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Oxidative Stress in the Pathogenesis
of Preeclampsia (44447)

CARL A. HUBEL
1

Magee-Womens Research Institute and the Department of Obstetrics and Gynecology and Reproductive Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15213

Abstract. The etiology and pathogenesis of the pregnancy syndrome preeclampsia
remain poorly understood. There is substantial evidence to suggest that the diverse
manifestations of preeclampsia, including altered vascular reactivity, vasospasm, and
discrete pathology in many organ systems, are derived from pathologic changes
within the maternal vascular endothelium. With the theme of endothelial cell dysfunc-
tion emphasized, this review focuses on the role of oxidative stress (an imbalance
favoring oxidant over antioxidant forces) in the pathogenesis of preeclampsia. Data
are summarized regarding 1) the role of the placenta in preeclampsia; 2) evidence and
mechanisms of oxidative stress in the preeclampsia placenta; 3) markers of oxidative
stress in the maternal circulation; and 4) the potential role of maternal dyslipidemia in
generation of oxidative stress. A recurrent theme is that free radical reactions, pro-
moted by “cross-talk” between the diseased placenta and maternal dyslipidemia, pro-
mote a vicious cycle of events that make cause and effect difficult to distinguish but
likely contribute to the progression of preeclampsia. [P.S.E.B.M. 1999, Vol 222]

Preeclampsia is a human pregnancy-specific disorder
that adversely affects the mother (by vascular dys-
function) and the fetus (by intrauterine growth restric-

tion). The incidence of preeclampsia is between 3% and
10% of pregnancies, and there is no evidence that this has
changed appreciably during the last century. Preeclampsia
is characterized by vasospasm, increased peripheral vascu-
lar resistance, and thus reduced organ perfusion (1). The
syndrome is polymorphic in that virtually every organ sys-
tem can be affected. Preeclampsia is diagnosed by the new
development of hypertension (usually#140/90 mm Hg),
significant proteinuria, and remission of these signs after
delivery (2). Eclampsia is the occurrence of seizures in a
preeclamptic patient that cannot be attributed to other
causes (2). Even without progression to eclampsia, the syn-
drome presents substantial risk to mother and baby. Pre-
eclampsia is the leading cause of maternal mortality in de-
veloped countries and is associated with a five-fold increase

in perinatal mortality. The major cause of fetal compromise
is reduced uteroplacental perfusion (1). The only interven-
tion that effectively reverses the syndrome is delivery. A
large portion of the perinatal mortality is consequently due
to iatrogenic prematurity. Up to 15% of preterm births are a
result of preeclampsia (3). The combination of hypertension
plus proteinuria markedly increases the risk of perinatal
morbidity and mortality over that of hypertension alone (4).
Hypertension is a result of the disease and is not usually of
pathogenic importance, and it cannot explain the diverse
laboratory and clinical features of preeclampsia (5, 6). For
research purposes especially, a rigorous classification
scheme is advocated in which preeclampsia is distinguished
from transient gestational hypertension by the lack of sig-
nificant proteinuria in the latter disorder (2).Chesley’s Hy-
pertensive Disorders in Pregnancy, Second Edition, is rec-
ommended for further reading on the clinical spectrum and
epidemiology of preeclampsia (7).

About 10 years ago, Robertset al. (8) formally pro-
posed that maternal endothelial cell dysfunction is the key
event resulting in the diverse clinical manifestations of pre-
eclampsia. Evidence has since accumulated to support a
major role of the endothelium in preeclampsia (9, 10). The
mechanisms involved in induction of endothelial cell dys-
function are poorly understood. Abnormal placentation is
clearly involved in the genesis of both preeclampsia and
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fetal intrauterine growth restriction (IUGR) (11, 12). Pre-
eclampsia (with or without IUGR), however, is distin-
guished from IUGR (without preeclampsia) by extension of
disturbances into the maternal vasculature (6, 12). It has
been proposed that product(s) of the fetal-placental unit en-
ter the circulation and then initiate the maternal pathophysi-
ologic changes of preeclampsia (8). However, there is in-
creasing evidence that both feto-placental and maternal fac-
tors interact in manifesting endothelial cell dysfunction and
its clinical manifestations (9, 13, 14).

One hypothesis receiving increased attention is that pla-
cental and maternal free radical reactions promote a cycle of
events that compromise the defensive functioning of the
vascular endothelium in preeclampsia. Since the time that
data relevant to this hypothesis were initially reviewed (15),
a significant body of new information has been generated.
The present review begins with some free radical terminol-
ogy and then focuses on preeclampsia.

Free Radicals and Reactive Oxygen Species
A free radical is any molecule capable of independent

(usually brief) existence that contains one or more unpaired
electrons (16). Most free radicals in biology fit within the
broader category of reactive oxygen species (ROS), which
include not only oxygen-containing free radicals, such as

hydroxyl radical (HO·), superoxide anion radical (O2˙
−),

and nitric oxide (NO˙), but also reactive molecules that do
not contain unpaired electrons, such as hydrogen peroxide
(H2O2), hypochlorous acid (HOCl), and peroxynitrite anion
(ONOO−). The highly reactive primary products of lipid
peroxidation, lipid hydroperoxides, are formed when free
radicals attack polyunsaturated fatty acids or cholesterol in
membranes or lipoproteins. Alternatively, they can be
formed by cyclooxygenase or lipoxygenase (17). Lipid hy-
droperoxides function in normal physiology by regulating
enzymes and redox-sensitive genes (18, 19). However, un-
controlled lipid peroxidation can result in cellular dysfunc-
tion and damage. Lipid peroxidation has received a great
deal of attention in preeclampsia (15, 20). Many endothelial
changes of potential relevance to preeclampsia can be in-
duced by lipid peroxidation in experimental systems. Some
examples are listed in Table I.

A wide spectrum of ROS function as signal transducers
in normal physiology (19); however, their overproduction
may result in, or be the result of, numerous human health
problems (21, 22). Untangling cause and effect is con-
founded by the evanescence of ROS and the high potential
for experimental artifact. For example, lipid hydroperoxides
are generated during exposure of blood and tissues to oxy-
genex vivo(22). Another problem is the lack of gold stan-

Table I. Dysfunction in Preeclampsia Mimicked by Experimental Lipid Peroxidation

Dysfunction in preeclampsia Peroxidation in experimental models

1. Evidence of endothelial structural injury:
• Glomerular capillary endothelium
• Umbilical endothelium

1. Acute exposure to lipid peroxides damages endothelial
cells (187)

2. Proteinuria 2. Intrarenal infusion of hydrogen peroxide induces
reversible proteinuria in rats (188)

3. Convulsions during eclampsia 3. Eclampsia-like convulsions and intravascular
thrombosis in term rats fed a diet deficient in vitamin E
and containing lipid peroxides beginning Day 13 of
gestation (189)

Endothelial functional/biochemical changes
4. Vasoconstriction and increased sensitivity to pressor

agonists
4. Lipid peroxides or oxidized LDL increase artery

sensitivity to agonists (190, 191)
5. Impaired endothelial-dependent relaxation of isolated

arteries (31, 32)
5. Oxidized LDL inhibits endothelial-dependent

vasodilation (192, 193)
6. Reduced prostacyclin (PGI2) production by vessels

(194)
6. Increased lipid peroxidation via vitamin E deprivation

decreases PGI2 production (195)
7. Increased circulating cellular fibronectin (38) 7. Peroxides induce tissue release of cellular fibronectin

(196)

Preeclampsia serum/plasma alters endothelial cell function in vitro
8. Preeclampsia plasma increases endothelial production

of nitric oxide (197, 198)
8. Oxidized LDL at low concentration increases nitric

oxide production from endothelial cells in culture (199,
200)

9. Preeclampsia plasma induces biphasic release of PGI2
from endothelial cells in culture (increased at 24 hr;
decreased at 72 hr) (201)

9. Oxidized LDL or hyperlipidemic sera increase
endothelial PGI2 production at 24 hr but inhibit during
longer incubations (48–72 hr) (202, 203)

Functional changes in red blood cells
10. Hemolysis and increased red cell osmofragility (204) 10. Lipid peroxidation promotes osmofragility and

hemolysis (205)
11. Decreased calcium-ATPase activity (206) 11. Lipid peroxides and other ROS inhibit calcium-ATPase

via modification of protein thiols (207)
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dard methods to evaluate oxidative stress (23, 24). We cur-
rently lack incontrovertible evidence that oxidative stress
contributes to progression of preeclampsia. Clarity has been
hindered by the lack of suitable animal models (25) and
unique difficulties in obtaining longitudinal tissue samples
in this low-prevalence pregnancy disorder.

Endothelial Cell Dysfunction in Preeclampsia
Several lines of evidence indicate that adverse changes

in structure and function of the maternal vascular endothe-
lium account for the altered vascular reactivity, activation of
the coagulation cascade, and multisystem damage that oc-
curs in preeclampsia. The endothelial changes are more ap-
propriately described as dysfunction or activation (an al-
tered state of endothelial cell differentiation in response to
sublethal injury or cytokine stimulation (26)) rather than
damage (10). Pathologic changes in the endothelial cells
that line the renal glomerular capillaries (glomerular endo-
theliosis) are a consistent feature in women with preeclamp-
sia (27, 28). The cells become larger, may contain lipid
droplets, and often occlude the capillary lumen (29). These
changes are reversible after delivery, signifying that repair
processes take place after some influence is removed (30).

Normal human pregnancy is characterized by profound
changes in the cardiovascular system, including decreased
vascular reactivity and reduced vascular tone. An increase
in reactivity and a reduction in relaxation capacity of resis-
tance arteries occurs with preeclampsia. For example, sub-
cutaneous resistance arteries isolated from women with nor-
mal pregnancy exhibit enhanced bradykinin-mediated (en-
dothelium-dependent) relaxation relative to nonpregnancy,
but this pregnancy change is absent in women with pre-
eclampsia. The attenuation of relaxation may result from
decreased production of endothelial vasodilator nitric oxide
(31). An endothelium-dependent, nitric oxide-independent
component may be involved in other vascular beds (32).
The hypertension, increased blood pressure responsiveness
to vasoconstrictors (33, 34), and reports of retinal arteriolar
vasospasm/ischemia (35, 36) in preeclampsia are also con-
sistent with endothelial cell dysfunction.

A variety of substances indicative of endothelial dys-
function are increased in the blood or urine of women with
preeclampsia (9, 10). Many of these substances including
serum soluble VCAM-1 (37) and cellular fibronectin (38),
are elevated weeks before (as well as during) clinically evi-
dent preeclampsia. Multiple circulating factors may pro-
voke the spectrum of endothelial changes, including altered
lipoproteins (9, 39, 40). There are also numerous reports
that substances in plasma or serum from women with pre-
eclampsia alter the function of endothelial cells in culture in
ways relevant to the endothelial pathology of the disease
(9, 39, 41).

There is no convincing evidence that changes in clas-
sically defined hormones account for the vascular changes
of preeclampsia. It has been proposed that deficient nitric
oxide (NO·) production or availability may contribute to the

pathophysiology of preeclampsia (42). However, there are
reports of decreased (43), unchanged (44), and increased
(45–47) circulating nitric oxide degradation products (ni-
trate and nitrite) in preeclampsia. The conflicting data on
nitric oxide in normal and preeclamptic pregnancies have
been reviewed (48). Present discussion of nitric oxide will
be restricted primarily to its interactions with superoxide
anion radical (O2˙

−) to form the profoundly reactive per-
oxynitrite anion (ONOO−).

Role of the Placenta in Preeclampsia

Evidence points to the placenta as a key source of fac-
tors that lead to the maternal endothelial cell dysfunction in
preeclampsia (11). This is evident in that the clinical signs
and lesions of preeclampsia remit within days after termi-
nation of pregnancy. The disease can occur in anembryotic
pregnancy (hydatidiform mole), suggesting that the pres-
ence of a fetus is not strictly necessary (49). In rare cases of
extrauterine (abdominal) pregnancy, in which delivery of
the fetus is not followed by delivery of the placenta, the
signs of preeclampsia persist postpartum until the placenta
is resorbed (50, 51).

The genesis of preeclampsia is clearly related to defi-
cient trophoblast invasion and failure of uterine artery re-
modeling (12, 52). In normal pregnancy the spiral arteries
feeding the intervillous space of the placenta increase
greatly in diameter and become refractory to vasomotor
agents. This involves replacement of endothelium by invad-
ing trophoblast (the trophoblast cells assuming an endothe-
lial cell adhesion molecule phenotype) and replacement of
the internal elastic lamina and smooth muscle by tropho-
blast and fibrinoid matrix. This transformation is complete
by 20 weeks of gestation (53). Along with venous disten-
sion, this accounts for the increased blood supply to the
intervillous space necessary to meet the demands of the
rapidly growing feto-placental unit during the later stages of
gestation (54).

Preeclampsia placentas show abnormal expression of
integrin molecules that regulate cell-cell and cell-matrix in-
teractions (12, 52). As a result, trophoblastic invasion is
inhibited, and spiral artery remodeling is often limited to the
decidual portions such that the myometrial segments do not
widen and remain contractile (55). Defective spiral artery
remodeling in preeclampsia (and in IUGR) likely results in
reduced uteroplacental perfusion and foci of placental hyp-
oxia or ischemia (12, 56, 57). Placental infarcts occur with
increased frequency in preeclampsia, consistent with focal
ischemia (58). Preeclampsia is more common in primi-
gravid twin pregnancies (30% incidence) (59), suggesting
that placental perfusion is an important determinant of preg-
nancy outcome. Many of the ultrastructural changes of pre-
eclamptic placental tissue resemble alterations in placental
tissue when placed in hypoxic organ culture (60). Pre-
eclampsia is more common at high altitude suggesting that
chronic hypoxia is a predisposing factor (61).
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A continuing mystery, however, is how the poor pla-
cental remodeling is connected to the maternal syndrome.
Placental hypoxia/ischemia could result in release of prod-
ucts into the maternal circulation which then initiate the
maternal pathophysiologic changes of preeclampsia. Al-
though it is unclear whether posthypoxic reperfusion oxi-
dative damage occurs in the preeclampsia placenta, there are
numerous changes consistent with accentuated oxidative
stress in the preeclampsia placenta (Table II).

Oxidative Stress in the Preeclampsia Placenta
Acute Atherosis. Preeclampsia is associated with a

distinct pathologic lesion of the decidual arterioles known
as acute atherosis. This arteriopathy occurs in regions of
spiral and myometrial arteries in which the physiologic
transformational changes are absent. Acute atherosis bears a
striking resemblance to atherosclerotic lesions of coronary
arteries, both showing fibrinoid necrosis of the vessel wall,
disruption of the endothelium, aggregates of platelets, and
accumulation of lipid-laden macrophages (foam cells) (55,
62, 63). This is considered to be a true atherosclerosis-like
change. It can also occur in pregnancies with intrauterine
growth restriction without a maternal syndrome (64). The
morphology of these vessels suggests parallels with the ath-
erogenic process of carotid arteries, in which low-density
lipoprotein (LDL) lipid peroxidation with foam cell forma-
tion has a paramount role. However, it remains to be seen
whether oxidized lipids are increased in decidual arterial
walls in preeclampsia.

Placental Lipid Peroxidation. Lipid peroxidation
products are candidate factors that may mediate disturbance
of the maternal vascular endothelium (65). Although not
examined in spiral arteries directly, a study of women un-
dergoing cesarean section showed significantly higher con-
centrations of lipid hydroperoxides, phospholipids, and cho-
lesterol in decidua basilis tissues from women with pre-
eclampsia as compared with tissues from a normal
pregnancy (66). Immediate postpartum curettage, which in-
volves removal of decidual tissue, results in more rapid
clinical recovery from preeclampsia (67). This is consistent
with decidual tissue being a source of factors that enter the
maternal circulation and contribute to the maternal syn-
drome. A follow-up study showed that the content of free
isoprostane (8-iso-PGF2a

), but not total (free plus esterified)
isoprostane, is nearly two-fold elevated in decidua from
women with preeclampsia (68). Isoprostanes, are produced
specifically by free-radical–catalyzed peroxidation of ara-
chidonic acid (69). Free 8-iso-PGF2a has activities of rel-
evance to preeclampsia, being a potent vasoconstrictor,
platelet activator, and mitogen (69).

In vitro production of lipid hydroperoxides and throm-
boxane are reportedly increased in both trophoblast cell and
villous tissues from women with preeclampsia (70–72).
Production of 8-iso-PGF2a is also increased in incubated
placental tissue from women with preeclampsia compared
with tissue from a normal pregnancy (73). However, there
has been no direct demonstration that placental peroxidation
products accumulate in the maternal circulation.

Table II. Changes Consistent with Oxidative Stress in Preeclampsia Placenta

Marker or activity Location Reference
no.

Decreased total superoxide dismutase (SOD) activity Placental homogenate, and mitochondrial and
cytosolic fraction

(93, 94)

Decreased Cu, Zn-SOD activity and mRNA
expression

Placental cotyledons, excluding chorionic and
basal plates

(95)

Decreased glutathione peroxidase activity Placental tissue homogenate (74)
Increased immunohistochemical staining for xanthine

oxidase holoenzyme
Invasive cytotrophoblast (90)

Increased xanthine oxidase holoenzyme and specific
oxidase isoform activity

Placental bed curettings (containing
cytotrophoblast)

(90)

Increased nitrotyrosine immunostaining Villous vascular endothelium, surrounding
smooth muscle and villous stroma

(81)

Increased lipid hydroperoxide concentrations Placental tissue homogenate (74)
Decidua basalis (66)

Increased lipid hydroperoxide production/secretion Trophoblast cells and villous tissue (71)
Increased production of 8-isoprostane Placental tissue pieces (73)
Increased malondialdehyde (lipid peroxidation

product)
Placental homogenate and mitochondrial and

cytosolic fractions; syncytiotrophoblast plasma
membranes

(93, 94, 208)

Increased membrane fluidity (possible indicator of
lipid peroxidation)

Syncytiotrophoblast plasma membranes (161)

Increased membrane susceptibility to peroxidation Syncytiotrophoblast plasma membranes (208)
Increased maximum amount of peroxidizable material Placental homogenate (93)
Presence of lipid-laden macrophages (foam cells) Decidual arterioles (55, 62)
Increased elastase-positive neutrophils (marker of

neutrophil activation)
Decidua of the placental bed (172)
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Glutathione peroxidase, an enzyme that removes hy-
drogen peroxide and converts lipid hydroperoxides to less
reactive alcohols, may be deficient in placental tissue from
preeclamptic women. This is seen in conjunction with in-
creasedin vitro placental production of lipid hydroperox-
ides and thromboxane A2 (TXA2) (20). TXA2 is a vasocon-
strictive and pro-aggregatory prostaglandin normally coun-
terregulated by prostacyclin (PGI2). Chemical inhibition of
placental glutathione peroxidase resulted in increased pro-
duction of lipid hydroperoxides and an increase in the pla-
cental TXA2 to PGI2 output ratio (74). Lipid hydroperox-
ides can inhibit PGI2 synthase enzyme activity and simul-
taneously stimulate the cyclooxygenase component of PGH
synthase (75) whereas TXA2 synthase activity is unchanged
or even stimulated (20, 76). Since expression of the syn-
thases is not altered in the uteroplacental unit (77), these
effects of lipid hydroperoxides could be the source of the
decreased placental PGI2 to TXA2 production ratio in pre-
eclampsia. The altered prostaglandin ratio might provoke
vasospasm with exacerbation of placental ischemia, in-
creased cell damage, and increased lipid peroxidation (am-
plification of oxidative stress) (15).

Placental Nitrotyrosine, Xanthine Oxidase,
and SOD. Peroxynitrite anion (ONOO−) is capable of ni-
trating proteins and inducing lipid peroxidation (78). Per-
oxynitrite formation is favored when NO·outcompetes su-
peroxide dismutase (SOD) for O2˙

− (78). Nitrotyrosine is
the stable reaction product of ONOO− attack on proteins
and thus signals oxidative damage. Nitrotyrosine immuno-
staining has been detected around foam cells in human ath-
erosclerotic lesions (79) and in lung tissue of newborns with
acute lung injury (80). Myattet al. (81) have found greater
nitrotyrosine immunostaining in placental villous vascular
endothelium, and surrounding vascular smooth muscle and
villous stroma in preeclampsia and also in intrauterine
growth restriction compared to normal pregnant controls.
They also found increased nitrotyrosine residues in the pla-
cental vasculature of women with well-controlled diabetic
pregnancies (82). Of note, there is an increased incidence of
preeclampsia in women with IDDM (59). A variety of cells
can be induced to produce both O2˙

− and NO· (and conse-
quently ONOO−) by inflammatory stimuli or by postisch-
emic reoxygenation (83, 84). Increased nitrotyrosine immu-
noreactivity may reflect upregulation of such pathways in
preeclampsia (83, 84). However, nitration of tyrosine can
occur by other free radical processes. Superoxide-
independent pathways have been reported, such as interac-
tion of nitrogen dioxide (NO2·) with tyrosyl radicals gener-
ated by myeloperoxidase during oxidative stress (85).

Changes in xanthine oxidase in the preeclampsia pla-
centa further suggest ischemic or inflammatory injury. The
dehydrogenase (type D) form of xanthine oxidase requires
NAD and produces uric acid and NADH. During hypoxia/
ischemia, this form is increasingly converted to the oxidase
(type O form) which requires oxygen and produces uric acid
and O2˙

− during reoxygenation (86, 87). However, a recent

reappraisal of xanthine oxidase in human tissues has sug-
gested that both D and O isoforms can generate reactive
oxygen species during posthypoxic reperfusion (88). Immu-
noreactivity, mRNA, and enzyme activity for the holoen-
zyme (combined D and O) have been demonstrated in nor-
mal human placental trophoblast (although at low levels
compared to liver) (89). Remarkably, there is increased im-
munohistochemical staining for the holoenzyme in invasive,
but not villous, trophoblast from preeclamptic pregnancies
(90). Placental site curettings (which contain cytotropho-
blast) from women with preeclampsia exhibit increased ho-
loenzyme and increased type O activity compared to
samples from normal controls (90).

In addition to a role for xanthine oxidase, placental
generation ROS in preeclampsia might be facilitated by de-
creases in superoxide dismutase expression and activity.
Total SOD activity in placental homogenates reportedly in-
creases with gestational age (91, 92). Total activity may be
decreased in whole placental homogenates (93, 94) and mi-
tochondrial and cytosolic fractions (94) from women with
preeclamptic compared to normal gestations. Placental tis-
sue homogenate Cu,Zn-SOD activity and mRNA expres-
sion are reportedly decreased in preeclampsia relative to
normal pregnancy (95). However, another study found no
differences in Cu,Zn- or Mn-SOD immunostaining intensity
in placental villous tissue of normal and preeclamptic preg-
nancies (96). Circulating white and red blood cells from
women with preeclampsia have decreased superoxide dis-
mutase activity but not in the concentration of its mRNA,
suggesting post-transcriptional reduction (97, 98).

In summary, there appears to be an increase in ROS
generation in the placenta of preeclamptic women. There is
evidence for increased nitrotyrosine formation in the pre-
eclampsia placenta suggestive of ONOO− production, per-
haps arising from local NO· production coupled with in-
creased xanthine oxidase generation of O2˙

− and either re-
gionally decreased or inadequate SOD. Whether this could
lead to oxidative stress and/or endothelial dysfunction in the
systemic circulation is uncertain. Beneficial/compensatory
effects of ONOO− are also plausible. For example, ONOO−

can lessen leukocyte rolling and adhesion to endothelial
cells and inhibit platelet aggregation (99).

Markers of Oxidative Stress in the
Maternal Circulation

Nitrotyrosine in the Maternal Vasculature. In
striking parallel to data in the placenta, immunohistochem-
ical analysis of microvessels from biopsies of subcutaneous
fat suggests increased peroxynitrite formation in preeclamp-
sia (100). The percentage of vascular endothelium staining
for nitrotyrosine was greater in preeclampsia (73%) than
normal pregnancy (3%). Greater staining was also seen just
outside the endothelium, possibly due to diffusion of per-
oxynitrite from the endothelium. In conjunction, the inten-
sity of endothelial cell immunostaining was significantly
lower for SOD and higher for nitric oxide synthase (eNOS)
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in vessels from women with preeclampsia. These data
suggest deleterious oxidative changes in the maternal
vasculature.

Lipid Peroxidation Products. There are scores of
reports that lipid peroxidation products, primarily measured
as thiobarbituric acid-reactive substances (which include
malondialdehyde), are increased in plasma/sera of women
with preeclampsia (15, 20). There are also reports of in-
creased lipid peroxidation products in platelets (101) from
women with preeclampsia. However, most lipid peroxida-
tion assays have sensitivity and specificity problems (23,
24). Morris et al. (102) found no evidence that circulating
lipid peroxidation products (8-iso-PGF2a

, lipid hydroperox-
ides, and malondialdehyde) are elevated in preeclampsia
once appropriate precautions were taken, including addition
of antioxidants, to preventin vitro oxidation. However,
these oxidation markers were significantly raised in normal
pregnancy (and in preeclampsia) as compared with non-
pregnant women, agreeing with several earlier publications
(20, 103, 104). Thus, it is possible that pregnancy is a sti-
milus for lipid peroxidation.

Linoleic acid content in plasma phospholipid and tri-
glyceride fractions decreases from early to late pregnancy in
women with preeclampsia relative to normal pregnancy.
Progressive lipid peroxidation may explain this change
(105). Due to ascorbate and other antioxidants in plasma,
susceptible lipids are believed not to undergo significant
oxidation in the circulation (106). Circulating peroxidation
products may originate from the placenta (20).

Circulating Anti-Oxidized LDL Antibodies. Low-
density lipoprotein particles continuously enter and exit the
artery wall. In the subendothelial interstitial matrix, the pre-
sumed site of LDL oxidationin vivo, LDL may be exposed
more frequently to cell-derived oxidants and at the same
time may be less protected by antioxidants relative to cir-
culating LDL (107). The potential for prolonged contact
with LDL is one reason the endothelium is prone to oxida-
tive disturbances. Antibodies directed against oxidized LDL
are found in the serum of most people but are increased in
disorders associated with oxidative stress (108). Increased
autoantibodies to an epitope of oxidized LDL have been
described in women with preeclampsia relative to normal
pregnancy although a negative report also exits (109, 110).
In such studies, it is important to consider the antigenic

epitope of oxidized LDL used. Uotilaet al. (111) found
increased titers of serum autoantibodies against copper-
oxidized LDL, but not against malondialdehyde-LDL, in
preeclampsia. Kurkiet al. (112) found that antibodies to
malondialdehyde-LDL and anticardiolipin were not in-
creased in early in gestation in women who subsequently
developed preeclampsia compared with women whose
pregnancies remained normal. The pathophysiologic impli-
cations of these circulating markers thus remain uncertain.

Ascorbate Oxidative Consumption. Reduced
ascorbate (vitamin C) is supremely effective in protecting
plasma lipoproteins and other susceptible molecules from
peroxidation during exposure to a wide spectrum of water-
or lipid-soluble free radicals. The semidehydroascorbate an-
ion radical (Asc˙−) formed in the process is extremely un-
reactive, enhancing the antioxidant effectiveness of ascor-
bate. Plasma ascorbate reserves decrease gradually through-
out normal pregnancy (113). A decrease in mean plasma
ascorbate concentration in preeclampsia relative to normal
pregnancy was noted in 1964 (114) and then in 1994 (115).
Table III is from a recent study on concentrations of ascor-
bate, total thiols (glutathione + protein thiols), and vitamin
E (a–tocopherol) in plasma (116). Ascorbate concentrations
were 50% lower in preeclampsia relative to normal preg-
nancy plasma, but total thiols and vitamin E did not differ.
These relationships were maintained in the subset of
samples obtained at term and without magnesium sulfate
administration.

In contrast to ascorbate, plasma vitamin E concentra-
tions increase during normal gestation (102, 103). One
likely explanation for the vitamin E increase is the marked
gestational increase in circulating lipoproteins. Vitamin E is
transported in plasma lipoproteins, thus elevated lipid con-
centrations generally result in elevated vitamin E (117).
Plasma vitamin E concentrations are either unchanged (102,
116) or increased (118) in preeclampsia, even in severe
cases. Another study found increased serum vitamin E in
severe but not mild preeclampsia relative to normal preg-
nancy, but with no group differences after normalization to
serum cholesterol (119). Increased vitamin E is likely due to
the accentuated hyperlipoproteinemia of preeclampsia (40,
120). Lipid-adjustment better reflects the number ofa-to-
copherol molecules per lipoprotein particle and thus poten-
tial impact upon lipoprotein oxidative resistance. Table III

Table III. Plasma Antioxidant Reserves in Women with Preeclampsia and Normal Pregnancy

Ascorbate
nmol/ml

Total thiols
nmol/ml

Vitamin E
nmol/ml

Vitamin E
nmol/µmol lipida

Preeclampsia 11.0 646 25.7 2.8
(n = 12) (9.2 to 15.3) (518 to 794) (21.8 to 30.6) (2.4 to 2.9)

Normal pregnancy 21.2 516 21.3 2.4
(n = 13) (16.8 to 26.4) (476 to 598) (16.1 to 22.8) (2.0 to 3.0)

Significance P < 0.002 NS (P = 0.05) NS (P = 0.06) NS (P = 0.53)

Note. Data are medians and interquartile range
NS: not significant
a lipid corrected: vitamin E/(cholesterol + triglycerides) in nmol/µmol
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indicates no differences in lipid-corrected vitamin E con-
centrations. These patients reported daily intake of prenatal
vitamins containing vitamins E and C during pregnancy, a
factor likely to diminish the influence of diet.

Further experiments tested whether blood-borne factors
from women with preeclampsia accelerate the oxidation of
ascorbate. Freshly obtained, EDTA-anticoagulated whole
blood from women with normal and preeclamptic pregnan-
cies (sampled prior to labor and MgSO4) were incubated,
and plasma aliquots were harvested at successive time in-
tervals. The time-dependent changes in endogenous ascor-
bate and total thiol concentration were then measured by
electron paramagnetic resonance (EPR) spectroscopy. The
median time required for half-consumption of ascorbate in
preeclampsia blood was significantly less (median 95 min
vs. 360 min) (116). No time-dependent decrease in thiols
was evident.

During its antioxidant action, ascorbate undergoes two
consecutive one electron oxidations to dehydroascorbic acid
with intermediate formation of the ascorbate radical. Ascor-
bate radical is detectable by electron paramagnetic reso-
nance (EPR) spectroscopy whereas ascorbate and dehydro-
ascorbate are EPR-silent. The initial signal amplitude of
ascorbate radical is directly proportional to the overall rate
of ascorbate oxidation, whereas the signal duration is in-
versely proportional. Ascorbate radical thus serves as a
gauge of ongoing oxidative stress in plasma (121). EPR
spectroscopy was used to measure temporal changes in
ascorbate radical signal amplitude in plasma after initial
equalization of ascorbate concentrations by addition of ex-
ogenous ascorbate. Figure 1 illustrates that the ascorbate
radical signal amplitude was initially greater in preeclamp-
sia plasma and then, in contrast to normal pregnancy
plasma, decreased progressively during the recording inter-

val. An ascorbate-oxidizing activity is thus increased in
blood from women with preeclampsia, with at least a por-
tion present in the plasma (independent of blood cells). Iron
chelators had no effect on the ascorbate radical signal sug-
gesting that free iron is not the catalyst for ascorbate oxi-
dation (116). However, the copper (Cu2+) chelator cupri-
zone extends the ascorbate radical lifetime in a majority of
preeclampsia (but not normal pregnancy) plasma samples,
eliminating differences between groups. This may reflect
decreased ability of Cu-binding proteins to sequester Cu in
redox-inactive form (122).

Dyslipidemia and Oxidative Stress
in Preeclampsia

Lipid alterations may promote oxidative stress in pre-
eclampsia (65, 123, 124). In particular, the insulin resistance
syndrome (“syndrome X”; a cluster of abnormalities includ-
ing dyslipidemia, obesity, and resistance to insulin-
stimulated glucose uptake) may have an important role in
the pathogenesis of preeclampsia (125), as it does in non-
pregnancy cardiovascular disease (126).

Lipid Changes in Normal and Preeclamp-
tic Pregnancies. During the first half of normal preg-
nancy, increased maternal adipose fat accumulation sets the
stage for the subsequent physiologic hyperlipidemia of later
gestation (127). Plasma concentrations of very low density
lipoprotein (VLDL) and LDL increase progressively with
gestational age as reflected by increases in serum triglycer-
ides and cholesterol (128, 129). Reversal of pregnancy lipid
changes is essentially complete by 6 weeks postpartum
(129). Gestational increases in estrogen are thought to pro-
mote hepatic production of VLDL triglyceride (130). The
release of free fatty acids from adipocytes into the circula-

Figure 1. Temporal changes in ascorbate radical signal amplitude in preeclampsia and normal pregnancy plasma after normalization of
ascorbate concentrations by addition of exogenous ascorbate. Ascorbate concentrations in plasma were normalized (1 mM) and then
ascorbate radical spectra continuously recorded. No exogenous oxidation catalysts were added. Signal amplitude is proportional to the
steady-state concentration of ascorbate radical. Data are expressed as a percentage of the initial signal intensity measured in a plasma pool
composed of plasma from six women with normal pregnancies. (..) pregnancy pool (n = 6); (ss nn hh) individual normal pregnancy
plasma samples. (rr) preeclampsia pool (n = 6); (mm ■■ ●●) individual preeclampsia samples. The initial ascorbate radical signal amplitude
is higher in preeclampsia plasma and then, in contrast to normal plasma, decreases progressively indicating increased ascorbate oxidation.
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tion increases due to the insulin resistance of late gestation
(130). Activities of adipose tissue lipoprotein lipase and
hepatic lipase are substantially decreased during normal
pregnancy (due to insulin resistance and estrogen, respec-
tively). The net result is impaired removal of triglyceride-
rich lipoproteins from the circulation (130). Circulating tri-
glycerides cannot cross the placental barrier (127, 131).
However, lipoprotein lipase in the human placenta (not sup-
pressed during pregnancy) may ensure release of free fatty
acids for transfer to the fetus (132).

Mean plasma triglyceride and free fatty acid concen-
trations undergo near doubling in women with preeclampsia
relative to normal pregnancy (105, 133). Roughly one-third
of women with preeclampsia develop plasma triglyceride
values above 400 mg/dl (133), greater than the 90th percen-
tile of randomly selected women at 36 weeks gestation
(128). The dyslipidemia begins months before, and thus is
not a consequence of, clinically evident preeclampsia (105,
134, 135). This is suggestive of a pathogenic role for dys-
lipidemia. Women with chronic hypertension during preg-
nancy do not usually display dyslipidemia (135). Fasting
serum triglycerides correlate with serum malondialdehyde,
a lipid peroxidation product, in women with preeclampsia
(133). The hypertriglyceridemia of preeclampsia is also ac-
companied by increased prevalence of smaller, denser LDL
particles (40, 136) and decreased HDL cholesterol (136,
137). The mechanisms underlying the dyslipidemia of pre-
eclampsia are poorly understood. Heightened gestational in-
sulin resistance (124, 125) may accentuate the suppression
of lipoprotein lipase activity and increase the mobilization
of free fatty acids from visceral adipocytes.

Hypertr iglyceridemia and Small Dense
LDL. There is strong support for a causal relationship be-
tween cholesterol and coronary artery disease. Nevertheless,
up to half of patients with coronary artery disease may have
cholesterol levels in the normal range, suggesting involve-
ment of other factors (138). Hypertriglyceridemia is emerg-
ing as a major risk factor (138–140). Elevated triglycerides
may compromise vascular function in several ways. For
example, triglyceride-rich lipoproteins have prothrombotic
activity (140).

Hypertriglyceridemia also shifts the spectrum of LDL
subclasses toward proportional increases in smaller, denser,
more atherogenic LDL particles (139). Prospective studies
have shown that small LDL size is a risk factor for coronary
heart disease (138, 141). A direct pathophysiologic role is
suggested by several findings. Relative to the large buoyant
variety, small dense LDL particles more readily infiltrate
into arterial tissue (the presumed site of LDL oxidation),
and exhibit enhanced adhesiveness to artery intimal proteo-
glycans (142). In addition, smaller denser LDL particles are
intrinsically more susceptible to oxidation (143). Compared
with more buoyant particles, small dense LDLs show
greater capacity to provoke changes in vascular cells
in culture consistent with vasoconstrictive effectsin vivo
(144, 145).

The normal pregnancy rise in plasma total triglyceride
is associated with a progressive shift from predominantly
large and buoyant LDL to intermediate and small dense
LDL, with reversal by 6 weeks postpartum (146). The size
of the predominant LDL subclass is significantly decreased
in preeclampsia relative to normal pregnancy, correlating
inversely with plasma triglycerides (40, 136). LDL size dif-
ferences between normal pregnancy and preeclampsia are
less striking than those between normal pregnancy and non-
pregnancy (40, 146). The physiologic significance of small-
sized LDL in pregnancy remains unknown.

Genetic Susceptibility. Susceptibility to pre-
eclampsia is highly heritable. Population studies have
shown a strong familial susceptibility to preeclampsia (147–
149). At present there is no consensus as to the best genetic
model to explain this increased risk. The dominant hypoth-
esis is that preeclampsia involves multiple susceptibility
genes and environmental influences, with endothelial dys-
function as a common end point (13, 150, 151).

In addition to possible hormonal suppression of lipo-
protein lipase, Caucasian women with preeclampsia have a
substantially increased prevalence of functional mutations
in the lipoprotein lipase gene relative to normal pregnancy
and population controls (152). Heterozygous lipoprotein li-
pase deficiency is thought to play an important role in the
pathogenesis of coronary artery disease (153). By decreas-
ing lipoprotein lipase activity, these mutations promote the
dyslipidemic triad of increased triglyceride, decreased HDL
cholesterol, and predominance of small dense LDL (154).
Heterozygous lipoprotein lipase deficiency alone may be
insufficient in general to cause overt dyslipidemia. How-
ever, the dyslipidemic phenotype is promoted by interaction
of these mutations with factors such as pregnancy, obesity,
or diabetes, which challenge the lipolytic system by increas-
ing hepatic secretion of VLDL (153). Since triglyceride-rich
lipoproteins are prothrombotic (140), functional mutations
in the lipoprotein lipase gene may fit with the cluster of
thrombophilic mutations (155) associated with preeclamp-
sia. However, there are presently no reports on postheparin
lipoprotein lipase enzyme activity or mass in women before,
during, or after preeclampsia. Since women with a history
of preeclampsia-eclampsia are at increased risk for cardio-
vascular disease in later life (156) and manifest a more
adverse lipoprotein profile in later life (157), it will also be
of interest to examine the association of lipase mutations
with remote prognosis.

Maternal and Placental Interactions
In trophoblasts and macrophages of the normal pla-

centa, scavenger receptor activity (uptake of oxidized LDL)
greatly exceeds “native” LDL receptor activity (158). LDL
might be prone to oxidation during its relatively slow tra-
versal through the intervillous space in direct contact with
trophoblast cells (158). The aldehydic lipid peroxidation
product, 4-hydroxynonenal, has been found in trophoblast
cells of the normal human placenta, and it might be derived
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from lipoprotein oxidation (159). The progressively smaller
denser LDL formed during pregnancy should be increas-
ingly susceptible to oxidation, and oxidation might occur
during transit through the placenta.

If stable peroxidation metabolites are produced during
placental oxidative stress and enter the maternal circulation,
these could contribute to widespread endothelial dysfunc-
tion. Malondialdehyde and 4-hydroxynonenal, for example,
are second toxic messengers of lipid peroxidation; exposure
of cells in culture to pathophysiologic concentrations of
these agents has toxic effects (160). Syncytiotrophoblast
membranes from preeclamptics have decreased fluidity,
suggesting lipid peroxidation that may predispose to in-
creased syncytiotrophoblast membrane shedding (deporta-
tion) into the maternal circulation (161). Syncytiotropho-
blast membrane products are increased in the maternal cir-
culation in preeclampsia and may have a profound adverse
effect on the vascular endothelium (11, 162, 163). Muraiet
al. (164) have presented data consistent with the idea that a
factor associated with syncytiotrophoblast microvillous
membranes deported into the maternal circulation, perhaps
human placental lactogen, increases maternal fat cell lipoly-
sis with resultant rises in circulating free fatty acid concen-
trations and, subsequently, endothelial dysfunction in pre-
eclampsia.

Tumor Necrosis Factor (TNF a) Hypoxia pro-
motes excess production of placental tumor necrosis factor
(TNFa) (165). Release of this cytokine into the maternal
circulation by the hypoxic placenta might promote endothe-
lial dysfunction in preeclampsia (165). Amplification of in-
jurious effects of placental TNFa by increased maternal free
fatty acids is then possible. Free fatty acids are highly in-
flammatory. Unsaturated fatty acids and TNFa coopera-
tively amplify endothelial oxidative stress and dysfunction
in vitro (166). Further placental vasospasm and hypoxic
production of TNFacould result from TNFastimulation of
mitochondrial and neutrophil ROS production locally (167).
In humans and animal models, increased TNFa production
by adipose tissue occurs with obesity, insulin resistance, and
hypertriglyceridemia (168, 169). This cytokine decreases
lipoprotein lipase activity, increases adipose tissue lipolysis,
and may be a mediator of insulin resistance (168, 169).
Hypothetically, increased production of TNFa from the pla-
centa and/or maternal adipose tissue could contribute to
insulin resistance, dyslipidemia, and oxidative stress in pre-
eclampsia.

Inflammatory Responses in Preeclampsia. As
reviewed, placental lipid peroxidation products, TNFa, and
syncytiotrophoblast membrane fragments are candidate
blood-borne agents with potential to cause endothelial cell
dysfunction. Redmanet al. (170) have proposed that endo-
thelial cell dysfunction is part of a more widespread intra-
vascular inflammatory response causing the clinical syn-
drome preeclampsia. This would involve leukocytes and the
clotting and complement systems. Using flow cytometry of
whole blood to preclude artifactual leukocyte activation due

to their isolation, they have shown that normal pregnancy
itself stimulates a robust leukocyte inflammatory response
(171). Intracellular reactive oxygen species were signifi-
cantly increased in monocytes, granulocytes, and lympho-
cytes in normal pregnancy as compared with nonpregnancy
with a further increase evident in preeclampsia. Surface
markers were consistent with marked activation of leuko-
cytes in the peripheral circulation during normal pregnancy
and further increases in some but not all surface markers in
preeclampsia. Differences between normal pregnancy and
nonpregnancy were generally more striking than those be-
tween normal pregnancy and preeclampsia (171). Thus, in-
appropriate maternal response to the proinflammatory
stimulus of pregnancy might promote preeclampsia. Other
pronounced changes in normal pregnancy as compared with
nonpregnancy fit with this concept, including increases in
circulating triglycerides, free fatty acids, small dense LDL,
and lipid peroxidation products. Placental hypoxia, resulting
from poor placental perfusion, may predispose to pre-
eclampsia by amplifying the release of inflammatory stimuli
into the maternal circulation (170).

Activation of maternal neutrophils during their transit
through the placenta could provide a pathway for transfer of
oxidative disturbances into the maternal circulation in pre-
eclampsia. Elastase-positive neutrophils (a marker of neu-
trophil activation) are found in increased numbers in the
decidua of the placental bed in women with preeclampsia
compared with normal pregnancies. This is seen at the same
placental site as the acute atherosis mentioned previously
(172). Neutrophil elastase concentrations are increased in
the peripheral circulation of women with preeclampsia
(173) as well as intrauterine growth restriction (174). A
significant correlation exists between plasma neutrophil
elastase and von Willebrand factor, a marker of endothelial
dysfunction (175). Postischemic reoxygenated cells release
factors that induce neutrophils to discharge oxidants (O2˙

−,
H2O2, HOCl, chlorine gas) (87, 176, 177). Such stimula-
tory factors include components of the complement cas-
cade, adhesion molecules, TNFa, and also certain oxidized
and nonoxidized fatty acids (87, 178–183). Nonphagocytic
vascular cells, including smooth muscle and endothelial,
possess a potent superoxide- and hydrogen peroxide-
producing NADH/NADPH oxidase that is related to the
neutrophil NADPH oxidase (184). Angiotensin II causes
long-term activation of this oxidasevia the AT1 receptor
(185). Women with preeclampsia have drastically elevated
circulating autoantibodies against the AT1 receptor (186).
These autoantibodies bind to the AT1 receptor and have
agonist activity (186). Whether these autoantibodies con-
tribute to vascular cell oxidase activation is currently not
known.

Concluding Remarks
Oxidative stress may be the point at which multiple

factors converge resulting in endothelial cell dysfunction
and the consequent clinical manifestations of preeclampsia.
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Abnormal placentation with reduced uteroplacental perfu-
sion might lead primarily to intrauterine growth restriction.
Maternal dyslipidemia and/or a primary or secondary de-
crease of antioxidants might make preeclampsia increas-
ingly likely. Differences in the prevalence of placental ver-
sus maternal oxidative stressors in different subsets of
women could contribute to the heterogeneity of preeclamp-
sia. Interaction of maternal components, particularly neu-
trophils and oxidation-susceptible lipids, with placental
cells and placental-derived factors may engender feed-
forward cycles of oxidative stress and endothelial cell dys-
function. Lesser individual tolerance to a given oxidant/
inflammatory burden during pregnancy may be important in
development of the disorder. It is hoped that this review will
stimulate further investigation.
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