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Abstract
We present a new approach to motion planning under sensing and motion uncertainty by computing a locally optimal
solution to a continuous partially observable Markov decision process (POMDP). Our approach represents beliefs (the
distributions of the robot’s state estimate) by Gaussian distributions and is applicable to robot systems with non-linear
dynamics and observation models. The method follows the general POMDP solution framework in which we approximate
the belief dynamics using an extended Kalman filter and represent the value function by a quadratic function that is
valid in the vicinity of a nominal trajectory through belief space. Using a belief space variant of iterative LQG (iLQG),
our approach iterates with second-order convergence towards a linear control policy over the belief space that is locally
optimal with respect to a user-defined cost function. Unlike previous work, our approach does not assume maximum-
likelihood observations, does not assume fixed estimator or control gains, takes into account obstacles in the environment,
and does not require discretization of the state and action spaces. The running time of the algorithm is polynomial (O[n6])
in the dimension n of the state space. We demonstrate the potential of our approach in simulation for holonomic and non-
holonomic robots maneuvering through environments with obstacles with noisy and partial sensing and with non-linear
dynamics and observation models.

Keywords
Motion planning under uncertainty, non-holonomic motion planning, belief space planning, partially observable Markov
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1. Introduction

As a robot moves through an environment to accomplish
a task, uncertainty may arise in (1) the robot’s motion due
to unmodeled or unpredictable external forces, and (2) the
robot’s sensing of its state due to noisy or incomplete sen-
sor measurements. These forms of uncertainty are common
in a variety of practical robotics tasks, including guiding
aerial vehicles in turbulent conditions, maneuvering mobile
robots in unfamiliar terrain, and robotically steering flexible
medical needles to clinical targets in soft tissues. Explic-
itly considering motion and sensing uncertainty when com-
puting motion plans can improve the quality of computed
plans. The objective of motion planning under uncertainty
is to plan motions for a robot such that the expected cost
(as defined by a user-specified cost-function) is minimized.
Optimal plans typically limit the information that is lost due
to motion uncertainty and move the robot through regions
of the state space where information on the state is gained.
Optimal solutions will maximize, for instance, the proba-
bility of reaching a specified goal location while avoiding
collisions with obstacles.

To fully consider the impact of uncertainty in motion
and sensing, a motion planner should not merely compute
a static path through the robot’s configuration space but
rather a control policy that defines the motion to perform
given any current state information. A key challenge is
that the robot often cannot directly observe its current state
but instead estimates a distribution over the set of possible
states (i.e., its belief state) based on sensor measurements
that are both noisy and partial (i.e., only a subset of the state
vector can be sensed). The problem of computing a control
policy over the space of belief states is formally described as
a partially observable Markov decision process (POMDP),
on which a large body of work is available in the literature.
Solutions to POMDPs are known to be extremely com-
plex (Papadimitriou and Tsisiklis, 1987), since the belief
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space (over which a control policy is to be computed) is
in the most general formulation, an infinite-dimensional
space of all possible probability distributions over the finite-
dimensional state space. Solutions based on discrete or dis-
cretized state and action spaces are inherently subject to the
‘curse of dimensionality’, and have only been successfully
applied to very small and low-dimensional state spaces.

In this paper, we present a method that takes as input a
feasible trajectory and improves it by computing a locally
optimal trajectory and a corresponding control policy that
together minimize the expected value of a user-specified
cost metric in the presence of motion and sensing uncer-
tainty. To accomplish this, our method computes a locally
optimal solution to a POMDP problem with continuous
state and action spaces and non-linear dynamics and obser-
vation models, where we assume a belief can be represented
by a Gaussian distribution. This POMDP formulation is
applicable to a wide range of robot motion planning prob-
lems. Our approach uses a belief space variant of the iter-
ative linear–quadratic Gaussian (iLQG) to perform value
iteration, where the value function is approximated using
a quadratization around a nominal trajectory, and the belief
dynamics are approximated using an extended Kalman fil-
ter (any non-linear Gaussian filter can in fact be used). The
result is a linear control policy over the belief space that is
valid in the vicinity of the nominal trajectory. By execut-
ing the control policy, a new nominal trajectory is created,
around which a new control policy is constructed. This pro-
cess continues with second-order convergence towards a
locally optimal solution to the POMDP problem. Unlike
general POMDP solvers that have an exponential running
time, our approach does not rely on discretizations and has
a running time that is polynomial (O[n6]) in the dimension
n of the state space.

Our approach combines, generalizes, and overcomes
the limitations of previous work that has addressed the
same problem of creating applicable approximations to
the POMDP problem. Most previous work on POMDPs
assumes maximum-likelihood observations to enable or
simplify computing a control policy. This assumption
has no formal justification, yet seems to produce reason-
able results. Our approach does not assume maximum-
likelihood observations, but can relatively easily be adapted
such that it does. We use this to study the impact of
the maximum-likelihood observation assumption on the
resulting control policies and discuss the impact on plans
computed using iterative local optimization. Our results
indicate that not making this assumption results, on aver-
age, in better control policies (i.e., they have lower expected
cost).

Furthermore, our approach does not assume fixed estima-
tor or control gains, and takes into account obstacles in the
environment. We do assume that the dynamics and obser-
vation models and cost functions are sufficiently smooth,
and that the belief about the state of the robot is well
described by only its mean and its variance. We show the
potential of our approach in several illustrative scenarios

involving robots with non-linear dynamics and observation
models moving through environments containing obstacles
and relying on limited and partial sensing.

2. Previous work

Partially observable Markov decision processes (POMDPs)
(Thrun et al., 2005) provide a principled mathematical
framework for planning under uncertainty. They are known
to be of extreme complexity (Papadimitriou and Tsisik-
lis, 1987), and can only be directly applied to problems
with small and low-dimensional state spaces (Kaelbling
et al., 1998). Recently, several POMDP algorithms have
been developed that use approximate value iteration with
point-based updates (Porta et al., 2006; Kurniawati et al.,
2008; Bai et al., 2010; Ong et al., 2010). These have been
shown to scale up to medium-sized domains. However, they
rely on discretizing the state space or the action space, mak-
ing them inevitably subject to the ‘curse of dimensionality’.
The methods of Thrun (2000), Brooks et al. (2006), Hauser
(2010) and Candido and Hutchinson (2011) handle continu-
ous state and action spaces, but maintain a global (discrete)
representation of the value function over the belief space. In
contrast, our approach is continuous and approximates the
value function in parametric form only in the regions of the
belief space that are relevant to solving the problem, allow-
ing for a running time polynomial in the dimension of the
state.

Another class of works, to which our method is directly
related, assumes a linear–quadratic Gaussian (LQG) frame-
work to find locally optimal feedback policies. In the
basic LQG derivation (Bertsekas, 2001), motion and sens-
ing uncertainty have no impact on the resulting policy.
As shown in Todorov and Li (2005), the LQG framework
can be extended such that it accounts for state and con-
trol dependent motion noise, but still implicitly assumes
full observation (or an independent estimator) of the state.
Several approaches have been proposed to include partial
and noisy observations such that the controller will actively
choose actions to gain information about the state. Belief
roadmaps (Prentice and Roy, 2009) and icLQG (Huynh
and Roy, 2009) combine an iterative LQG approach with
a roadmap, but this approach does not result in (locally)
optimal solutions. The approaches of Du Toit and Bur-
dick (2010), Erez and Smart (2010) and Platt et al. (2010)
are similar to ours and incorporate the variance into an
augmented state and use the LQG framework to find a
locally optimal control policy. The main difference is that
these approaches assume maximum-likelihood observations
to make the belief propagation deterministic. LQG-MP
(van den Berg et al., 2010) removes this assumption, but
only evaluates the probability of success of a given trajec-
tory, rather than constructing an optimal one. Belief trees
(Bry and Roy, 2011) overcome this limitation by com-
bining a variant of LQG-MP with RRT* to find an opti-
mal trajectory through belief space. A great advantage of
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this approach is that it finds a globally optimal solution.
Vitus and Tomlin (2011) propose an alternative solution
that involves solving a chance-constrained optimal control
problem. However, these approaches do not really solve
a POMDP as they assume fixed control gains along each
section of the trajectory independent of the context. The
work of Li and Todorov (2007) takes into account state-
and control-dependent motion and observation noise by an
interleaved iteration of the estimator and the controller, con-
verging to a local optimum. While this approach is asymp-
totically faster than ours, it does not allow for obstacles
in the environment and results in a controller that is opti-
mal only under the assumption of fixed estimator gains.
Our approach combines and generalizes these approaches
as it does not assume maximum-likelihood observations,
does not assume fixed control or estimator gains, and takes
into account the existence of obstacles in the environ-
ment to compute locally optimal policies that minimize the
expected value of a user-defined cost function.

This paper is an extended version of a preliminary
paper presented by the authors in van den Berg et al.
(2011a), which used stochastic differential dynamic pro-
gramming (sDDP) rather than iLQG for the value iteration,
but otherwise presents the same global approach. Also, to
improve numerical stability compared to van den Berg et
al. (2011a), in this paper we use the principal square root
of the variance, rather than the variance itself, in the def-
inition of the belief. Qualitatively, iLQG is asymptotically
faster than sDDP (O[n6] rather than O[n7]) and numerically
more stable (regularization of matrices to maintain positive-
semidefiniteness of the value function is not necessary
with iLQG). Our experimental results include a quantitative
comparison between the two approaches.

3. Preliminaries and definitions

We begin by defining POMDPs in their most general formu-
lation [following Thrun et al. (2005)]. Then, we specifically
state the instance of the problem we discuss in this paper.

3.1. General POMDPs

Let X ⊂ R
n be the space of all possible states x of the

robot, U ⊂ R
m be the space of all possible control inputs u

of the robot, and Z ∈ R
k be the space of all possible sensor

measurements z the robot may receive. General POMDPs
take as input a stochastic dynamics and observation model,
here given in probabilistic notation:

xt+1 ∼ p[xt+1|xt, ut], zt ∼ p[zt|xt], (1)

where xt ∈ X , ut ∈ U , and zt ∈ Z are the robot’s
state, control input, and received measurement at time-step
t, respectively.

The belief b[xt] of the robot is defined as the distribu-
tion of the state xt given all past control inputs and sensor

measurements:

b[xt] = p[xt|u0, . . . , ut−1, z1, . . . , zt]. (2)

Given a control input ut and a measurement zt+1, the belief
is propagated using Bayesian filtering:

b[xt+1] = η p[zt+1|xt+1]
∫

p[xt+1|xt, ut] b[xt] dxt, (3)

where η is a normalizer independent of xt+1. Denoting
belief b[xt] by bt, and the space of all possible beliefs by
B ⊂ {X → R}, the belief dynamics defined by equation (3)
can be written as a function β : B × U × Z → B:

bt+1 = β[bt, ut, zt+1]. (4)

Now, the challenge of the POMDP problem is to find a
control policy πt : B → U for all 0 ≤ t < �, where � is the
time horizon (i.e., the index of the final time-step), such that
selecting the controls ut = πt[bt] minimizes the objective
function:

E
z1,...,z�

[
c�[b�] +

�−1∑
t=0

ct[bt, ut]
]
, (5)

for given immediate cost functions c� and ct. The expecta-
tion is taken because the measurements are stochastic.

A general solution approach uses value iteration (Thrun
et al., 2005), a backward recursion procedure, to find the
control policy πt for each time-step t:

v�[b�] = c�[b�] (6)

vt[bt] = min
ut

( ct[bt, ut] + E
zt+1

[
vt+1[β[bt, ut, zt+1]]

]
) (7)

πt[bt] = argmin
ut

( ct[bt, ut] + E
zt+1

[
vt+1[β[bt, ut, zt+1]]

]
) ,

(8)

where vt[bt] : B → R is called the value function at time-
step t.

3.2. Problem definition

The complexity of POMDPs stems from the fact that B,
the space of all beliefs, is infinite-dimensional, and that in
general the value function cannot be expressed in paramet-
ric form. We address these challenges in our approach by
representing beliefs by Gaussian distributions, approximat-
ing the belief dynamics using an extended Kalman filter,
and approximating the value function by a quadratization
around a nominal trajectory through the belief space.

Specifically, we assume we are given a (non-linear)
stochastic dynamics and observation model, here given in
state-transition notation:

xt+1 = f[xt, ut, mt], mt ∼ N [0, I], (9)

zt = h[xt, nt], nt ∼ N [0, I], (10)
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where mt is the motion noise and nt is the measurement
noise, each drawn from an independent Gaussian distri-
bution with (without loss of generality) zero mean and
unit variance. Note that the motion and sensing uncer-
tainty can be state- and control-input dependent through
manipulations on mt and nt within the functions f and h,
respectively.

The belief, denoted bt = ( x̂t,
√

�t), is assumed to be
defined by the mean x̂t and the principal square root

√
�t

of the variance �t of a Gaussian distribution N [x̂t, �t]
of the state xt. We use the square root for numerical
robustness of the algorithm we present below. Similar to
the general POMDP case, our objective is to find a con-
trol policy ut = πt[bt] that minimizes the cost function
E
[
c�[b�]+∑�−1

t=0 ct[bt, ut]
]
. In our case, we assume in addi-

tion positive-(semi)definiteness for the Hessian matrices of
the immediate cost functions ct:

∂2c�

∂b∂b
[b] ≥ 0, (11)

∂2ct

∂u∂u
[b, u] > 0, (12)[

∂2ct
∂b∂b [b, u] ∂2ct

∂b∂u [b, u]
∂2ct
∂u∂b [b, u] ∂2ct

∂u∂u [b, u]

]
≥ 0, (13)

for all b, u and t. Further, we assume that the initial belief
b0 = ( x̂0,

√
�0) is given.

4. Approach

To compute a locally optimal solution to the Gaussian
POMDP problem as formulated above, we follow the gen-
eral solution approach as sketched in Section 3.1. First, we
approximate the belief dynamics using an extended Kalman
filter. Second, we approximate the value function using a
quadratic function that is locally valid in the vicinity of a
nominal trajectory though the belief space. We then use a
belief-space variant of iterative LQG to perform the value
iteration, which results in a linear control policy over the
belief space that is locally optimal around the nominal tra-
jectory. We then iteratively generate new nominal trajec-
tories by executing the control policy, and repeat the pro-
cess until convergence to a locally optimal solution to the
POMDP problem. We discuss each of these steps in this
section, and analyze the running time of our algorithm.

4.1. Bayesian filter and belief dynamics

Given a current belief bt = ( x̂t,
√

�t), a control input
ut, and a measurement zt+1, the belief evolves using a
Bayesian filter. We approximate the Bayesian filter by
an extended Kalman filter (EKF), which is applicable to
Gaussian beliefs (we note that any other non-linear Gaus-
sian filter, such as the unscented Kalman filter (Julier and
Uhlmann, 2004), can be used as well). The EKF is widely
used for state estimation of non-linear systems (Welch and

Bishop, 2006), and uses the first-order approximation that
for any vector-valued function f[x] of a stochastic variable
x we have:

E[f[x]] ≈ f[E[x]], (14)

Var[f[x]] ≈ ∂f

∂x
[E[x]] · Var[x] · ∂f

∂x
[E[x]]T . (15)

Given x̂t and
√

�t that define the current belief, the EKF
update equations are then given by:

x̂t+1 = f[x̂t, ut, 0] + Kt( zt+1 − h[f[x̂t, ut, 0], 0]) , (16)√
�t+1 =

√
�t − KtHt�t, (17)

where

�t = At

√
�t( At

√
�t)

T +MtM
T
t , (18)

At = ∂f

∂x
[x̂t, ut, 0], (19)

Mt = ∂f

∂m
[x̂t, ut, 0], (20)

Kt = �tH
T
t ( Ht�tH

T
t + NtN

T
t )−1 , (21)

Ht = ∂h

∂x
[f[x̂t, ut, 0], 0], (22)

Nt = ∂h

∂n
[f[x̂t, ut, 0], 0]. (23)

Note that all of these matrices are functions of bt and
ut. Equations (16) and (17) define the (non-linear) belief
dynamics. The second term of equation (16), called the
innovation term, depends on the measurement zt+1. Since
the measurement is unknown in advance, the belief dynam-
ics are stochastic. Using equation (10) and the assump-
tions of equation (15), the innovation term is distributed
according to N [0, KtHt�t].

We define the belief bt = [ x̂t
vec[

√
�t]

]
as a true vector, con-

taining the mean x̂t and the columns of
√

�t. Obviously,
in our implementation we exploit the symmetry of

√
�t

to eliminate the redundancy. Then, the stochastic belief
dynamics are given by:

bt+1 = g[bt, ut] + W [bt, ut]wt, wt ∼ N [0, In], (24)

where n is the dimension dim[x] of the state, and:

g[bt, ut] =
[

f[x̂t, ut, 0]
vec[

√
�t − KtHt�t]

]
, (25)

W [bt, ut] =
[√

KtHt�t

0

]
. (26)

4.2. Value iteration

We perform value iteration backward in time to find a
locally optimal control policy. When using value iteration
(dynamic programming) over discrete states one usually
stores the value of each possible state. In the case of a con-
tinuous state this is not possible. Instead, we assume that
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we have an initial (nominal) trajectory given. For each time-
step t we calculate an approximation of the value function
around the state the robot is in at time-step t when following
the nominal trajectory. As the value function at time-step
t depends on the value function at time-step t + 1, this is
done in a backward iterative process starting at the final
time-step �. Using the approximated value function, we can
also calculate an optimal policy for each time-step. Using
this optimal policy we generate a new nominal trajectory
by starting at the initial state and applying this optimal pol-
icy forward in time. The process in then repeated using
the new nominal trajectory, and ultimately converges to a
locally optimal solution.

We use a belief-space variant of iterative LQG (Todorov
and Li, 2005) to perform the value iteration. We approxi-
mate the value function vt[b] as a quadratic function that
is approximately valid around a given nominal trajectory in
belief space. Let the nominal trajectory be given as a series
of beliefs and control inputs ( b̄0, ū0, . . . , b̄�−1, ū�−1, b̄�)
such that b̄t+1 = g[b̄t, ūt] for t ∈ 0 . . . � − 1 (we will
discuss initialization and iterative convergence of the nom-
inal trajectory to a locally optimal trajectory in the next
subsection). The value function is then approximated as:

vt[b] ≈ 1

2
( b − b̄t)

T St( b − b̄t) +( b − b̄t)
T st + st, (27)

with St ≥ 0.
For the final time-step t = �, the value function v� [see

equation (6)] is approximated by setting

S� = ∂2c�

∂b∂b
[b̄�], s� = ∂c�

∂b
[b̄�], s� = c�[b̄�], (28)

which amounts to a second-order Taylor expansion of c�

around the point b̄�. The value functions and the control
policies for the time-steps � > t ≥ 0 are computed by
backward recursion.

We proceed by combining equations (7), (24) and (27):

vt[b] = min
u

(
ct[b, u] + E

[
vt+1[g[b, u] + W [b, u]wt]

])
= min

u

(
ct[b, u] + E

[1

2
( g[b, u] + W [b, u]wt

−b̄t+1)T St+1( g[b, u] + W [b, u]wt − b̄t+1)

+ ( g[b, u] + W [b, u]wt − b̄t+1)T st+1 + st+1
])

= min
u

(
ct[b, u] + 1

2
( g[b, u]

−b̄t+1)T St+1( g[b, u] − b̄t+1) +( g[b, u] − b̄t+1)T

st+1 + st+1 + 1

2
tr
[
W [b, u]T St+1W [b, u]

])
(29)

= min
u

(
ct[b, u] + 1

2
( g[b, u] − b̄t+1)T

+St+1( g[b, u] − b̄t+1) +( g[b, u] − b̄t+1)T st+1

st+1 + 1

2

n∑
i=1

W(i)[b, u]T St+1W(i)[b, u]
)

, (30)

where W(i)[b, u] refers to the ith column of matrix W [b, u]
(note that W [b, u] has n columns, where n is the dimension
of the state). The trace-term in equation (29) follows from
the fact that E[xT Qx] = E[x]T Q E[x] + tr[Q Var[x]] for any
stochastic variable x, and that tr[QXX T ] = tr[X T QX ]. It is
this term that ensures that the stochastic nature of the belief
dynamics is accounted for in the value iteration. Equation
(30) follows from the fact that tr[X T QX ] = ∑

i X(i)
T QX(i).

To approximate the optimal value of u as a function of b
we linearize the belief dynamics and each of the columns
of W [b, u] about the belief b̄t and control input ūt of the
nominal trajectory. Given that b̄t+1 = g[b̄t, ūt], we get:

g[b, u] − b̄t+1 ≈ Ft( b − b̄t) +Gt( u − ūt) , (31)

W(i)[b, u] ≈ ei
t + Fi

t ( b − b̄t) +Gi
t( u − ūt) , (32)

where

Ft = ∂g

∂b
[b̄t, ūt], Gt = ∂g

∂u
[b̄t, ūt], (33)

ei
t = W(i)[b̄t, ūt], Fi

t = ∂W(i)

∂b
[b̄t, ūt], (34)

Gi
t = ∂W(i)

∂u
[b̄t, ūt]. (35)

The immediate cost function ct[b, u] is quadratized about
b̄t and ūt:

ct[b, u] ≈ 1

2

[
b − b̄t

u − ūt

]T [
Qt PT

t
Pt Rt

] [
b − b̄t

u − ūt

]

+
[

b − b̄t

u − ūt

]T [
qt

rt

]
+ pt, (36)

where

Qt = ∂2ct

∂b∂b
[b̄t, ūt], Rt = ∂2ct

∂u∂u
[b̄t, ūt], Pt = ∂2ct

∂u∂b
[b̄t, ūt],

qT
t = ∂ct

∂b
[b̄t, ūt], rT

t = ∂ct

∂u
[b̄t, ūt], pt = ct[b̄, ū]. (37)

Filling in equations (31), (32) and (36) into equation (30),
we get:

vt[b] ≈ min
u

(
1

2

[
b − b̄t

u − ūt

]T [
Qt PT

t
Pt Rt

] [
b − b̄t

u − ūt

]

+
[

b − b̄t

u − ūt

]T [
qt

rt

]
+ pt +

1

2
( Ft( b − b̄t) +Gt( u − ūt) )T ·

St+1( Ft( b − b̄t) +Gt( u − ūt) ) +
( Ft( b − b̄t) +Gt( u − ūt) )T st+1 + st+1 +
1

2

n∑
i=1

( ei
t + Fi

t ( b − b̄t) +Gi
t( u − ūt) )T ·

St+1( ei
t + Fi

t ( b − b̄t) +Gi
t( u − ūt) )

)
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= min
u

(
1

2

[
b − b̄t

u − ūt

]T [
Ct ET

t
Et Dt

] [
b − b̄t

u − ūt

]

+
[

b − b̄t

u − ūt

]T [
ct

dt

]
+ et

)
, (38)

where

Ct = Qt + FT
t St+1Ft +

n∑
i=1

Fi
t
T

St+1Fi
t , (39)

ct = qt + FT
t st+1 +

n∑
i=1

Fi
t
T

St+1ei
t, (40)

Dt = Rt + GT
t St+1Gt +

n∑
i=1

Gi
t
T

St+1Gi
t, (41)

dt = rt + GT
t st+1 +

n∑
i=1

Gi
t
T

St+1ei
t, (42)

Et = Pt + GT
t St+1Ft +

n∑
i=1

Gi
t
T

St+1Fi
t , (43)

et = pt + st+1 + 1

2

n∑
i=1

ei
t
T

St+1ei
t. (44)

Equation (38) is then solved by expanding the terms, taking
the derivative with respect to u and equating to 0 (for u to be
actually a minimum, Dt must be positive-definite. Given the
assumptions of equation (13), this is necessarily the case).
We then get the solution:

u − ūt = −D−1
t Et( b − b̄t) −D−1

t dt. (45)

Hence, the control policy for time-step t is linear and given
by:

ut = πt[bt] = Lt( bt − b̄t) +lt + ūt, (46)

Lt = −D−1
t Et, lt = −D−1

t dt. (47)

Filling equation (45) back into equation (38) gives the
value function vt[b] as a function of only b in the form of
equation (27). Expanding and collecting terms gives:

St = Ct − ET
t D−1

t Et, (48)

st = ct − ET
t D−1

t dt, (49)

st = et − 1

2
dT

t D−1
t dt. (50)

This recursion then continues by computing a control policy
for time-step t − 1.

4.3. Iteration to a locally optimal control policy

The above value iteration gives a control policy that is valid
in the vicinity of the given nominal trajectory. To let the
control policy converge to a local optimum, we iteratively
update the nominal trajectory using the most recent control

policy (Jacobson and Mayne, 1970). Given the initial belief
b0 = ( x̂0,

√
�0), and an (arbitrary) initial nominal trajec-

tory
(

b̄(0)
0 , ū(0)

0 , . . . , b̄(0)
�−1, ū(0)

�−1, b̄(0)
�

)
(such that b̄(0)

0 = b0

and b̄(0)
t+1 = g[b̄(0)

t , ū(0)
t ] for t ∈ 0 . . . � − 1), which can be

obtained using RRT motion planning (LaValle and Kuffner,
2001 for instance), we proceed as follows.

Using the value iteration procedure as described above
given the nominal trajectory of the ith iteration, we find
the control policy, i.e., the matrices L(i)

t and vectors l(i)t for
the ith iteration. We then compute the nominal trajectory(

b̄(i+1)
t , ū(i+1)

t

)
of the i+1th iteration (starting with i = 0) by

forward integrating the control policy in the deterministic
(zero-noise) belief dynamics:

b̄(i+1)
0 = b0, ū(i+1)

t = L(i)
t

(
b̄(i+1)

t − b̄(i)
t

)
+ l(i)t + ū(i)

t ,

b̄(i+1)
t+1 = g

[
b̄(i+1)

t , ū(i+1)
t

]
, (51)

We then recompute the control policy, and reiterate. This
lets the control policy converge to a locally optimal tra-
jectory with a second-order convergence rate (Liao and
Shoemaker, 1991)

4.4. Ensuring convergence

To ensure that the above algorithm in fact converges to a
locally optimal control policy, the algorithm must be aug-
mented with line search. As with Newton’s method for
finding roots of a function, second-order convergence of
the above algorithm is only achieved if the current nomi-
nal trajectory is already close to the locally optimal trajec-
tory. If the current nominal trajectory is ‘far away’ from the
local optimum, the approach may overshoot local minima,
which significantly slows down convergence, or even results
in divergence. To address this issue, we subtly change the
algorithm following Yakowitz (1989). We limit the incre-
ment to the control policy by adding a parameter ε to equa-
tion (45): ( u − ūt) = Lt( b − b̄t) +εlt. Initially, ε = 1, but
each time the control policy creates a trajectory with higher
expected cost than the previous nominal trajectory, the tra-
jectory is rejected, ε is divided in half, and a new trajectory
is created. When a new trajectory is accepted, ε is reset to 1.
This change is equivalent to using backtracking line search
to limit the step size in Newton’s method and guarantees
convergence to a locally optimal control policy (Yakowitz,
1989).

An issue that remains is how to compute the expected
cost of a given nominal trajectory. In deterministic iLQG,
one simply evaluates its cost using the given immediate cost
functions ct[b, u]. In our case however, the dynamics are
stochastic, so one has to compute the expected cost. We do
this as follows. Let L(i)

t and εl(i)t define the control policy in
the ith iteration. A candidate nominal trajectory for iteration
i + 1 is now generated by applying this control policy with
respect to the nominal trajectory of iteration i, according to
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equation (51). We have:

ū(i+1)
t − ū(i)

t = L(i)
t

(
b̄(i+1)

t − b̄(i)
t

)
+ εl(i)t . (52)

The control policy of iteration i itself is defined as

u − ū(i)
t = L(i)

t

(
b − b̄(i)

t

)
+ εl(i)t ,

⇒
(

u − ū(i+1)
t

)
+
(

ū(i+1)
t − ū(i)

t

)
= L(i)

t

(
( b − b̄(i+1)

t ) +( b̄(i+1)
t − b̄(i)

t )
)

+ εl(i)t ,

⇒
(

u − ū(i+1)
t

)
+ L(i)

t

(
b̄(i+1)

t − b̄(i)
t

)
+ εl(i)t

= L(i)
t

(
( b − b̄(i+1)

t ) +( b̄(i+1)
t − b̄(i)

t )
)

+ εl(i)t ,

⇒ u − ū(i+1)
t = L(i)

t

(
b − b̄(i+1)

t

)
. (53)

Hence, equation (53) gives the control policy of iteration i
relative to a candidate trajectory of iteration i + 1.

We now compute the expected cost of the candidate nom-

inal trajectory
(

b̄(i+1)
t , ū(i+1)

t

)
as follows. Quadratizing the

immediate cost functions and linearizing the belief dynam-
ics about the candidate trajectory of iteration i+1 according
to equations (31)–(37), in combination with the control pol-
icy of equation (53), allows us to to recursively update the
value function along the candidate trajectory as:

St = Qt + LT
t RtLt + LT

t Pt + PT
t Lt+( Ft + GtLt)

T ·
St+1( Ft + GtLt)

+
n∑

j=1

( Fj
t + Gj

tLt)
T St+1( Fj

t + Gj
tLt) , (54)

st = qt + LT
t rt+( Ft + GtLt)

T st+1

+
n∑

j=1

( Fj
t + Gj

tLt)
T St+1ej

t, (55)

st = pt + st+1 + 1

2

n∑
j=1

ej
t
T

St+1ej
t, (56)

where Lt = L(i)
t . The value s0 now gives the expected cost

of the candidate nominal trajectory with respect to the con-
trol policy of the current nominal trajectory (note that the st

values are inconsequential for the expected cost, and need
not be computed). If this expected cost is lower than the
expected cost of the current nominal trajectory, the can-
didate nominal trajectory is accepted, ε is reset to 1, and
the iteration continues. Otherwise, ε is divided in half, and
the search for a new nominal trajectory continues. Since
the vectors lt point in the direction of the gradient of the
expected cost, a positive ε that generates a new trajectory
with lower expected cost will always be found.

When the magnitude of the lts vanishes (or drops below a
preset small value), the iteration stops and the current nom-
inal trajectory and its control policy is a locally optimal
solution.

4.5. Running time analysis

Let us analyze the running time of our algorithm. The
dimension of the state is n, and we assume for the sake of
analysis that the dimension of the control inputs and the
measurements are O[n]. As the belief contains the (square
root of the) covariance matrix of the state, the dimension of
a belief is O[n2].

The bottleneck of the running time lies in the computa-
tion of the matrix Ct in equation (40). Evaluating the prod-
uct FT

t St+1Ft in equation (40) of matrices of the O[n2] ×
O[n2] dimension takes O[n6] time. Also, computing the
matrix Qt of equation (37), which contains O[n4] entries,
using numerical differentiation (central differences) can be
done in O[n6] time assuming that ct[b, u] can be evaluated
in O[n2] time. Further, the product Fi

t
T

St+1Fi
t is evaluated n

times, but each can be evaluated in O[n5] time, since each
Fi

t only contains non-zero entries in the upper n × O[n2]
block of the matrix [see the definition of W [b, u] in equa-
tion (26)]. Note that linearizing the belief dynamics, i.e.,
computing the matrices Ft, Gt, Fi

t and Gi
t using numerical

differentiation (central differences) can be done in O[n5]
time, as it involves evaluating the belief dynamics (which
takes O[n3] time for the EKF (and also for the UKF)) O[n2]
times. Hence, this does not form a bottleneck during the
computation.

A complete cycle of value iteration takes � steps (� being
the index of the final time-step), bringing the complexity to
O[�n6]. The number of such cycles needed to obtain conver-
gence cannot be expressed in terms of n or �, but as noted
before, our algorithm converges with a second-order rate to
a local optimum.

5. Environments with obstacles

We presented our approach above for general immediate
cost functions c�[b] and ct[b, u] [with the assumptions of
equation (13)]. In typical LQG-style cost functions, the
existence of obstacles in the environment is not incorpo-
rated, while we may want to minimize the probability of
colliding with them. We incorporate obstacles into the cost
functions as follows.

Let O ⊂ X be the region of the state space that is
occupied by obstacles. Given a belief bt = ( x̂t,

√
�t), the

probability of colliding with an obstacle is given by the inte-
gral over O of the probability-density function of N [x̂t, �t].
As described in van den Berg et al. (2010), this probabil-
ity can be approximated by using a collision checker to
compute the number σ [bt] of standard deviations one may
deviate from the mean before an obstacle is hit (it takes
one geometric distance computation to compute this num-
ber, and does not involve Monte Carlo sampling). A lower
bound on the probability of not colliding is then given by
γ [n/2, σ [bt]2/2], where γ is the regularized gamma func-
tion, and n the dimension of the state. A lower bound on
the total probability of not colliding along a trajectory is
subsequently computed as

∏�−1
t=0 γ [n/2, σ [bt]2/2], and this
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Fig. 1. Plots of the function f [σ ] = − log γ [n/2, σ 2/2] for n =
{1, 2, 3}.

number should be maximized. To fit this objective within
the minimizing and additive nature of the POMDP objec-
tive function, we note that maximizing a product is equiv-
alent to minimizing the sum of the negative logarithms of
the factors. Hence, we add to ct[b, u] the term f [σ [b]] =
− log γ [n/2, σ [b]2/2] to account for the probability of col-

liding with obstacles (note that f [σ [b]] > 0 and ∂2f
∂σ∂σ

> 0;
see Figure 1), potentially multiplied by a scaling factor to
allow trading-off with respect to other costs (such as the
magnitude of the control input).

While the above approach works well, it should be noted
that in order to compute the Hessian of ct[b, u] at b̄t [i.e.,
computing the matrix Qt as is done in equation (37)], a
total of O[n4] collision checks with respect to the obsta-
cles need to be performed, since the obstacle term f [σ [b]]
is part of ct[b, u]. As this can be prohibitively costly, we
can instead approximate the Hessian of f [σ [b]] using lin-
earizations, which involves only O[n2] collision checks. To
this end, let us approximate f [σ ] by a second-order Taylor
expansion about σ [b̄t]:

f [σ [b]] ≈ 1

2
a( σ [b] − σ [b̄t])

2 +b( σ [b] − σ [b̄t])

+f [σ [b̄t]], (57)

where a = ∂2f
∂σ∂σ

[σ [b̄t]] and b = ∂f
∂σ

[σ [b̄t]] (note that
this requires only one collision check). Now, we approxi-
mate ( σ [b] − σ [b̄t]) using a first-order Taylor expansion
about b̄t:

σ [b] − σ [b̄t] ≈ ( b − b̄t)
T a (58)

where aT = ∂σ
∂b [b̄t] (note that this requires O[n2] collision

checks). By substituting equation (58) into equation (57),
we get

f [σ [b]] ≈ 1

2
( b − b̄t)

T ( aaaT ) ( b − b̄t) +( b − b̄t)
T ( ba)

+f [σ [b̄t]]. (59)

Hence, aaaT is an approximate Hessian of the obstacle
term f [σ [b]] of ct[b, u] that requires only O[n2] collision

checks to compute. In addition, since a > 0, this Hessian is
guaranteed to be positive-semidefinite, as mandated by
equation (13).

6. Results

We evaluate our approach in simulations of motion plan-
ning scenarios involving stochastic dynamics, measurement
models with state- and control-dependent noise, and spa-
tially varying sensing capabilities. We consider three sce-
narios: (i) a 2D point robot with linear dynamics; (ii) a non-
holonomic, car-like robot with second-order dynamics and
(iii) an aircraft-like robot navigating in a 3D environment.

Our method takes as input a collision-free trajectory to
the goal. A naïve trajectory computed using an uncertainty-
unaware planner might stray very close to the obstacles in
the environment and accumulate considerable uncertainty
during execution. We show that our method improves the
input trajectory to compute a locally optimal trajectory and
a corresponding control policy that safely guides the robot
to the goal, even in the presence of large motion uncertainty
and measurement noise.

In each of the following experiments, we use the follow-
ing definitions of c�[b�] and ct[bt, ut] in the cost function to
be minimized [equation (5)]:

c�[b�] = x̂T
� Q�x̂� + tr[

√
��Q�

√
��], (60)

ct[bt, ut] = uT
t Rtut + tr[

√
��Qt

√
�t] + f [σ [bt]], (61)

for a given Qt ≥ 0 and Rt > 0. The term x̂T
� Q�x̂� +

tr[
√

��Q�

√
��] = E[xT

� Q�x�] encodes the final cost of
arriving at the goal, uT

t Rtut penalizes the control effort
along the trajectory, tr[

√
�tQt

√
�t] penalizes the uncer-

tainty, and f [σ [bt]] encodes the obstacle cost term (if
applicable). Using the approximation of equation (59) for
f [σ [bt]], the above cost functions are in accordance with
the assumptions of equation (13), and their Hessians can
be constructed in O[n4] time, so it does not present a
bottleneck for the running time.

All the performance results presented in this section are
based on a C++ implementation running on a 3.33 GHz
Intel® i7TM PC. For each scenario, we evaluate the perfor-
mance of our approach and the quality of the computed
control policy. We also separately consider environments
with and without obstacles to demonstrate that our approach
can handle both types of environments. We compare and
analyze the performance and convergence characteristics
of the approach presented in this paper to our preliminary
approach based on stochastic differential dynamic program-
ming (van den Berg et al., 2011a). We also analyze the
effect of assuming maximum-likelihood observations (Du
Toit and Burdick, 2010; Erez and Smart, 2010; Platt et
al., 2010) on the computed locally optimal trajectory and
corresponding control policy.
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6.1. 2D Point robot

We consider the case of a point robot moving in a 2D envi-
ronment with the following linear dynamics model with
control-dependent motion noise:

xt+1 = f[xt, ut, mt] = xt + τut + M[ut] · mt, (62)

where the state xt = ( x, y) ∈ R
2 is the robot’s position, the

control input ut ∈ R
2 is the robot’s velocity, τ is the duration

of a time-step, and the matrix M[ut] scales the motion noise
mt proportional to the control input ut.

The robot localizes itself using noisy measurements from
sensors in the environment, the reliability of which varies
as a function of the robot’s position x. The robot is able
to obtain reliable measurements in the bright region of the
environment, but the measurements become noisier as the
robot moves in to the dark regions. This gives the following
linear observation model with spatially varying noise:

zt = h[xt, nt] = xt + N[xt] · nt, (63)

where the measurement vector zt ∈ R
2 consists of noisy

measurements of the robot’s position and the matrix N[xt]
scales the measurement noise based on a function of the
robot’s position.

We use the state and control cost matrices of Qt = I ,
Rt = I , and the final cost matrix, Q� = 10�I in our exper-
iments, where � is the number of sections in the initial tra-
jectory. The method converges when the difference between
the expected costs between successive iterations falls below
a user-specified ε threshold.

6.1.1. Light–dark domain (no obstacles) We consider the
light–dark domain scenario suggested by Platt et al. (2010).
The measurement noise (modeled by the matrix N[xt])
varies as a quadratic function of the robot’s horizontal coor-
dinate x (as shown in Figure 2). We initialize our method
with a naïve straight-line trajectory from the initial position
to the goal [Figure 2(a)].

Figure 2(b) shows the nominal trajectory and the asso-
ciated beliefs of the solution computed using our approach.
The locally optimal nominal trajectory leads the robot to the
horizontal coordinate where the measurement noise is min-
imum, in order to better localize itself, before proceeding
to the goal. For this example, the initial nominal trajectory
has an expected cost of 49.7 units, and the trajectory con-
verges to a (local) optimum with an expected cost of 9.61 in
42 iterations, requiring a total computation time of 0.094s.
To evaluate the quality of the computed control policy, we
also computed the actual expected costs across 10000 sim-
ulation runs that use the computed feedback policy to com-
pensate for artificial motion and measurement noise. The
actual expected cost for the computed control policy was
9.46 units.

To demonstrate the effectiveness of the control policy
computed by our method, we apply the computed feedback

policy to a robot with a belief that is considerably differ-
ent to the belief with which our method is initialized. The
resulting trajectory is indicated in red in Figure 2(b). The
computed policy initially leads the robot towards the light
region, however, it quickly rectifies the trajectory after a bet-
ter estimate of the belief is obtained in the light region. The
basin of attraction of the control policy is wide enough to
avoid the need for replanning.

6.1.2. Light–dark domain (with obstacles) We consider
the light–dark domain scenario with obstacles as suggested
in Bry and Roy (2011). In this scenario, the measurement
noise (modeled by the matrix N[xt]) varies as a sigmoid
function of the robot’s horizontal coordinate x (as shown in
Figure 3). We initialize our method with a collision-free ini-
tial trajectory computed using an RRT planner (LaValle and
Kuffner, 2001) [Figure 3(a)].

Figure 3(b) shows the nominal trajectory and the associ-
ated beliefs of the solution computed using our approach.
The nominal trajectory leads the robot to the region of
the environment with reliable sensing for better localiza-
tion, before moving the robot through the narrow passage
to arrive at the goal. For this example, the initial trajectory
has an expected cost of 144.9 units and the trajectory con-
verges to a local optimum with expected cost of 14.08 in 66
iterations, which requires a total computation time of 3.657
s. To evaluate the quality of the computed control policy,
we also computed the actual expected costs across 10, 000
simulation runs that use the computed feedback policy to
compensate for artificial motion and measurement noise.
The actual expected cost was 13.8 units.

To demonstrate the effectiveness of the control policy
computed by our method, we apply the computed feed-
back policy to a robot with a belief that is considerably
different to the belief with which our method is initialized.
Figure 3(c) shows traces of the true state of the robot x
across five simulations where the initial state of the robot
x0 is sampled from a different initial belief to evaluate the
robustness of the control policy. Even if the initial belief is
considerably different from the initial belief used to com-
pute the solution, the control policy is able to safely guide
the robot to the goal. We also evaluated our method quanti-
tatively by computing the percentage of executions in which
the robot was able to avoid obstacles across 1000 simula-
tion executions for 10 random initial beliefs. In our exper-
iments, in 93% (standard deviation: 3%) of the executions,
the robot was able to safely traverse the narrow passage
without colliding with obstacles.

Our solution also agrees with the solution found by Bry
and Roy (2011) for this experiment. Our method directly
optimizes the trajectory rather than relying on an opti-
mal sampling-based planner in belief space, resulting in an
order of magnitude faster computation times. Our method
also does not assume fixed control gains along each section
of the nominal trajectory. However, the method of Bry and
Roy (2011) is able to find a globally optimal solution (given
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(a) Initial trajectory. (b) Locally optimal solution.

Fig. 2. A point robot moving in a 2D light–dark domain without obstacles [adapted from Platt et al. (2010)]. (a) The method is initialized
with a naïve straight-line trajectory to the goal (green disc). (b) The nominal trajectory and associated beliefs of the solution (shown
in black), and the trajectory obtained by applying the computed feedback policy to a robot with an initial belief that is considerably
different than the initial belief used for computing the control policy (shown in red).

(a) Initial trajectory. (b) Locally optimal solution. (c) Execution traces.

Fig. 3. A point robot moving in a 2D light–dark domain with obstacles. (a) An initial collision-free trajectory is computed using an
RRT planner. (b) The nominal trajectory and the associated beliefs of the solution computed using our approach. The robot moves away
from the goal to better localize itself before reaching the goal with significantly reduced uncertainty. (c) Execution traces of the robot’s
true state drawn from different initial beliefs while following the computed control policy.

the fixed control gains), whereas our method computes a
locally optimal solution given an initial trajectory.

6.2. Non-holonomic car-like robot

We consider the case of a non-holonomic car-like robot nav-
igating in a 2D environment with noisy and partial sensing
of the robot’s state. The state x = ( x, y, θ , v) ∈ R

4 of the
robot consists of its position ( x, y), its orientation θ and
speed v. The control input vector u = ( a, φ) consists of
an acceleration a and the steering wheel angle φ. This gives
the following non-linear dynamics model:

xt+1 = f[xt, ut, mt] =

⎡
⎢⎢⎣

xt + τvt cos θt

yt + τvt sin θt

θt + τvt tan[φ]/d
vt + τa

⎤
⎥⎥⎦+ M[ut] · mt,

(64)
where τ is the duration of a time-step, d is the length of
the car-like robot, and M[ut] scales the motion noise mt

proportional to the control input ut.

6.2.1. Light–dark domain (no obstacles) We again con-
sider the light-dark domain scenario suggested by Platt et
al. (2010). In this scenario, the robot’s ability to sense its
state is both partial (the robot is only capable of sensing its
position but not its velocity or orientation) and noisy. The
measurement noise (modeled by the matrix N[xt]) varies as
a quadratic function of the robot’s horizontal coordinate x
(as shown in Figure 4). This gives the following observation
model with spatially varying noise:

zt = h[xt, nt] = [ xt
yt

]+ N[xt] · nt, (65)

where the measurement vector zt ∈ R
2 consists of noisy

measurements of the robot’s position, and the matrix N[xt]
scales the measurement noise based on a function of the
robot’s horizontal coordinate x.

We initialize our method with a naïve trajectory to the
goal computed using a RRT planner (LaValle and Kuffner,
2001) [Figure 4(a)]. We use the state and control cost matri-
ces of Qt = I , Rt = I , and the final cost matrix, Q� = 10�I
in our experiments, where � is the number of sections in the
initial trajectory.

Figure 4(b) shows the nominal trajectory and the associ-
ated beliefs of the solution computed using our approach.
The locally optimal nominal trajectory leads the robot to
the horizontal coordinate where the measurement noise
is minimal, in order to better localize itself, before pro-
ceeding to the goal. For this example, the initial trajec-
tory has an expected cost of 25.76 units and the trajec-
tory converges to a local optimum with an expected cost
of 7.6 in 81 iterations, which requires a total computation
time of 2.07s.

We also apply the computed feedback policy to a robot
with a belief that is considerably different to the belief with
which our method is initialized. The resulting trajectory is
shown in red in Figure 4(b). Since the belief is consider-
ably different to the assumed belief used for method ini-
tialization, the control policy leads the robot to mimic the
computed nominal trajectory, but once the robot has local-
ized itself in the light region of the environment, the control
policy reliably leads the robot to the goal.

6.2.2. Domain with spatially varying sensing (with obsta-
cles) We also consider a scenario in which the car-like
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(a) Initial trajectory. (b) Locally optimal solution.

Fig. 4. A car-like robot moving in a 2D light–dark domain without obstacles [adapted from Platt et al. (2010)]. (a) The method is
initialized with a naïve trajectory to the goal using a RRT planner. (b) The nominal trajectory and associated beliefs of the solution
computed using our approach (shown in black), and the trajectory obtained by applying the computed feedback policy to a robot with a
belief that is considerably different to the belief used for method initialization (red).

(a) Initial trajectory. (b) Locally optimal solution. (c) Solution for Qt = 10I� .

(d) Initial trajectory. (e) Locally optimal solution.

Fig. 5. A car-like robot moving in a 2D light–dark domain with obstacles. The robot obtains measurements from two beacons (marked
by blue squares) and an on-board speedometer. (a) An initial collision-free trajectory is computed using an RRT planner. (b) Nominal
trajectory and the associated beliefs of solution computed using our approach. The robot localizes itself by moving closer to the bea-
con(s) before reaching the goal (green disc). The final nominal trajectory also follow the medial axis between the narrow passage to
minimize the possibility of colliding with obstacles. (c) Nominal trajectory computed by varying the cost matrices (Qt = 10I). The
robot tries to reduce the uncertainty in its state by visiting both the beacons. (d) A different initial trajectory results in a different locally
optimal solution. (e) Our method is able to improve trajectories within a single homotopy class.

robot estimates its location using signal measurements from
two beacons b1 and b2 placed in the environment at loca-
tions ( x̌1, y̌1) and ( x̌2, y̌2) respectively. The strength of the
signal decays quadratically with the distance to the beacon.
The robot also measures its current speed using an on-board
speedometer. The measurement uncertainty is scaled by a
constant matrix N . This gives us the following non-linear
observation model:

zt = h[xt, nt] =
⎡
⎣1/( ( xt − x̌1)2 +( yt − y̌1)2 +1)

1/( ( xt − x̌2)2 +( yt − y̌2)2 +1)
vt

⎤
⎦+ Nnt,

(66)

where the vector zt ∈ R
3 consists of two readings of sig-

nal strengths from the beacons and a speed measurement
from the speedometer. Figure 5(a) visually illustrates the
quadratic decay in the beacon signal strengths in the envi-
ronment. The robot is able to obtain reliable measurements

in the bright regions of the environment, but the measure-
ments become relatively noisier as the robot moves in to the
dark regions due to the decreased signal-to-noise ratio.

We initialize our method with a collision-free trajectory
to the goal computed using a RRT planner (LaValle and
Kuffner, 2001) [Figure 5(a)]. We use the state and control
cost matrices of Qt = I , Rt = I , and the final cost matrix,
Q� = 10�I in our experiments.

Figure 5(b) shows the nominal trajectory and the associ-
ated beliefs of the solution computed using our approach.
The nominal trajectory leads the robot to the region of
the environment with reliable sensing for better localiza-
tion, before moving the robot through the narrow passage
to arrive at the goal. In contrast to the initial trajectory [Fig-
ure 5(a)], the locally optimal trajectory also moves away
from the obstacles and takes a safer path to the goal. For
this example, the initial trajectory has an expected cost of
101.65 units and the trajectory converges to a local opti-
mum with an expected cost of 20.57 in 19 iterations, which
requires a total computation time of 9.57 s.
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The cost matrices Qt and Rt determine the relative
weighting between minimizing uncertainty in the robot
state and minimizing control effort in the objective func-
tion. Figure 5(c) shows the nominal trajectory of the solu-
tion computed by changing the cost matrix Qt = 10I .
Notice that the trajectory visits both the beacons for bet-
ter localization and minimizing uncertainty, at the expense
of additional control effort. Figures 5(d) and (e) show the
nominal trajectory when a different initial trajectory is pro-
vided as input. The presence of obstacles in the environment
forces our method to locally optimize trajectories within a
single homotopy class.

6.3. 3D Aircraft

We consider the case of an aircraft-like robot with partial
and noisy sensing maneuvering in a 3D environment with
obstacles. We consider a simplified model of an aircraft that
has omni-directional acceleration. This model can be used
to approximate the kinematic constraints on the aircraft as
long as the aircraft is moving with non-zero speed (van den
Berg et al., 2011b). The state x = ( x, y, z, vx, vy, vz) ∈ R

6 of
the robot consists of its position p = ( x, y, z) and its velocity
v = ( vx, vy, vz). The control input vector u = ( ax, ay, az)
comprises the omni-directional acceleration applied to the
robot. This gives the following dynamics model:

xt+1 = f[xt, ut, mt] =
[

pt + τvt + 1
2τ 2ut

vt + τut

]
+ M[pt] · mt,

(67)
where τ is the duration of a time-step, and M[pt] scales the
motion noise mt proportional to the robot’s position pt. We
set motion uncertainty to be much lower at higher altitudes,
approximately modeling the effect of atmospheric and
weather conditions on the robot motion. The uncertainty
steadily increases as the altitude of the robot decreases
(Figure 6).

We also assume the following stochastic observation
model based on partial and noisy sensing:

zt = h[xt, nt] = pt + N · nt, (68)

where the measurement vector zt ∈ R
2 consists of noisy

measurements of the robot’s position, and the measurement
noise is scaled by a constant matrix N .

We initialize our method with a collision-free trajectory
to the goal computed using a RRT planner (LaValle and
Kuffner, 2001) [Figure 6(a)]. Figure 6(b) shows the nominal
trajectory and the associated beliefs of the solutions com-
puted using our approach. The robot spends a considerable
proportion of the nominal trajectory at higher altitudes in
order to reduce the uncertainty, before arriving at the goal.
In contrast to the initial trajectory [Figure 6(a)], the locally
optimal trajectory is also smoother in terms of the applied
control inputs and stays away from the obstacles to take a
safer path to the goal. For this example, the initial trajec-
tory has an expected cost of 4539.3 units and the trajectory

converges to a local optimum with a considerably lower
expected cost of 705.96 in 47 iterations, which requires a
total computation time of 41.8 s.

Figures 6(c) and (d) show the nominal trajectory when a
different initial trajectory is provided as input. The pres-
ence of obstacles in the environment forces our method
to locally optimize trajectories within a single homotopy
class. Our method is still able to locally force the robot to
ascend to a higher altitude to reduce the uncertainty, before
descending below and going around the obstacle to arrive at
the goal.

6.4. Comparison between iLQG and sDDP

We quantitatively compared our approach with value iter-
ation based on iLQG with our preliminary approach with
value iteration based on stochastic differential dynamic pro-
gramming (van den Berg et al., 2011a). In Table 1, we
compare the number of iterations required for convergence
and the optimal expected cost for each of the consid-
ered scenarios for both methods. Qualitatively, the iLQG-
based method is asymptotically faster than the sDDP-
based method (O[n6] rather than O[n7]) and numerically
more stable even when the sDDP method is implemented
with the square root of the variance in the belief (sDDP
requires regularization of matrices to maintain positive-
semidefiniteness of the value function).

As expected, each iteration of the iLQG method (O[n6])
takes less time than an equivalent sDDP iteration (O[n7]).
The differences are more pronounced as the dimensional-
ity of the belief space increases, as is evident in the air-
craft scenario. On the other hand, sDDP converges in fewer
iterations then iLQG. This is because sDDP uses direct
computation of the Hessians of the value function, while
iLQG computes the Hessians based on a linearization of the
belief dynamics (which truncates some second-order terms
compared to sDDP).

In all experiments, iLQG and sDDP yield almost iden-
tical solutions, whose difference is visually hardly appre-
ciable, and the optimal expected cost that both iLQG and
sDDP converge to is almost identical. To evaluate the dif-
ference in the two methods, we also compute the actual
expected costs across 10, 000 simulation runs that use the
computed feedback policy to compensate for artificially
simulated motion uncertainty and measurement noise. The
differences in the actual expected costs are minimal, which
alludes to the fact that the control policies computed by the
two methods are similar. This is what one would expect;
the slight differences that do appear are a result of numeri-
cal variations between the methods, and in a few cases this
causes the approaches to converge to different local optima.

Overall, our experiments indicate that iLQG is prefer-
able over sDDP because it scales better to higher dimen-
sional problems and is numerically more stable since the
iLQG method does not require regularization to ensure
that the Hessians are positive semi-definite (van den Berg
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(a) Initial trajectory. (b) Locally optimal solution. (c) Different trajectory. (d) Locally optimal solution.

Fig. 6. An aircraft-like robot with omni-directional acceleration moving in a 3D environment with obstacles with partial and noisy
sensing. The motion uncertainty is considerably lower at higher altitudes (indicated by the yellow region). (a) An initial collision-free
trajectory is computed using an RRT planner. (b) Nominal trajectory and the associated beliefs of the solution computed using our
approach. The nominal trajectory is locally optimized such that the robot spends a large proportion of the trajectory at higher altitudes
to reduce uncertainty, before reaching the goal (wireframe sphere). (c) A different trajectory initialization results in local improvement
within its initial homotopy class, resulting in a locally optimal nominal trajectory (d).

Table 1. Comparison of iLQG and sDDP.

Scenario Initial Method Num. Time Time per Optimal Actual
exp cost iter (s) iter (s) exp cost exp cost

Point
49.69

iLQG 42 0.09 0.002 9.61 9.46
(no obs) sDDP 13 0.125 0.009 9.72 9.52
Point

144.9
iLQG 66 3.66 0.055 14.08 13.8

(obs) sDDP 51 3.14 0.062 14.08 13.98
Car

25.76
iLQG 81 2.07 0.025 7.67 7.39

(no obs) sDDP 55 10.79 0.196 7.27 7.03
Car

101.65
iLQG 19 9.57 0.5 20.57 20.3

(obs) sDDP 16 12.1 0.76 20.71 20.38

Aircraft 4539.3
iLQG 47 41.8 0.89 705.96 703.45
sDDP 35 136.59 3.9 705.84 703.72

et al., 2011a). The inherent complexity of the method is
still too high for robots with complex dynamics and high-
dimensional state spaces, and algorithmic improvements in
the method and efficient implementations thereof present
interesting research directions.

6.5. Effect of assuming maximum-likelihood
observations

We analyze the effect of assuming the maximum-likelihood
observations made in prior work (Du Toit and Burdick,
2010; Erez and Smart, 2010; Platt et al., 2010) on the com-
puted locally optimal trajectory and corresponding control
policy. We reproduce this assumption in our method by
ignoring all the terms in the value iteration that pertain to
the matrix W [b, u], which determines the stochastic nature
of the belief dynamics given by equation (24). More specif-
ically, we can reproduce the assumption by removing the
terms containing the sum-quantifiers in equations (40), (42)
and (44). This has the net result of considering deterministic
belief dynamics as is the case when maximum-likelihood
observations are assumed.

We consider an illustrative example that considers a point
robot moving in a 2D domain with obstacles, as shown

in Figure 7(a). We consider the same stochastic dynamics
model for the robot as in section 6.1. We also consider the
light–dark domain scenario suggested by Platt et al. (2010)
where the measurement noise varies as a quadratic func-
tion of the robot’s horizontal coordinate x [as shown in
Figure 7(a)]. We use the state and control cost matrices of
Qt = I , Rt = 3I , and the final cost matrix, Q� = 10I in our
experiments.

We computed 100 random trajectories using an RRT
planner (LaValle and Kuffner, 2001) and used the trajec-
tories to initialize our method with and without assum-
ing maximum-likelihood observations. In the case of
maximum-likelihood observations, the mean initial cost is
107.2 units with a standard deviation of 35 units. The mean
final cost at convergence is 17.7 units with a standard devi-
ation of 1.5 units. It is important to note that the final cost
is based on deterministic belief dynamics and is exactly
known. We also computed the final expected cost of the
computed control policy using value iteration assuming
stochastic belief dynamics, as outlined in section 4.2. The
mean expected cost of the policy at convergence is 23.1
units with a standard deviation of 2 units. This indicates
that there is a mismatch in the final cost assuming deter-
ministic belief dynamics and the actual expected cost of the

 at PENNSYLVANIA STATE UNIV on March 6, 2016ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


1276 The International Journal of Robotics Research 31(11)

(a) Initial trajectory. (b) With maximum-likelihood assumption. (c) Without maximum-
likelihood assumption.

Fig. 7. An illustrative example that considers a point robot moving in a 2D domain with obstacles. (a) An initial collision-free trajectory
is computed using an RRT planner. (b) Nominal trajectory and the associated beliefs of the solution computed using our method under
the assumption of maximum-likelihood observations. The optimization results in a nominal trajectory that does not lead the robot all
the way to the horizontal coordinate where the measurement noise is minimal. (c) Solution computed without making the maximum-
likelihood observation assumption. The optimization is able to find a different locally optimal trajectory and policy that allows the robot
to localize itself with certainty before arriving at the goal (green disc) with reduced uncertainty.

computed policies when executed under motion and sensing
uncertainty.

We also ran our method on the same 100 trajectories
without assuming maximum-likelihood observations. The
mean initial cost is 35, 371 units with a standard devi-
ation of 41, 522 units, while the mean expected cost at
convergence is 21.3 units with a standard deviation of
1.9 units. For this scenario, our method which does not
assume maximum-likelihood observations yielded an aver-
age expected cost 8.5% better than the method making the
maximum-likelihood assumption.

To demonstrate the effectiveness of the control policy
computed with and without assuming maximum-likelihood
observations, we evaluated each control policy quantita-
tively by computing the percentage of executions in which
the robot was able to avoid obstacles across 10, 000 sim-
ulation executions assuming artificial motion and mea-
surement noise. In our experiments, the control policies
computed assuming maximum-likelihood observations
result in an average of 324 collisions (standard deviation:
87) while the control policies computed by our method
result in an average of 252 collisions (standard devia-
tion: 72). This demonstrates that not assuming maximum-
likelihood observations reduces the number of collisions by
approximately 25% for the considered scenario.

We visualize the difference in the two cases in Figures
7(b) and (c) using an illustrative example from the 100 ran-
dom scenarios considered in our experiments. As shown in
Figure 7(b), the nominal trajectory for the case in which we
assume maximum-likelihood observations, does not lead
the robot all the way to the horizontal coordinate where
the measurement noise is minimal. This results in a higher

expected cost of 24.4 units at convergence and higher uncer-
tainty in the state of the robot as the robot traverses the
narrow passage. In contrast, the solution computed without
making the maximum-likelihood observation assumption is
able to find a different locally optimal trajectory and policy
that allows the robot to localize itself with greater certainty
before arriving at the goal region with reduced uncertainty
[see Figure 7(c)]. The expected cost at convergence in this
case is 16.9 units. We note that a lower expected cost is
not guaranteed: among the 100 random initial trajectories
there are also cases in which the solution computed with
the maximum-likelihood assumption has a better expected
cost than the solution computed without the assumption.
As in the scenario of the figure, this is very likely the
result of both methods converging to a different local
optimum.

Overall, our results indicate that not making the
maximum-likelihood assumption gives, on average, better
control policies. However, depending on the application, the
impact of the assumption may be relatively limited. This
raises the question of whether the assumption can be for-
mally justified and its negative impact bounded. In the case
of our method, making the assumption does not improve
the (asymptotic) running time of the algorithm, implying
the maximum-likelihood assumption should not be used.
But in other contexts, e.g., in the case of non-Gaussian
beliefs, the assumption may greatly simplify the computa-
tions or even enable finding a solution that would otherwise
be intractable. Finding a formal justification for the assump-
tion, even if only for the Gaussian case, would greatly ben-
efit research on continuous POMDPs and motion planning
under uncertainty.
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7. Conclusion and future work

We have presented a general approach to motion plan-
ning under uncertainty by computing locally optimal solu-
tions to continuous POMDP problems in environments with
obstacles. Our approach generalizes earlier work on
Gaussian-based POMDPs by removing several key lim-
iting assumptions, and overcomes the main drawback of
approaches based on discretizations of the state space by
having a running time that is polynomial (O[n6]) rather than
exponential in the dimension of the state.

Our approach has several limitations. First, we represent
beliefs using Gaussian distributions. This may not be an
acceptable approximation in some applications, for instance
ones where multi-modal beliefs are expected to appear.
However, the class of problems where Gaussian distribu-
tions are applicable is large, as is proven by the widespread
use of the extended and unscented Kalman filters for state
estimation, for instance in mobile robotics. Our approach
should be applicable in any such application. Second, we
require the dynamics, observation, and cost functions to
be smooth, since our method relies on gradients to iter-
ate towards a locally optimal solution. Our approach would
therefore not work directly in some experimental domains
shown in previous work where there are abrupt boundaries
between sensing regimes (e.g., inside or outside the field of
view of a camera).

Subjects of ongoing and future work include improving
the running time of the algorithm. While O[n6] is poly-
nomial, it may still be too high for robots with complex
dynamics and high-dimensional state spaces or for real-
time applications. Recent preliminary work by the authors
(van den Berg et al., 2012) suggests that the running time
can be brought down to O[n4] when approximating the
value function by a function that is quadratic in the mean,
but linear in the variance. This seems to come at the expense
of convergence rate however, and the resulting control pol-
icy operates on only the mean and not the entire belief.
Further, we are exploring the use of different optimiza-
tion methods on belief spaces, such as direct collocation
and sequential quadratic programming methods (von Stryk,
1993; Betts, 2001). We also want to apply our method to
real-world domains involving complex dynamics such as
autonomous quadrotor flight, medical needle steering, or
manipulation of deformable tissues.
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