequately describe the observed data. The 

parametric family of models is then said to be misspecified for the data, i.e., it is not appropriate 

for describing the empirical relation. In this example, the approximate Beta-Poisson model 

family is inappropriate for the data because even the best-fitting curve in the family dramatically 

under-predicts low-dose risks.  

 

Source: WHO/FAO, 2002. (Naïve BP = approximate Binomial Poisson) 

Figure 17.4 The Best-Fitting Beta-Poisson Model Under-Predicts Low-Dose Risks 

 

If the correct dose-response model is unknown and several models all provide adequate fits 

to the available data, multiple plausible models may be used to carry out the rest of the 

assessment. In this case, the analysis can be organized and presented as a model uncertainty 

decision tree in which different modeling choices correspond to different branches in the tree. 

The results of the risk analysis at the end of each branch are contingent on the assumptions and 

modeling choices that lead to it. Different branches may be weighted by the relative strength of 

the evidence supporting them (Kang et al., 2000). Bayesian Model Averaging (BMA) provides a 
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more formal version of this approach (Viallefont et al., 2001; Keiding and Budtz-Jorgensen, 

2004). Model uncertainty decision trees can also be used to present and analyze uncertainties due 

to choices of dose metrics, response definitions, and other modeling decisions, as well as choices 

of particular dose-response models.    

Uncertainty about illness probabilities caused by a given dose is often dominated by 

uncertainty about the most appropriate dose-response model. A decision tree presentation of 

alternative modeling choices and the resulting predicted risks – or even a simple plot of different 

plausible dose-response curves – can express much of the relevant uncertainty with a minimal 

amount of statistical sophistication. Other important computational methods and algorithms for 

uncertainty analysis include: 

• Monte Carlo uncertainty analysis using commercial software products such as Analytica™,  

@RISK™, Crystal Ball™ (Vose, 2000). For more on uncertainty and sensitivity analysis 

software, see the descriptions at product web sites.  

• Bayesian uncertainty analysis for model parameters and predictions (e.g., based on the 

WINBUGS software for inference with missing data.) 

• Bootstrapping and other resampling techniques for estimating joint confidence regions for 

model parameters and predictions. 

• Model cross-validation techniques for estimating the accuracy and prediction error 

characteristics of model predictions from performance on multiple subsets of data.  

These methods are discussed in general computational statistics texts and, for dose-response 

modeling, in risk analysis texts such as Haas et al., 1999, Vose, 2000, and Cox, 2001.  
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Risk And Uncertainty Characterization For Risk Management 

Risk characterization is the ultimate output of a risk assessment. It integrates hazard 

identification, exposure assessment, and dose-response information to determine the probable 

frequency and severity of adverse health effects in a population caused by exposures to a hazard. 

Characterizing the change in risk for different risk management interventions helps decision-

makers choose among them. Risk characterization also includes characterization of current 

uncertainty about risk. This allows the value of gathering additional information to be assessed 

as part of risk management deliberation and decision-making, based on the potential value of 

such information (VoI) to enable risk managers to make choices that are more likely to result in 

desired consequences (Yokota and Thompson, 2004). 

Given the results from:  

(a) Exposure assessment (i.e., the conditional probability distribution of exposures, for each act);  

(b) Exposure-response/dose-response modeling (i.e., the conditional probability of illness for 

each exposure pattern); and  

(c) Consequence modeling (e.g.,  the conditional probability distribution of adverse 

consequences given illness), 

the risk characterization step calculates, for each act being assessed, the resulting probability 

distributions for adverse consequences. (This can be done by literally summing or integrating 

expressions such as Pr(consequence = c | illness) × Pr(illness | exposure = x) × Pr(exposure = x | 

Act) over all exposure levels x, to obtain the probability of each consequence, c.) 

 

Example:  Risk Characterization Outputs 
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Figure 17.5 shows one of the risk characterization outputs from a risk assessment of Listeria 

monocytogenes (FAO/WHO, 2001). The solid curve shows the median estimate of the 

mortalities per year caused among the elderly subpopulation by L. moncytogenes in deli meats, 

for different maximum allowed storage times. The dotted curves represent the 5th and 95th 

percentiles of the uncertainty distribution, as assessed by Monte Carlo uncertainty analysis.  

 

 

Source:  FAO/WHO, 2001, http://www.cfsan.fda.gov/~dms/lmr2-6.html

Figure 17.5 Predicted annual mortality in the elderly subpopulation attributable to deli meats 

as a function of maximum storage time 

This display shows how predicted risks in this subpopulation vary with the effects of different 

potential interventions that would limit the maximum storage times allowed for deli meats. 

Similar curves can be shown for the effects of such interventions for other foods or groups of 

foods (e.g., dairy products, produce, sea food products, etc.) and for other subpopulations and the 

U.S. population as a whole. 

http://www.cfsan.fda.gov/%7Edms/lmr2-6.html
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Risk management is often viewed as a decision process that takes scientific information 

obtained from risk assessment as an input, along with value judgments and policy goals and 

constraints, and that recommends choices of risk management actions as its output. Alternative 

risk management approaches include risk acceptance, prevention or avoidance (e.g., by reducing 

exposures), mitigation of consequences (e.g., by appropriate clinical screening, diagnosis, and 

prescription procedures), transfer (e.g., health insurance), and compensation.  

A successful risk analysis shows the estimated changes in the frequencies and magnitudes 

of adverse human heath consequences resulting from different risk management decision 

options. (Of course, if hazard identification and risk management reveal that the risk from the 

status quo is so small that no risk management action is needed, analysis may stop there. A full 

risk analysis is usually carried out only when a risk management intervention is being 

contemplated.)  Risk analysis uses probability distributions, confidence intervals, and other 

displays to show uncertainties about the human health consequences of different decisions. It 

identifies a subset of one or more decision options leading to preferred (e.g., stochastically 

undominated) probability distributions of health risks and other outcomes.  

The outputs of a health risk analysis should allow a risk manager to answer the following 

questions for each risk management decision alternative being evaluated or compared: 

• What probable change in human health risk would result from each risk management 

intervention? If the risk management decision option or action being assessed is 

implemented, how will the probable adverse human health effects (e.g., expected numbers of 

mild, moderate, severe, and fatal illnesses per year; expected numbers of illness-days and, if 

desired, quality-adjusted life-years (QALYs) lost per year) change, both in the whole 

population and in subpopulations with distinct risks? 
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• How certain is the change in human health risk that would be caused by each risk 

management action? Instead of a single value, i.e., a point estimate of risk, uncertain risks 

are characterized by intervals or probability distributions indicating how closely the change 

in human health risk caused by a proposed risk management intervention can be predicted. 

There are several technical options for expressing uncertainty around point estimates (e.g., 

plausible upper and lower bounds, confidence limits, coefficients of variation, tolerance 

intervals, prediction intervals, Bayesian posterior probability intervals and distributions, etc.)  

The essential information to provide about uncertainty in any risk assessment is how large or 

how small the true risks might be, consistent with the data and with the specified assumptions 

of the risk assessment. Point estimates that are “best” with respect to various technical 

statistical criteria will typically fall between these extremes.  

Technical note: Statistical point estimates and interval estimates. Many criteria have 

been used to define and identify “best” point estimates in risk models, e.g., maximum 

likelihood estimates (MLE), maximum a posteriori (MAP) Bayesian estimates, maximum 

entropy "maximum entropy",minimum description length, least squares, minimum absolute 

deviation, and minimum expected loss (for various loss functions) (see Cox, 2001 for a 

survey for risk analysts). While these criteria have led to useful theory and algorithms for 

estimating the parameters of risk models, none of them is satisfactory as the sole output from 

a risk assessment. It is essential to provide intervals or probability distributions around any 

point estimate of risk to inform the users of a risk assessment about the full range of risks that 

might be prevented (or caused) by a risk management intervention. This principle applies to 

qualitative and fuzzy risk ratings as well. If a point estimate of a risk is “High”, then some 

indication must be given of how certain this value is and of how compatible the frequency 
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and severity components of the risk are with other qualitative labels, such as “Low.” A risk 

assessment that produces a single overall value for risk with no indication of uncertainty 

should be avoided.  

• What are the key drivers of risks and uncertainties for each option? The analysis should 

make clear to the user the main reasons why the estimated risk from each decision option is 

as high or low as it is. Are the results driven mainly by predicted exposure levels, by the 

responses of sensitive subpopulations, by genetic or epidemiological data that establish tight 

constraints on the plausible values, or by other factors? Sensitivity analyses that plot how 

estimated risks would change as input assumptions and estimates vary within plausible 

ranges (e.g., within a few standard deviations of their median values) can help to identify the 

combinations of input values that drive the main conclusions and the extent to which these 

could be changed without changing the comparison of different risk management 

interventions.  

• Which risk management interventions are undominated? One risk management intervention 

dominates another if it produces smaller probabilities of exceeding any specified level of 

adverse consequences per year. For example, if two different interventions lead to different 

expected numbers of sporadic illness cases per year (with the actual number being a Poisson 

random variable), and if the probable health consequences per case (e.g., the distribution of 

the number of days of illness of given severity) is the same for each intervention, then the 

one giving the smaller expected number of illnesses per year dominates the other. Scientific 

risk assessment can, at most, identify undominated risk management alternatives for risk 

managers to further assess and choose among. 
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CONCLUSIONS 

This chapter has briefly described how risk analysis can promote improved risk management 

decision-making. A successful risk analysis estimates the causal relations between decisions and 

probable resulting exposures, and between exposures and their probable total human health 

consequences. To guide rational decision-making, a risk analysis should yield evaluations and 

comparisons of proposed risk management actions and interventions, not simply descriptions of 

the current situation. It should show the estimated changes in frequencies and magnitudes (and 

uncertainties) of human heath consequences resulting from different proposed risk management 

decisions. It is important to identify an adequate range of risk management options to assure that 

dominant alternatives are not overlooked. For each option, total health consequences are found 

by summing the impacts of proposed actions on human exposures over all relevant pathways that 

contribute significantly to the outcome. Applying an exposure-response model to the changed 

exposures for different decisions then yields the estimated risks associated with them. 

A well-conducted risk analysis enables its recipients to participate more effectively in risk 

management deliberations and to communicate questions and concerns more clearly and 

concisely than would otherwise be possible. It does so by providing them with the relevant 

information needed to determine the probable consequences of proposed actions and by showing 

how sensitive these predicted consequences are to specific remaining uncertainties. 
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