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Abstract— For many wireless communication links, such as those
employing turbo codes or sequentially-decoded convolutional
codes, the power consumption of the decoder at the receiver de-
pends on the received signal power and, hence, on the transmitted
signal power. By transmitting a signal at a power higher than
the minimum required for successful reception, the transmitter
can “assist” the receiver by reducing the receiver decoding effort
and thereby reducing the overall power consumption on the link.

In this paper, we consider sender-receiver power tradeoffs in
data-gathering trees. We formulate an optimization problem to
optimally assign power to the nodes in the tree for maximizing
the lifetime of the data-gathering tree, which is equivalent to the
time until network partition due to battery outage. We propose
a Binary Search Algorithm for optimal power assignment among
nodes that maximizes the tree lifetime. Our Binary Search Algo-
rithm can be easily extended to handle practical considerations
such as node mobility and peak power constraints at nodes. Using
turbo codes as an example of a channel coding technique, we
demonstrate significant improvements in network lifetimes as a
result of sender-receiver power tradeoffs. These improvements
are observed under a wide variety of network conditions and
are more pronounced in densely deployed networks and networks
with asymmetric power costs.

I. INTRODUCTION

Wireless ad hoc networks have attracted considerable atten-
tion in the recent years, both in academia as well as industry.
One of the main reasons for their popularity can be attributed
to the various applications they enable. Habitat monitor-
ing [13], environmental observation and forecasting [1], organ
monitoring and health monitoring [17] and target tracking [23]
are just a few examples of the many applications of wireless
ad hoc networks. A wireless ad hoc network comprises a
large number of nodes scattered in a region of interest. Each
node is equipped with a transceiver used for transmitting and
receiving signals. Each node also has some on board memory
for data storage. The deployed nodes not only originate data
but can also act as data forwarders, storing and forwarding
data originated by other nodes.

One of the most important challenges in the design of such
ad hoc networks is to reduce the energy consumption of the
network. The nodes in an ad hoc network are typically battery-
powered and, hence, have a limited lifetime. As a result, the

lifetime of the network is also limited. Careful design to max-
imize the network lifetime is of utmost importance. For many
ad hoc network applications, techniques such as aggregation
and in-network processing [9], energy-aware routing [8], [10]
and energy-aware medium access protocols [22] have been
proposed in order to reduce communication. All these works
assume that communication is the dominant contributing factor
in limiting the lifetime of an ad hoc network. Furthermore,
there have been works [7], [21], [18] that focus on the
physical aspects of communication where the emphasis is on
minimizing transmission energy.

An interesting observation was made in [4] in which the
authors argue that, in dense ad hoc networks, the average inter-
node distances will be small (< 10m). For small distances,
the circuit energy consumption along the signal path becomes
comparable to or even dominates the transmission energy in
the total energy consumption. The authors then propose an
energy consumption model that accounts for the circuit power
consumption together with the transmission energy. Another
work with a similar flavor is [14], in which the authors account
for the energy expended by other processes that run when
the transmitter is in the ’on’ state and then find the optimal
transmission strategies under this energy model.

In [19], we propose the idea of increasing transmit power
to reduce the receiver power consumption. In particular, we
observe that there are many coding techniques in which the
power consumption at the receiver to decode a signal is a
function of the transmitter power. Hence, by increasing the
power used by a transmitter to transmit a signal, the decoder
can decode the signal faster and expend less energy. Examples
include turbo decoders, where the number of decoder itera-
tions decreases as the received SNR increases and sequential
decoding of convolutional codes. We then show that such a
tradeoff has the potential for significant energy savings and
hence, an improvement in network lifetime. However, several
simplifying assumptions were made in [19]. In particular,
we consider a homogeneous tree network, i.e. a complete,
balanced tree with fixed length edges. Node data rates and
remaining energies were same for all the nodes. Furthermore,
all nodes were constrained to use a single power setting, which



as we will see in this paper, does not always yield the optimal
system lifetime.

In this paper, we consider the Lifetime Maximization Prob-
lem (LMP) in an arbitrary data-gathering tree of wireless
nodes. Each node in the tree generates data at a constant rate,
destined to a sink node. The inter-node distances are assumed
to be arbitrary. We first consider a simpler version of LMP,
in which nodes are constrained to use a single power setting
throughout their lifetime. We then present the Binary Search
Algorithm that achieves a power allocation among nodes to
maximize the system lifetime. Subsequently, we show that
a single power setting per node is insufficient to maximize
the system lifetime. We then formulate a variant of LMP in
which we allow multiple power settings for each node. We
show how the Binary Search Algorithm can be modified to
optimally solve the multi-power variant of LMP. Our algo-
rithm is amenable for implementation in practical scenarios.
Furthermore, the algorithm can be easily extended to adapt
to changes in the tree structure induced by node mobility.
Other relaxations such as peak power constraints at nodes and
arbitrary node data rates can also be handled. Using turbo
codes as an example, we demonstrate that by employing the
power tradeoff techniques suggested in this paper, significant
improvements in network lifetimes are achievable under a wide
range of operating conditions, over schemes in which nodes
always transmit at minimum power. In particular, we observe
that the improvements in lifetime are more pronounced in
dense networks and networks with asymmetric power costs.

We note that the problem of lifetime maximization of an
ad hoc wireless network has been investigated earlier [2],
[16]. However, the tradeoff between transmit and receive
powers was not considered in these problem formulations. This
tradeoff is the main subject of this paper and is considered in
detail here.

The rest of the paper is organized as follows. In Section II,
we describe our power model. In Section III, we describe the
Lifetime Maximization Problem which is the subject of this
paper. We first formulate a simpler version of this problem
in which nodes are constrained to use only a single power
setting and then solve this problem optimally. In Section IV,
we show that under certain conditions a single power setting
per node does not yield the optimal system lifetime. We,
therefore, formulate the Multi-Power Lifetime Maximization
Problem which allows nodes to employ multiple power set-
tings and describe how this problem can be solved optimally.
In Section V, we discuss numerical results to demonstrate
the benefits of power tradeoffs, using turbo codes as an
example of a communication system with transmitter-receiver
power tradeoff. We discuss some practical considerations in
Section VI. Finally, we conclude and present some potential
future directions in Section VII.

II. POWER CONSUMPTION MODEL

Let Em denote the minimum received energy (in Joules)
required to successfully decode an information bit conveyed by
a transmitter. Now, if the transmitter and receiver are separated

by a distance d, the minimum transmission energy required to
convey an information bit is Emdα, where α denotes the path-
loss exponent. However, as noted in the introduction, often
it is advantageous to transmit at an energy (or at a power
level) larger than this required minimum and, thus, the actual
transmission energy invested in the signal is scaled by the
factor Pg (Pg ≥ 1) to yield a total transmitter energy per
information bit of:

Pt = PgEmdα (1)

The circuit energy per bit consumed by the transmitter con-
tributes a constant additive term to equation (1). However,
we do not consider the circuit energy consumption of the
transmitter in our model since it does not contribute to the
problem of optimal transmit-receive power tradeoff considered
in the paper.

The receiver energy consumption Pr per information bit is
given by

Pr = Euf(Pg) (2)

where Eu is the amount of energy per unit operation per bit
to run the decoder, and f(Pg) is a (non-linear) function of
Pg that returns the number of unit operations required at the
receiver to decode the signal. For example, in the case of
turbo codes, Eu is the energy in Joules per bit per iteration
to run the iterative decoder, and f(Pg) is the number of
decoder iterations required. Note that f(Pg) is a monotonic
non-increasing function of Pg .

The receive energy consumption per information bit Pr can
be rewritten as:

Pr = F (Pt) = Euf(
Pt

Emdα
) (3)

It is easy to see that F is a monotonic non-increasing function
of Pt.

The rest of this paper deals with the issue of determining
the optimal transmission energy per bit, Pt, for each node in
a network so as to maximize the network lifetime.

Although Pt represents the transmission energy (in Joules)
per bit, throughout this paper, we use the term “power setting”
to refer to the quantity Pt, for ease of discussion. We note
that the transmission energy Pt is varied by changing the
transmission power (through the quantity Pg in equation (1)).

III. LIFETIME MAXIMIZATION PROBLEM

There are a number of scenarios where the ability to trade
transmit power for receive power should be effective, partic-
ularly in networks with asymmetric power costs. Consider
the following example: a “hot spot” node (or set of nodes)
sits on a critical path between two large clusters of nodes
that frequently communicate. If all nodes start with the same
amount of energy, standard transmission schemes will result in
such a node running out of energy well before its counterparts;
hence, network lifetime will be limited. It is readily apparent
how this problem can be ameliorated with the framework
presented in this paper. Nodes transmitting to the critical
node can increase their transmission energy significantly, thus



allowing the critical node to reduce its energy used for
decoding. Likewise, the critical node can operate at minimum
transmission energy, thus placing the burden of decoding on
its more energy-rich receive counterparts to expend energy.
It is clear then that we want to determine the optimal power
allocation among the nodes in order to maximize the system
lifetime.

We, therefore, formulate the Lifetime Maximization Problem
(LMP) for a wireless network, which is the main subject of
this paper. The scenario that we consider in this paper is that
of a network of wireless nodes and a data sink. The nodes
generate data at some rate and disseminate the data to the data
sink. For the purpose of data dissemination, nodes organize
themselves into a tree rooted at the data sink. In this paper,
we do not address the problem of how to construct such a
tree. We instead assume that such a tree is already available.
Indeed, algorithms for constructing dissemination trees have
been proposed in [10], [11]. Our goal, then, is to maximize
the lifetime of the tree, i.e., the time until the first node in the
tree runs out of energy. As mentioned earlier, we are interested
in a tree as it is considered to be an efficient dissemination
structure for the scenario that we are interested in.

In this section, we consider a simpler version of LMP,
called the Single Power Lifetime Maximization Problem, in
which each node is constrained to use a single power setting
throughout its lifetime. We first formulate this problem and
then provide a solution to this problem. In the next section, we
show that in some cases a larger lifetime can be achieved by
allowing each node to have multiple power settings. We, then,
formulate the Multi-Power Lifetime Maximization Problem to
allow nodes to have multiple power settings and show how
this problem can be solved optimally.

A. Single Power Lifetime Maximization Problem
Let n be the number of wireless nodes, excluding a data sink

S, in the network, which are organized into a tree rooted at
S. Each wireless node i (1 ≤ i ≤ n) generates data (destined
for sink S) at a constant rate Ri and has a total remaining
energy denoted by Ei. The sink S is assumed to be “plugged
into the wall” and, hence, has an infinite amount of energy.
We assume that flow-conservation is maintained at all interior
nodes in the tree. More precisely, an interior node forwards
traffic at a rate R′

i, which is the sum of the incoming flow rates
from all its children (denoted by the set Ci) and its own data
generation rate Ri. Each node i uses a transmission energy
P i

t in order to transmit data to its parent, denoted by p(i).
Let τ denote the lifetime of the network, which is defined as
the time until the first node in the tree runs out of energy.
Our goal, then, is to find the optimal vector of power settings
of nodes, Pt = (P 1

t , . . . , Pn
t ), that maximizes the network

lifetime τ .
The Single Power Lifetime Maximization Problem (SPLMP)

is then formulated as follows:

max
Pt

τ (4)

subject to:
(1) Flow Conservation:

R′

i =
∑

j∈Ci

R′

j + Ri, ∀i, 1 ≤ i ≤ n

(2) Energy Constraints:

R′

iP
i
t τ +

∑

j∈Ci

F (P j
t )R′

jτ ≤ Ei

∀i, 1 ≤ i ≤ n
(3) Transmission Energy Constraints:

P i
t ≥ Emdα

i,p(i), ∀i, 1 ≤ i ≤ n

The first constraint represents the flow conservation prop-
erty, as mentioned earlier. Since each node generates data at a
constant rate, the constraint guarantees that instantaneous flow
conservation is maintained at all times. The second constraint
states that the total energy consumption of a node i over the
lifetime of the network is less than or equal to its initial total
remaining energy Ei. The third constraint specifies that the
transmission energy per bit of node i must be greater than
or equal to the minimum transmission energy required for
successful decoding at node p(i) located at a distance di,p(i).

Having formulated the optimization problem, we next pro-
ceed to describe how to solve this problem.

B. Binary Search Algorithm

We show in Appendix A that the optimal solution to SPLMP
can always be achieved by choosing power settings of nodes
such that all nodes die out at the same time. Intuitively, this
is because there is no advantage to a node having energy left
when the network dies. As a result, the inequality in the energy
constraints (constraint (2)) of the optimization problem (4) in
Section III-A can be replaced with equality constraints.

We also observe that SPLMP can be solved iteratively in
a bottom-up manner. During each iteration, the root node
chooses a target lifetime τ that the network seeks to achieve.
Initially, the leaf nodes have determined their transmit power
setting in order to achieve the target τ simply by solving the
equality constraint (2) of the optimization problem. Given the
transmit power settings of the leaf nodes, the parent nodes, in
turn, compute their transmit power settings in order to achieve
τ , again by solving constraint (2). This process repeats until
all children of the root node determine their power settings.
However, the resulting power assignment may not necessarily
be feasible. In particular, the power assignment may require a
node (say i) to transmit at a power smaller than the required
minimum i.e., P i

t < Emdα
i,p(i). When this happens, we

conclude that the lifetime τ is too large to be achieved by
the network and a smaller lifetime needs to be sought. If,
however, the resulting power settings of all the nodes do not
violate any constraint of the optimization problem, then the
lifetime τ is feasible and the optimal lifetime of the network
must be greater than or equal to τ . As a result, a higher lifetime
is sought in the next iteration. Thus, it can be seen that the



process of finding the optimal lifetime is similar to a binary
search process.

A formal specification of the algorithm is shown in Figure 1.
This algorithm takes as input the data gathering tree T and an
error margin ∆ that determines the desired accuracy of the
solution. The output of the algorithm is a lifetime within ∆
of the optimal lifetime and the power setting of each node
corresponding to the optimal lifetime. τu and τl represent
the lower and upper bounds of the optimal lifetime and
are updated after each round of algorithm execution. The
algorithm returns a lifetime within ∆ of the optimal lifetime,
when the condition τu − τl < ∆ is satisfied.

Let τ∗ denote the optimal lifetime of the optimization prob-
lem (4) and τ denote the lifetime returned by the algorithm
in Figure 1. From the algorithm specification, it is easy to
see that the optimal lifetime, τ ∗ always satisfies the condition
τl ≤ τ∗ ≤ τu. The variable τ in the algorithm, also, always
satisfies the condition τl ≤ τ ≤ τu. When τu − τl < ∆, we
can conclude that |τ∗ − τ | < ∆.

function COMPUTE-LIFETIME(T, ∆)
Input: Data-gathering Tree (T ) and error-margin (∆)
Output: Optimal network lifetime τ
1. τl ← 0
2. τu ← C
3. while FEASIBLE(T ,τu) do
4. τl ← τu

5. τu ← 2τu

6. endwhile
7. while((τu − τl) > ∆) do
8. τ ← τl+τu

2
9. if FEASIBLE(T ,τ ) then
10. τl ← τ
11. else
12. τu ← τ
13. endif
14. endwhile
15. return τ

function FEASIBLE(T , τ )
Input: Data-gathering Tree (T ) and target lifetime (τ )
Output: true if τ is feasible, false otherwise
1. for i = 1, . . . , n do
2. P i

t ←
Ei−Eu

P

j∈Ci
R′

jF (P j
t )τ

Emdα
i,p(i)

R′

i
τ

3. if P i
gap < 1 then

4. return false
5. endif
6. endfor
7. return true

Fig. 1. Binary Search Algorithm to achieve a power assignment among nodes
that maximizes the lifetime of the data-gathering tree T .

Our analysis in Appendix B shows that the algorithm
requires O(max(0, log2

τ∗

C
) + log2

max(τ∗,C)
∆ ) iterations to

converge to a lifetime within ∆ of the optimal lifetime.

IV. MULTI-POWER LIFETIME MAXIMIZATION PROBLEM

So far, we have considered the problem of maximizing the
lifetime of a data-gathering tree when nodes are constrained
to a single power setting. We next ask the question: can the
lifetime of a network be improved by allowing each node to
operate at multiple power settings? We answer this question
by first formulating the Multi-Power Lifetime Maximization
Problem, which allows each node to have multiple power
settings.

A. Problem Formulation
Let k denote the maximum number of transmit power

settings available to each node. Let Pi
t

= (P i
t1

, . . . , P i
tk

) be k
arbitrary transmit power settings used by node i for durations
τ i
1, . . . , τ

i
k respectively. Note that a node i may use fewer than

k power settings. In other words, τ i
j = 0, j ∈ [1, k], if power

setting P i
tj

is not used by node i. The goal is to determine the
durations τ i

1, . . . , τ
i
k that each power setting is used so as to

maximize the network lifetime τ . The Multi-Power Lifetime
Maximization Problem (MPLMP) is formulated as follows:

max τ

subject to:
(1) Flow Conservation:

R′

i =
∑

j∈Ci

R′

j + Ri, ∀i, 1 ≤ i ≤ n

(2) Energy Constraints:
k

∑

l=1

P i
tl
R′

iτ
i
l +

∑

j∈Ci

k
∑

l=1

F (P j
tl
)R′

jτ
j
l ≤ Ei, ∀i, 1 ≤ i ≤ n

(3) Transmission Energy Constraints:

P i
tl
≥ Emdα

i,p(i), ∀i, 1 ≤ i ≤ n, ∀l, 1 ≤ l ≤ k

(4) Lifetime Constraints:
k

∑

l=1

τ i
l ≥ τ,∀i, 1 ≤ i ≤ n, ∀l, 1 ≤ l ≤ k

(5) Default Constraints:

τ i
l ≥ 0, ∀i, 1 ≤ i ≤ n, ∀l, 1 ≤ l ≤ k

Having formulated the problem, the rest of this section
discusses its solution. Using a two-node network as an ex-
ample, we first show that a single power setting may not
always yield the optimal system lifetime. For a two-node
network, we identify conditions under which multiple power
settings become necessary to achieve optimal lifetime and also
determine what those power settings should be. Finally, we
use the results established for the two-node network to solve
MPLMP.



B. Two-Node Network
A node i is transmitting data with a constant rate Ri to a

receiver node j which is at a distance d from node i. Let Ei

and Ej be the remaining energies of nodes i and j respectively.
The transmitting node i is no longer constrained to use a single
power setting. Let Pi

t
= (P i

t1
, . . . , P i

tk
) be the transmit power

settings used by node i for durations τ1, . . . , τk respectively.
We have the following optimization problem:

max
k

∑

l=1

τl (5)

subject to:
(1) Sender Constraints:

k
∑

l=1

P i
tl
Riτl ≤ Ei

(2) Receiver Constraints:
k

∑

l=1

F (P i
tl
)Riτl ≤ Ej

(3) Transmission Energy Constraints:

P i
tl
≥ Emdα, ∀l, 1 ≤ l ≤ k

(4) Default Constraints:

τl ≥ 0, ∀l, 1 ≤ l ≤ k

Having formulated the two-node lifetime maximization
problem, we first show why a single power setting is insuf-
ficient to achieve the optimal lifetime using a specific choice
of F .

Consider F (P i
t ) =

√

100− (P i
t )

2. It is easy to see that
F is non-increasing and concave. Furthermore, assume that
Ei = Ej = 10 and Ri = 1. It can be seen that the optimal
lifetime of this system is two seconds. This lifetime can be
achieved using a power setting (0, 10) for one second and
(10, 0) for one second. It is obvious that a lifetime of two
seconds cannot be achieved using a single power setting.

We next observe that the number of power settings required
to achieve the optimal lifetime depends on the properties of F .
We also provide optimal solution for the two-node problem,
when F is convex or concave.

1) Optimal Solution for the Two-Node Network:
Theorem 1: At most two transmit power settings P i

t1
and

P i
t2

are required to achieve the optimal system lifetime in
optimization problem (5), for any monotonic non-increasing
F .

Proof: From (5), we know that transmitting node i uses
k transmit power settings, determined by the vector Pi

t
=

(P i
t1

, . . . , P i
tk

) in order to achieve the optimal system lifetime.
Let τ1, . . . , τk be the corresponding durations of time that each
power setting is used.

From Linear Programming theory, we know that the ob-
jective function

∑k

l=1 τl achieves its maximum at an ex-

treme point (τ∗

1 , . . . , τ∗

k ). In our problem, an extreme point
(τ1, . . . , τk) corresponds to the intersection of k planes out of
a possible k+2 planes (k planes due to the default constraints,
and 2 planes due to the sender and receiver constraints).
Therefore, the k planes that determine an extreme point must
be composed of at least k − 2 planes due to the default
constraints. Hence, at most two elements of the extreme point
(τ1, . . . , τk) are greater than 0. This completes the proof.
We next show that a single power setting is sufficient to
maximize lifetime, if F is a non-increasing linear function.

Lemma 1: A single transmit power setting P i
t is sufficient

to achieve optimality, when F (P i
t ) = −kiP

i
t +bi. The optimal

lifetime is given by (kiEi + Ej)/(biRi). This lifetime is
achieved at the power setting P i

t = (Eibi)/(kiEi + Ej).
Proof: When P i

t = (Eibi)/(kiEi + Ej), the receiver
decoding cost is given by F (P i

t ) = (Ejbi)/(kiEi + Ej). The
system lifetime evaluates to (kiEi + Ej)/(biRi). Next, we
prove that the achieved lifetime is optimal.

We first formulate the lifetime maximization problem as
a linear programming problem. From Theorem 1, we know
that two power settings are sufficient to achieve the optimal
lifetime. Let τ1 and τ2 be the time durations for which each of
the two power settings are used. The maximization problem
is then formulated as follows:

max τ1 + τ2

subject to:
(1) Sender Constraints:

Ri(P
i
t1

τ1 + P i
t2

τ2) ≤ Ei

(2) Receiver Constraints:

Ri[(−kiP
i
t1

+ bi)τ1 + (−kiP
i
t2

+ bi)τ2] ≤ Ej

(3) Transmit Energy Constraints:

P i
tl
≥ Emdα, l = 1, 2

(4) Default Constraints:

τ1, τ2 ≥ 0

From receiver constraints we have,

−kiRi(P
i
t1

τ1 + P i
t2

τ2) + Ribi(τ1 + τ2) ≤ Ej (6)

Combining equation (6) with the sender constraints, we have
τ1 + τ2 ≤ (kiEi + Ej)/(biRi). This completes the proof.

We next use Lemma 1 to show that a single power setting
is sufficient to achieve optimal system lifetime, even if F is a
non-increasing convex function.

Theorem 2: A single power setting, P i
t , suffices to achieve

optimal lifetime, when F is a non-increasing convex function.
The optimal power setting is the solution of y = F (x) and
Ejx = Eiy.

Proof: Let (P i
t , P

j
r ) be the solution of y = F (x) and

Ejx = Eiy. Let y = −kix + b be a line tangent to y =
F (x) at (P i

t , P
j
r ). From Lemma 1, we know that the point



(P i
t , P

j
r ) achieves the optimal lifetime, if F (x) = −kix +

b. However, for a non-increasing convex F , we know that
F (x) ≥ −kix + b. Thus, the optimal lifetime achieved with
a non-increasing convex F must be less than or equal to that
achieved when F (x) = −kix + b. Since the power setting
(P i

t , P
j
r ) achieves the optimal lifetime when F (x) = −kix+b,

it must necessarily achieve the optimal lifetime when F is a
non-increasing convex function. This completes the proof.

Theorem 3: Two end point power settings suffice to achieve
optimal lifetime, when F (x) is a non-increasing concave
function.

Proof: We first prove Theorem 3, if F (x) = −kix + b,
i.e.F is a non-increasing linear function. We use the fact that
any point on a line can be expressed as a convex combination
of its two end points (P i

t1, P
j
r1) and (P i

t2, P
j
r2). Formally, any

point (P i
t , P

j
r ) on the line can be expressed as P i

t = αP i
t1 +

(1− α)P i
t2, P j

r = αP j
r1 + (1− α)P j

r2, where α ∈ [0, 1].
We know from Lemma 1 that a single power setting

(P i
t , P

j
r ) suffices to achieve the optimal lifetime, τ , if F is

a non-increasing linear function. Thus, a system that uses the
operating point (P i

t , P
j
r ) for duration τ achieves the same

lifetime as a system that uses the end point (P i
t1, P

j
r1) for

duration of ατ and end point (P i
t2, P

j
r2) for a duration of

(1− α)τ . Since any point on the line can be replaced by two
end points, the two end point settings are enough to achieve
the optimal lifetime.

Next, we prove Theorem 3. For a non-increasing concave F ,
F (x) ≥ −kix + b. Hence, the optimal lifetime achieved with
the function F (x) = −kix + b must be greater than or equal
to that achieved with a non-increasing concave F (x). As we
have shown for a non-increasing linear F , the optimal lifetime
is achieved using the power settings defined by the end-points
(P i

t1, P
j
r1) and (P i

t2, P
j
r2) of F (x). Hence, the optimal lifetime

achieved by F (x) = −kix + b must be achievable with a
concave F (x) with the same end-points. This completes the
proof.

C. Optimal Solution for a Tree Network
We now use the results established for the two-node opti-

mization problem to solve MPLMP described in Section IV-A.
We first observe that the optimization problem in IV-A can

be solved iteratively in a bottom-up manner using an approach
similar to that used in the Binary Search Algorithm in Figure 1.
At a high level, the approach consists of identifying a target
lifetime τ that the network seeks to achieve. Given τ , the
leaf nodes determine the durations that each of their transmit
power settings must be used in order to achieve τ and then
their parent nodes in turn determine the durations for their
transmit power settings and so on. If the lifetime τ is feasible,
then a higher lifetime is sought by the network. Otherwise, a
smaller lifetime is sought.

However, unlike SPLMP, for a given lifetime τ , a node
now has multiple transmit power settings that it must employ
in order to achieve the lifetime τ . We observe that for a
given target lifetime τ , each node in the tree must choose
the durations for each of its available transmit power settings

so as to minimize the receive energy consumption of its parent
node while achieving a lifetime τ . Thus, for a given τ , each
leaf node first determines the durations for each of its transmit
power settings to minimize the energy consumption of their
parent nodes, while achieving a lifetime τ or longer. With the
energy remaining after setting aside energy to receive data
from its children, (denoted by E ′

i) each parent node i, in turn,
determines the durations for each of its transmit power settings
to minimize the receive energy consumption of its own parent,
while achieving a lifetime of at least τ .

Based on the above discussion, we observe that once all of
its children have determined their transmit power settings, each
node i solves the following optimization problem to minimize
the receive energy of its parent:

min

k
∑

l=1

τlF (P i
tl
)R′

i (7)

subject to:
(1) Lifetime Constraints:

k
∑

l=1

τl ≥ τ

(2) Sender Constraints:
k

∑

l=1

P i
tl
τlR

′

i ≤ E′

i

(3) Transmit Energy Constraints:

P i
tl
≥ Emdα

i,p(i), ∀l, 1 ≤ l ≤ k

(4) Default Constraints:

τl ≥ 0, ∀l, 1 ≤ l ≤ k

As in the two-node case, the number of power settings
required to achieve optimality in (7) depends on the properties
of F . We first claim that, for a non-increasing F , at most two
transmit power settings are required to minimize the receiver
energy in (7). We shall use the results established for the two
node case in Section IV-B.1 in order to prove the claim. From
Theorem 1, we know that at most two power settings are
required to achieve optimal lifetime for any combination of
values of Ei and Ej (sender and receiver energies). Therefore,
it must be the case that at most two power settings are required
to achieve a specific target lifetime τ (smaller than or equal
to the optimal lifetime) in (7).

Similarly, from Theorem 2 and Theorem 3, we can argue
that only one power setting is required to achieve optimality
in (7) for the case when F is convex and two power settings
suffice for the case when F is concave.

Based on the above, we note that, when F is convex, the
optimal lifetime is achieved using only a single power setting
per node. Therefore, the Binary Search Algorithm specified in
Figure 1 can be used to obtain the optimal power allocation
among nodes.



When F is concave, however, the optimal power settings are
given by the two end-points of F as shown in Theorem 3. Let
P i

t1
and P i

t2
represent the two end-point power settings of node

i. We need to determine the durations that each power setting
is used. The approach to finding the durations is again based
on the idea of a binary search. The root node first chooses
a lifetime τ that the network seeks to achieve. Since there is
no advantage of a node having energy left when the network
dies, the inequalities in constraints (1) and (2) of optimization
problem (7) can be replaced with equalities. Hence, for a
target lifetime τ , each node essentially needs to determine
the durations ατ and (1 − α)τ (α ∈ [0, 1]), that P i

t1
and P i

t2

are used respectively. The fraction α can be determined as
follows:

After replacing the inequality in constraint (2) with an
equality, we obtain:

P i
t1

ατR′

i + P i
t2

(1− α)τR′

i = E′

i

which yields:

α =
E′

i − P i
t2

τR′

i

(P i
t1
− P i

t2
)τR′

i

Without loss of generality, we assume P i
t1

> P i
t2

. Then,
if α < 0, it means that the target lifetime τ is too large
and hence, a smaller lifetime is sought in the next iteration.
Otherwise, a larger lifetime is sought in the next iteration. The
process repeats until the lifetime returned by the algorithm is
“sufficiently” close to the optimal lifetime.

V. NUMERICAL RESULTS

In this section, numerical results are presented for channel
coding using turbo codes. We first characterize the decod-
ing costs of a turbo decoder and subsequently, demonstrate
improvements in lifetime obtained by employing the power
tradeoffs suggested in this paper.

A. Background
A turbo decoder performs iterative decoding and can be

viewed as a nonlinear dynamical system with feedback [5],
as shown in Figure 2(a). The system consists of two de-
coder components, decoder 1 and decoder 2. The input
and output signal-to-noise ratios of decoder 1 are denoted
by SNR1in and SNR1out respectively, while those of de-
coder 2 are denoted by SNR2in and SNR2out. For a
given Eb/N0 (which represents the ratio of bit energy to
noise of the received signal), the output of each decoder
is a nonlinear function of its input signal-to-noise ratio,
SNR. This nonlinear function is denoted by G1 for de-
coder 1 and G2 for decoder 2, as shown in Figure 2(a).
Thus, SNR1out = G1(SNR1in, Eb/N0) and SNR2out =
G2(SNR2in, Eb/N0). Also, SNR1out = SNR2in and
hence, SNR2out = G2(G1(SNR1in, Eb/N0), Eb/N0).

Figure 2(b) illustrates the process of iterative decoding
in a turbo decoder. Each curve in the figure represents the
SNR output of a decoder component, which is input to the
other decoder component. The arrows between the two curves

SNR2out SNR2in

G1

G2

from channel
      Eb / N0

SNR1outSNR1in

Decoder 2

Decoder 1

(a) Turbo decoding as a nonlin-
ear system with feedback
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, S
N

R
2 o

ut
SN

R
1 

 
in

(b) Illustration of turbo decoding
process

Fig. 2. Turbo Decoding

represent the iterations of the decoder. It can be seen that the
number of iterations to decode the received signal depends
on how close the two decoder SNR curves are to each other.
The narrower the separation between them, the greater the
number of iterations required to decode and hence the greater
the power consumption of the receiver. If the sender transmits
at a higher power, the separation between the SNR curves
increases, thereby, requiring fewer iterations at the receiver.

B. Determining Decoder Effort
Next, the dependence between the number of iterations in

the decoding process and the transmit power is explored. The
number of iterations required for turbo decoding is estimated
using the techniques of [6], which employs the powerful
method of density evolution [15]. In Figure 3, the number
of decoder iterations as a function of Pg is plotted from
the simulation of a rate-1/2 turbo decoder with block length
B = 32768. The large block length is employed only to aid
with accurate code characterization, and it should be noted that
the power tradeoff techniques described in this paper apply to
turbo codes with short block lengths - only the characterization
technique to find f(Pg) changes. From Figure 3, we see that a
second-order exponential fit, as defined in equation (8), seems
to capture the behavior well for Pg ranging from 1 to 19. For
higher values of Pg , simulations indicate that f(Pg) is equal
to 1.

Based on these results, f(Pg) is defined as follows:

f(Pg) = 10(0.0008P 2
g −0.0659Pg+0.9792)), Pg ∈ [1, 19]

= 1, Pg > 19 (8)

It is easy to see that f is convex. Hence, the function F ,
defined in equation (3) is also convex. As a result, the Binary
Search Algorithm specified in Figure 1 is used to determine
the optimal system lifetime.

C. Performance Evaluation
We now present some numerical results to illustrate the

benefits of using the power tradeoff scheme over a scheme
in which nodes always transmit at the minimum power.
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Recall from Section III-A that the energy constraint for a
node i in SPLMP is given by the following expression:

Emdα
i,p(i)R

′

iP
(i)
g τ +

∑

j∈Ci

Euf(P j
g )R′

jτ ≤ Ei

Normalizing the above expression with respect to Emdα
i,p(i)

yields:

R′

iP
(i)
g τ +

∑

j∈Ci

Ai,p(i)f(P j
g )R′

jτ ≤
EiAi,p(i)

Eu

where Ai,p(i) = Eu

Emdα
i,p(i)

.
The parameter Ai,p(i) represents the asymmetry between

the transmit power of node i and the decoding cost of
its parent node p(i). It is a convenient representation since
it groups together trends in technology (viz. Eu and Em)
as well as trends in the transmitter-receiver distance into a
single parameter. It can be seen that the larger the value of
Ai,p(i), the greater is the decoding cost in comparison with
the transmission cost and hence, higher the energy savings
obtained by increasing the transmit power.

To get an idea of some typical values for Ai,p(i), consider
the following example. Assume a total (ambient plus receiver)
noise temperature of 300K, a 10 dB SNR requirement for
successful signal reception, a 10 KHz bandwidth, and a data
rate of 10 kbits/s. Assuming omnidirectional antennas and
the free space path loss exponent α = 2, typical values of
Ai,p(i) can range roughly from 0.06 (carrier frequency 5 GHz,
distance 3 m) to 0.558 (carrier frequency 5 GHz, distance 1m)
to 1.55 (carrier frequency 1 GHz, distance 3 m). The value of
Eu required for these sample numbers is estimated from [12].
This indicates that wide ranges of Ai,p(i) are of interest for
dense sensor networks. Furthermore, even small changes in the
system requirements (data rate, bandwidth, required received

SNR), can change the value of Ai,p(i) significantly, with lower
data rate systems (e.g., sensor network applications) yielding
higher values of Ai,p(i) and higher data rate systems the
opposite.

We next illustrate the improvements in the lifetime of the
data gathering network by employing the power tradeoff mech-
anisms described in this paper over the network when nodes
always transmit at minimum power. Let τ ∗ denote the optimal
lifetime of the network as obtained using the power assignment
returned by the Binary Search Algorithm. Let τm denote the
lifetime of a sensor system obtained using a “minimum-power-
always” scheme. Then the lifetime improvement is given by
the ratio ρ = τ∗

τm
.
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1) Effect of Ai,p(i): In Figure 4, we plot ρ as a function of
the parameter Ai,p(i). The parameter Ai,p(i) is the same for
all links in the tree. Each data point is obtained by averaging
over 20 different runs of the Binary Search Algorithm. We also
plot the 98% confidence intervals on the graph. In each run,
a tree comprising 5000 nodes is constructed with each node
having 2-7 children. Node data rates are chosen uniformly at
random from the interval [10,100]. The energies of the nodes
are chosen at random from the interval [2,3] ×105.

As expected, as Ai,p(i) increases, the energy savings also
increase. This is because the cost of decoding increases in
comparison to the transmission cost and so trading transmit
power for receive power yields greater benefits. We see from
Figure 4 that 1.5-2.5 times improvement in lifetimes are
observed depending on the value of Ai,p(i).

2) Effect of node degree: We next study the effect of node
degree on lifetime improvement ratio ρ. Keeping the number
of nodes in the tree fixed, we vary the average number of
children per node in the tree from 3 to 11. The parameter
Ai,p(i) for each link in the tree is drawn randomly from the
interval [0.01,3]. All other parameters are chosen exactly as



described in Section V-C.1. We observe that as the average
node degree increases, ρ also increases. This is because as
node degree increases, the incoming data rate of a node
increases and hence, a node has to expend a large amount
of energy in decoding the received data. Thus, there is greater
benefit in increasing the transmit power in order to reduce the
burden of the energy-starved receiver. In particular, we observe
2-3 times improvement in network lifetime depending on the
average node degree.

3) Effect of number of nodes and data rates: We also
studied how ρ is impacted by varying the number of nodes in
the tree. We vary the number of nodes, n, from 500 to 5000
without changing the node degree distribution i.e., each node
in the tree has a random number of children chosen uniformly
in the interval [2,7]. The parameter Ai,p(i) is chosen from
the interval [0.01,3]. All other parameters are chosen exactly
as described in Section V-C.1. We observed 2.3-2.4 times
improvement in the system lifetime over the chosen range of
values of n.

We also evaluated the lifetime improvement ratio ρ as a
function node data rate (varied from 10 to 100), for a fixed n.
Again, we observed 2.3-2.4 times improvement in the lifetime
over the range of values of R considered.

VI. PRACTICAL CONSIDERATIONS

We next discuss several practical issues concerning the
Binary Search Algorithm.

A. Implementation Issues
There are two ways of implementing the Binary Search

Algorithm. One is a distributed implementation. The sink node
S broadcasts the targeted lifetime, τ , to all nodes in the tree.
Each node then computes its power settings to achieve the
lifetime and announces its power settings to its parent node,
which in turn repeats the process. If a power constraint is
violated at any node, then that node sends out a message to the
sink. The sink then chooses a smaller lifetime and broadcasts
it out to the nodes in the tree. The problem with this approach
is that it introduces communication overhead. In particular,
each node sends out one message and receives one message
per iteration of the algorithm.

In order to alleviate the communication overhead, we ad-
vocate a centralized approach by shifting the computation of
the optimal lifetime to the power-rich data sink S. However,
the sink now needs to know the structure of the data-gathering
tree. It also needs information about the remaining energies of
the nodes, the node data rates and the length of the edges in the
data-gathering tree. This is not a serious problem, since this
information can be piggybacked on the actual data messages
from the nodes to the sink, after the data-gathering tree has
been constructed. Since this information needs to be sent only
once to the sink node, it introduces very little overhead. The
sink node then executes the Binary Search Algorithm locally
and broadcasts out the optimal lifetime value. The nodes in
the tree then compute their power settings in order to achieve
the optimal lifetime.

B. Node Additions and Deletions
We next consider the issue of node additions and deletions

from the data-gathering tree as a result of node mobility.
Node additions and deletions result in a change in data rates
and, hence, necessitate a change in power assignments among
nodes.

Whenever the sink S detects that a node is deleted from
the tree (notified either by the parent of the deleted node
or one of the children of the deleted node), it executes the
Binary Search Algorithm with the modified data-gathering
tree (without the deleted node). Note that the sink requires
no additional information from the nodes in the tree. It can
compute the remaining energy levels of nodes in the tree by
computing the energy consumption of each node until the
instant when the deletion of the node occurred.

When a node is added to the tree, the newly added node
announces its data rate, remaining energy and its parent node
to the sink. The sink updates the tree structure and re-computes
the optimal power assignment and broadcasts the results to the
nodes in the tree.

Node movement also results in changes in length of the
edges in the tree, which changes the power required by a node
to communicate with its adjacent node. As a result, the optimal
power allocation among nodes can potentially be different.
Whenever there is a change in the length of an edge, one of
the nodes adjacent to the edge can piggyback this information
in its data messages to the sink node. Alternately, distance
information can be piggybacked by each node to the sink
on a periodic basis. The sink re-computes the optimal power
assignment among nodes and announces the changes to the
nodes.

C. Peak Power Constraints
In the SPLMP and MPLMP formulations, nodes have no

constraints on the maximum power they can transmit at. In
practice, there is a peak power constraint on each node’s
transmission. In this case, the power constraints in SPLMP
and MPLMP changes to Pmax ≥ P i

t ≥ Emdα. However,
this requires only a minor modification in the Binary Search
Algorithm. If the targeted lifetime τ results in a P i

t > Pmax

for node i, then node i sets its P i
t to Pmax. No other change

to the algorithm is needed. Thus, with peak power constraints,
there is a minimum decoding cost (equal to F (Pmax)) at the
receiver.

D. Effect of Interference
In the SPLMP and MPLMP formulations, we do not explic-

itly account for interference caused due to nodes increasing
their transmission powers. Increasing the transmission power
of a node increases interference which, in turn, results in a
decrease in node data rates. We assume that the node data
rates are small, as is the case in low duty cycle sensor
networks, and that, there are enough time slots available
for transmission to each node to acheive its required data
rate (despite the increased interference). Explicitly factoring
interference into our optimization framework and studying



the impact of interference on medium access control and
scheduling is an interesting future direction.

E. Arbitrary Node Rates
At low signal-to-noise and interference ratio (SIR), which is

the case in dense wireless networks, the achieved data rate on
the link scales linearly with the SIR. Under these conditions,
the authors in [3] obtain the optimal transmission strategy to
be used by nodes: assuming a slotted system, in each time slot,
a node either transmits at the maximum achievable link rate or
remains idle. Using this transmission strategy in our scenario,
it is possible to further reduce the energy consumption of the
network. When node data rates are fixed, by transmitting at the
maximum achievable link rate, a node can remain active for
a fraction of time slot and can idle for the remaining fraction,
thus saving energy. However, using this strategy instantaneous
flow conservation cannot be maintained; flow conservation is
only satisfied over the lifetime of the network. If nodes have
arbitrary (or variable) data rates, however, nodes must still
transmit at the maximum achievable link rate, whenever a
slot is available for transmission and idle otherwise. However,
because of the variable rate each node must have a large buffer
in order to guarantee that no data is lost.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of optimal power allocation in
a wireless network that allows for the tradeoff of transmitter
power for receiver power has been considered. We considered
the power allocation problem in a general setting common in
ad hoc networks, viz. a network of wireless nodes organized
into a tree rooted at a data sink. We formulated the Lifetime
Maximization Problem (LMP) to determine the power levels
of nodes that maximizes the lifetime of the tree, i.e. the time
until the first node in the tree dies out. We first formulated a
simpler version of LMP, called the Single Power Lifetime Max-
imization Problem (SPLMP), in which nodes are constrained
to use a single power setting and proposed a Binary Search
Algorithm to solve this problem optimally. We then showed
that single power setting per node is insufficient to achieve
the optimal lifetime and formulated the Multi-Power Lifetime
Maximization Problem (MPLMP). We also showed how this
problem can be solved optimally.

Using turbo codes as an example of channel-coding, signif-
icant energy savings were demonstrated when power tradeoffs
are employed over the case when nodes always transmit
at the minimum allowable power. In particular, 2-2.5 times
improvement in network lifetimes were observed over a wide
range of parameter values. The improvements will be even
higher in networks with asymmetric power costs, for instance,
networks with “hot spot” nodes which are on the critical path
between two large clusters of nodes.

The encouraging results obtained in this paper point to a
number of interesting future directions. While we considered
a tree topology in this paper, the problem of optimal power
allocation in a general network setting is an interesting future
direction. In particular, the problem of joint routing and

power allocation in such channel-coded wireless networks
is a very interesting and challenging future direction. We
would also like to explore transmitter-receiver power tradeoffs
for objective functions other than the one considered in this
paper. For instance, determining the optimal power settings
to maximize the amount of data transmitted to a data sink is
another interesting future direction.
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APPENDIX

A. Result
Theorem 4: Let Pt denote the optimal solution to SPLMP

and let τ denote the corresponding system lifetime. Further-
more, suppose that the power settings Pt are such that some
subset of nodes have non-zero remaining energy after time
τ . We now show that the lifetime τ can be achieved using a
solution Qt such that none of the nodes have any remaining
energy after τ .

Proof: Consider a node i with non-zero remaining energy
after time τ . From the Energy Constraints of SPLMP, we have:

R′

iP
i
t τ +

∑

j∈Ci

F (P j
t )R′

jτ < Ei

This means that there exists a power setting Qi
t > P i

t such
that i can achieve τ using Qi

t. This Qi
t can be obtained by

solving the equation:

R′

iQ
i
tτ +

∑

j∈Ci

F (P j
t )R′

jτ = Ei

Since F is a monotonic non-increasing function of P i
t , by

choosing a larger transmit power setting, i cannot increase the
receive energy consumption of its parent. Based on the new
transmit power setting of i, parent of i in turn, computes its
new total energy consumption and increases its transmit power
setting, if it has energy remaining after τ . In this manner,
we can iteratively re-adjust the power settings of nodes in a
bottom-up fashion, starting with the leaf nodes in the tree.
At the end of the iteration, the transmit power settings of the

nodes achieved are such that each node dies out exactly after
time τ . This means that the lifetime τ is achieved by a solution
in which all nodes die out at the same time.

B. Analysis of the Binary Search Algorithm
Let m denote the number of iterations of the while loop in

lines 3-6 of the function COMPUTE-LIFETIME specified in
Figure 1. Then, we observe that m is the smallest integer that
satisfies the inequality:

2mC ≥ τ∗

∴ m ≤ max(0, log2(
τ∗

C
))

Upon termination of this while loop, we have:

Tu = 2mC, Tl = 2m−1C

The number of iterations of while loop from lines 7-14 of
the function COMPUTE-LIFETIME depends on Tu, Tl and ∆.
Smaller the ∆, greater the desired accuracy, thereby needing
more iterations. Since the interval size Tu − Tl is halved in
every iteration, it requires O(log2(

Tu−Tl

∆ )) iterations for the
condition Tu − Tl < ∆ (or equivalently, Tu−Tl

∆ < 1) to be
satisfied.

Hence, the worst-case running time of the Binary Search
Algorithm is O(max(0, log2(

τ∗

C
)) + log2(

max(τ∗,C)
∆ )).


