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Abstract
We present the sHype hypervisor security architecture and
examine in detail its mandatory access control architecture.
While existing hypervisor security approaches aimed at high
assurance have proven useful for high-security environments
which prioritize security over performance and code-reuse,
our approach aims at commercial security where near-zero
performance overhead, non-intrusive implementation, and
usability are most important. We provide the rationale behind
the sHype concepts and describe its tailored implementation
for the Xen open-source hypervisor.

We anticipate that the availability of better isolation
through new hardware support in commodity systems to-
gether with the broad availability of virtualization soft-
ware will increase the demand for Virtual Machine Moni-
tor (VMM) systems running mutually distrusted coalitions
of Virtual Machines (VM). Because the VMM systems can
provide reliable isolation, some controlled sharing respon-
sibilities of operating systems will be moved to the VMM.
Notably, this paper argues that it is not necessary to aim
for the highest levels of assurance when designing secure
VMMs for commodity hardware—when absolute isolation
is required (e.g., the prevention of covert timing channels),
a multi-system approach using separate hardware is recom-
mended.

1 Introduction

As general-purpose workstation- and server-class computer
systems increase in available processing power and decrease
in cost, it becomes cost-effective to aggregate the function-
ality of multiple standalone systems onto a single hardware
platform. This minimizes costs for system management and
maintenance and maximizes system utilization. Virtualiza-
tion technology, which enables a single system hardware to
support multiple operating systems, is quickly becoming a
commodity. This technology creates multiple virtual ma-
chines (VM) out of one real machine and carefully multi-
plexes multiple virtual resources onto a single real resource.

The broad availability and use of virtualization technology is
driven by improved hardware support, such as fully virtual-
izable CPUs and IO-MMU [1, 2] controlling direct memory
access to devices, which enables very efficient implementa-
tion of virtual machines. Suddenly, multiple operating sys-
tems can be efficiently co-located inside virtual machines on
a single general-purpose hardware platform.

In addition to its availability, the potential impact of vir-
tualization on workload consolidation and load balancing is
getting the attention of key industry players. Microsoft re-
cently announced that their next generation security architec-
ture NGSCB [3] will be based on virtualized environments
and Intel hopes to run home entertainment in virtualized en-
vironments, while large companies selling servers have very
successfully used virtualization for server consolidation, ser-
vice provisioning, and workload-balancing for decades.

Although co-locating operating systems and their work-
loads on the same hardware platform offers great opportu-
nities, it also requires us to carefully consider possible unde-
sirable interactions between those systems sharing resources.
Therefore, VMM environments by default do not allow to
share real resources directly. Real system resources are vir-
tualized by the hypervisor layer (e.g., memory, CPU) and
can be accessed by VMs exclusively through their virtual-
ized counterpart (e.g., virtual memory, virtual CPU). This
hypervisor layer is strongly protected against the operating
systems running in VMs on top of it and enforces isolation
of these virtual resources. Peripherals, such as disk or net-
work adapters, are exclusively assigned to a single VM. If
necessary, such a VM can in turn virtualize its real resources
to share it with other VMs (e.g., virtual disk server, VLAN).
We will carefully examine under which conditions such VMs
are allowed to share peripherals with other VMs without vi-
olating the isolation properties between VMs. Consequently,
virtual machines that do not share virtual resources are con-
sidered isolated from each other.

There are currently at least two challenging security prob-
lems when broadly deploying virtualization technology:



e The sharing of virtual resources among co-operating vir-
tual machines is defined statically and resulting isola-
tion properties of VMs are a side-effect of administra-
tion rather than of well-defined security management.
However, today’s environments depend more on shar-
ing of resources and interconnection of workloads than
ever before and this trend promises to increase. Con-
sequently, there is need for an architecture that effi-
ciently defines and enforces access control between re-
lated groups (coalitions) of virtual machines.

e The isolation of virtual resources, while sufficient
for commercial environments, is insufficient for high-
security environments where leaking even of very small
amounts of data is unacceptable. Such leaks are intro-
duced by covert channels, which are based on observing
system behavior (timing of events or storage patterns)
rather than by explicit data sharing.

The first problem concerns the (explicit) sharing of virtual
resources between VMs. On one hand, the current frame-
work for controlling sharing is extremely static, offering only
limited VM-isolation guarantees. Such guarantees are of-
ten a side-effect of a particular system configuration instead
of a consciously architected and designed policy that can be
reasoned about. On the other hand, co-operating workloads
running in different virtual machines offer a unique oppor-
tunity to implement access control in the generic virtualiza-
tion layer very efficiently. By enforcing access control in
the self-protecting virtualization infrastructure, related access
controls are protected against misbehavior of operating sys-
tems and workloads. The coarse-granular resources and VMs
enable simple security policies that control their interactions.

The second problem concerns covert channels. While con-
trolling the explicit information flows between VMs is effi-
cient, preventing implicit information flows comes at the cost
of increased complexity, rewriting of hypervisor code, and
decreased performance. These disadvantages of eliminating
covert channels outweigh the interests of most customers.
We believe, that the existing isolation of virtual resources
is commercial-grade, meaning that controlling explicit data
flows from one to another virtual machine and minimizing
covert storage channels by careful resource management is
sufficient in commercial environments. Our position is not
to eliminate covert channels but (i) to minimize them through
careful resource management, and (ii) to enable users through
configuration options to mitigate remaining covert channels
where necessary. To mitigate remaining covert channels, we
introduce security rules guaranteeing that certain workloads
never run on the same real platform; protection against covert
channels between these workloads thus approximates the pro-
tection by air-gaps as they exist between non-virtualized en-
vironments.

The main focus in this paper is on the controlled sharing
of resources, which is of broad interest in commercial envi-

ronments. The sharing of virtual resources is currently not
controlled by any formal policy. This makes it extremely dif-
ficult to measure the effectiveness of isolation between VMs
and current approaches do not scale when considering the
management of groups of systems and workload-balancing
through VM migration.

We explore in this paper the design and implementation
of sHype, a security architecture for virtualization environ-
ments, which leverages this virtualization layer to control
the sharing of resources among VMs according to formal
security policies. The major goals are (i) non-intrusiveness
with regard to existing code, (ii) near-zero overhead on the
performance-critical path, (iii) scalability regarding the man-
agement of many machines (simple policies) and the migra-
tion of VMs between them (machine independent policies).

We implemented the core hypervisor security architecture
(sHype) into the Xen hypervisor [4] where it controls all inter-
VM communication according to formal security policies.
Our modifications to the Xen hypervisor are small and add
about 2000 lines of code. The secure hypervisor architecture
is designed to achieve medium assurance (Common Crite-
ria EAL4 [5]) for hypervisor implementations. Our hypervi-
sor security enhancement achieves near-zero overhead on the
performance-critical path. While this paper describes sHype
for the Xen hypervisor, the presented architecture proves flex-
ible; it was originally implemented for the rHype research
hypervisor [6] and is being implemented into the PHYP [7]
hypervisor.

Section 2 introduces the typical structure of a Xen hypervi-
sor environment for which we have developed a generic secu-
rity architecture. Mutually suspicious workload-types serve
as an example to illustrate requirements and the use of our hy-
pervisor security architecture. After discussing related work
in Section 3, we introduce the design of the sHype hypervi-
sor security architecture in Section 4 and its implementation
in Section 5. Section 6 evaluates our architecture and imple-
mentation.

2 Background

As general-purpose workstation- and server-class computer
systems grow in available power and capability, it becomes
more attractive to aggregate the functionality of multiple
standalone systems onto a single hardware platform. For ex-
ample, a small business that originally used three computer
systems—perhaps to take customer orders using a web server
front-end, a database server in the middle, and a file server
back-end—can reduce the required physical space, configu-
ration complexity, management complexity, and overall hard-
ware cost by running all three applications on a single system.
Taking this one step further, several small businesses could
achieve an even lower-cost solution by contracting out the
management of their respective business computing applica-
tions to a centralized server managed by a nonpartisan third



party.

This idea of virtualization of standalone computer systems
on a single system has been around for decades [8, 9], of-
ten being employed in “big iron” mainframe systems whose
hardware was explicitly designed with virtualized operation
in mind. However, until recently it has not been feasible to
build systems out of commodity PC hardware that meet the
security guarantees required by mutually distrusted parties—
i.e., that the data and execution environment of one party’s ap-
plications are securely isolated from those of a second party’s
applications. For example, such systems were often vulner-
able to Direct Memory Access (DMA) attacks where one
party’s application could break isolation by issuing DMA in-
structions to effect a copy into or out of the memory used
by the second party’s applications. Such systems were vul-
nerable no matter what software mechanisms were used for
isolation—whether the property was enforced by the operat-
ing system, or by a virtual machine monitor (VMM) control-
ling multiple virtual machines (VMs).

Emerging technology, such as the I/O-MMU, eliminates
these previous limitations on isolation for commodity sys-
tems and makes it feasible to ensure a VMM can control
all memory accesses, especially those between mutually dis-
trusted parties. This development, combined with the in-
ability to make definitive statements about resource sharing
among heterogeneous and potentially mutually distrusted op-
erating systems running as guests in VMSs, motivates us to
claim that VMMs will not only need to provide isolation, but
also they will need to provide a basis for control of informa-
tion flows and sharing of resources among VMs which was
formerly expected of operating systems.

2.1 The Xen Hypervisor

As an example of VMMs, we use the Xen [4] open-source
hypervisor throughout this paper. Figure 1 illustrates a basic
configuration of the Xen opensource hypervisor. The Xen hy-
pervisor consists of a small software layer on top of the real
system hardware. It implements the virtual resources vMem-
ory, vCPU, event channels, and shared memory on top of the
system hardware and controls I/O and memory access to de-
vices.

Virtual machines (also called domains in Xen) are built on
top of the Xen hypervisor. A special VM, called DOMO (do-
main zero) is initially created. It serves for the management
of other VMs (create, destroy, migrate, save, restore) and con-
trols the assignment of I/O devices to other VMs.

VMs started by DOMO are called DOMU (user domains);
they can run any paravirtualized [4] operating system, e.g.,
Linux. Guest operating systems running on Xen are mini-
mally changed, for example by replacing privileged opera-
tions with calls to the hypervisor. Such privileged operations
cannot be called directly by the guest OS because they are
powerful enough to compromise the hypervisor. In general,

hypervisor calls implemented in the hypervisor have three
characteristics: (1) they offer access to virtual resources (e.g.,
event channels, shared memory); (2) they speed up critical
path operations such as page table management; and (3) they
emulate privileged operations that are restricted to the hyper-
visor but might be necessary in guest operating systems as
well.

Dom0O

DomuU DomU DomuU
VM
Manag;ment Guest Guest o Guest
os os oS

lfe]

Xen Hypervisor (vMem, vCPU, EventChannels, SharedMemory)

System Hardware (Real Machine = CPU, MEM, Devices)

Figure 1: Xen Hypervisor Architecture.

Hypervisor resources include the CPU, I/O memory (1/0-
MMU), and hypervisor memory that are necessary for the hy-
pervisor itself to run. The hypervisor controls these by itself
and protects them against the user domains (DOMU VMs).

Exclusive VM resources include virtual memory, vCPU.
Xen offers just two shared virtual resources on top of
which all inter-VM communication and cooperation is im-
plemented:

e Event channels: An event-channel hypervisor call en-
ables a VM to setup an event channel to another VM
(point-to-point). Event-channels are used for synchro-
nization.

e Shared memory: A grant-table hypervisor call enables
a VM to allow another VM access to virtual memory
pages it owns. Synchronization of access to shared
memory is implemented using event channels.

Shared virtual resources, such as network adapters, virtual
block devices, vITY and other devices inside VMs, are ef-
ficiently implemented as device drivers inside the Guest-OS
and use event-channels and shared memory for synchroniza-
tion and communication.

Physical system resources differ from virtualized resources
in a couple of key ways: (1) /O-MMU s are needed to restrict
direct memory transfers to a VM’s memory space. (2) Per-
formance is best if the devices are co-located with the code
using them in the same VM and consequently the optimal
case is a physical resource per VM, which may not be prac-
tically feasible. (3) Driver code is too complex for inclusion
in the hypervisor, so a device that is to be shared by multiple




coalitions is required to be implemented in a device domain
(VM), which then makes this device available through inter-
VM sharing to other VMSs. In Xen, a SCSI disk or Ethernet
device, for example, can be owned by a device server do-
main and accessed by other VMs through virtual disk or Eth-
ernet front-end drivers, which communicate with the device
domain using event channels and shared memory provided by
the hypervisor.

2.2 Coalitions of VMs

In the near future, we believe that VM systems will evolve
from a set of isolated VMs into sets of VM coalitions. Due
to hardware improvements enabling reliable isolation, we be-
lieve that some control now done in operating systems will
be delegated to hypervisors. We aim for hypervisors to pro-
vide isolation between coalitions and provide limited sharing
defined by a system-wide mandatory access control (MAC)
policy within coalitions.

Consider a customer order system. The web services and
data base infrastructure that processes orders must be high in-
tegrity in order to protect the integrity of the business. How-
ever, browsing and collecting possible items to be purchased
need not be as high integrity. At the same time, an OEM’s
code advertising a product that the company distributes may
be run as another workload that should be isolated from the
order workloads (web service, db, browsing).

In the customer order example, the coalition of VMs per-
forming customer orders are protected from the other VMs
on the system. We merge them into the Order coalition. The
order VMs may communicate, share some memory, network,
and disk resources. Thus, they are as a coalition confined
by the hypervisor. Within the Order VM coalition, the hy-
pervisor controls sharing using a MAC policy that permits
inter-VM communication, sharing of network resources and
disk resources, and sharing of memory. All this sharing must
be verified to protect security of the order system. However,
the MAC policy also enables the hypervisor to protect the or-
der data base from being shared with other VMs outside the
Order coalition.

2.3 Problem Statement

The problem we address in this paper is the design of a VMM
reference monitor that enforces comprehensive, mandatory
access control (MAC) policies on inter-VM operations. A ref-
erence monitor is defined to ensure mediation of all security-
sensitive operations, which enables a policy to authorize all
such operations [10]. A MAC policy is defined by system ad-
ministrators to ensure that system (i.e., VMM) security goals
are achieved regardless of system user (i.e., VM) actions.
This contrasts with a discretionary access control (DAC) pol-
icy which enables users (and their programs) to grant rights
to the objects that they own.

We apply the reference monitor to control all references of
shared virtual resources by VMs and to allow coalitions of
workloads to communicate or share efficiently within a coali-
tion while efficiently confining workloads of different coali-
tions.
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Connector Disk Disk Connector Connector
I I I

]
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Figure 2: VM Coalitions and payloads in Xen.

Figure 2 shows an example of VM coalitions. Domain 0
has started 5 user domains (VMs), which are distinguished
inside the hypervisor by their domain id (VM-id in Fig. 2).
Domains 2 and 3 are running order workloads. Domain 6
is running an advertising workload, and domain 8 is run-
ning an unrelated generic computing workload (provisioned
CPU time). Finally, domain 3 runs the virtual block device
driver that offers two isolated virtual disks vdisk,,qe, and
vdiskqqqs to the Order coalition and the Advertising domain.
In this example, we want to enable most efficient commu-
nication and sharing among VMs of the Order coalition but
contain communication of VMs inside this coalition. For ex-
ample, no VM with Order workload is allowed to communi-
cate or share information with any VM running Computing or
Advertising workloads and vice versa. While the hypervisor
controls the ability of the VMs to connect to the device do-
main, device domain is trusted to keep data of different virtual
disks securely isolated inside its VM and (on the real SCSI
disk) and to assign them correctly to the coalitions. This is
a reasonable requirement since device domains are not appli-
cation specific and can run minimized run-time environments
(e.g., micro-kernel).

2.4 Solution Outline

We address this problem by implementing a reference moni-
tor into the hypervisor layer. It mediates references of VMs
to those resources that enable inter-VM communication (in-
formation flows). Once we know which resources require
control, we must consider the mediation points for control-
ling these resources. We will see that there are three ways in
which resources can be controlled: (i) in the Xen hypervisor;
(i1) within a trusted domain (MAC-VM); or (iii) in a trusted
domain upon the communication with an untrusted, general-



purpose VM or with other (hypervisor) systems. Finally, we
define simple policies tailored to the hypervisor environment
and based on workload types and resources. We will show
an example where these policies and their enforcement play
together to confine VM coalitions as illustrated in Figure 2.

3 Related Work

While there have been instances of highly secure operating
systems that have been successfully commercialized — e.g.,
GEMSOS [11, 12], KSOS [13], or Multics [14, 15] — wide-
spread or ubiquitous use of secure operating systems has to-
date proven unsuccessful. The huge design, development,
evaluation cost proved to be justified only for specialized
application domains with very high security requirements.
Access control with process and file granularity in general
purpose OS while possible is very complex as illustrated by
SELinux [16] policies. Expressing and enforcing a simple
TCB model in general purpose OS can be very difficult due
to interdependencies between processes [17]. VMMs can
supplement OS security and provide confinement in case of
OS security controls fail [18].

This previous work demonstrated that virtualization of real
hardware enabled the execution of multiple single-level vir-
tual systems on a single hardware platform ensuring that
those virtual systems where strongly isolated from each other.
The prevalent approach to create multiple virtual machines on
a single real hardware platform is the VMM approach [19].
In VMM, the principal subjects and objects are virtual ma-
chines and virtual peripherals (e.g., disks), rather than con-
ventional processes and files.

Based on VMs, a single system could implement a multi-
level secure system by dividing it into multiple single-level
virtual systems, guaranteeing secure separation. Separation
Kernels are virtual machine monitors that completely isolate
virtual machines. Rushby [8] proved that complete isolation
and separation of VMs is possible. Based on Rushby’s work,
Kelem et al. [9] derived a formal model for Separation Virtual
Machine Monitors. One example of a more recent separation
kernel design based on virtualization is NetTop [20]. NetTop
implements virtual systems that are isolated from each other
on a single hardware platform to allow processing of data be-
longing to multiple sensitivity levels on a single system.

Recognizing that a strictly-separated VM approach does
not map well into cooperating distributed applications, some
research examined kernels that enabled secure sharing be-
tween VMs. However, these secure sharing VMM ap-
proaches [21, 22] tend to suffer from high performance over-
head as well as large trusted computing bases due to neces-
sary I/O emulation inside the hypervisor layer. Additionally,
they are constructed to achieve the highest levels of assur-
ance, requiring them to address covert channels at the cost of
increased complexity and decreased performance. Karger et
al. [23] report for the KVM approach a performance range of

10-50% (50-90% overhead) and the effort of rewriting 50% of
the VMM code; the VaxVMM performs at 30-90% (10-70%
overhead) and the effort of rewriting the entire VMM code
base. Today, there are a number of virtualization technolo-
gies that are deployed successfully in the commercial domain,
such as PHYP [7] and VMWare [24], and several promising
research implementations, such as Terra [25], Xen [4], and
the IBM Research Hypervisor [6]. All of these offer a basis
for a broad application of sHype, while none were built for
highest levels of assurance, nor do any use either of the KVM
or VaxVMM approach.

Micro-kernel system architectures also struggled with the
problem of determining how to control access to system re-
sources. Some systems focus on minimality, forgoing all
but the most basic security. Others concentrate system-wide
security features in the kernel. Notable examples include
EROS [26], L4 [27], and Exokernel [28].

In summary, the sHype approach —targeting the commer-
cial hypevisors space— is supplementary to existing operating
system security approaches and orthogonal to existing hyper-
visor security approaches.

4 sHype Design

Figure 3 illustrates the overall sHype security architecture and
its integration into the XEN VMM system.
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Figure 3: sHype — Hypervisor Security Architecture.

sHype is designed to support a set of security require-
ments: secure services, resource control, access control be-
tween VMs, isolation of virtual resources, and TPM-based at-
testation. sHype supports interaction with secure services in
custom-designed minimized and carefully engineered VMs.
An example is the policy management VM, which we use to
establish and manage the security policies for the Xen hy-
pervisor. Resource accounting provides control of resource
usage. This enables enforcement of service level agreements
as well as addressing denial of service attacks on hypervi-
sor or VM resources. The mandatory access control enforces
a formal security policy on information flow between VMs.



sHype leverages existing isolation between virtual resources
and extends it with MAC features. TPM-based attestation
[29] provides the ability to generate and report run-time in-
tegrity measurements on the hypervisor and VMs. This en-
ables remote systems to infer the integrity property of the
running system.

This paper focuses on the sHype mandatory access con-
trol architecture, consisting of: the policy manager main-
taining the policy; the mediation hooks controlling access of
VMs to shared virtual resources based on decisions delivered
by callbacks; and the access control module (ACM) deliver-
ing access control decisions according to the security policy
through these callbacks to mediation hooks upon request.

4.1 Goals and Decisions

The implementation of sHype is governed by two design
goals and three major decisions. The first sHype design
goal is to permit the hypervisor to retain a stable, near-
minimal code base, allowing significant security assurances
(e.g., Common Ceriteria) to be achieved and ensuring strictly
non-intrusive code changes in the base VMM system. The
second sHype design goal is to incur near-zero security-
related performance overhead on the critical path.

Three major decisions shape the design of sHype:

(1) By building on existing isolation properties of virtual
resources, sHype inherits the medium assurance of the exist-
ing hypervisor isolation but ensures minimal code changes in
the virtualization layer (hypervisor).

(2) By using bind-time authorization and by controlling the
access to spontaneously shared resources only at first time
access (caching access control decisions) and when the policy
changes, sHype ensures very low performance overhead on
the critical path.

(3) By enforcing formal security policies, sHype enables
reasoning about the effectiveness of specific policies, pro-
vides the basis for effective defense against denial of service
attacks (through resource policy enforcement), and enables
QoS or SLA-style security guarantees (through TPM-based
attestation of system properties).

4.2 Access Control Architecture

In this section, we discuss the mandatory access control of in-
formation flows between VMs based on the reference monitor
concept. To support various business requirements, sHype
supports various kinds of MAC policies: Biba [30], Bell-
LaPadula [14], Caernarvon [31], Type Enforcement [32], as
well as Chinese Wall [33] policies.

The key component of the access control architecture is the
reference monitor, which in sHype isolates virtual machines
by default and allows sharing of resources among virtual ma-
chines when desired according to a mandatory access control

(MAC) policy. The classical definition of a reference moni-
tor [10] states that it possesses the following properties: (1)
it mediates all security-critical operations; (2) it can protect
itself from modification; and (3) it is as simple as possible to
enable validation of its correct implementation.

We examine the first requirement in more detail. The sec-
ond and third requirement are covered by generic hypervisor
requirements: it is protected against the VMs and consists of a
thin and minimal software layer. Accordingly, we will discuss
requirements two and three only where the hypervisor dele-
gates some enforcement to dedicated VMs (MAC-Domains).

Mediating security-critical operations. A security-
critical operation is one that requires MAC policy authoriza-
tion. If such an operation is not authorized against the MAC
policy, the system security guarantees can be circumvented.
For example, if the mapping of memory among VMs is not
authorized, then a VM in one coalition can leak its data to any
other VM.

We identify security-critical operations in terms of re-
sources whose use must be controlled in order to implement
MAC policies. We also identify the location of the mediation
points for these resources. The combination of resources to
be controlled and their mediation points forms the reference
monitor interface. We discuss only virtual resources, because
real resources can only be used exclusively by one VM or
shared in form of virtual resources. The following resources
must be controlled in a typical Xen VMM environment:

e sharing of virtual resources (event channels, shared
memory, and domain operations) between VMs access
controlled and isolated inside the Xen hypervisor

e sharing of local virtual resources among local VMs
(e.g. local vlans and virtual disks , see device domain
in Fig. 2) access controlled and isolated within MAC-
domains; and

e sharing of distributed virtual resources, e.g., VLANs
spanning multiple hypervisor systems, access controlled
and isolated in MAC-bridging domains of multiple sys-
tems.

The hypervisor reference monitor enforces direct access con-
trol and isolation on virtual resources in the Xen hypervisor.
While sHype enforces mandatory access control on MAC-
domains regarding their participation in multiple coalitions,
it relies on MAC-domains to isolate the different virtual re-
sources from each other and allow access to virtual resources
only to domains that belong to the same coalition as the vir-
tual resource. A good example of a MAC-domain is the de-
vice domain in Fig. 2, which participates in both the Order
and the Advertising coalition. MAC-domains become
part of the trusted computing base and should therefore be
of minimal size (e.g., secure micro-kernel design). Since
MAC-domains are generic, the cost of making them secure



will amortize fast by using them in many application envi-
ronments. We sketch the implementation of MAC domains
in Section 5.4.

If coalitions are distributed over multiple systems, we need
MAC-bridging domains to control their interaction. The vir-
tual resource that enables VMs on multiple systems to co-
operate is typically a VLAN. Mac-bridging domains build
bridges between their hypervisor systems over untrusted ter-
rain to connect VLANSs on multiple systems. To do so, they
first establish trust into required security properties of the
peer MAC bridging domains and their underlying virtualiza-
tion infrastructure (e.g., using TPM-based attestation). Af-
terwards, they build secure tunnels between each other, and
can from now on be considered as forming a single (distrib-
uted) MAC-domain belonging to multiple systems. The re-
quirements on the resulting distributed MAC-domain are akin
the requirements described above for the local MAC-domain.
MAC-bridging domains become part of the reference mon-
itor TCB similarly to MAC-domains. Noteworthy, multi-
system VLANSs and underlying MAC-bridging domains are
a pre-requisite for securely migrating VMs between hypervi-
sor systems and for implementing secure access to network
file systems.

5 Implementation

First, we will define simple policies tailored to the Xen hy-
pervisor environment based on workload types and resources
that must be controlled. Then we will describe the manage-
ment of the policies and the labeling of VMs and resources.
Finally, we introduce the access control enforcement in the
hypervisor, which guards access of VMs to resources based
on the policies.

5.1 Security Policies

We implemented two formal security policies for Xen: (i)
a Chinese Wall policy, (ii) a simple type enforcement pol-
icy. Both policies work on their own set of types (ChWall-
or TE-types), which are assigned to VMs as a function of
the workloads they can run. The ChWall- and TE-types form
the granularity upon which VMs and resources can be distin-
guished. The assignment of types to VMs is an administrative
task (i.e., part of the policy management).

Chinese Wall policy: The first policy enables administra-
tors to ensure that certain VMs (and their supported workload
types) cannot run on the same hypervisor system at the same
time. This is useful to mitigate covert channels or to meet
other requirements regarding certain workload types (e.g.,
workload types of competitors) that shall not run on the same
physical system at the same time. This policy ensures an “air-
gap” between such workloads and approximates the situation
given without virtualization and related co-location of work-
loads.

The Chinese Wall policy defines a set Chinese wall types
(ChWall-types), and these are assigned to a VM in function
of the workloads it can run. It also defines conflict sets using
these ChWall-types and ensures that VMs that are assigned
ChWall-types of the same conflict set never run at the same
time on the same system.

ChWall-types = {IBM, Hertz, Avis, ...}

ChWall-con flictset = { Hertz, Avis}

The hypervisor keeps a set of ChWall-types of all running
VMs and allows a new VM only to be started or resumed
or migrated-in, if the new VM’s ChWall-types do not appear
together with any running ChWall-type in any conflict set. If
we assign the ChWall-type Hertz to VMs that can run Hertz
workload and Avis to those VMs that can run Avis workloads,
then the above ChWall conflictset will ensure that those to
VMs never run at the same time on the same hardware.

Type Enforcement policy: The second policy specifies
which running VMs can share resources and which cannot. It
implements the coalitions introduced in Section 2.2 by map-
ping coalition membership one-to-one onto TE-types, e.g.,

TE-types = {IBMOrder, HertzAds, IBM Ads, AvisCo, ...}

The TE policy consequently (a) defines the set of TE-
types (coalitions), and (b) assigns TE-types to VMs (coalition
membership). The TE policy rules enforce that VMs only
share virtual resources if they have a TE-type in common,
i.e., they are member of at least one common coalition.

Security information assigned to VMs and resources
(ChWall- and TE-types) are maintained inside the policy
management domain and inside the hypervisor. It is always
protected against VMs.

5.2 Policy Management

The policy management is responsible for offering means to
create and maintain (store, change, validate) policy instanti-
ations for the Chinese Wall and Type Enforcement policies.
To minimize code complexity inside the hypervisor, the pol-
icy management translates the easy-to-manage XML based
policy representation into a binary policy representation that
is both system independent and easy to use by the hypervisor
layer.

The binary policy created by the Policy Management in-
cludes the assignment of VMs to ChWall-types and TE-types
as well as the Chinese Wall conflict sets to be enforced on
the ChWall-types. No other information is needed by the hy-
pervisor to enforce the policies. The access class of a VM as
sHype sees it is exactly a set of ChWall-types and TE-types.
Access classes of virtual resources such as virtual disks com-
prise one TE-type only.

The policy management can either run in a minimized pol-
icy management domain on the managed system (current Xen
approach) or it can run on a separate special purpose system,
such as the Hardware Management Console (HMC) as used



by PHYP and other commercial virtualization solutions. The
policy management is needed to change or validate a policy;
it is not necessary to run the system and enforce the instanti-
ated policies.

Since the policy management is affecting the access control
decisions by determining the rules and access classes, it must
be at least as secure (trusted) as the hypervisor enforcement
itself. While envisioning a user-friendly graphical user inter-
face to create the XML specification of the policy, we vali-
date the XML policy independently of the GUI against user
requirements before translating it into a binary policy. This
way, the complex GUI can run on any convenient platform
(OS) and stay out of the TCB, while the policy manager do-
main managing, translating, and enacting a signed-off XML
policy will be part of the trusted computing base and must be
kept simple and protected (reference monitor requirements).

5.3 Policy Enforcement

Mandatory access control is implemented as a reference mon-
itor. The mediation of references of VMs to shared virtual
resources is implemented by inserting security enforcement
hooks into the code path inside the hypervisor where VMs
share virtual resources. Hooks call back into the access con-
trol module (ACM) for decisions and enforce them locally at
the hook. Isolation of individual virtual resources is inherited
from the Xen hypervisor since it is a general design issue for
virtualizing hardware rather than a security specific require-
ment.

5.3.1 Reference Monitor

sHype strictly separates access control enforcement from the
access control policy according to the Flask [34] architecture.
We describe the control architecture in the context of the hy-
pervisor, but it will also be used in the MAC domains.

Figure 4 shows the sHype access control architecture as
part of the core hypervisor and depicts the relationships be-
tween its three major design components. Security enforce-
ment hooks are carefully inserted into the core hypervisor and
cover references of VMs to virtual resources. Enforcement
hooks retrieve access control decisions from the access con-
trol module (ACM).

The ACM decides access of VMs to resources based on the
policy rules and the security labels attached to VMs (ChWall-
types, TE-types) and resources (TE-types). The formal secu-
rity policy defines these access rules as well as the structure
and interpretation of security labels for VMs and resources.
Finally, a hypervisor interface enables trusted policy manage-
ment VMs to efficiently manage the ACM security policy.

5.3.2 Access Control Hooks

A security enforcement hook is a specialized access enforce-
ment function that guards access of VMs to a virtual resource.

XML
Security
VM
(Subject) Manager
VM
1. H_Call Hypervisor
A4

Security
Policy

Access
Control
Module

Y 2. Authorization Query
Hook |«
3. Authorization Decision
Object )
Core Hypervisor

Figure 4: Hypervisor-based security reference monitor.

In this case, it enforces information flow constraints between
VMs according to the security policy. Each security hook ad-
heres to the following general pattern:

1. gather access control information (determine VM labels,
virtual resource labels, and access operation type)

2. determine access decision by calling the ACM
3. enforce access control decision

Using security hooks, sHype minimizes the interference with
the core hypervisor while enforcing the security policy on ac-
cess to virtual resources. We have placed security enforce-
ment hooks at the following places inside the hypervisor in
order to enforce the Chinese Wall and Type Enforcement poli-
cies:

e Domain management operations (create, destroy, save,
restore, migrate) are mediated by a dom_op security
hook, which is functionally transparent if the access is
allowed and which returns with an error code from the
domain operation hypervisor call if the operation is de-
nied by the ACM.

e Event channel operations (setup, destroy) are mediated
by an event_op security hook, which is functionally
transparent if the access is allowed and which returns
with an error code otherwise.

e Shared memory operations (setup, grant access, remove
access) are mediated by a shmem__op security hook op-
erating transparently if access is denied and returning an
error code otherwise.

Domain operation hook: This hook calls back into the
ACM reporting the security reference of the domain originat-
ing the operation and of the domain that is being created or
destroyed etc. Callbacks from these hooks are used by the
ACM (1) to assign security labels to created domains and to
free labels of destroyed domains, (2) to check Chinese Wall



conflict sets before creating, resuming, or migrating-in do-
mains and (3) to adjust the set of running ChWall-types when
destroying, suspending, or migrating-out domains. Caching
access decisions for these hooks does not make sense since
ACM uses these callbacks to update security state. This is
not a problem because domain operations are typically off
the performance critical path.

Event channel hook: Event channels hooks (create, de-
stroy) mediate the setup and destruction of event channels be-
tween domains. The ACM uses callbacks from these hooks
to decide whether the two domains setting up an event chan-
nel are actually member of a common coalition. Figure 5
shows the hook that mediates the setup of an event channel
(event_channel hypervisor call) between the VM issuing the
request and the VM with VM-id=id. First, the event hook
looks up the security references for the local VM and for VM
id and calls back the ACM via the event_op ACM call-
back. If the ACM returns permitted, the event channel setup
continues beyond the hook. The subsequent sending and re-
ceiving of events via the connected channel do not need to be
mediated because they would yield the same result (unless the
policy changes, see below). If the hook receives the decision
denied, the event channel setup is aborted and the hypervisor
call returns with an error.

] Domain (VM-id=1)
hypervisor call -~ _ ‘

event_channel
// security hook

s sHype/Xen

1. lookup SREF |
local domain (1) =K.

, 2 lookup Rt ER
Domain id (0) ,{
N
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€ - - Control
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>
3. acm_authorize(SREF, SREF, evchan)

5. enforce
decision
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Figure 5: Security hook guarding the setup of event channels.

Shared memory hook: Grant-table hypervisor calls allow
one VM to grant access to some if its own memory pages to
another VM. This mechanism (synchronized via event chan-
nels) enables efficient communication between VMs running
on the same hypervisor. Since the shared memory may in
some cases be established dynamically during the communi-
cation (e.g., sending and receiving network packets or reading
and writing from virtual disks), this operation together with
the security hook guarding may be on the performance criti-
cal path. The hook itself is very similar to the event channel
hook illustrated in Figure 5.

Decision caching. Since neither the event channel hook nor
the shared memory hook callbacks induce any state change in
the ACM, we use explicit caching of access control decisions
to minimize the overhead introduced by the security hooks
calling back into the ACM and the ACM deciding about ac-
cess.

We cache access control decisions locally in the VM struc-
tures of the domains involved in the grant-table or event chan-
nel operation at the first time an access control decision is
required between two VMs. Since access decisions neither
depend on the direction of an access nor on the kind of ac-
cess, we need only a single cache for each VM, which cov-
ers both event channel and shared memory access decisions.
For example, the event channel setup access control decision
retrieved in Figure 5 is cached as general access control de-
cision between domains VM-idl and VM-id2 and used by
subsequent event channels or shared memory setup hooks be-
tween these domains. The cache is established symmetrically
in both VMs. This is redundant caching, which can be opti-
mized by keeping the cached decision only in one of the VMs
(e.g., the one with the lower id) and looking it up there when
needed. The decision cache is not used for domain opera-
tion hooks for two reasons: (i) the ACM must be involved
to maintain its security state for such events, (ii) the type of
operation matters.

We are experimenting with multiple cache layouts to find
the best trade-off between memory requirements and lookup
speed (direct indexing versus hash table lookup, i.e., perfor-
mance versus memory and CPU cache locality). The direct
indexing cache will use the VM-id as index and a single bit
per decision. The bit being “1” means that access of the lo-
cal VM to the VM id (index) is permitted. The bit being “0”’
means that a new access control decision is necessary. If only
permitted access is performance-critical, then the cache re-
solves the access control decision most of the time through
local cache-lookup. Since the possible ids are large numbers,
keeping an indexed cache for all possible ids will lead to poor
memory usage. Hash table based caching can help here by
reserving a field for the peer VM-id and then directly storing
the access control decision or indirectly storing the index into
a bit-field (indirect indexed caching).

Explicit decision caching achieves near-zero overhead on
the critical path at the cost of additional management and
complexity. When a VM is destroyed or migrated-out and its
ID could be re-used, then the access decision cache-entries
regarding this VM-id must be cleared in all caches of running
VMs. The induced overhead to clear these caches is very low.

Since our policies treat shared memory and event channels
the same way when deciding access, once the cache is filled, it
can be used for both types of virtual resources. Since all com-
munication between domains, e.g., access to virtual disks in
MAC-domains, is mapped onto the event channels and shared
memory mechanisms, they will all benefit from the same de-
cision cache.



Policy Changes. When the policy changes, we must explic-
itly revoke a shared resource from a VM that is no longer
authorized to use it. Since we use extensive caching, we
must propagate access authorization changes into the caches
of VMs. Additionally, we define a re-evaluation function
for both event-channel and grant-table hooks because these
hooks check permissions only once: when an event-channel
or a shared memory area is setup, and not when it is used.
When invoked by the ACM, the re-evaluation function (1) re-
evaluates the original access control decision, and (2) revokes
shared resources in case the authorization is no longer given.

Revocation of event-channels from inside Xen is straight-
forward. VMs trying to use revoked event-channels will re-
ceive error codes which must be handled regardless of ac-
cess control. Memory shared between VMs will typically
not be directly handed over by the guest OS to applications
but rather used exclusively inside device drivers (e.g., vir-
tual disk or network front-end and back-end drivers). Conse-
quently, device drivers might run into a memory access fault
when trying to send a request via shared memory to which
their access was revoked. We are currently working on a call-
back mechanism, initiated by the hypervisor, so that revoked
shared memory can be reported to affected VMs and handled
there in an more controlled fashion, allowing for more grace-
ful failure.

5.3.3 Access Control Module (ACM)

The ACM maintains policy state, makes policy decisions
based on the current policy, interacts with the policy manager
VM to establish a security policy, and triggers call-back func-
tions to re-evaluate access control decisions in the hypervisor
when the policy changes.

The ACM stores all security policy information locally
in the hypervisor and supports efficient policy management
through a privileged hypervisor call interface. This interface
is access-controlled by a specialized hook and will only be
accessible by policy-management-privileged domains.

During domain operations, the ACM is called by security
hooks and allocates and de-allocates security labels for cre-
ated and destroyed domains according to the policy. These
labels are later used for access control decisions. The virtual
machine configuration includes references for the ACM that
are used to determine the label for a newly created domain. In
our example, such a label consists of a set of TE-types (spec-
ifying to which coalitions the domain belongs) and a set of
ChWall-types as described in Section 5.1.

The ACM maintains the policy state needed to enforce the
Chinese Wall policy. For this purpose, the ACM maintains
a Running ChWall Types array indexed by the ChWall-type
and containing a reference count that describes the number of
running VMs that have assigned this ChWall-type. Whenever
a domain is started, the ACM determines those conflict sets
with which this VM shares a ChWall-type. Then it verifies

if any of the other ChWall-types of these conflict sets is run-
ning. If any of these ChWall-types’ reference count is non-
zero, then we have a Chinese Wall conflict and the current do-
main is not permitted to start. Otherwise, the current domain
is permitted to start and the Running ChWall Types’ reference
counts are incremented for those ChWall types that are as-
signed to the started VM. If a domain is destroyed, the Run-
ning ChWall Types’ reference counts of this VM’s ChWall-
types are decremented.

Access control decisions for the Type Enforcement policy
are simple. The ACM looks up the Coalition set of those
domains that are trying to establish an event channel or shared
memory. If both domains share a common TE-type (coalition
membership), then the access is permitted. Otherwise it is
denied. It can be implemented as an n-bit AND-operation
over the TE-type vectors of the VMs where n is the number
of known TE-types (coalitions).

5.4 MAC-domains

MAC-domains enable multiple coalitions to share a real re-
source by creating isolated virtual resources based on the real
resource (recall the vdisk device domain in Figure 2). If
sufficient hardware resources are available, MAC-domains
are not necessary because hardware can be exclusively as-
signed to a single coalition. We sketch briefly how we envi-
sion MAC-domains to work. They must offer following guar-
antees in order to conform to reference monitor requirements:

1. Isolate the virtual resources (e.g., the two virtual disks
for the Order and the Advertising coalition) inside the
MAC-domain at least as well as the hypervisor isolates
its virtual resources (event-channels, shared memory,
virtual memory).

2. Control access of VMs to those resources according to
the Type Enforcement Policy (only allow VMs that are
members of the coalition to which the virtual resource is
assigned to access it).

The isolation property can be achieved using MAC, e.g.,
based on SELinux, inside the domain while minimizing the
run-time environment.

The access control property requires a MAC-domain to
discover necessary coalition membership information (TE-
types) of the requesting domain. For this reason, sHype of-
fers to MAC-domains a hypervisor call that returns the coali-
tion membership information of a connected domain using
the protected policy information of the ACM. The hypervi-
sor will return those coalitions (TE-types) of which both the
MAC-domain and the requesting VM are members. Based
on the returned membership information, the MAC-domain
permits access of the requesting VM only to virtual resources
that share membership in the same coalition(s). In the ex-
ample in Fig. 2, the MAC-domain (VM 1) will permit VM 2



access to the Orders virtual disk and the domain with VM 6
access to the Ads virtual disk. It can retrieve the respective
VM’s membership information with the appropriate hypervi-
sor call since the MAC-domain itself is member of both of
these coalitions. The MAC-domain will get no memberships
for the domain with VM 6, as it does not share any coalition
membership with this domain. Consequently, VM 6 will not
get access to any virtual disk on VM 1.

6 Evaluation

6.1 sHype-Covered Resources

Figure 6 shows the virtualized resources sorted according to
where they are implemented. The TCB coverage column
shows how well their isolation and mandatory access control
is covered by the sHype reference monitor. We distinguish
whether the implementing entity is serving a single coali-
tion or multiple coalitions since the latter requires MAC
control. If event channels, shared memory, virtual disks, vir-

resource || shared | virtual | virtual | virtual TCB coverage
implementation channel | memory disk TTY LAN single / multi
Hypervisor X X ‘ / O
local VM X X X . / O
VMs on multiple
systems X O / O
[ ] ..fully covered by sHype © ..partly covered by sHype

Figure 6: Coverage of Xen resources by the current sHype
implementation.

tual TTY, or VLANSs are shared within a single coalition,
sHype fully covers the TCB for sharing between coalitions.
While the sHype architecture is comprehensive and its pol-
icy enforcement completely covers the communication be-
tween domains, sHype relies on domains that create virtual
resources and offer them to multiple coalitions to correctly
isolate virtual devices from each other (see Section 5.4). Such
multi-coalition MAC-Domains are necessary if real peripher-
als must be shared between multiple coalitions or if different
coalitions shall be able to co-operate using filtering and fine-
granular access control implemented inside a MAC-Domain.

If virtual resources (e.g. VLANS) are distributed over mul-
tiple hypervisor systems and communicate over a network,
sHype relies on the domains bridging those systems (bridging
domains) to securely isolate the VLAN traffic from other traf-
fic on the connecting network and to control access of VMs
on the connected systems to the VLAN (MAC). In conse-
quence, sHype controls which domains are able to connect to

MAC-bridging domains but defers isolation and MAC guar-
antees for VLAN traffic into these MAC-bridging domains.

6.2 Code Impact

The sHype access control architecture for Xen comprises
2600 lines of code. We insert three MAC security hooks
into Xen hypervisor files to control domain operations, event
channel setup, and shared memory setup. Two out of three
hooks are off the performance critical path. One hook (shared
memory setup) can be on or off the critical path depending on
how shared memory is used by a domain. We implemented
a generic interface (akin to the Linux Security modules inter-
face but much simpler) upon which various policies can be
implemented. We have implemented the Chinese Wall and
the Type Enforcement policies for Xen as well as the caching
of event channel and grant table access decisions. Maintain-
ing sHype within the developing Xen hypervisor code base
has proven very easy.

6.3 Performance

By design (authorization at binding-time not per-use) and by
extensive decision caching, we minimize the overhead sHype
introduces on the performance-critical path. Policy changes
are an exception and related overhead, being in lower bounds,
is not critical. NOTE to the reviewer: We will include a
table showing performance overhead benchmark results for
event channel and shared memory security hooks.

7 Conclusion

We presented a secure hypervisor architecture, sHype, which
we successfully implemented into the Xen opensource hyper-
visor. We showed how access control in the hypervisor can
be implemented in a way that incurs very low impact on VM
performance and is least intrusive to existing and maintained
VMM code. The hypervisor virtualization layer is becoming
a standard component in the system software. With its coarse-
grained resource management capability, protection against
its workloads, and its relatively small footprint, it proved to
be the ideal vehicle in which to implement a flexible security
framework that is capable of supporting a range of security
policies that can be tailored to the particular workload pro-
file.

Currently, we are extending the security architecture to
cover multiple hardware platforms — involving policy agree-
ments and the protection of information flows crossing the
hardware platform boundary (i.e., leaving the control of the
local hypervisor). We need to establish trust into the seman-
tics and enforcement of the security policy governing the re-
mote hypervisor system before allowing information flow to
and from such a system. To this end, we are experimenting
with establishing this trust based on the Trusted Computing



Group’s Trusted Platform Module [35] and a related Integrity
Measurement Architecture [29]. While Xen de-aggregates
drivers and management functions from DOMO into their
own domains, we are experimenting with MAC-domains that
will become essential for sharing limited physical resources
(e.g., in the mid-range server and desktop space). Future
work includes the accurate accounting and control of re-
sources (such as CPU time or network bandwidth) and gener-
ating audit trails appropriate for medium assurance Common
Criteria evaluation targets.
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Appendix

This appendix briefly discusses the TE policy for the simple
example illustrated in Figure 2. Figure 7 shows the XML pol-
icy file for the Type Enforcement policy confining domains to
coalitions, each coalition being defined with a TE-type. The
XML policy file for the Chinese Wall policy looks similar but
only assigns ChWall-types to VMs, not to resources. The pol-

<?xml version="1.0"

<SecurityPolicySpec

<Policy>
<PolicyHeader>

</PolicyHeader>
<VM> <id>0</id>
<VM>

</VM>

<VM> <id>2</id>

<VM> <id>3</id>

<VM> <id>6</id>

<VM> <id>8</id>
</Policy>

7>
xmlns="http://www.ibm.com"...">

<Name>Xen sample policy</Name>
<DateTime>2005-05-20T16:56:00</DateTime>

<TE>VMMgmt</TE> </VM>

<id>1</id> <TE>Order</TE> <TE>Advertising</TE>
<vdsk> <id>/dev/sdal</id> <TE>Order<TE> </vdsk>
<vdsk> <id>/dev/sda2</id> <TE>Advertising</TE> </y

<TE>Order</TE> </VM>
<TE>Order</TE> </VM>
<TE>Advertising</TE> </VM>
<TE>Computing</TE> </VM>

</SecurityPolicySpec>

Figure 7: sHype Type Enforcement policy example.

icy manager translates this representation into a binary pol-
icy that is represented by a table of different TE-type sets.
These TE-type sets are referenced in the VM configuration
and passed through to the hypervisor when a VM is created.
Using this reference, the VM is assigned the ChWall- and
TE-types during the the domain_ops hook callback into

the ACM.

dsk>



