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Reactive oxygen species (ROS) influence many physiological processes including host defense,
hormone biosynthesis, fertilization, and cellular signaling. Increased ROS production (termed
“oxidative stress”) has been implicated in various pathologies, including hypertension, athero-
sclerosis, diabetes, and chronic kidney disease. A major source for vascular and renal ROS is a
family of nonphagocytic NAD(P)H oxidases, including the prototypic Nox2 homolog-based
NAD(P)H oxidase, as well as other NAD(P)H oxidases, such as Nox1 and Nox4. Other possible
sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase,
lipoxygenase, and uncoupled nitric oxide synthase. NAD(P)H oxidase-derived ROS plays a
physiological role in the regulation of endothelial function and vascular tone and a pathophys-
iological role in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fi-
brosis, angiogenesis, and rarefaction, important processes underlying cardiovascular and renal
remodeling in hypertension and diabetes. These findings have evoked considerable interest
because of the possibilities that therapies against nonphagocytic NAD(P)H oxidase to decrease
ROS generation and/or strategies to increase nitric oxide (NO) availability and antioxidants may
be useful in minimizing vascular injury and renal dysfunction and thereby prevent or regress
target organ damage associated with hypertension and diabetes. Here we highlight current
developments in the field of reactive oxygen species and cardiovascular disease, focusing spe-
cifically on the recently identified novel Nox family of NAD(P)H oxidases in hypertension. We
also discuss the potential role of targeting ROS as a therapeutic possibility in the management of
hypertension and cardiovascular disease.
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R eactive oxygen species (ROS) play
an important role in the develop-
ment of cardiovascular disease, in-

cluding hypertension, atherosclerosis,
diabetes, cardiac hypertrophy, heart fail-
ure, ischemia-reperfusion injury, and
stroke. This is due, in large part, to excess
production of oxidants, to decreased ni-
tric oxide (NO) bioavailability, and to de-
creased antioxidant capacity in the
vasculature and kidneys (1–3). The ROS
family comprises many molecules that
have divergent effects on cellular func-
tion, such as regulation of cell growth and
differentiation, modulation of extracellu-

lar matrix production and breakdown, in-
activation of NO, and stimulation of many
kinases and proinflammatory genes (4–
6). Importantly, many of these actions are
associated with pathological changes ob-
served in cardiovascular disease.

The term “oxidative stress” describes
conditions involving increased ROS lev-
els. Reactive oxygen species, also termed
“oxygen-derived species” or “oxidants,”
are produced as intermediates in reduc-
tion-oxidation (redox) reactions leading
from O2 to H2O. ROS are reactive chem-
ical entities comprising two major groups:
free radicals (e.g., superoxide [�O2

�], hy-

droxyl [OH�], nitric oxide [NO�]) and
nonradical derivatives of O2 (e.g., H2O2,
ONOO�) (7,8). A free radical is any spe-
cies capable of independent existence
(thus the term “free”) that contains one or
more unpaired electron. The unpaired
electron imparts high reactivity and ren-
ders the radical unstable. Nonradical de-
rivatives are less reactive and more stable
with a longer half-life than free radicals.
The sequential univalent reduction of O2
is as follows:
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e�

H2O2OB
e�

OH � OB
e�

� H2O�O2

Of the ROS generated in cardiovascular
cells, �O2

� and H2O2 appear to be partic-
ularly important.

In biological systems, �O2
� is short-

lived owing to its rapid reduction to H2O2
by superoxide dismutase (SOD) (9). The
charge on the superoxide anion makes it
unable to cross cellular membranes, ex-
cept possibly through ion channels. In
contrast, H2O2 has a longer biological
lifespan than �O2

�, is relatively stable,
and is easily diffusible within and be-
tween cells. The main source of H2O2 in
vascular tissue is the dismutation of �O2

�:
2�O2

� � 2H�3 H2O2 � O2. This reac-
tion can be spontaneous or it can be cat-
alyzed by SOD, of which there are three
mammalian isoforms: copper/zinc SOD
(SOD1), mitochondrial SOD (Mn SOD,
SOD2), and extracellular SOD (ecSOD,
SOD3) (10,11). The major vascular SOD
is eSOD.

The distinct properties between �O2
�

and H2O2 and their different sites of dis-
tribution mean that different species of
ROS can activate different signaling path-
ways, which lead to divergent, and poten-
tially opposing, functional responses. For
example, increased �O2

� levels inactivate
the vasodilator NO leading to endothelial
dysfunction and vasoconstriction, char-
acteristic of many vascular diseases, in-
cluding hypertension (12,13). On the
other hand, H2O2 acts as a vasodilator in
some vascular beds, including cerebral,
coronary, and mesenteric arteries (14–
16).
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PRODUCTION AND
METABOLISM OF ROS — ROS are
produced by all vascular cell types, in-
cluding endothelial, smooth muscle, and
adventitial cells, and can be formed by
numerous enzymes. Enzymatic sources of
ROS that are important in vascular disease
and hypertension are xanthine oxidase,
uncoupled nitric oxide synthase (NOS),
and NAD(P)H oxidase (Fig. 1).

Xanthine oxidase, which catalyzes the
oxidation of hypoxanthine and xanthine
to form �O2

�, is present in the vascular
endothelium (17). Although xanthine ox-
idase– derived �O2

� has been studied
mainly in the context of cardiac disease,
there is evidence suggesting involvement
in vascular dysfunction in hypertension.
Spontaneously hypertensive rats (SHRs)
demonstrate elevated levels of endothelial
xanthine oxidase and increased ROS pro-
duction, which are associated with in-
creased arteriolar tone (18). This may be
mediated in part through an adrenal path-
way, because adrenalectomy reduces
xanthine oxidase expression (19). Endo-
thelial dysfunction in transgenic rats with
overexpression of renin and angio-
tensinogen has also been associated with
increased xanthine oxidase activity (20).
In addition to effects on the vasculature,
xanthine oxidase may play a role in end-
organ damage in hypertension. In exper-
imental models of hypertension, xanthine
oxidase activity is increased in the kidney.
In SHRs, long-term inhibition of xanthine

oxidase with allopurinol reduced renal
xanthine oxidase activity without lower-
ing blood pressure, indicating that the in-
creased renal ROS production was a
consequence of hypertension rather than
a contributing factor (21). The finding
that allopurinol can improve cardiac and
renal hypertrophy in SHRs and slow the
progression of renal disease in patients
with chronic kidney disease and hyper-
tension (22), while having a minimal im-
pact on blood pressure (23), supports a
role for xanthine oxidase in hypertensive
end-organ damage rather than in the de-
velopment of hypertension per se. This
may be mediated through direct vascular
effects of xanthine oxidase–produced uric
acid (24).

NOS can also contribute to ROS pro-
duction, since all three NOS isoforms
have been shown to be susceptible to the
“uncoupling” that leads to the formation
of �O2

� (rather than NO) (25). For endo-
thelial NOS, this process is triggered in
vitro through the absence of the cofactors
L-arginine and tetrahydrobiopterin (26).
Uncoupling of endothelial NOS has been
demonstrated in deoxycorticosterone ac-
etate (DOCA)-salt–induced hypertension
and in SHRs (27,28). Treatment with tet-
rahydrobiopterin improves blood pres-
sure in both DOCA-salt hypertension and
SHRs (27,28). Whether uncoupled NOS
effects are due to changes in production of
�O2

� or NO remain unclear. To address
this, blood pressure and endothelial func-

tion in mice with endothelium-targeted
transgenic eNOS overexpression (eNOS-
Tg) were compared with littermates in
which eNOS coupling was rescued by ad-
ditional endothelium-targeted overex-
pression of GTP cyclohydrolase 1 (eNOS/
GCH-Tg) to increase endothelial BH4
levels (29). Blood pressure was equally
reduced in both genotypes, compared
with wild-type animals. Furthermore,
both eNOS-Tg and eNOS/GCH-Tg mice
exhibited similarly impaired endotheli-
um-dependent vasorelaxation, demon-
strating that reduced vasorelaxation
responses result from desensitization of
cGMP-mediated signaling and are associ-
ated with increased NO production rather
than changes in superoxide production
(29). However, others have demonstrated
that vascular effects of eNOS uncoupling
are due to enhanced �O2

� production. In-
creased vascular ROS itself may induce
eNOS uncoupling as a consequence of in-
creased oxidation of tetrahydrobiopterin
and inhibition of dimethylarginine dim-
ethylaminohydrolase (30). In fact,
NAD(P)H oxidase has been shown to
cause endothelial NOS uncoupling and to
promote xanthine oxidase-dependent su-
peroxide production (31)

NAD(P)H OXIDASE — NAD(P)H
oxidase is a multi-subunit enzyme that
catalyzes �O2

� production by the 1-elec-
tron reduction of O2 using NADPH or
NADH [hence the parentheses in
NAD(P)H] as the electron donor: 2O2 �
NAD(P)H 3 2�O2

� � NAD(P)� � H�.
The prototypical NAD(P)H oxidase is that
found in neutrophils and has five sub-
units: p47phox (“phox” stands for phago-
cyte oxidase), p67phox, p40phox,
p22phox, and the catalytic subunit
gp91phox (also termed “Nox2”) (32,33).
In unst imulated cel l s , p47phox,
p67phox, and p40phox exist in the cy-
tosol, whereas p22phox and gp91phox
are in the membrane, where they occur as
a heterodimeric flavoprotein, cytochrome
b558. On stimulation, p47phox becomes
phosphorylated and the cytosolic sub-
units form a complex that translocates to
the membrane, where it associates with
cyto-chrome b558 to assemble the active
oxidase, which transfers electrons from
the substrate to O2, forming �O2

� (34).
Activation also requires participation of
Rac 2 (or Rac 1) and Rap 1A (35).

Although NAD(P)H oxidases were
originally considered as enzymes ex-
pressed only in phagocytic cells involved
in host defense and innate immunity, re-

Figure 1—Enzymatic sources of superoxide anion (�O2
�). The major enzymes responsible for

ROS generation in the vasculature include NAD(P)H oxidase, xanthine oxidase, and uncoupled
NOS. NAD(P)H oxidase is a multisubunit enzyme, comprising gp91phox (or its homologs, Nox1
and Nox4), p22phox, p47phox (or NOXO1), p67phox (or NOXA1), and p40phox.
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cent evidence indicates that there is an
entire family of NAD(P)H oxidases, based
on the discovery of gp91phox homologs
(36,37). The new homologs, along with
gp91phox, are now designated the
Nox family of NAD(P)H oxidases. The
family comprises seven members, in-
cluding Nox1, Nox2 (formerly termed
“gp91phox”), Nox3, Nox4, Nox5,
Duox1, and Duox2 (38). They are ex-
pressed in many tissues and mediate di-
verse biological functions. Nox1 is found
in colon and vascular cells and plays a role
in host defense and cell growth; Nox2 is
the catalytic subunit of the respiratory
burst oxidase in phagocytes, but is also
expressed in vascular, cardiac, renal, and
neural cells; Nox3 is found in fetal tissue
and the adult inner ear and is involved in
vestibular function; Nox4, originally
termed “Renox” (renal oxidase), because
of its abundance in the kidney, is also
found in vascular cells and osteoclasts;
and Nox5 is a Ca2�-dependent homolog,
found in testis and lymphoid tissue, but
also in vascular cells. Duox1 and -2 are
thyroid Noxes involved in thyroid hor-
mone biosynthesis. While all Nox pro-
teins are present in rodents and humans,
the mouse and rat genome does not con-
tain the nox5 gene. The regulation and
function of each Nox remains unclear, but
it is evident that Nox enzymes are critical
for normal biological responses and that
they contribute to cardiovascular and re-
nal disease, including hypertension and
atherosclerosis.

REGULATION OF NAD(P)H
OXIDASE ACTIVITY — How the
NAD(P)H oxidase subunits interact in
cardiovascular cells and how they gener-
ate �O2

� is not fully known. All Noxes
appear to have an obligatory need for
p22phox (39,40). Whereas Nox2 re-
quires p47phox and p67phox for its ac-
tivity, Nox1 may interact with the
recently identified homologs of p47phox
and p67phox, namely NAD(P)H oxidase
organizer 1 (NOXO1) and NAD(P)H ox-
idase activator 1 (NOXA1), respectively
(41,42). Vascular NAD(P)H oxidase is re-
sponsive to several growth factors (plate-
let-derived growth factor, epidermal
growth factor, and transforming growth
factor �), cytokines (tumor necrosis fac-
tor-�, interleukin-1, and platelet aggrega-
tion factor), mechanical forces (cyclic
stretch, laminar, and oscillatory shear
stress), and metabolic factors (hypergly-
cemia, hyperinsulinemia, free fatty acids,
advanced glycation end products, and G

protein–coupled receptor agonists (sero-
tonin, thrombin, bradykinin, endothelin,
and Ang II) (43–47). Ang II, via AT1 re-
ceptors, is an important and potent regu-
lator of cardiovascular NAD(P)H oxidase
that activates NAD(P)H oxidase through
stimulation of signaling pathways involv-
ing c-Src p21Ras, protein kinase C, phos-
pholipase D, and phospholipase A2 (48–
50). Ang II also influences NAD(P)H
oxidase activation through transcrip-
tional regulation of oxidase subunits (51).

ANTIOXIDANT DEFENSES — Anti-
oxidants are defined as substances that,
when present at low concentrations rela-
tive to an oxidizable substrate, signifi-
cantly delay or prevent oxidation of that
substrate. Living organisms have evolved
a number of antioxidant defenses to
maintain their survival against oxidative
stress. These mechanisms are different in
the intracellular and extracellular com-
partments and comprise enzymatic and
nonenzymatic types. The major vascular
enzymatic antioxidants are SOD, catalase,
and glutathione peroxidase (52–54).
SOD catalyzes the dismutation of �O2

�

into H2O2 and O2. Of the three SOD iso-
forms, extracellular SOD is the main vas-
cular SOD. It is produced and secreted by
vascular smooth muscle cells and binds to
glycosaminoglycans in the vascular extra-
cellular matrix on the endothelial cell sur-
face and plays an important role in the
regulation of the oxidant status in the vas-
cular interstitium (55). Reduced glutathi-
one plays a major role in the regulation of
the intracellular redox state of vascular
cells by providing reducing equivalents
for many biochemical pathways (56).
Glutathione peroxidase reduces H2O2
and lipid peroxides to water and lipid al-
cohols, respectively, and in turn oxidizes
glutathione to glutathione disulfide. The
glutathione peroxidase/glutathione sys-
tem may be important in low-level oxida-
tive stress. Catalase is an intracellular
antioxidant enzyme that is mainly located
in cellular peroxisomes and to some ex-
tent in the cytosol, which catalyzes the
reaction of H2O2 to water and molecular
oxygen (57). Catalase is very effective in
high-level oxidative stress and protects
cells from H2O2 produced within the cell.
The enzyme is especially important in the
case of limited glutathione content or re-
duced glutathione peroxidase activity.
Thioredoxin reductase is an antioxidant
enzyme that participates in thiol-
dependent cellular reductive processes
(58). Numerous nonspecific antioxi-

dants, such as �-tocopherol (vitamin E)
and ascorbic acid (vitamin C), scavenge
OH� as well as other radicals (59). Low
antioxidant bioavailability promotes cel-
lular oxidative stress and has been impli-
cated in oxidative damage associated with
hypertension (55).

ROLE OF NAD(P)H
OXIDASE–DERIVED ROS IN
VASCULAR BIOLOGY — ROS in-
fluence vascular cell growth, migration,
proliferation, and activation (56,57).
Physiologically, NAD(P)H oxidase–
derived ROS have been implicated in the
regulation of vascular tone by modulating
vasodilation directly (H2O2 may have
vasodilator actions) or indirectly by de-
creasing NO bioavailability through
quenching by �O2

� to form ONOO�

(58,59). ROS, through the regulation of
hypoxia-inducible factor 1 (HIF-1), are
also important in O2 sensing (60), which
is essential for maintaining normal O2 ho-
meostasis. In pathological conditions,
ROS are involved in inflammation, endo-
thelial dysfunction, cell proliferation, mi-
gration and activation, extracellular
matrix deposition, fibrosis, angiogenesis,
and cardiovascular remodeling, impor-
tant processes contributing to cardio-
vascular and renal remodeling in
hypertension, atherosclerosis, diabetes,
cardiac failure, and myocardial ischemia-
reperfusion injury (61,62) (Fig. 2). These
effects are mediated through redox-
sensitive regulation of multiple signaling
molecules and second messengers includ-
ing mitogen-activated protein kinases,
protein tyrosine phosphatases, tyrosine
kinases, proinflammatory genes, ion
channels, and Ca2� (63–65).

NAD(P)H OXIDASE,
OXIDATIVE STRESS, AND
HYPERTENSION

Oxidative stress in experimental
models of hypertension
The relationship between oxidative stress
and increased blood pressure has been
demonstrated in many models of experi-
mental hypertension. Increased ROS for-
mation precedes development of
hypertension in SHRs, suggesting that
ROS participate in the development and
maintenance of hypertension (67,68).
Markers of oxidative stress, such as thio-
barbituric acid reactive substances and
F2�-isoprostanes, tissue concentrations of
�O2

� and H2O2, and activation of
NAD(P)H oxidase and xanthine oxidase,

Oxidative stress and hypertension
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are increased, whereas levels of NO and
antioxidant enzymes are reduced in ex-
perimental hypertension (69–71).

Ang II– dependent hypertension is
particularly sensitive to NAD(P)H oxi-
dase–derived ROS. In rats and mice made
hypertensive by Ang II infusion, expres-
sion of NAD(P)H oxidase subunits
(Nox1, Nox2, Nox4, p22phox), oxidase
activity, and generation of ROS are in-
creased (72–75). To support a role for
NAD(P)H oxidase–derived ROS produc-
tion in the pathogenesis of Ang II–
sensitive hypertension, various mouse
models with altered NAD(P)H oxidase
subunit expression have been studied. In
p47phox knockout mice and in
gp91phox (Nox2) knockout mice, Ang II
infusion fails to induce hypertension, and
these animals do not show the same in-
creases in �O2

� production, vascular hy-
pertrophy, and endothelial dysfunction
observed in Ang II–infused wild-type
mice (75–77). In Ang II–infused mice
treated with siRNA targeted to renal
p22phox, renal NAD(P)H oxidase activity
was blunted, ROS formation was re-
duced, and blood pressure elevation was
attenuated, suggesting that p22phox is re-
quired for Ang II–induced oxidative
stress and hypertension (78). On the

other hand, overexpression of vascular
p22phox was associated with increased
oxidative stress and vascular dysfunction
but no significant increase in blood pres-
sure (79). Treatment with apocynin or di-
phenylene iodinium, pharmacological
inhibitors of NAD(P)H oxidase, or
gp91ds-tat, a novel specific inhibitor of
NAD(P)H oxidase, reduced vascular �O2

�

production, prevented cardiovascular re-
modeling, and attenuated development of
hypertension in Ang II–treated mice
(74,80,81). In most of these models, Ang
II was infused for a short time period (1–3
weeks), inducing an acute hypertensive
response. In a model of chronic Ang II–
dependent hypertension, where we
crossed transgenic mice expressing hu-
man renin (which exhibit an Ang II–
sensitive hypertensive phenotype) with
Nox2�/� mice, development of hyperten-
sion was not prevented even though oxi-
dative stress was reduced, suggesting that
other Nox homologs, such as Nox1, may
be important (82). To support this, recent
studies in Nox1-deficient mice demon-
strated that vascular �O2

� production is
reduced and blood pressure elevation in
response to Ang II is blunted (83,84),
whereas in transgenic mice in which
Nox1 is overexpressed in the vascular

wall, Ang II–mediated vascular hypertro-
phy and blood pressure elevation are en-
hanced (85).

There is also evidence for ROS in-
volvement in the pathogenesis of hyper-
tension independent of direct Ang II
actions. In SHRs, vascular, renal, and car-
diac �O2

� production is increased com-
pared with normotensive control subjects
(15,86,87). In stroke-prone SHRs, aortic
expression of Nox1 and Nox4 is signifi-
cantly increased compared with Wistar-
Kyoto (88). In DOCA salt-induced
mineralocorticoid hypertension, vascular
�O2

� production involving elevated
NAD(P)H oxidase activity, uncoupling of
endothelial NOS, and mitochondrial
sources, in part through the endothelin-
1/ETA receptor pathway, is increased
(27,89–92). Infusion of endothelin-1 in-
creases NAD(P)H oxidase-dependent
�O2

� production; however, preventing
this increase in ROS generation does not
inhibit development of hypertension in
these animals (93). Overexpression of hu-
man endothelin-1 in mice also induces
vascular remodeling and impairs endo-
thelial function, via activation of
NAD(P)H oxidase (94).

To further support a role for oxidative
stress in hypertension, many studies have
shown that treatment with antioxidant vi-
tamins and superoxide dismutase mimet-
ics, such as tempol (4-hydroxy-2,2,6,6-
tetramethyl piperidinoxyl), free radical
scavengers, or tetrahydrobiopterin (BH4),
attenuates or prevents development of
hypertension and associated target organ
damage (27,28,68,95).

Oxidative stress and human
hypertension
Although studies in humans have not
been as convincing as those in experimen-
tal models, there is evidence that oxida-
tive stress is increased in patients with
essential hypertension, renovascular hy-
pertension, malignant hypertension, salt-
sensitive hypertension, cyclosporine-
induced hypertension, and preeclampsia
(96–100) (Table 1). These findings are
based, in general, on increased levels of
plasma thiobarbituric acid reactive sub-
stances and 8-epi-isoprostanes, biomark-
ers of lipid peroxidation and oxidative
stress (96–101). Polymorphonuclear leu-
kocyte- and platelet-derived �O2

�, which
also participates in vascular oxidative
stress and inflammation, is increased in
hypertensive patients (102,103).

Hypertensive patients exhibit a signif-
icantly higher production of plasma H2O2

Figure 2—Activation of vascular NAD(P)H oxidase by multiple factors results in generation of
ROS, which in turn influence signaling molecules involved in vascular growth, fibrosis, contrac-
tion/dilation, and inflammation. These redox-sensitive processes contribute to vascular damage
and remodeling in hypertension and other cardiovascular diseases. FFA, free fatty acid; MAPK,
mitogen-activated protein kinase; MMPs, matrix metalloproteinases; PTK, protein tyrosine ki-
nases; PTP, protein tyrosine phosphatases.
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than normotensive subjects (104). Addi-
tionally, normotensive subjects with a ge-
netic risk of hypertension (positive family
history of hypertension) have greater
H2O2 production than blood pressure–
matched normotensive subjects without a
family history of hypertension, suggesting
that there may be a genetic component
that leads to elevated production of hy-
drogen peroxide (104,105). Lacy et al.
(104) determined familial correlations for
H2O2 production as a quantitative trait in
a family-based cohort of hypertensive
subjects and used these results to estimate
the heritability of this trait. Heritability
estimates revealed that �20–35% of the
observed variance in H2O2 production
could be attributed to genetic factors, sug-
gesting an important heritable compo-
nent to the overall determination of this
trait.

We reported that production of ROS
is increased in vascular smooth muscle
cells from resistance arteries of hyperten-
sive patients and that this is associated
with upregulation of vascular NAD(P)H
oxidase (106,107). The importance of
this oxidase in oxidative stress in human
cardiovascular disease is supported by
studies from Zalba et al. (108), who dem-
onstrated that polymorphisms in
NAD(P)H oxidase subunits are associated
with increased atherosclerosis and hyper-
tension. In particular, the �930(A/G)
polymorphism in the p22phox promoter
may be a novel genetic marker associated
with hypertension. The C242T CYBA
polymorphism is associated with essential
hypertension, and hypertensive patients
carrying the CC genotype of this poly-
morphism exhibit features of NAD(P)H
oxidase–mediated oxidative stress and
endothelial damage (109). In a Japanese
population, the G(�930)A polymor-
phism of CYBA was confirmed to be
important in the pathogenesis of hyper-
tension (110).

Obesity is a major contributing factor
to the development of hypertension and

subsequent cardiovascular pathology
(111). Data from the Framingham Heart
Study, a large community-based cohort,
showed a positive correlation between
obesity and oxidative stress, as assessed
by urinary levels of 8-epi-isoprostanes
(112). Similar correlations between in-
dexes of obesity (BMI, waist-to-hip ratio)
and systemic oxidative stress have also
been found in other populations (113). In
nondiabetic obese subjects, 4 weeks of di-
etary restriction in obese subjects reduces
both ROS generation by inflammatory
cells and markers of systemic oxidative
stress without altering plasma levels of an-
tioxidant vitamins (114). Indeed, nutri-
tion may act as a modulator of ROS
generation, since fasting causes an acute
reduction in ROS production from leuko-
cytes from normal subjects (115),
whereas glucose challenge increases ROS
production from leukocytes (116). Fur-
thermore, in conditions such as obesity
and type 2 diabetes, insulin resistance
may also contribute to oxidative stress. In
obese nondiabetic patients, administra-
tion of insulin suppressed both ROS
production and plasma levels of plas-
minogen-activated inhibitor 1 and inter-
cellular adhesion molecule 1, suggesting
an acute anti-inflammatory action of this
hormone (117). Similar anti-inflamma-
tory and fibrinolytic actions have also
been demonstrated in patients with acute
myocardial infarction who received insu-
lin infusion (118).

In addition to excess ROS generation,
decreased antioxidant defense mecha-
nisms contribute to oxidative stress in pa-
tients with hypertension. Hypertensive
patients have reduced activity and de-
creased content of antioxidant enzymes,
including SOD, glutathione peroxidase,
and catalase (68,71,119,120). Decreased
levels of antioxidant vitamins A, C, and E
have been demonstrated in newly diag-
nosed untreated hypertensive patients
compared with normotensive control
subjects (120). Moreover, SOD activity

has been demonstrated to correlate in-
versely with blood pressure in patients
with hypertension (120).

Therapeutic potential of reducing
ROS in human hypertension
Based on experimental evidence of the
importance of oxidative stress in vascular
damage, there has been enormous inter-
est in developing strategies that target
ROS in the treatment of hypertension and
other cardiovascular diseases. Therapeu-
tic approaches that have been considered
include mechanisms 1) to increase anti-
oxidant capacity, 2) to increase NO bio-
availability, and 3) to reduce ROS
generation by decreasing activity of �O2

�-
generating enzymes (121). Gene therapy
targeting oxidant systems, such as NOS
and hypoxia-inducible factor 1 (HIF-1)
(122,123), are also being developed, but
their use in clinical hypertension remains
unclear.

The potential of antioxidants in treat-
ing conditions associated with oxidative
stress is supported by experimental inves-
tigations, observational findings, small
clinical studies, and epidemiological data
(124,125). However, findings are incon-
sistent and clinical trial data are inconclu-
sive. Many large trials have been
published regarding antioxidant vitamin
effects on risks of cardiovascular disease,
including the Cambridge Heart Antioxi-
dant Study (2,002 patients); the Alpha
Tocopherol, �-Carotene Cancer Preven-
tion Study (27,271 males); the Gruppo
Italiano per lo Studio della Sopravvivenza
nell’Infarto Miocardico Prevenzione trial
(3,658 patients); the Heart Outcomes
Prevention Evaluation (HOPE) study
(2,545 subjects); the Medical Research
Council/British Heart Foundation (MRC/
BHF) Heart Protection Study (20,536
adults); the Primary Prevention Project
(4,495 patients); and the Antioxidant
Supplementation in Atherosclerosis Pre-
vention (ASAP) study (520 subjects)
(126,127). Except for the ASAP study,
which demonstrated that 6-year supple-
mentation of daily vitamin E and slow-
release vitamin C reduced progression of
carotid atherosclerosis, the other studies
failed to demonstrate significant benefi-
cial effects of antioxidants on blood pres-
sure or on cardiovascular end points.
Thus, overall results of clinical trials have
been negative.

Unlike the large trials, smaller clinical
studies have shown positive responses in
hypertensive patients treated with anti-
oxidants, either in combination (zinc,

Table 1—Evidence supporting a role for oxidative stress in human hypertension

Increased plasma and urine levels of markers of oxidative stress (e.g., TBARS, isoprostanes)

Increased vascular generation of superoxide anion
Decreased plasma levels of antioxidant vitamins
Inverse association between plasma ascorbate levels and blood pressure in epidemiological

studies
Blood pressure–lowering effect of vitamin C in small clinical studies
Antihypertensive drugs reduce ROS production and decrease oxidative stress by inhibiting

activation of NADPH oxidase and through intrinsic antioxidant properties
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ascorbic acid, �-tocopherol, �-carotene)
of as monotherapy (vitamin C or vitamin
E). This has been especially true for vita-
min C. Most studies demonstrated an in-
verse relationship between plasma
ascorbate levels and blood pressure in
both normotensive and hypertensive
populations (68,71). In the Supplémenta-
tion en Vitamines et Mineraux Antioxy-
dants study, a decreasing trend was
observed with vitamin C levels and risk of
hypertension in women but not in men
(128). Vitamin C supplementation is as-
sociated with reduced blood pressure in
hypertensive patients, with systolic blood
pressure falling by 3.6–17.8 mmHg for
each 50 �mol/l increase in plasma ascor-
bate (71,129,130). However, in a recent
study, Ward et al. (131) found that
6-week treatment with vitamin C and
grape seed polyphenols was associated
with a paradoxical increase in ambulatory
blood pressure in hypertensive patients.
This was not attributed to increased oxi-
dative stress.

Human studies of vitamin E doses of
400–1,000 IU/day have shown beneficial
effects on improving insulin sensitivity,
lowering serum glucose levels, increasing
intracellular Mg2�, inhibiting thrombox-
ane effects, and reducing vascular resis-
tance (68,71,132). Data from the 1946
British Birth Cohort reported that low vi-
tamin E intake during childhood and
adulthood was a good predictor of hyper-
tension at age 43 years (133). However,
reductions in blood pressure in hyperten-
sive subjects treated with vitamin E have
been inconsistent (68,71). Similar trends
have been observed in preeclampsia,
where early studies suggested that vita-
mins C and E may prevent preeclampsia
in high-risk patients (134,135), whereas
more recent evidence indicates that sup-
plementation with vitamins C and E dur-
ing pregnancy does not reduce the risk of
preeclampsia in nulliparous women
(136–138). If vitamin E does in fact have
an antihypertensive effect, it is probably
small and may be limited to untreated pa-
tients or those with vascular disease or
other concomitant diseases, such as dia-
betes (71,139).

High dietary consumption of fruits
and vegetables has been shown to signif-
icantly reduce blood pressure (140). Diets
rich in fruit and vegetables also increase
plasma antioxidant capacity in both nor-
mal and obese subjects (141–143). This
improvement in antioxidant status may
partly explain the beneficial effects of high
fruit and vegetable consumption on blood

pressure, although the accompanying in-
creases in the intake of other micronutri-
ents and fiber, and decreases in saturated
and total fat consumption, are also likely
to play a role in blood pressure reduction.

POSSIBLE REASONS FOR
NEGATIVE OUTCOMES OF
ANTIOXIDANT TRIALS — Over-
all results of clinical studies investigating
antioxidant effects have been disappoint-
ing given the consistent and promising
findings from experimental investiga-
tions, clinical observations, and epidemi-
ological data. Possible reasons relate to 1)
the type of antioxidants used, 2) patient
cohorts included in trials, and 3) the trial
design itself. With respect to antioxidants,
it is possible that agents examined were
ineffective and nonspecific and that dos-
ing regimens and duration of therapy
were insufficient. For example, vitamins
C and E may have pro-oxidant properties
with harmful and deleterious interac-
tions. It is also possible that orally admin-
istered antioxidants may be inaccessible
to the source of free radicals, particularly
if ROS are generated in intracellular com-
partments and organelles (143). Further-
more, antioxidant vitamins do not
scavenge H2O2, which may be more im-
portant than �O2

� in cardiovascular dis-
ease. Another factor of importance is that
antioxidants do not inhibit ROS produc-
tion. Regarding cohorts included in large
trials, most subjects had significant car-
diovascular disease, in which case damag-
ing effects of oxidative stress may be
irreversible. Another confounding factor
is that most of the enrolled subjects were
taking aspirin prophylactically. Because
aspirin has intrinsic antioxidant proper-
ties (144) additional antioxidant therapy
may be ineffective. Moreover, in patients
studied in whom negative results were
obtained, it was never proven that these
individuals did in fact have increased ox-
idative stress. To date, there are no large
clinical trials in which patients were re-
cruited based on evidence of elevated
ROS formation. Also, none of the large
clinical trials were designed to examine
effects of antioxidants specifically on
blood pressure.

With the recent advances in our un-
derstanding of the complexity of oxida-
tive stress and redox signaling in the
vascular system, there is growing interest
regarding therapeutic possibilities to tar-
get ROS in the management of hyperten-
sion and other cardiovascular diseases.
Theoretically, agents that reduce oxidant

formation should be more efficacious
than nonspecific inefficient antioxidant
scavengers in ameliorating oxidative
stress. This is based on experimental evi-
dence where it has been clearly demon-
strated that inhibition of NAD(P)H
oxidase–mediated �O2

� generation, using
pharmacological and gene-targeted strat-
egies, leads to regression of vascular re-
model ing , improved endothe l ia l
function, and lowering of blood pressure
(44,74,81). In fact, vascular NAD(P)H
oxidase, specifically gp91phox (Nox2)
homologs such as Nox1, may be novel
therapeutic targets for vascular disease
(143).

RECOMMENDATIONS TO
DECREASE OXIDATIVE
STRESS IN PATIENTS — In view
of current data and the lack of evidence to
prove the benefits from use of antioxidant
vitamins to prevent cardiovascular dis-
ease (145), it is suggested that the general
population consumes a diet emphasizing
antioxidant-rich fruits and vegetables and
whole grains. Presently, antioxidant sup-
plementation is not recommended for the
prevention or treatment of hypertension.
This advice, which is consistent with the
guidelines of the American Heart Associ-
ation (146) and the Canadian Hyperten-
sion Society (147), considers the role of
the total diet in influencing disease risk
and is supported by findings from the Di-
etary Approaches to Stop Hypertension
(DASH) study (142) and a recent trial
from the U.K. that demonstrated that sub-
jects consuming high fruit and vegetable
diets had significantly reduced blood
pressure (141). Another important life-
style modification that may have cardio-
vascular protective and blood pressure–
lowering effects by reducing oxidative
stress is exercise. In experimental models
of hypertension and in human patients
with coronary artery disease, exercise re-
duced vascular NAD(P)H oxidase activity
and ROS production, ameliorated vascu-
lar injury, and reduced blood pressure
(148–150).

Some of the beneficial effects of clas-
sic antihypertensive agents such as �-ad-
renergic blockers, ACE inhibitors, AT1
receptor antagonists, and Ca2�-channel
blockers may be mediated in part by de-
creasing vascular oxidative stress (151–
157). Indeed, angiotensin receptor
blockade appears to be particularly effec-
tive at reducing ROS generation and
markers of oxidative stress independent
of blood pressure lowering. These effects
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have been attributed to direct inhibition
of NAD(P)H oxidase activity and to in-
trinsic antioxidant properties of the
drugs.

CONCLUSIONS — Compelling ex-
perimental evidence indicates that ROS,
particularly �O2

� and H2O2, function as
second messengers activating numerous
signaling molecules, which play an im-
portant role in vascular biology and car-
diovascular disease. In hypertension,
activation of pro-oxidant enzymes such as
NAD(P)H oxidase, NOS, xanthine oxi-
dase and mitochondrial enzymes, or al-
tered thioredoxin and glutathione
systems results in increased ROS forma-
tion, which have damaging actions on the
vasculature. Recent data indicate that the
Nox family of NAD(P)H oxidases, partic-
ularly Nox1 and Nox4, may be important
in vascular generation of ROS in patho-
logical conditions. Stimuli that activate
pro-oxidant systems to generate ROS in-
volve vasoactive agents, growth factors,
metabolic factors, and mechanical forces.
Oxidative stress contributes to vascular
damage by promoting cell growth, extra-
cellular matrix protein deposition, activa-
tion of matrix metalloproteinases,
inflammation, endothelial dysfunction,
and increased vascular tone, characteris-
tic features of the vascular phenotype in
hypertension.

From a clinical viewpoint, current
data are less conclusive with respect to the
pathophysiological role of oxidative stress
in hypertension. This may relate to heter-
ogeneity of populations studied, inappro-
priate or insensitive methodologies to
evaluate oxidative state, and incorrect an-
tioxidant therapies used. Further research
in the field of oxidative stress and human
hypertension is warranted. There is an ur-
gent need for the development of sensitive
and specific biomarkers to assess the oxi-
dant status of patients. Also needed are
clinical trials designed to specifically ad-
dress the role of oxidative stress in the
development of hypertension. With a bet-
ter understanding of mechanisms regulat-
ing ROS metabolism and identification of
processes that promote oxidative excess,
it should be possible to target therapies
more effectively so that detrimental ac-
tions of vascular oxygen free radicals can
be reduced and beneficial effects of NO�
can be enhanced. Such therapies could
have potential in the management of dis-
eases associated with vascular damage, in-
cluding hypertension.
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