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Direct-Sequence Code Division Multiple-Access (DS/CDMA) has for some
years been considered as a candidate for future personal and mobile com-
munications. The reasons are mainly the properties of universal frequency
reuse and the multipath mitigation. Generally, the focus has been on low
rate services such as speech, and very little has been done on evaluating the
performance for a system that can support many types of services, such as
speech, fax, image and data transmission.

In this thesis, we present several schemes for multirate support and evaluate
their relative performance. It is shown that the multi-channel scheme, using
several channels (codes) in parallel, is the most efficient scheme. The main
advantage is a high processing-gain even in “narrowband” systems (a few
MHz). The drawback, though, is the need for linear amplifiers also in the
mobile.

Furthermore, we present a new multiuser receiver for the synchronous
CDMA channel. The receiver is optimum in the maximum likelihood sense,
and has a lower complexity than the previously known optimum receiver.
Also, the thesis includes a survey of multiuser detection for the synchronous
DS/CDMA channel. The optimum and several suboptimal receivers are
described and their advantages and disadvantages discussed.

The third part of this thesis considers joint optimization of several compo-
nents in a multiuser system. For a synchronous DS/CDMA channel, we
optimize the source and channel decoders, and the multiuser detector
jointly, resulting in a soft multiuser decoder for transmission of vector quan-
tized data. The optimum and several suboptimal receivers are presented. We
also show that the performance gains for these decoders, with respect to
individual optimization of the source and channel decoders and the detec-
tors, are significant.

Keywords: Direct-Sequence Code Division Multiple-Access (DS/CDMA),
multirate, multi processing-gain, multi-channel, multi-modulation, multi-
user detection, joint optimization, soft decoding, vector quantization.
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CHAPTER

1-1 BACKGROUND

Spread spectrum communications basically means that the system uses
more bandwidth than what is necessary to transmit the data [48]. The main
reason for the use of spreading was and still is, the interference resistance
[48]. For example, in military communication systems a communication
link may switch frequency in a random like pattern making it very hard for
the enemy to intercept and/or jam the communication. This type of tech-
nique is commonly known asFrequency Hopping Spread Spectrum (FH/
SS). For many years, the military spread spectrum applications, aiming at
avoiding jamming and interception, dominated. The reason was mainly that
the technique was very expensive and immature [41]. With the development
of LSI (large scale integration) commercial applications such as the GPS
(Global Positioning System) was developed. GPS is aDirect Sequence
Spread Spectrum (DS/SS) system which, in contrast to FH/SS, occupies the
whole bandwidth all the time and uses randomized codes to spread and col-
lect the signals.

With the growth of mobile communications, and the need for highly effi-
cient communications, multiuser systems based on spread spectrum, called
Code Division Multiple Access (CDMA), became interesting [41]. The most
commonly discussed technique is theDirect-Sequence CDMA (DS/CDMA)
technique, which has some desired properties in universal frequency reuse,
multipath mitigation [67] and macro diversity. The universal frequency
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reuse means that no frequency planning has to be done, since all frequencies
are used in all cells. This also means that base stations may be able to
receive the signals from not only their own cell, but also from the neighbor-
ing cells. Therefore, combining these signals in the mobile switching center
or elsewhere (macro diversity), results in decreased bit error rate and/or
increased system range.

Consider a mobile near the base station transmitting with a given power. In
the case of non orthogonal codes, the power from the nearest mobile cross-
couples to the receiver of the distant mobile. In some cases the distant
mobile is completely hidden in the interference from the nearer user, and
hence, communication is impossible. This problem is known as thenear-far
effect [13]. The solutions are good code construction, yielding low cross-
correlations for all time delays (assuming an asynchronous system), accu-
rate and fast power control, and the use of a more complex multiuser
receiver. Orthogonal code construction for all time shifts is an impossible
task, at least if many users coexist in the same system. Power control, on the
other hand, may be possible and is, for example, used in the standardized
IS-95 system in USA [66]. However, the power control is difficult to realize
in fast fading channels. Furthermore, the performance of the users with
good channel conditions decreases, since their powers are limited by the
weakly received users. Hence, the overall capacity is limited by power con-
trol [13]. Therefore, multiuser detection may be a more efficient solution
that has received much attention in the last few years [13].

Besides the rapid growth of mobile communications, the evolution of ser-
vices is of great importance. For example, today more than 10 million com-
puters are connected to the Internet, either through a direct line or by a
modem connection. All use the electronic mail service and many also the
popular world-wide-web (WWW) service. In the future speech, fax, image,
video, data, electronic billing and many other services will struggle for their
existence in the present and coming communication systems. Furthermore,
more people today than ever move around, travelling from home to work,
and at work hurrying from one meeting to another. Thus, the need for a
mobile and highly efficient communication system supporting the requested
services are of great importance [30]. Support of all these types of services,
means that the system has to be able to transmit at several data rates, both
high and low rates, and at different service qualities. It must be able to
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switch from one rate to another, quickly and all this must be functioning
reliably, and at a low cost.

1-2 OUTLINE

This thesis deals with three in some ways very different topics: modulation,
multiuser detection, and optimization of a communication system including
source and channel coding and multiuser detection. The common factor in
all cases is that the system in question uses Direct-Sequence Code Division
Multiple-Access (DS/CDMA).

One hot topic, due to the rapid evolution of new services in personal and
mobile communications, is the ability to support many data rates within the
same system. However, this has been neglected in the research, and most
work published is on single rate systems. In Chapter 2, we present some
possible modulation schemes together with a comparison analysis for the
DS/CDMA system.

A survey of multiuser detection for synchronous CDMA channels, cor-
rupted by additive white Gaussian noise, is presented in Chapter 3. Further-
more, we derive a low complexity maximum likelihood optimal receiver.
Several suboptimal receivers are reviewed and the advantages and disad-
vantages discussed.

In Chapter 4, we present a receiver, for the synchronous CDMA case, where
we jointly optimize the source and channel decoders and the multiuser
detector for transmission of vector quantized data. The mean square error
optimal receiver, and several suboptimal versions are presented together
with an analysis of the complexity and some numerical results.

1-3 CONTRIBUTIONS

The main results presented in this thesis can be summarized as:

• Different modulation schemes to support multiple data rates in a DS/
CDMA system are compared. The analysis is made both for the
AWGN and multipath fading channels. Previously published work
include [43], [44] and [45] by Ottosson and Svensson.
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• A maximum likelihood optimum receiver for the synchronous CDMA
system with lower complexity than the previously known is derived
(originally published by Agrell and Ottosson in [1]).

• A jointly optimized source, channel and multiuser decoder for trans-
mission of vector quantized data over a synchronous CDMA channel is
presented. This work was originally published by Skoglund and Ottos-
son in [61], [62] and [46].

1-4 NOTATION

Throughout this thesis we write variables in italics. However, if the vari-
ables are random, we use capital letters for the random variables and lower-
case letters for their outcomes. Vectors and matrices are given in boldface,
with lower-case and capital letters, for vectors and matrices, respectively.
Observe, though, that we do not distinguish between deterministic and ran-
dom vectors and matrices, but this will be clear from the context. Further,
we let the random vectors and matrices denote both the random vectors and
matrices as well as their outcomes. A few examples of the notation are:

Scalar variables

Random variables and their corresponding outcomes .

Vectors of deterministic or random variables.

Matrices of deterministic or random variables.

A set consisting of the elementsa, b, andc.

The Kronecker product (see Appendix 4B for the definition).

The (i,j)-th element of the matrix .

The ith column of the matrix .

The transpose of the vector  and matrix , respectively.

The expected value of the random variable .

The variance of the random variable .

x y z, ,

X Y Z, , x y z, ,

x y z, ,

X Y Z, ,

a b c, ,{ }

⊗

A{ } i j, A

A{ } i A

xT A, T x A

E X[ ] X

Var X[ ] X
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CHAPTER

2-1 INTRODUCTION

In the last few years there have been much discussion on future Personal
Communications Services (PCS) [30]. The existing mobile communication
systems mainly support speech services. Also in future systems speech is
expected to be the main service, but with higher quality than in the systems
of today, and maybe in conjunction with video. Other expected services are
image transmission (facsimile) with high resolution and color and video.
Further, the increasing demand for information in our society requires an
easy way to access and process information. Therefore, data transmission
and wireless computing will be necessary services in any future system.

There have been some proposals for systems supporting PCS. They are
known as Personal Communications Networks (PCN), Future Public Land
Mobile Telecommunication Systems (FPLMTS) and Universal Mobile
Telecommunication Systems (UMTS) [7] [12] [36] [78]. The main focus
has been on the access method, and the competitors seem to be Time Divi-
sion Multiple Access (TDMA) ([35], page 774) and Code Division Multiple
Access (CDMA) ([35], page 789). However, in this chapter we consider
Direct Sequence CDMA (DS/CDMA) as access method and focus on how
to support the services in PCS. As seen from the discussion above there are
many different services to support and they have very different require-
ments on data rate and quality of transmission. Translating this to transmis-
sion of bits, we require rates from about 10 kbps to 1 Mbps, with bit error

MULTIRATE SCHEMES FOR

MULTIMEDIA APPLICATIONS
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6 SYSTEM MODELS

rates from about  for speech and images, depending on the type of
speech and image encoders used in the system, to  or lower for data
transmission.

There are of course many ways to design a multirate system. In the IS-95
standard [66] repetition coding is used to support different rates, but this is
only practical in supporting a few rates. A more conventional way is to alter
the processing gain and spread all signals, independently of the bit rate, to
the same bandwidth [43] [44] [4] [8]. Furthermore, it is possible to alter the
chip rate as in [75], or the modulation format [44], use multiple channels
[44] [10] [64] [9] [17] or maybe combine several of these schemes. In this
work we evaluate these and other schemes regarding the multirate support
capabilities in Additive White Gaussian Noise (AWGN) and multipath Ray-
leigh fading channels.

In Section 2-2, the system models are presented together with some basic
assumptions. Multirate schemes for AWGN and multipath are discussed in
Section 2-3 and Section 2-4, respectively. In Section 2-5 we construct some
test systems and present their performance. The conclusions are drawn in
Section 2-6.

2-2 SYSTEM MODELS

Amplitude Modulated DS/CDMA Systems

Usually BPSK is used as modulation in a DS/CDMA system. In spite of
this, assume that all users, independent of the bit rate, use amplitude modu-
lation (AM) and that the multirate CDMA system supports  different rates,
or subsystems. The transmitted signal of user number , in subsystem ,
then is of the form

(2-1)

where  is the power of each user in the subsystem and  is a pulse
amplitude modulation (PAM) signal with a rectangular pulse shape of dura-
tion . Moreover,  is the spreading code waveform of period ,
consisting of chips in a binary polar format with rectangular pulse shape of
duration  such that . That is, short spreading codes are used.

10 2–

10 6–

n
k i

sik t( ) 2Pibik t( ) cik t( ) ωct θik+( )cos=

Pi bik t( )

Ti cik t( ) Ni

Tc Ti NiTc=
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The modulator phases  are modeled as independent random variables,
uniformly distributed over . Using the assumption of an AWGN
channel, and asynchronous transmission, the received signal can be mod-
eled as

(2-2)

where  is zero-mean white Gaussian noise, with double-sided spectral
density ,  the number of users in subsystem  and  are the
delays, modeled as independent random variables, uniformly distributed
over .

For simplicity a correlation (matched filter) receiver is used1, and therefore
the output of the th receiver in subsystem  can be written as

(2-3)

assuming without loss of generality that  and  is zero, because we are
only interested in the relative phase and time differences between the users.
In calculation of  we see that different parts can be identified as

(2-4)

where  is the transmitted symbol and  is the Gaussian noise term
with zero-mean and variance . Here  is the average energy per
symbol and user in the th subsystem. The interference from the other users,
in all subsystems is

(2-5)

where .

1.The sufficient statistics are a bank of filters matched to each of the spreading
sequences [73].

θik
0 2π ),[

r t( ) w t( ) sik t τik–( )
k 1=

Ki

∑
i 1=

n

∑+=

w t( )
N0 2⁄ Ki i τik

0 Ti ),[

l j

Zjl r t( ) cjl t( ) ωct( )cos td
0

Tj

∫=

θjl τjl

Zjl

Zjl

Pj

2
-----Tj bjl

0( ) I jl Wj+ +( )=

bjl
0( ) Wj

N0 2Ej⁄ Ej
j

I jl
1
Tj
----

Pi

Pj
----- bik t τik–( ) cik t τik–( ) cjl t( ) ϕikcos td

0

Tj

∫
k 1=

i j k l≠,≠

Ki

∑
i 1=

n

∑=

ϕik θik ωcτik–=
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Quadrature Amplitude Modulated DS/CDMA Systems

It is sometimes convenient to transmit information in quadrature format, to
increase the data throughput. We can therefore reformulate our model above
such that the transmitted signal of user  in the subsystem  is

(2-6)

where  and  are the In-phase and Quadrature-phase PAM sig-
nals, each with a rectangular pulse shape of duration . The spreading code
waveforms,  and  of period , consisting of chips in binary
polar format and rectangular pulse shapes of duration . Therefore, the
decision variables now depend on both the In-phase and the Quadrature-
phase components of the other users and are given by

(2-7)

Here  and  are the interference from the other users onto the In-phase
and Quadrature-phase components given as

k i

sik t( ) 2Pibik
I t( ) cik

I t( ) ωct θik+( )
2Pibik

Q t( ) cik
Q t( ) ωct θik+( )sin

+cos=

bik
I t( ) bik

Q t( )
Ti

cik
I t( ) cik

Q t( ) Ni
Tc

Zjl
I r t( ) cjl

I t( ) ωct( )cos td
0

Tj

∫
Pj

2
-----Tj bjl

I 0( ) I jl
I Wj

I+ +( )= =

Zjl
Q r t( ) cjl

Q t( ) ωct( )sin td
0

Tj

∫
Pj

2
-----Tj bjl

Q 0( ) I jl
Q Wj

Q+ +( )= =





I jl
I I jl

Q
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(2-8)

and the AWGN noise components are denoted  and , respectively.

2-3 PERFORMANCE INAWGN CHANNELS

Multi-Modulation Systems

The performance of a BPSK single rate system ( ) with  users and
processing gain  can be approximated by assuming that the interference is
Gaussian with zero mean. This approximation has been proven to be very
accurate for low signal-to-noise ratios and many users, or alternatively for
few users but with a high processing gain [18] [19]. In addition, this approx-
imation is more accurate for amplitude modulation using many levels (see
Appendix 2C and [45]). It is observed, though, that the approximation is
generally slightly optimistic. With this approximation, the bit error proba-
bility can be written as (see Appendix 2A and [50])

(2-9)

where

I jl
I 1

Tj
----

Pi

Pj
----- bik

I t τik–( ) cik
I t τik–( ) cjl

I t( ) ϕikcos td
0

Tj

∫



+⋅
k 1=

i j k l≠,≠

Ki

∑
i 1=

n

∑=

bik
Q t τik–( ) cik

Q t τik–( ) cjl
I t( ) ϕik tdsin

0

Tj

∫ 



I jl
Q 1

Tj
----

Pi

Pj
----- bik

Q t τik–( ) cik
Q t τik–( ) cjl

Q t( ) ϕikcos td
0

Tj

∫



⋅
k 1=

i j k l≠,≠

Ki

∑
i 1=

n

∑=

bik
I t τik–( ) cik

I t τik–( ) cjl
Q t( ) ϕiksin td

0

Tj

∫ 



+

Wj
I Wj

Q

n 1= K
N

Pb Q
N0

2Eb
--------- K 1–

3N
-------------+

1 2/–

 
 
 

=



10 PERFORMANCE IN AWGN CHANNELS

. (2-10)

For a QPSK system the expression is

. (2-11)

This can be reformulated for squared lattice M-ary Quadrature modulation
schemes to express the symbol error probability for each quadrature phase (I
and Q) as

(2-12)

where  is the average signal-to-noise ratio per symbol. After the observa-
tion that the I and Q quadrature phases are independent, the bit error proba-
bility for high signal-to-noise ratios can be approximated to

. (2-13)

Now assume amulti-modulation system with  rates ,
where all users have the same symbol rate, signal-to-noise ratio per bit and
processing gain . Here  is the system bandwidth and  is the
bit rate for the BPSK users. The performance of an M-ary QAM user in sub-
system  then is (Appendix 2A)

(2-14)

where  is the bit rate of subsystem  and  is the number of users in the
th subsystem. The modulation level, that is, the number of symbols in the

signal space, is controlled by the bit rate and is given by

. (2-15)

Q x( ) 1 2π⁄( ) z2 2⁄–( )exp zd
x

∞
∫=

Pb Q
N0

2Eb
--------- 2 K 1–( )

3N
-----------------------+

1 2/–

 
 
 

=

Pe
I Q/ 2

M 1–( )
M

-------------------------Q
M 1–

3
--------------

N0

E
------ 2 K 1–( )

3N
-----------------------+ 

  1 2/–

 
 

=

E

Pb

2Pe
I Q/ Pe

I Q/( ) 2–

M( )2log
-----------------------------------------≈

n R1 R2 … Rn> > >

N B Rn⁄= B Rn

j

Pe jl,
I Q/ 2

M 1–( )
M

-------------------------Q
Mj 1–

3
---------------

N0

Mj( )log E
b

----------------------------

2
3N
-------

Ri

Rj
----- Ki⋅

i 1=

n

∑ 1–
 
 
 

+










 1 2⁄–













=

Ri i Ki
i

Mj 2
Rj Rn⁄( )

=
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However, if the subsystem  is a BPSK system the performance is

. (2-16)

To understand these formulas, observe that we assume that all users have
the same signal-to-noise ratio per bit , and that the average symbol
energy ratio between subsystem  and subsystem  is given by

. (2-17)

Since all users have the same signal-to-noise ratio per bit the transmitted
powers will be different for different rates. Thus, users with very high rates
transmit with higher power than the low rate users. In situations where a
high rate user is near the base-station and the low rate user far away, the
low-rate user has a much lower power at the receiver than the high rate user,
due to the cross-correlation between the user codes. This is called thenear-
far effect. Nevertheless, if all users should transmit at the same power, the
performance for high rate users would degrade significantly compared to the
low rate users, due to their low  in this case.

Multi Processing-Gain Systems

The most natural way, or at least the most conventional way, to achieve mul-
tirate is to vary the processing gain, and accordingly spread all users inde-
pendently of their bit rates to the same bandwidth . The European RACE
project CODIT [4] use this type of multirate scheme in combination with
several chip rates.

We assume amulti processing-gain system where all users use BPSK modu-
lation and a constant chip period . Also, assume that the subsystems are
ordered in descending bit rate order. That is, the bit rates are ordered as

 with the corresponding processing gains . In
addition, assume that all bit rates are multiples of the lowest rate  and that
the powers  are such that all users in all subsystems transmit at same sig-
nal-to-noise ratio per bit , that is,

. (2-18)

j

Pbj l
Q

N0

2Eb
---------

1
3N
-------

Ri

Rj
----- Ki⋅

i 1=

n

∑ 1–
 
 
 

+
1 2/–

 
 
 

=

Eb N0⁄
i j

Ei

Ej
-----

Ri R1⁄( ) Eb

Rj R1⁄( ) Eb
----------------------------

Ri

Rj
-----= =

Eb N0⁄

B

Tc

R1 R2 … Rn> > > Ni B Ri⁄=
Rn

Pi
Ebi

Eb1
P1T1 … Ebn

PnTn= = = =
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Note that this assumption, as in the multi-modulation system, causes near-
far effects, because the powers from the different users depend on the bit
rate. If, however, all users have the same power, the performance degrades
for the high bit rate users, due to their low . The performance of user
 with rate  in a BPSK modulated system may be expressed as (Appendix

2A)

. (2-19)

It is easy to see this result if we recognize that  and there-
fore the interference from the other subsystems is weighted according to
their transmitted powers. The correlation properties between the different
spreading codes of the users remain the same, independent of the period ,
because random codes and equal chip rates are assumed. Observe that the
performance is the same as for the BPSK rates in a multi-modulation
scheme (see (2-16)) if .

Multi-Channel Systems

As we shall see later, QPSK is the most efficient modulation scheme. A con-
clusion of this is that many QPSK channels in parallel can be used to
achieve a high data rate. This is called the multi-channel scheme.

Assume amulti-channel system with constant processing gain  and chip
period . Moreover, assume that the modulation is QPSK for all users and
that all users transmit at the same signal-to-noise ratio per bit, which in this
case does not lead to near-far effects, because all channels transmit at the
same power. The bit error performance for such a system is very easily
derived, because all QPSK channels have the same performance if all chan-
nels and users are transmitted asynchronously. Therefore, we get from (2-
11)

(2-20)

where  is the bit rate for a single QPSK channel and  the processing
gain such that . Notice that the performance is about the same as
for the multi processing-gain scheme. The result of a practical multi-chan-

Eb N0⁄
l Rl

Pbj l
Q

N0

2Eb
---------

1
3Nj
--------

Ri

Rj
----- Ki⋅

i 1=

n

∑ 1–
 
 
 

+
1 2/–

 
 
 

=

Ri Rj⁄ Pi Pj⁄=

Ni

Nj N=

N
Tc

Pbj l
Q

N0

2Eb
---------

2
3N
-------

Ri

R0
------Ki

i 1=

n

∑ 1–
 
 
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nel system is slightly better than this, because the parallel channels of each
user would be transmitted synchronous and, therefore, have good cross-cor-
relation properties. If, for example, the codes are orthogonal at zero time-
shifts (synchronous) and have random properties for all other shifts, the bit
error rate would decrease to

. (2-21)

Codes with these properties can indeed be constructed. Walsh-Hadamard
codes and Orthogonal Gold codes [65], for example, fulfill such require-
ments. The Orthogonal Gold codes are constructed by adding the chip sym-
bol +1 to the end of each Gold sequence.

A drawback of this scheme, though, is the need for linear amplifiers also in
the mobile, caused by the summation of many parallel channels. Usually,
the linearity is measured by thePeak-to-Mean Envelope Power Ratio
(PMEPR), and it can be shown assuming random codes (see Appendix 2B)
that , that is, linear with the number of parallel channels.
The same type of linearity problem arises in multi-carrier systems [5], but
here the number of channels may be in the order of a 1000 or more. It would
of course be possible to precode the data in a such a way that the envelope
variations decrease, that is, avoid sequences of data with a high peak enve-
lope power.

Multi Chip-Rate Systems

The use of spreading results in a processing gain that suppresses external
interference. In the use of a multi processing-gain system, this suppression
level is not constant. Therefore, all users do not accomplish the same band-
width efficiency. A way to accomplish a multirate system that has a constant
processing gain, is to let the bit rate change the chip-rate [75]. Hence amulti
chip-rate system is achieved. This means that users with different rates have
different bandwidths and therefore we can, by the use of Frequency Divi-
sion Multiplex (FDM), squeeze many such subsystems within the system
bandwidth. It has been shown [75] that this scheme outperforms the multi
processing-gain scheme in a synchronous CDMA system over an AWGN
channel. But, the condition of that comparison was no sidelobes in the spec-
trum of a subsystem, that is, ideal frequency compression of subsystems.
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Also, the comparison was done in an AWGN channel and consequently any
diversity gain for wideband channels is neglected. (It has been shown that a
wideband system performs better than a FDM combined narrowband sys-
tem [14][27] due to the utilization of RAKE diversity on frequency selective
channels). Thus, drawbacks of the multi chip-rate scheme are: more com-
plex frequency management and increased technology complexity because
the transmitters and receivers need filters with several bandwidths. Further-
more, a multiuser detector may be more complex to implement. All things
considered, the performance of the multi-chip scheme will significantly
degrade in a more realistic comparison and the system and technology com-
plexity may be inhibiting in realizing such a system.

Miscellaneous Multirate Schemes

There are other possible schemes that are not discussed above.Parallel
Combinatory Spread Spectrum (PC/SS) [76][53] is a scheme where each
user have a set of  sequences to choose from and use  data bits to select
sequences and then BPSK modulate  bits onto these sequences. This gives
the following expression

(2-22)

for the number of input bits. If, for example,P = N = 128 and ,
we get  and the system can transmit more bits than the sequence
length. Thus, PC/SS is useful for high rate transmission. Disadvantages are
the high complexity, due to the need of  matched filters for each user and
that very few users and bit rates could be supported, because each user con-
sume many sequences. Furthermore, the detection of which of the
sequences that are used at a specific time is very sensitive to channel noise
and ought therefore to be protected using error correction encoding.

Another possibility is to transmit the information asPulse Position Modula-
tion (PPM) [42]. Assume, as earlier, that the sequence length is  and that
there are  possible time slots to choose from. The rate of the system is
then given by

(2-23)
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and the system can transmit more than one bit per  chips. If the number of
available slots vary with the bit rate we get a multirate scheme. However, a
difficulty is that this system is very sensitive to multipath propagation and
can not utilize the frequency selective fading of a wideband signal in a
RAKE receiver.

2-4 PERFORMANCE INMULTIPATH RAYLEIGH

FADING CHANNELS

Channel Model

One of the advantages of DS/CDMA is the possibility to resolve and detect
propagation paths and therefore achieve diversity gain. This is usually done
in a RAKE receiver. The number of resolvable paths  can be estimated
to be [31]

(2-24)

where  is the delay spread of the channel, and  is the chip period. A typ-
ical value of the delay spread is  for urban areas. We can therefore
expect that a narrowband CDMA channel of about 1 MHz will have at least
2 paths, but a wideband channel of about 5 to 6 MHz will have 3 or more
paths. As a result, the channel can be modeled as a discrete channel with
random delays and Rayleigh fading amplitudes as

(2-25)

where, for the th path of user  in subsystem ,  is the Rayleigh fad-
ing amplitude,  is the delay, assumed uniformly distributed on

, and  is the channel phase assumed uniformly distributed on
. Furthermore,  is the number of received paths, such that
.

N

Lmax

Lmax
∆
Tc
----- 1+≤

∆ Tc
3 µs

hjl t( ) αjl m, δ t τjl m,–( ) ejθj l m,

m 1=

L

∑=

m l j αjl m,
τjl m,

0 Tj ),[ θjl m,
0 2π ),[ L

L Lmax≤



16 PERFORMANCE IN MULTIPATH RAYLEIGH FADING CHANNELS

Performance Without Diversity Reception

If we, as above, approximate the interference as Gaussian, it can be shown
[31] that the performance is equivalent to the performance of a system with

 users in each subsystem, and with Rayleigh fading amplitudes. There-
fore, we can use the previously derived formulas for the performance on a
single path given the amplitudes. In a single-rate BPSK system the perfor-
mance without a RAKE receiver and antenna diversity is

(2-26)

where  is the Rayleigh fading amplitude of the first path of the desired
user and  is the expected signal strength. The performance is then
given by averaging over the fading. For convenience, we use known results
for the performance of BPSK on a Rayleigh fading channel. We identify the
bit error probability given the amplitude  with the bit error rate for a
single user BPSK given the fading amplitude . Equality
between the arguments are obtained when

(2-27)

and by observing that  is exponentially distributed we see that  is expo-
nentially distributed with the expected signal strength

. (2-28)

Consequently, the bit error performance is given through integrating as [49]

(2-29)

In a similar way it is possible to obtain the performance of user  in sub-
system  for the multirate schemes proposed if  is replaced with  and

 with  in the formulas above. Observe, though, that for M-ary QAM
in the multi-modulation scheme we first have to find the symbol error per-
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formance for each quadrature phase symbol (I and Q) . Accord-
ingly, we identify the performance with

. (2-30)

The equivalent expected signal-to-noise interference ratio  per path and
user number  in subsystem  in anL-path Rayleigh fading channel is found
in Table 2-1 for the different multirate schemes. Also, note that the perfor-

mance on a Rayleigh fading channel for M-ary QAM, in contrast to BPSK
and QPSK, is

. (2-31)

Performance of Diversity Receivers using Maximum Ratio Combining

To increase the rather bad system performance on an multipath Rayleigh
fading channel, diversity can be used. Thus, several approximately indepen-
dent copies of the same information must be found. In a DS/CDMA system
the different paths in the multipath propagation can be used and combined
in a suitable way (RAKE receiver). It is also possible to obtain diversity
with multiple receiving antennas. The optimum solution for maximum sig-

Table 2-1. Equivalent average signal-to-interference level .
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nal-to-noise ratio at the output of the receiver is to combine them according
to the complex (amplitude and phase) channel gain as in themaximum ratio
combining (MRC). Hence, we have to estimate the multipath channel. With
the use of the results in [31] [49] we can generalize the bit error perfor-
mance for BPSK and QPSK and the symbol error performance for each
quadrature phase (I and Q) for M-ary QAM as

(2-32)

where  is given by (2-29),  is the average signal-to-interfer-
ence level per received path and  is the number of paths that are combined
in the receiver. Furthermore,  is a constant that depends on the modula-
tion. For BPSK and QPSK, , but for M-ary QAM,

. The received average signal-to-interference level is
given by

. (2-33)

Performance of Diversity Receivers using Selection Combining

Selection combining (SC) means that only the best path, that is the path with
the highest signal-to-noise ratio of  received paths is chosen. Thus, the
performance is worse than that of MRC. On the other hand the receiver only
needs to estimate the path strengths, which yields a less complex receiver.
The performance can be found in [31] and is given by

(2-34)

for BPSK and QPSK. For M-ary QAM the symbol error rate for the I and Q
quadrature phases is

(2-35)
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. (2-36)

2-5 NUMERICAL RESULTS

In the following examples we have, if not stated otherwise, used the Gaus-
sian approximations found above. To validate the accuracy of the Gaussian
approximation we have simulated some of the systems and compared the
results. In general, we can see that the approximations are fairly good, espe-
cially for low signal-to-noise ratios and many users. As we will note, how-
ever, the approximations are slightly optimistic.

In the evaluation of a multi-modulation scheme, we first calculate the per-
formance of various modulations in a single rate system. The assumptions
are random sequences, processing gain  and AWGN channel. The
results are shown in Figure 2-1. We see that BPSK and QPSK have almost
the same performance and that these modulation formats perform much bet-
ter than 16-QAM. This is due to the fact that 16-QAM is worse than BPSK
and QPSK in a single user AWGN channel (about 4-5 dB). In the case of a
CDMA channel, with non-orthogonal user codes, the powers of the interfer-
ing users cross-couple to the user of interest. Hence, the performance is
even worse for 16-QAM on a CDMA channel using a matched filter
receiver. Furthermore, as seen in the figure, QPSK is slightly better than
BPSK. The reason for this is that the comparison is made for constant
throughput i.e., the number of QPSK users is only half of the number of
BPSK users. Hence, each of the  users of BPSK type are disturbed by

 users. In the QPSK case, the interfering users quadrature phase sym-
bols can be seen as equivalent BPSK users with the same power as in the
BPSK system. Thus, each of the phases of the  QPSK users are dis-
turbed by  equivalent BPSK users, resulting in
slightly lower interference power level for the QPSK system. These results
indicate that the suggested multi-modulation scheme is inefficient in achiev-
ing multirate.

Another possibility for multirate system design is the multi processing-gain
scheme. To evaluate the performance of such a system we first compare the
Gaussian approximation with a simulated system in a AWGN channel. We
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use  and  as processing gains, that is, subsystem 1 have
two times higher data rate than subsystem 2. The number of users is

 in subsystem 1 and  in subsystem 2, and random codes
are used. The results are shown in Figure 2-2. We see a discrepancy of about
1 dB at high signal-to-noise ratios between the simulated and calculated per-
formance. The relative performance between the subsystem 1 and sub-
system 2 users remain the same though.

To compare the different multirate schemes we have constructed test sys-
tems according to Table 2-2. Firstly, we present results for SYSTEM II,
where we compare the multi processing-gain scheme, the multi-channel
scheme and the multi-modulation scheme for an AWGN channel, using the
Gaussian approximation. For the multi processing-gain scheme the process-
ing gain is set to , where the system bandwidth is
and . Translating this to a multi-modulation scheme we get the
processing gain . In the multi-channel scheme, however, the pro-
cessing gain is , because  is the bit rate for a QPSK channel

Figure 2-1. Comparison of different single-rate modulation formats in an AWGN
channel. Random sequences and processing gain  are used. K is the
number of users in the system.
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and therefore the symbol rate is . For a summary of these construc-
tions see Table 2-3. In Figure 2-3, we see that the multi processing-gain
scheme and the multi-channel scheme have almost the same performance.
The multi-channel scheme has the highest processing gain  and
therefore suppression level. The multi-modulation scheme has much worse
performance for the higher levels of modulation, here 16-QAM. Observe,
though, that the users using BPSK and QPSK have the same performance as
the users in the other schemes with the same rates as for the BPSK and
QPSK users. This means that the high rate users have worse performance

Figure 2-2. Comparison between the Gaussian approximation and a simulation of
a multi processing-gain system with  and  in an AWGN
channel. The number of users are  and  in subsystem 1 and 2,
respectively.

Table 2-2. Test systems for multirate evaluation.
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Table 2-3. Summary of the different multirate scheme constructions.

Parameter
Multi-Modulation

Scheme
Multi Processing-

Gain Scheme
Multi-Channel

Scheme

Bandwidth

Modulation

BPSK/M-ary QAM

BPSK QPSK

Symbol rate

Processing
gain

Figure 2-3. Performance of various multirate schemes for SYSTEM II in an
AWGN channel. Observe that “BPSK”, “QPSK”, and “16-QAM” denotes the
performance of the different rate users of the multi-modulation scheme. Further
“Subsystem 1”, “Subsystem 2” and “Subsystem 3” denotes multi processing-gain
performance for bit rate ,  and , respectively. There exist ,

 and  users in subsystem 1, 2, and 3, respectively.
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than the low rate users. In spite of this appealing property we conclude that
the multi-modulation scheme has a low multirate support. It would of
course be possible to increase the energy for the higher rates to decrease the
bit error probability to a certain level. However, this will increase the bit
error rate for the other users.

As stated, the performance of the multi processing-gain and the multi-chan-
nel scheme is about the same. Nonetheless, in a more realistic comparison
we have to know the available system bandwidth and the amount of external
interference in the frequency band to make a fair comparison. In addition,
there is a dependence on the amount of intersymbol interference (ISI) in the
system, which of course depends on the symbol rate. In a multi-channel
scheme the symbol rate is low and therefore we can neglect the ISI, but for

Figure 2-4. Performance of various multirate schemes for SYSTEM II in a
multipath Rayleigh fading channel with  paths and MRC diversity. Observe
that “BPSK” and “16-QAM” denotes the performance of the different rate users in
the multi-modulation scheme. The “QPSK” user performance curve is almost on
top of the “BPSK” curve. Further “Subsystem 1”, “Subsystem 2” and “Subsystem
3” denotes multi processing-gain performance for bit rate ,  and ,
respectively. There exist ,  and  users in subsystem 1,
2, and 3, respectively.
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high bit rates in the multi processing-gain scheme, the ISI will degrade the
performance.

The performance on multipath fading channels depends mainly on the sys-
tem bandwidth and the type of diversity used. In Figure 2-4, the perfor-
mance of the same system as in Figure 2-3, but in multipath fading with

 paths, MRC diversity and average power control, is shown. As seen,
the performance degrades significantly in fading but the relations between
the different multirate schemes remain the same. To investigate the differ-
ence between narrowband and wideband CDMA channels further, we
assume a Rayleigh fading channel with 2 or 3 paths, representing a narrow-
band and wideband CDMA channel, respectively. Furthermore, assume a
RAKE receiver using maximum ratio combining or selection combining.
The performance is measured in terms of the number of supported high rate
users  given the number of low rate users  for SYSTEM I. We only
consider the multi processing-gain scheme since the multi-channel scheme
has about the same performance. In Figure 2-5 we show the number of sup-

Figure 2-5. Performance of SYSTEM I for the multi processing-gain scheme. The
processing gain is  and the channel is a multipath Rayleigh fading
channel with  or  paths. RAKE receiver diversity with MRC and SC.
The signal-to-noise ratio for all users is  and the bit error
probability upper bound is .
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ported users of subsystem 1 and 2, respectively, in order for the bit error
probability to be at  when . Notice that if a 2
path channel is assumed there is not much to gain in using an MRC receiver,
but if 3 paths is assumed, the MRC receiver has about twice the capacity of
the SC receiver. The conclusion is therefore that the number of paths is very
critical to achieve good performance with a RAKE receiver, and that there
should be at least 3 paths to use maximum ratio combining. In a narrowband
system, that is, a bandwidth of about 1 MHz it is maybe possible to get a
two path channel, but in a wideband channel with a bandwidth greater than
6 MHz, we expect that 3 or more paths will be present in the propagation at
all times, assuming an urban environment.

2-6 CONCLUSIONS

We have investigated several multirate schemes for a DS/CDMA system
and found that the use of multi processing-gain and multi-channel schemes
give almost the same performance, both in AWGN and multipath fading
channels. Moreover, we have seen that it is possible to use a multi-modula-
tion scheme, which only degrades the performance for the users with high
data rates, that is, users that use higher level of modulation than QPSK. If
the system is to support many data rates up to about 1 Mbps, a multi pro-
cessing-gain system will only has a small processing gain for the highest
rates and is therefore sensitive for external interference. Further a consider-
able amount of intersymbol interference will be introduced. The multi-chan-
nel scheme has the same processing gain for all users, independently of their
data rates. It may also be easier to design codes that have good properties
and construct a multiuser receiver using only one processing gain in the sys-
tem. One disadvantage of the multi-channel scheme is the need for linear
amplifiers for mobiles receiving a high signal. Additionally, users with dif-
ferent rates have different powers, which increases the near-far problem for
all schemes, except the multi-channel scheme. If we allow, or even request,
for the performance to depend on the service, the users could of course vary
their powers. Hence, the near-far problem would decrease for the high rate
users. As for the other schemes mentioned, only the multi-chip rate modula-
tion will be able to give the same multirate support as the multi processing-
gain and multi-channel schemes.

Pb 10 2–≤ Eb N0⁄ 10 dB=
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2-7 FUTURE WORK

In this paper we have only considered the performance of a single cell sys-
tem without external interference. Another interesting topic is the compari-
son of the capacity of the different multirate schemes in a cellular system,
with or without external interference. It would also be interesting to find
efficient coding methods and multiuser detection algorithms to further
increase the capacity of the system.

APPENDIX2A
THE GAUSSIAN APPROXIMATIONS

The Gaussian approximations described in this paper assume that we
approximate all interference as Gaussian noise with zero mean. For conve-
nience and ease of computation we also assume that the spreading codes are
random code sequences. If we assume that the interference from the other
users are independent of the Gaussian distributed noise , we can calcu-
late the variance of the interference for M-ary PAM  (see (2-5)) separately
as

(2A-1)
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where  is the expectation with respect to the random variables
,  and . Further the delays  and the phases  are uniformly

distributed on  and , respectively, and  is given as

(2A-2)

It is possible to do the same calculation for  and  in the case of M-ary
QAM, giving the same results. Now assume that all users have the same
chip-rate . Hence, we can separate the calculation of
into two cases:  and .

where

:

In this case,  will depend on several consecutive data symbols assumed
independent, and we therefore get

(2A-3)

where  and .
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Here  depend on the delays  and therefore we first have to calculate
the expectation with respect to . Hence, calculation gives

(2A-4)

The two cases derived above have expressions that depend on
, where  and  are given by multiples of  plus a condi-

tional  term. Therefore all these expectations can be divided into three
groups: ,  and

.

To compute these integrals assume that the delay  is such that
, where  is an integer. Using the illustrations in Fig-

ure 2-6 it can be seen that

Figure 2-6. Illustration to the computation of  left
figure, and  right figure.
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(2A-5)

(2A-6)

(2A-7)

where  and the rectangular pulse shape  for
. If we assume that the codes are random, and observe that

 we get
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(2A-8)

By the use of these derived results it can be seen that the expectations in the
two cases discussed are:

:

(2A-9)

:

(2A-10)

The multirate schemes presented in this chapter can now be analyzed with
respect to the bit error performance for the users.

Multi-Modulation Systems:

As earlier defined, all users in the multi-modulation system have the same
processing gain and symbol period. Hence, the variance of the interference

 is

(2A-11)

for the M-ary QAM users, but for the BPSK users we get

. (2A-12)
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Multi Processing-Gain Systems:

Here all  and  are different. If we observe that for equal signal-to-noise
ratio per bit the power ratios between users with different rates are

, resulting in the variance of  as

(2A-13)

Multi-Channel Systems:

In a multi-channel system, the processing gain, the symbol period and the
modulation are constant for all users. Assuming QPSK modulation is used,
the variance of  is

(2A-14)

The performance, measured in bit error performance can then easily be
found by the use of the variances of  above and the equations (2-4),(2-7)
and (2-8).

APPENDIX2B
LINEARITY MEASURE FOR THEMULTI-CHANNEL SCHEME

The multi-channel scheme requires linear amplifiers also in the mobile,
since the sum of several parallel channels causes a signal with large enve-
lope variations. One linearity measure that is often used for amplifiers is the
Peak-to-Mean Envelope Power Ratio(PMEPR) defined as

(2B-1)

where PEP is thePeak Envelope Power and MEP is theMean Envelope
Power. If QPSK is used, the output from the  channels is of the form
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. (2B-2)

The maximum envelope power  is easily found
when all channels are co-phased. The average envelope power (MEP), how-
ever, can be calculated accordingly

(2B-3)

where (a) are from the facts that  and
, (b) assuming that both bits and code

chips are random and independent, (c) assuming that all bits are equally
likely, and (d) converting  to . The result is that,

, which is the same linearity constraint as for the multi-carrier
modulation scheme [5].
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APPENDIX2C
THE ACCURACY OF THEGAUSSIAN APPROXIMATION

Throughout this chapter we have used the Gaussian approximation, that is,
we have approximated the interference from the other users with a Gaussian
distributed variable. As earlier stated, this approximation is accurate for low
signal-to-noise ratios and many users. In this appendix, we will justify this
approximation for single rate systems (n=1). Therefore we calculate a more
accurate performance figure using the characteristic function method [18]
[19] and compare it to the Gaussian approximation.

In the characteristic function method the interference is estimated using
characteristic functions. The characteristic function  for the random
variable  is defined as

. (2C-1)

Hence, the symbol error rate for M-ary amplitude modulation with the
matched filter output given in (2-4) can be expressed as

(2C-2)

Here  is the probability density function (pdf) of the total inter-
ference, that is,  and  is the characteristic function corre-
sponding to this pdf. Using the assumption that the Gaussian noise is
independent of the interference from all the users, we get

(2C-3)
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Hence, the symbol error probability can be calculated as

(2C-4)

where

(2C-5)

and the variance

. (2C-6)

Following the outline in [18] for a single-rate system it can be shown that
the characteristic function for M-ary PAM is given by

(2C-7)
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(2C-8)

For M-ary QAM the corresponding expression is

(2C-9)

Observe that this result is for the -phase but is easily adjusted for the -
phase: substitute  with  and  with .

To exemplify the derived formulas we have done some numerical calcula-
tions using different M-ary AM formats. The codes used in these calcula-
tions arem-sequence codes [52] with period  and of the whole set
of such codes we have selected the best codes according to the AO/LSE
(Auto Optimal phase and Least Sidelobe Energy) criterion. These codes are
tabulated in [51]. All calculations have been performed using the Character-
istic function method, the Gaussian approximation (GA) with deterministic
sequences and the Gaussian approximation with random sequences and we
assume rectangular pulse shape for all calculations. In Figure 2-7 and Figure
2-8 we show results for the symbol error rate (SER) for BPSK and 4-PAM.

We see from the given results that both Gaussian approximations are
slightly optimistic (lower SER than for the characteristic function method),
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Figure 2-7. BPSK modulation with AO/LSEm-sequences.N=127.

Figure 2-8. 4-PAM modulation with AO/LSEm-sequences.N=127.
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but become more valid at low signal-to-noise ratios, many users and many
levels of modulation. Further we do not see much difference between the
two Gaussian approximations, meaning that the system with AO/LSEm-
sequences performs approximately the same as a system using random
sequences. For many users, however, there are a slight advantage for the
random sequences, because of the relatively small number of goodm-
sequences.

For the QAM schemes we have used Gold-sequences, with period
, created by the shift-register polynomial , given in octal

form [51]. The results are shown in Figure 2-9 and Figure 2-10and the same
conclusions as for M-ary PAM can be drawn. Observe, though, that the
Gaussian approximation is slightly pessimistic for QPSK using Gold
sequences (worse SER than for the characteristic function method), due to
the good cross-correlation properties for the Gold sequences and that QPSK
is slightly better than BPSK. The same observation was done in [19] form-
sequences.

Figure 2-9. QPSK modulation with Gold-sequences.N=127.
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Figure 2-10. 16-QAM modulation with Gold-sequences.N=127.
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CHAPTER

3-1 INTRODUCTION

Multiuser detection concerns detection of information sent simultaneously
by several transmitters sharing a multiple-access channel. There exist sev-
eral types of strategies: for example Frequency Division Multiple Access
(FDMA), Time Division Multiple Access (TDMA), and ALOHA. For these
strategies, however, the different sub-channels are either independent or, as
in the ALOHA case, each user transmits packets uncoordinated, and if a col-
lision occurs, the packets are retransmitted (see [35] page 785, and [3]). A
more challenging channel sharing strategy is the Code Division Multiple
Access (CDMA) approach, where all users share the same time and fre-
quency band. To distinguish between the different users, a unique waveform
(code) is assigned to each user. Hence, the received signal from all users is a
superposition of the individual transmitted signals. Therefore the task of the
multiuser detector is to reliably demodulate the information from a specific
user (or subset of users). In the following we will only consider multiuser
detection for CDMA systems.

The conventional detector, used in single-user systems, is the matched filter
receiver (correlation receiver) [49]. It is well known that this receiver is
optimum in minimum probability of error sense in demodulation of a single
existing user in Additive White Gaussian Noise (AWGN). In demodulation
of a user in a CDMA system one can argue that the correlation receiver is
close-to optimal, since the interference from the other users adds up to be

MULTIUSER DETECTION

3
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Gaussian (the central limit theorem). The central limit theorem does not
apply, however, if the users have very different powers. Furthermore, the
noise components from the different matched filters are not uncorrelated,
due to the cross-correlation between users. Hence, this colored noise should
be taken into account in the demodulation. Nevertheless, even if the inter-
ference looks white and Gaussian, its power density increases with the num-
ber of users and the performance degrades. Even worse is the case for a
system with few users, where the noise cannot be accurately modeled as
Gaussian.

The performance for the conventional detector can in some cases be accept-
able for received user signals with similar energies and waveforms with low
cross-correlations. However, if the powers of the users are very different, it
is impossible to do a reliable detection of the weak users, even with very
low cross-correlations. This fact, that users with high powers make detec-
tion of users with low powers impossible, is known as thenear-far effect.
Therefore a way to, in some extent, circumvent the multiuser detection
problem and the near-far effect, is to use strict power control and design
waveforms with low enough cross-correlations. However, a major drawback
of such an approach is that the system performance is dictated by the user
whose signal is received with the lowest power and therefore power control
actually decreases the overall capacity [13]. As for the search of good codes
with low cross-correlations, it is not possible to design codes that are
orthogonal in the receiver, either due to that all users transmit uncoordinated
(asynchronous system) or that the channel is a multipath channel. The con-
clusion is that in asynchronous CDMA systems, the conventional correla-
tion receiver will always suffer from the near-far effect, and the
performance will therefore be limited by the interference from other users.
Multiuser detection is a way to deal with the problems of near-far effects
and the interference limited performance.

Horwood and Gagliardi [26] and Schneider [54] [55] considered multiuser
detection for synchronous systems. In [54], Schneider claimed that he had
found the optimum detector. This was, however, not completely true. The
derived receiver, later referred to as the decorrelator, was found to be opti-
mal only if no information on the powers of the different users is available
[39]. Schneider also briefly treated the asynchronous case, recognized that it
could be modeled as a finite state machine, and suggested the use of the Vit-
erbi algorithm to solve the detection. The major breakthrough in the area,
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was triggered by Verdú in 1984, when he presented the optimum maximum
likelihood sequence detector for the asynchronous case (see [72] and [73]).
Complexity was, however, the main drawback for the optimum detector.
Therefore, several suboptimum detectors have been presented (see Section
3-4). A survey of multiuser detection for CDMA for both optimal and sub-
optimal receivers can be found in [13].

In Section 3-2 the model for the synchronous CDMA channel corrupted by
additive white Gaussian noise is presented. Maximum likelihood detectors
are presented in Section 3-3, and several suboptimum detectors in Section
3-4. A comparison between the presented detectors is made in Section 3-5
for the Gaussian channel. The asynchronous case and the multipath fading
channel are briefly discussed in Section 3-6.

3-2 SYSTEM MODEL

Assume a Direct-Sequence Code Division Multiple-Access (DS/CDMA)
system as given in Figure 3-1, where the th user is assigned a finite energy
waveform, . Further assume that the data is BPSK
modulated and that all users transmit synchronously over a Gaussian multi-
ple-access channel. Hence, the received signal is

(3-1)

where  is the number of users in the system,  is
the th user’s information sequence, and  the amplitude. The noise
is additive white Gaussian with zero-mean and a power spectral density .
It can be shown that the outputs of a bank of matched filters

(3-2)

at time  are the sufficient statistics for ML-detection of the transmitted data
at time  [39]. Hence, the optimal receiver is a one shot receiver. Collect the
outputs from all filters in the vector1 . In this way, the
matched filter outputs can be expressed in matrix notation as
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(3-3)

where  is the cross-correlation matrix consisting of the elements

. (3-4)

The transmitted bits are contained in the vector , and
the matrix  is a diagonal amplitude matrix. Due to the cross-correlation
between users, the noise vector  is colored Gaussian distributed with zero-
mean and covariance matrix .

3-3 ML OPTIMUM RECEIVERS

Introduction

The optimummaximum likelihood receiver is not unambiguously defined.
For example it is possible to maximize either  or , result-
ing in minimum bit ( ) error or minimum symbol ( ) error, respectively. It
is also possible to do these maximizations with different constraints, for
example, known, unknown or partially known , and . Thus, the two
criteria are different. The minimum bit error criterion is a Bayes symbol
detector with the costs corresponding to the number of bit errors. On the
other hand, if all symbol error costs are assigned to be equal, the minimum

1. We will frequently drop the time argument  in the following treatment.

Figure 3-1. A synchronous DS/CDMA system model.
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symbol error criterion is given. Even if the criteria are different they are
asymptotically equal, when the signal-to-noise ratio approaches infinity
(shown in [24] for two users) and when the cross-correlations approaches
zero (orthogonal codes) and therefore the difference is small for high signal-
to-noise ratios and low cross-correlations between the users. This and that
the minimum bit error criterion is more complex, are the main reasons why
the minimum symbol error criterion is the most common, and therefore we
adopt the minimum symbol error criterion in this work. Further, we will
assume that the cross-correlation matrix and the amplitude matrix are
known by the receiver. In practice these matrices have to be estimated.

Using the fact that  is Gaussian with mean  and covariance matrix
, the ML symbol decision is given by

(3-5)

The complexity of (3-5) is  for detection of all users (per symbol
), because all the  points  have to be tested. However, if

 is precomputed and stored, the evaluation of
, for all possible  simultaneously, can be done in a

tree structure (see [74] for details) using  operations and then
 operations are needed to select the optimum .

An intuitive way to look at multiuser detectors is a to draw a decision space.
There are of course several ways to do that. One could for example draw the

-space, the -space or the whitened  space. Which of the
three to use is a matter of opinion. However, the whitened space has the
advantage to be the space in which the ML receiver is equivalent to finding
the point with the minimum squared distance to the received signal point.
For the ML receiver the decision boundaries in the three different spaces are
given in Figure 3-2, for a system with two equally strong (in power) users
and the cross-correlation 0.7. As seen in the whitened space, the decision
lines divides the virtual line between any two symbols in the middle and
perpendicularly. Further, the decision lines meet at common points, which is
known from the theory of detection ([68], page 48).
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A Reduced Complexity ML Receiver

As seen from the previous section, the complexity of the ML receiver is
inhibiting. Thus, there is a need for reducing this complexity. Usually this is
done with a suboptimal receiver. However, in this section we derive a ML
optimal receiver with reduced complexity (first presented in [1]).

We start from the model given in (3-3). Further, if the noise is whitened
(assuming  to be positive definite), the model can be written as

, (3-6)

where  is the whitening transform, and the covariance matrix
of the Gaussian noise  is . If vectors are regarded as points inK-
dimensional space, then the  vectors  constitute the vertices of a hyper-
cube. Similarly, the constellation  spans aK-dimen-
sional parallelotope; that is, a linear transformation of a hypercube, where

 is the transformation matrix. Given an observation vector , the most
likely point in  is given by the minimum Euclidean distance to , that is

(3-7)

This detection rule, which is equivalent to (3-5), partitions the space into
convex polytopes, calledVoronoi regions,given by

(3-8)

Figure 3-2. Decision spaces for the maximum likelihood receiver for a system
with K=2 users and the cross-correlation between the users equal to 0.7.
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with one region for each . The ML decision on  given  is thus to
find  such that .

Some of the  nontrivial inequalities in (3-8) may be redundant, so
that the same regions can be described as

(3-9)

The minimal set  for which this is true is called the set of “neighbors”
of . Geometrically, each element of  corresponds to one facet ((K-
1)-dimensional face) of the polytope . Thus, to check if a given vector

 belongs to the Voronoi region , it is sufficient to compute1

distances, a number that is often considerably smaller than . Hence,
the iterative approach in Table 3-1, called theneighbor descent (ND) algo-
rithm [2], can be used.

The guess  can, for example, be the conventional or the decorrelating
receiver. It can be proven that this algorithm is equivalent to the ML
receiver [2]. Further the algorithm assumes that the neighbors  for all

 have been precomputed and stored in memory. The following theo-
rem can be used to find the neighbors (can be proved using the theory of
“indecomposable vectors” [73]):

Theorem: If every pair of points in  are joined by a line, the neighbors are
given by the lines that are only intersected by longer lines.

1.  is the size of the set .

Table 3-1. The Neighbor Descent (ND) algorithm.

1. Start with a guess .

2. repeat for :

if then

replace  with ;Go to 2.

end repeat

3. .
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To calculate the complexity: Think of the lines between points in  as diag-
onals in a parallelotope. These lines can only intersect each other at the
points

(3-10)

and nowhere else. Since at most one pair of neighbors can meet at each
intersection point, the total number of neighbor pairs in the point set is
upperbounded by . In other words, an average point in  has

 neighbors, and since most of the time for
the ND-algorithm is used for verification [2] (part of step 2 in the algorithm)
the asymptotic complexity is .

3-4 SUBOPTIMUM RECEIVERS

The Conventional Receiver

The conventional receiver (matched filter receiver) uses no information of
the transmitted signals of the other users and therefore regards them as
noise. Hence, the receiver is simply a signum decision

. (3-11)

The performance of this receiver is interference limited as stated in the
introduction, and this is also seen in Figure 3-2, where the distance between

Figure 3-3. Decision spaces for the conventional receiver for a system withK=2
users and the cross-correlation between the users equal to 0.7.
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symbols and the decision lines are very different for the different symbols,
, resulting in a high symbol error rate. We also see the signum decision

lines in the -space, that defines the receiver. If one user increases its
power, more than one symbol will eventually be placed in some regions,
and no symbols in other regions (see Figure 3-4, where
and the cross-correlation between users is equal to 0.7). Hence, the conven-
tional receiver suffers from the near-far effect. That is, a user with a high
received power makes it impossible to detect a user with a low received
power level.

The Decorrelator Receiver

The conventional receiver suffers from the near-far effect, as stated above.
On the other hand, the ML receiver is resistant to this effect, but the com-
plexity is high. A simple, low complexity detector that is resistant to the
power of the other users is the decorrelator, which is the ML optimum
receiver if the amplitude matrix  is unknown.

The receiver is simply a linear transformation , that projects the
matched filter outputs  (see (3-3)) onto a space where all users are inde-
pendent, that is . The decisions are then obtained by
simple signum decisions on the transformed signal as

. (3-12)

Figure 3-4. Decision spaces for the conventional receiver for a system withK=2
users in a near-far situation. The amplitudes are  and  and the
cross-correlation between the users is equal to 0.7.
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The drawback, though, is the noise enhancement. Drawing the decision
spaces for this receiver is especially illustrative. In Figure 3-2, we see that
the decorrelator is a signum decision detector in the -space. Fur-
thermore, it is easy to see that the decision lines do not depend on the power
of the users, that is the scaling of points in one or both dimensions. Hence,
the receiver is also near-far resistant.

Since the outputs from the different users now spans an orthogonal signal
space (the -space) it is easy to see that the average bit error probability for
transmission over an AWGN channel is

(3-13)

where

, (3-14)

and  is thekth element on the diagonal of .

The Multistage Receiver

There exist several ways to iteratively maximize the ML criterion (equation
(3-5)) to a local maximum. One such receiver is the multistage algorithm
[70] shown in Table 3-2.

Figure 3-5. Decision spaces for the decorrelator receiver for a system withK=2
users and the cross-correlation between the users equal to 0.7.
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As a guess to the first stage, the conventional matched filter receiver or the
decorrelator can be used. The number of stages, , is usually chosen to

. However, if the number of stages is increased, it is not guaranteed
that the receiver becomes better with each iteration [70]. Furthermore, it can
be shown that [70]

(3-15)

where  is the -component of . Hence, the multistage algo-
rithm is a canceller that uses the previous stage decisions to cancel the inter-
ference of all other users from the matched filter output, and then use a
conventional signum detector. This scheme is sometimes referred to as a
parallel cancellation scheme, since all users are canceled at the same time
(in parallel). Observe, that it is easier (less complex) to implement (3-15)
than using the expression for  in Table 3-2.

The type of iteration that is used, with the ML criterion as a measure, gives
peculiarly looking decision spaces. As seen in Figure 3-2, the decision lines
are the same as for the ML receiver (compare Figure 3-2) but for the two
closed regions in the middle, labelled C and D. Observe also that these
occur because some decision errors in the first stage are fed into the itera-
tion, forcing the detector to the wrong region. Since, the decision lines

Table 3-2. The multistage algorithm.

1. Start with a first stage guess .

2. repeat for m=1,...,

repeat for k=1,...,K

end repeat

end repeat
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essentially are the same as for the ML receiver, the multistage receiver is
near-far resistant.

The Successive Interference Cancellation Receiver

In the previous section a multistage or parallel cancellation receiver was
presented. It is also possible to design a successive cancellation scheme.
The successive Interference Cancellation (IC) scheme [47] finds the user
with the strongest influence on the received signal, detects it and cancels it
from the received signal. Now the strongest remaining user is detected and
canceled. This algorithm iterates until all users are detected. Mathematically
this can be expressed as in Table 3-3.

Here  is thekth column of . Observe that the algorithm use esti-
mates, , of the product, . A simple estimate is to use the matched
filter outputs [47], that is, . However, due to this suboptimal
estimator, the performance is in some cases worse than the conventional
receiver, see Figure 3-9. Another possible estimate is to use the decisions,

, that is, we assume perfect estimates of the amplitudes of the
users. If all users have the same power and if the cross-correlations between
all users are equal and positive, the IC algorithm using this type of esti-
mates, is equivalent to the ML optimal receiver [32].

Also, in this case of interference cancellation it is useful to draw the deci-
sion space, see Figure 3-2. Since the ordering of decisions are made dynam-
ically (first test in step 2 of the algorithm), it is easy to show that the IC in

Figure 3-6. Decision spaces for the multistage receiver ( ) with the
conventional receiver as the first stage. The system hasK=2 users and the cross-
correlation between the users is equal to 0.7.
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this case (two users) is equivalent to the decorrelator. This is, however, only
true for two users. The IC with signum decisions, on the other hand, is iden-
tical to the ML receiver, as stated earlier.

3-5 PERFORMANCE INAWGN CHANNELS

To exemplify the described receivers and their relative performance on an
AWGN channel, we have simulated a system with  users and the
cross-correlation matrix

Table 3-3. The Successive Interference Cancellation algorithm.

1. , .

2. repeat for s=1,...,K

end repeat

Figure 3-7. Decision spaces for the successive interference cancellation receiver in
a system withK=2 users and the cross-correlation between the users equal to 0.7.
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. (3-16)

The IC algorithm uses either the matched filter outputs as estimates (labeled
“IC”) or the decision estimates (labeled “IC (dec)”), and the multistage
receiver begins with a conventional receiver, followed by one iteration. In
Figure 3-8, we show the average bit error rate versus the signal-to-noise
ratio, , for equally strong users. Observe, that the ML opti-
mum receiver treated in this chapter optimizes the symbol error, and there-
fore not optimal regarding the bit error rate. As seen in Figure 3-8, the ML
optimal receiver outperforms the other receivers. The decorrelator is better
than the multistage and successive interference cancellation receivers (with
matched filter outputs as estimates, labeled “IC”) for high signal-to-noise
ratios. However, if the cross-correlations between the users are low, for
example, if selected Gold sequences are used, the multistage and successive
interference cancellation receivers will outperform the decorrelator [1].

Figure 3-8. Average bit error rate for different multiuser receivers with .
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Observe, that the interference cancellation scheme using decisions in the
cancellation (labeled “IC(dec)”) performs much better than the other IC
scheme. This is due to the perfect knowledge of the amplitudes of the users.
The conventional receiver has worst performance, except for very low sig-
nal-to-noise ratios, where the noise enhancement of the decorrelator makes
it worse.

As for the near-far resistance of the different detectors, we have simulated a
system with four users and the same cross-correlation matrix as above. The
signal-to-noise ratio for user one is fixed to  dB. However, the
other users have all same power but this power level is varied such that dif-
ferent near-far ratios are obtained. That is,  is altered, and the
bit error rate of user one is monitored. The result is shown in Figure 3-9. As
expected, we see that the decorrelator is insensitive to near-far effects and
has a constant bit error performance. Also, the multistage detector and of
course the ML detector are near-far resistant as well. However, neither the
conventional nor the interference cancellation detectors are near-far resis-
tant, and the IC detector is even worse than the conventional for high near-
far ratios. It can also be observed that the IC detector is worse than the con-
ventional detector at very low near-far ratios, and this is due to the simple
estimation procedure, when selecting the strongest user. If user 1 was cho-
sen at all times, the IC and the conventional receiver would be the same for
this user, since the first step in the IC is a conventional receiver for the stron-
gest user. Furthermore, if the IC algorithm with decisions and perfect
knowledge of the amplitudes of the users is used (labeled “IC (dec)”), the
performance is much better. The knowledge of the amplitudes of the users
must in practise be replaced by estimates. However, also the ML-MUD and
the Multistage detectors assume perfect knowledge of  and . The
decorrelator and the IC, on the other hand, only assume that  is known and
the conventional receiver only assumes that the code of the user to detect is
known.

3-6 ASYNCHRONOUSCDMA AND

MULTIPATH FADING

The model used in this chapter is valid only for the synchronous AWGN
channel, but it is possible to extend the model to asynchronous channels and
channels with multipath, and it is possible to derive multiuser detectors for

SNR1 10=

SNRk SNR1–

W R
R
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these cases. For further reading on this subject see for example [13], [39],
[40], [47], [71], [73] and [77] and references therein.

Figure 3-9. Near-far resistance for different multiuser detectors. Plotted is the bit
error probability for user 1, which has a fixed signal-to-noise ratio =10 dB.
The other users vary their power according to the abscissa.
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CHAPTER

4-1 INTRODUCTION

A communication system is usually designed for data transmission, and thus
the assumptions of independent and equally likely transmitted bits are most
often valid. However, many of these systems are then used for speech and
image communications, in which such assumptions are generally not valid.
The solution is to take the source statistics into account in designing the
receiver.

Furthermore, most system components, such as source encoder/decoder,
channel encoder/decoder and modulator/demodulator, are generally opti-
mized separately. For example, the modulation format is decided and a
detector derived. Then a channel coding scheme is applied to the system,
assuming now that the modulator/detector is a part of the channel and there-
fore fixed. Finally the source encoder/decoder pair is designed, typically for
a binary symmetric channel. According to information theory [56], this tan-
dem strategy (system components in cascade), see Figure 4-1, is optimal for
most channels if the code lengths of both the source and channel codes are
infinitely long. This would however require infinite delay, making two-way
communications impossible. Hence, it may be possible to get a better over-
all performance if joint optimization is used. It has, for example, been
shown that combined source-channel coding, see Figure 4-2, for vector
quantization (VQ) can give a considerable performance gain over the tan-

SOFT MULTIUSER DECODING

FOR VECTORQUANTIZATION

4
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dem approach at a specific transmission rate, finite decoding delay and mod-
erate complexity (for example, [15], [25] and [37]).

However, such optimization is still suboptimal, because the modulator and
detector are optimized separately, if optimized at all. To get around this,
either side information from the detector can be used in the decoding of the
source-channel codes or a joint optimization of the detector and the source-
channel decoder can be carried out, see Figure 4-3. This has successfully
been done for single-user AWGN and Rayleigh fading channels in [37] [38]
[57] [58] and [69], as well as for channels with intersymbol interference in
[29] and [63].

A multiuser communication system, see Figure 4-4 is essentially several
independent or dependent parallel channels, one for each user. For FDMA
and TDMA these channels are independent (if frequency or time guard
intervals, respectively are used). Hence, it is no use to optimize the system
with respect to all users. In CDMA however, the multiple access channel
introduces cross-correlations between the users, and thus it may be possible

Figure 4-1. Communication model. Tandem approach.

Figure 4-2. Communication model. Approach for combined source-channel
coding.
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to improve the performance through joint optimization of the multiuser
detector and the source-channel decoders. To the best of our knowledge the
first work considering this kind of optimization in multiuser systems is [61]
and [62] by Skoglund and Ottosson, where the optimum and several subop-
timal receivers were derived for the synchronous CDMA channel corrupted

Figure 4-3. Communication model. Approach for jointly optimized detection and
source-channel decoding.

Figure 4-4. Multiuser communication model.
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by additive white Gaussian noise. We will, for example, show that it is pos-
sible to solve the optimization, and get a considerable performance gain
compared to the optimal tandem approach.

We will assume that the reader is familiar with basic source coding theory,
and especially vector quantization. For a good introduction to this subject,
we recommend [20] and [22]. Also, as description of the vector quantizers,
we will use the Hadamard transform representation due to Hedelin et. al.,
which is thoroughly treated in [25] (a short description is also available in
the Appendix 4A). For a treatment of multiuser detection for synchronous
CDMA channels, see chapter 3, of this thesis.

4-2 MODELS AND ASSUMPTIONS

The model of a synchronous CDMA multiuser communication system, with
K users, is shown in Figure 4-5. Userk produces ad-dimensional sample
vector, , which is encoded into an index  by the
encoder of userk, using the condition

, (4-1)

where  is theith encoder centroid of userk, defined as

. (4-2)

Figure 4-5. Multiuser communication system.
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Note that  is the MMSE estimate ([68], page 56) of  given .
Thus, for a vector quantizer with a mean squared error distortion measure,
the centroids, , are the optimal reconstruction vectors for the noiseless
channel [20]. If the Hadamard representation of the vector quantizer is used
(see Appendix 4A and [25]), the centroids can be written as

(4-3)

where  is a real-valued transform matrix, and  denotes theith col-
umn vector of a sizeN by N Hadamard matrix1. In the following we will
assume that the vector quantizers are known, that is, the centroids and the
index probabilities  are known. We also assume that the
sources of the different users are independent, which is reasonable for most
applications. Theencoder entropy of userk is defined as

. (4-4)

The maximum entropy [11] of encoderk is , which we refer to
asfull encoder entropy.

The index  is converted into a block  of
 bits in BPSK format, that is . For simplicity

we assume that all users have the same block lengthL. For notational rea-
sons we construct an augmented index , where userK define theL most
significant bits of  and the bits of user 1 theL least significant bits of ,
that is

. (4-5)

The corresponding index probabilities are now given as . In
the same way we define an augmented sample vector  as

1.The Hadamard vector  is, by definition, obtained from the bit representation ofi
as , where  is the Kronecker product
(see Appendix 4B for the definition and properties). Furthermore, the transform
matrix, , is given by , where  and

 (see Appendix 4A).
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(4-6)

and the corresponding augmented centroid vectors  as1

. (4-7)

At the transmitter the bits of the user indices are transmitted one by one over
a symbol synchronous DS/CDMA channel. Thus, the matched filter outputs
of the received signal , at time , can be
expressed as (see Chapter 3, equation (3-3))

, (4-8)

where  is the cross-correlation matrix andW is a diagonal matrix of user
amplitudes . The bits of the users at timen are contained in the vector

. The channel noise term, , is Gaussian
with zero mean and covariance matrix .

4-3 THE OPTIMAL MULTIUSER DECODER

The optimum decoder measures  for a transmitted
index . Using the minimum mean squared error as distortion measure, the
optimum receiver minimizes

(4-9)

for each userk. Since this distortion measure is additive, minimizing

(4-10)

1.Now the centroids can be represented by , where , and the
Hadamard vector is given by , that is

. The transform matrix  is given in the same way as
before.
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is equivalent to minimizing the individual  separately. Hence, we have
from estimation theory ([68], page 56) that the estimate of the augmented
sample vector  is

, (4-11)

which can be rewritten, using the Hadamard representation as

, (4-12)

where  is a centroid in the augmented vector quantizer of all users. Using
the definition of expectation we get

, (4-13)

where  is the probability density function of the random variable
given the index . Inserting the pdf

(4-14)

where  into (4-13), cancelling common factors in the
nominator and denominator and introducing the function

(4-15)

the estimate  from (4-13) can be written as

. (4-16)
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(4-17)

and using the equality  for
(Appendix 4C and [46]) we have

(4-18)

where  is a constant with respect to the transmitted data. The vector
 is defined by

(4-19)

where

. (4-20)

Observe that  is an estimate of the transmitted bit , which
takes on values in the interval .

Finally, inserting (4-18) and (4-16) into (4-12), the estimator  is given
by

(4-21)
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(4-22)

Note that  and , where the
expectations are taken over the statistics of the transmitted VQ-indices. Fur-
thermore,  is independent of the set , and thus, the a-priori
index information is confined to  and . Note also that the MMSE
decoding is based on the bit-estimates of (4-20), and that the estimates

 are only dependent on . Hence, in the calculation of  the
channel can be regarded asK independent channels, where the vector  can
be viewed as an estimate of the “transmitted” value of . This under the
assumptions of full encoder entropies and independent channels (i.e. orthog-
onal code sequences). To modify the vector  to account for the source sta-
tistics and the correlation between users,  is mapped and scaled by the
matrix . We name the decoder (4-21) theHadamard-
based Soft Multiuser Decoder(HSMUD). Since the HSMUD is MSE-opti-
mal it shows how to utilize the a-priori and channel information in an opti-
mal fashion to counteract channel noise and multiuser interference.

On the basis of the recursive nature of the Hadamard matrix, an algorithm
for computing  was derived in [58]. The algorithm requires an
asymptotic order of  operations to compute  from .
Finally, for decoding, a matrix multiplication is needed to obtain .
The transform matrix  is sparse in a way that allows this additional opera-
tion to be performed in an order of  operations.

4-4 SUBOPTIMUM DECODERS

The Single-User Decoder

In this section we consider the decoding of one user, userk, under the
assumption that the source statistics of theotherusers are unknown. In this
case, we assume that the encoder outputs of the other users have uniform
probability masses. That is, these users have full encoder entropies. The
result is a decoder giving a lower computational complexity than that of (4-
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21) and therefore well suited for the decoding of a single user in a mobile
station.

As in the derivation of the HSMUD, we express the encoder centroid of user
k as  where  is the transform matrix for userk. Now, con-
sider the decoding of userk, under the assumption that  for

. Since

, (4-23)

the vector  consists ofN elements counted from the
element from the top of the vector . Starting from the optimal decoder
(4-13), and using the orthogonality of the Hadamard columns
( ) we get [46]:

(4-24)

Now using properties of the Hadamard transform and the Kronecker prod-
uct it is possible to proceed according to

(4-25)
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ĥk Y( ) K k–( ) N 1+
h
j

M( )

hm
T hn N δmn⋅=
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where (a) is from the definition of  and (b) using basic algebra for
Kronecker products (the theorems 4 and 6 in Appendix 4B) and that the dif-
ferent indices  are independent, and (c) from the theorem 2 in Appendix
4B (algebra for Kronecker products).

Also observe that, since for , we have that  and therefore

(4-26)

where  is the identity matrix of sizeN. In the same way we get for the
expression

(4-27)

where we, due to the balance property of the Hadamard matrix, observe that

. (4-28)

Hence, the estimated Hadamard column, , can be expressed as

(4-29)

and hence, the estimated Hadamard vector, , is
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ĥ Y( )
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(4-30)

However, it is convenient to rewrite the summation in the last equation
using expectations

(4-31)

where (a) follows from the definition of . Introducing the estimates
, defined as

(4-32)

and inserting (4-32) and (4-31) in (4-30), the MMSE decoder for userk,
assuming that the indices of the other users are equally probable, is [46]

, (4-33)
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The expectations are taken over the statistics of the index . Furthermore,
the vector  is defined by

. (4-35)

Note that the a-priori information of userk is confined to  and
, and that the expectation of (4-32) is taken under the condition

 for all l, that is, full encoder entropies forall users. We will
refer to (4-33) as thesingle-user version of the HSMUD.

Since the evaluation of the expectation in (4-32) has a complexity that is
, the total complexity for decoding of all user vectors, given the

value of , is . Also, an additional  operations for
the calculation of all , and an order of  operations for the matrix
multiplications,  are needed.

The Approximated Single-User Decoder

In spite of the reduction in complexity for the single-user version, with
respect to the HSMUD, it is still exponential in the number of users. When
using the expectation of (4-32) in (4-33), the expression

(4-36)

has to be evaluated. The sum in (4-36) is taken over all vertices of the
hypercube . However, many of the terms of the sum will not con-
tribute significantly to the result. Thus, we have examined the limitation of
the summation to a sub-set of . There are a number of ways to
choose this sub-set. The approach taken here is to use a decision, , on the
value of  and then evaluate the sum over a limited number of “neighbors”
to  (for example, can the Voronoi neighbors be used, Section 3-3). To take
the first decision with a reasonable low complexity we use a decorrelating
detector (see Section 3-4). This detector has a complexity of . Then
the summation sub-set is taken to be the  (a positive number less than )
vectors  with the lowest distance to . As a distance measure between
and  the value of
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(4-37)

was used, that is the distance in the whitened signal space. Thus, the vertices
to include, given , can be computed in advance and stored (see Section 3-
3). Using this approach the complexity for evaluating (4-36) for allL is

, plus an additional  operations for the calcu-
lation of all , and the final matrix multiplication is of the order of
operations. Note that the choice of  depends on the number of usersK, for
a specific performance. The maximum value of  is . For this case
we evaluate all points, and therefore the receiver is equivalent to the single-
user decoder. The complexity can be further reduced if a conventional
detector (matched filter) is used as a first decision.

Maximum Likelihood Multiuser Detection with Table Look-Up VQ
Decoding

The conventional maximum likelihood multiuser detector (ML-MUD), see
Section 3-3, gives hard decisions on the transmitted bits for all users,

. For each userk, the bits  are converted to the corre-
sponding index . The decoder then find and output the centroid  [20].
Hence, the complexity of this decoder is .

4-5 RESULTS

In this section we present results and compare the presented decoders to the
standard multiuser detection and VQ decoding. We measure the quality of
the noisy channel in terms of theChannel Signal-to-Noise Ratio (CSNR),

, where all amplitudes are the same ( ). In the simulations we
assume perfect knowledge of the CSNR, since the soft decoders are updated
with a varying channel quality. In practice, the perfect knowledge has to be
replaced by estimates. The reproduction fidelity of the system is given in
terms of the outputSignal-to-Noise Ratio (SNR), . As
decoders we used the HSMUD, the single-user decoder and the ML-MUD
plus table look-up VQ decoding. In the ML-MUD simulations the decoder
is not updated according to the channel quality. This represents the usual
approach where the a-priori index information and the channel quality infor-
mation are not utilized in the decoding. Also included in the simulations is
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an upper bound on the performance that was obtained from simulating the
HSMUD with orthogonal codes.

First, we trained VQs for a noiseless channel. In these cases the VQ encod-
ers have almost full entropies. Theencoders of these VQs were then used in
comparing the different decoders. The sources were modeled as first order
Gauss-Markov processes with correlation 0.9 between samples. The corre-
lation matrices used are

 and (4-38)

for two and four users.

The results are shown in Figure 4-6 and Figure 4-7, for two and four users,
respectively. As can be seen, there is a considerable difference between the

Figure 4-6. Signal-to-noise ratio for a system with two users (average SNR),
 and ,  bits. The single-user decoder (dashdot line) is

almost on top of the HSMUD (solid line).
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performance of the optimal soft decoder and the ML-MUD plus table look-
up VQ decoding, both for two and four users. Part of the performance gain
of the soft decoders is inherent from the knowledge of the user source statis-
tics and the multiuser interference. Therefore, the performance gain over
ML-MUD increases with the interference from the other users as well as
with lower VQ output entropy. Also, as has been found for single-user chan-
nels ([37] and [57]), the soft decoding alone has a large gain over VQ-
decoding based on hard decisions. This is due to the knowledge of the noise
variance and that hard ML-decisions destroy information that can be uti-
lized by a soft VQ-decoder.

In training a VQ for a noisy channel, referred to as Channel Optimized VQ
(COVQ), redundancy is incorporated, resulting in a lower encoder entropy
[16]. The redundancy of the transmitted indices counteracts channel imper-
fections. To exemplify this, we have trained a COVQ with dimension

 and block length  for a single-user binary symmetric channel
with a bit error probability of 5%, resulting in an encoder output entropy of
4.77 bits (compared to 5.87 bits for a noiseless channel). A bit error rate of

Figure 4-7. Signal-to-noise ratio for system with four users (user 1 is illustrated),
 and ,  bits. The curve of the single-user decoder (dashdot

line) is almost on top of the HSMUD curve (solid line).
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5% corresponds to the two-user CDMA channel and a channel SNR of
about 5 dB. Then theencoder(the encoder regions) of this COVQ was
employed in the simulation giving Figure 4-8. As we can see the gain of the
HSMUD is even larger in this case, due to the increased redundancy in the
transmitted indices that can be utilized efficiently by the HSMUD. Also in
this case the soft algorithms have a large gain in that they are adaptive
regarding the channel quality. It can also be observed that even if the
COVQs are trained for a certain CSNR, the adaptability of the decoder
makes the HSMUD robust against changes in CSNR.

As can be seen, the difference between the HSMUD and the single-user
decoder is almost negligible in the simulations of Figure 4-6 and Figure 4-7.
This is due to the facts that the VQ encoders have almost full entropy in
these figures. On the other hand, in Figure 4-8 the difference is small but not
negligible, due to the lower encoder entropies.

To investigate the difference between the HSMUD and its single-user ver-
sion further, we have simulated a case with two users where the users have
different encoders. In Figure 4-9, user one employs the COVQ encoder used

Figure 4-8. Signal-to-noise ratio for a system with two users (average SNR),
 and ,  bits.
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in Figure 4-8, and user two utilizes the encoder of Figure 4-6. Here we can
see that the difference between the HSMUD and the single-user version is
notable for user two, and almost negligible for user one. We interpret this
observation as follows: In the decoding of user two the single-user version
is unaware of the source statistics of user one, while the HSMUD uses the
knowledge of both user sources. Thus, the HSMUD can utilize the redun-
dancy of userone(which is higher) when decoding user two. However, in
the decoding of user one the redundancy of user two is almost negligible.

To exemplify the performance of the low complexity version of the single-
user HSMUD, a system with Gold-sequences [52] of length 31 has been
simulated. The number of users is eight and the same VQs as in Figure 4-6
have been used. The performance for  (full complexity) and

 neighbors are presented in Figure 4-10. As can be seen  suf-
fices to give almost full performance. When  and  the per-
formance is indistinguishable from the full complexity case of .
Note also that the case of  almost gives the performance of a sys-
tem with orthogonal codes.

Figure 4-9. Signal-to-noise ratio for a system with two users,  and .
User one use a low entropy encoder,  bits, and user two a high entropy
encoder,  bits.
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4-6 CONCLUSIONS

We have presented a combined source and channel coding scheme for vec-
tor quantization over a CDMA channel. The optimal soft joint multiuser and
VQ decoder is presented. This decoder is referred to as theHadamard-
based soft multiuser decoder (HSMUD). Simulations demonstrate that the
HSMUD outperforms the conventional tandem scheme using an ML multi-
user detector followed by a table look-up VQ decoder. However, the com-
plexity of the optimal soft decoder is limiting. Therefore, a single-user
version, of lower complexity, is presented. In our simulations the perfor-
mance of the single-user version is comparable to that of the HSMUD for
VQs with high output entropies. Also, an approximation to the single-user
version with further reduced complexity has been derived. This algorithm
has especially good performance for low cross-correlations.

Note that in the presented simulations all users have the same amplitudes,
. However, we have also investigated the near-far resistance of the

Figure 4-10. Signal-to-noise ratio for a system with eight users (user 1 is
illustrated). Gold sequences of length 31 are used.d=6 andL=6. bits.
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HSMUD and simulations indicate that the soft decoders are near-far resis-
tant.

4-7 FUTURE WORK

In this work we have considered a synchronous CDMA channel. One inter-
esting generalization to investigate in the future is the asynchronous CDMA
channel and the corresponding HSMUD. Furthermore, we have used VQ
encoders designed for a noiseless channel or a noisy binary channel. To
increase the performance of the system further, the encoder can be trained
for the CDMA channel according to the COVQ philosophy of [16]. How-
ever, in practice, it is hard to update the encoder as the channel is varying,
because the receiver and transmitter must agree on which encoder is used.
Thus, the encoder has to be trained for the “worst case” channel, and then
instead it is possible to modify the decoder with regard to the varying chan-
nel.

APPENDIX4A
VECTORQUANTIZATION AND

THE HADAMARD TRANSFORMREPRESENTATION

Vector Quantization

A vector quantizer (VQ), see Figure 4-11, takes a real-valuedd-dimensional
vector, , as input and tries to approximate this vector using a finite
set of codevectors. The vector  is fed to the encoder of the VQ, and the
output of the encoder is an index,I, corresponding to one ofN regions in

, resulting in the encoder rate . The encoder uses a
“nearest neighbor” strategy to find the correct region, given by the condition

, (4A-1)

where

(4A-2)

x ℜd∈
x

ℜd R N( )log d⁄=

I i : x yi– x yj– j 0 1 … N 1–, , ,{ }∈∀,≤=

y0 y1 … yN 1–, , ,{ }
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is the set of reconstruction vectors (one vector for each region). These
regions, defined by (4A-1), are calledVoronoi regions. An example of Voro-
noi regions for a 4-bit vector quantizer with dimension , trained for
an uncorrelated Gaussian source is shown in Figure 4-12.

In designing a vector quantizer, that is, designing the encoder-decoder func-
tions, a distortion measure has to be chosen. The most common is the
squared error distortion measure. In this case, the distortion of the vector
quantizer is . Using elementary estimation theory, it can be
shown [20] that the optimal reconstruction vectors, given that the channel is
noiseless, should be chosen as . These vectors are often called the
centroids  of the encoder regions, defined as

The decoder, on the other hand, takes an indexJ as input, which may be dif-
ferent from the “transmitted” indexI, and outputs the vector, , as an
estimate of the transmitted vector, .

Figure 4-11. A vector quantization system.

Figure 4-12. Voronoi regions for a 4-bit vector quantizer of dimensiond=2. (from
Knagenhjelm [34]).
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The Hadamard Representation

A convenient way to analyze vector quantizers, and especially the robust-
ness against channel errors is the Hadamard transform representation by
Hedelin, Knagenhjelm and Hagen (see for example [23], [25] and [33]). The
Hadamard transform of anN-size column vector  is defined as (see for
example [21] and [28])

(4A-3)

and the inverse transform is

, (4A-4)

where  is theN size square Hadamard matrix defined as

(4A-5)

For , the Hadamard matrix has some useful properties [28]:

1. .

2. , where  is the identity matrix of sizeN.

3. .

Furthermore, if the integeri is represented by the natural binary representa-
tion , using +1 for a “zero” and -1 for a “one”, we have
[59]

. (4A-6)

Here,  denotes theith column of .

A vector quantizer is represented by its centroids. Hence, collect all centro-
ids in the matrix , and take the Hadamard trans-
form of each row in . That is, the transform  of rowi of  is

u

v
1
N
----HN u⋅=

u HN v⋅=

HN

HN HN 1– H1⊗=

H1
1 1
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(4A-7)

and therefore using the inverse transform, we have

, (4A-8)

where the real-valued transform matrix is given by

. (4A-9)

APPENDIX4B
THE KRONECKERPRODUCT

Assume that  is a ( )-size matrix and  a ( )-size matrix. Hence,
the Kronecker product is the ( )-size matrix

. (4B-1)

The basic algebra for Kronecker products can be found in [6], but some of
the more useful theorems are repeated here for convenience.

1.

2.

3.

4.

5.

6. , where  is scalar.

ti
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N
----HN CT{ }i⋅=

C T HN⋅=

T t0 t1 … tN 1–, , ,[ ] T C HN
1–⋅ 1

N
----CHN= = =

A p q× B m n×
pm qn×

A B⊗

a11B a12B … a1qB

a21B

ap1B … apqB

=

A B⊗( ) C⊗ A B C⊗( )⊗=

A B+( ) C⊗ A C B C⊗+⊗=

A B⊗( ) T AT BT⊗( )=

A B⊗( ) C D⊗( ) AC BD⊗=

A B⊗( ) 1– A 1– B 1–⊗( )=

α A B⊗( ) αA( ) B⊗ A αB( )⊗= = α



78 PROOF OF LEMMA

APPENDIX4C
PROOF OFLEMMA

In the derivation of the optimum decoder the following lemma [46] is
needed (see (4-18)).

Lemma: For  and  is

. (4C-1)

Proof: Using the definitions of  and  we get

(4C-2)

and the lemma follows easily.

a 1 1,–{ }∈ x ℜ∈

eax x( )cosh 1 a x( )tanh⋅+( )=
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2
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