QuickCheck Testing for Fun and Profit

John Hughes

Chalmers University of Technology,
S-41296 Gothenburg,
Sweden

1 Introduction

One of the nice things about purely functional languages is that functions often
satisfy simple properties, and enjoy simple algebraic relationships. Indeed, if the
functions of an API satisfy elegant laws, that in itself is a sign of a good design—
the laws not only indicate conceptual simplicity, but are useful in practice for
simplifying programs that use the API, by equational reasoning or otherwise. It
is a comfort to us all, for example, to know that in Haskell the following law
holds:

reverse (XS++YS) == reverse xst+treverse ys

where reverse is the list reversal function, and ++ is list append.

It is productive to formulate such laws about one’s code, but there is always
the risk of formulating them incorrectly. A stated law which is untrue is worse
than no law at all! Ideally, of course, one should prove them, but at the very
least, one should try out the law in a few cases—just to avoid stupid mistakes.
We can ease that task a little bit by defining a function to test the law, given
values for its free variables:

prop_revApp xs ys =
reverse (xs++ys) == reverse xs++treverse ys

Now we can test the law just by applying prop_revApp to suitable pairs of lists.

Inventing such pairs of lists, and running the tests, is tedious, however. Wouldn’t
it be fun to have a tool that would perform that task for us? Then we could simply
write laws in our programs and automatically check that they are reasonable
hypotheses, at least. In 1999, Koen Claessen and I built just such a tool for
Haskell, called “QuickCheck” [4J5J7I6]. Given the definition above, we need only
pass prop_revApp to quickCheck to test the property in 100 random cases:

> quickCheck prop_revApp
Falsifiable, after 2 tests:
[1,-1]

(o]

Doing so exposes at once that the property is not true! The values printed are a
counter-example to the claim, [1,-1] being the value of xs, and [0] the value of
ys. Indeed, inspecting the property more closely, we see that xs and ys are the

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 1-[32] 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 J. Hughes

wrong way round in the right hand side of the law. After correcting the mistake,
quickChecking the property succeeds:

> quickCheck prop_revApp
0K, passed 100 tests.

While there is no guarantee that the property now holds, we can be very much
more confident that we did not make a stupid mistake. .. particularly after run-
ning another few thousand tests, which is the work of a few more seconds.

We wrote QuickCheck for fun, but it has turned out to be much more useful
and important than we imagined at the time. This paper will describe some of
the uses to which it has since been put.

2 A Simple Example: Skew Heaps

To illustrate the use of QuickCheck in program development, we shall implement
skew heaps (a representation of priority queues), following Chris Okasaki [15]. A
heap is a binary tree with labels in the nodes,

data Tree a = Null | Fork a (Tree a) (Tree a)
deriving (Eq, Show)
empty = Null

such that the value in each node is less than any value in its subtrees:

invariant Null = True

invariant (Fork x 1 r) = smaller x 1 && smaller x r
smaller x Null = True

smaller x (Fork y 1 r) = x <= y && invariant (Fork y 1 r)

Thanks to the invariant, we can extract the minimum element (i.e. the first
element in the queue) very cheaply:

minElem (Fork x _ _) = x

To make other operations on the heap cheap, we aim to keep it roughly balanced—
thenthe cost of traversing a branch will be logarithmic in the number of elements.
This is achieved in a skew heap by inserting elements into the two subtrees
alternately. No extra information is needed in nodes to keep track of where to
insert next: we always insert into the left subtree, but swap the subtrees after
each insertion—skewing the heap—so that the next insertion chooses the other
subtree.

insert x Null = Fork x Null Null
insert x (Fork y 1 r) = Fork (min x y) r (insert (max x y) 1)

We expect that the two subtrees of a node should be “roughly balanced”, but
what does this mean precisely? A moment’s thought suggests that the left and
right subtrees should contain precisely the same number of elements after an odd

QuickCheck Testing for Fun and Profit 3

number of insertions, but the right subtree may be one element larger than the
left one after an even number of insertions. We conjecture that skew heaps are
balanced in the following sense:

balanced Null = True
balanced (Fork _ 1 r) = (d==0 || d==1) && balanced 1 && balanced r
where d = weight r - weight 1

weight Null = 0
weight (Fork _ 1 r) = 1 + weight 1 + weight r

Now we can use QuickCheck to test our conjecture. To do so we need to
generate random skew heaps. Since the only function so far that constructs skew
heaps is insert, we can construct any reachable skew heap by choosing a random
list of elements, and inserting them into the empty heap:

make :: [Integer] -> Tree Integer
make ns = foldl (\h n -> insert n h) empty ns

We can now formulate the two properties we are interested in as follows:

prop_invariant ns = invariant (make ns)
prop_balanced ns = balanced (make ns)

We gave make a specific type to control the generation of test data: QuickCheck
generates property arguments based on the type expected, and constraining
the type of make is a convenient way to constrain the argument types of both
properties at the same time. (If we forget this, then QuickCheck cannot tell what
kind of test data to generate, and an “ambiguous overloading” error is reported).
Now we can invoke QuickCheck to confirm our conjecture:

Skew> quickCheck prop_invariant
0K, passed 100 tests.
Skew> quickCheck prop_balanced
0K, passed 100 tests.

We also need an operation to delete the minimum element from a heap. Al-
though finding the element is easy (it is always at the root), deleting it is not,
because we have to merge the two subtrees into one single heap.

deleteMin (Fork x 1 r) = merge 1 r

(In fact, merge is usually presented as part of the interface of skew heaps, even
if its utility for priority queues is less obvious). If either argument is Null, then
merge is easy to define, but how should we merge two non-empty heaps? Clearly,
the root of the merged heap must contain the lesser of the root elements of 1
and r, but that leaves us with three heaps to fit into the two subtrees of the new
Fork—1, r and h below—so two must be merged recursively. .. but which two?

4 J. Hughes

1
r

merge 1 Null

merge Null r

merge 1 r | minElem 1 <= minElem r
| otherwise

join 1l r
joinr 1l

join (Fork x 1 r) h = Fork x ...

The trick is to realize that the two subtrees of a node are not created equal: we
ensured during insertion that the left subtree is never larger than the right one.
So any recursion should be on the left subtree, guaranteeing that the size of the
recursive argument at least halves at each call, and that the total number of calls
is logarithmic in the size of the heaps. Thus we should merge 1 with h above, not
r, and because merging increases the size of the heap, skew the subtrees again,
so that the next merge will choose r instead.

join (Fork x 1 r) h = Fork x r (merge 1 h)

Is this really right? Let us test our properties again! Of course, now skew
heaps can be constructed by a combination of insertions and deletions, so our
method of generating random reachable heaps is no longer complete. Now we
must generate heaps from a random sequence of insertions and deletions:

data Op = Insert Integer | DeleteMin
deriving Show

make ops = foldl op Null ops
where op h (Insert n) = insertn h
op Null DeleteMin = Null
op h DeleteMin deleteMin h

One difficulty is that a random sequence of insertions and deletions may attempt
to delete an element from an empty heap, provoking an error. There are various
ways to avoid this: we could arrange not to generate such sequences in the first
place, we could generate arbitrary sequences but discard the erroneous ones, or
we can simply ignore any deletions that are applied to an empty heap. In the
code above we chose the last alternative, because it is the simplest to implement.

Note that make now has a different type—it expects a list of Ops as its
argument—and thus so do our two properties. To test them, QuickCheck needs
to be able to generate values of the Op type, and to make that possible, we must
specify a generator for this type.

QuickCheck generators are an abstract data type, with a rich collection of
operations for constructing them. Indeed, provision of first-class generators is
one of the main innovations in QuickCheck. We use the Haskell class system to
associate generators with types, by defining instances of

class Arbitrary a where
arbitrary :: Gen a

The Gen type is also a monad, making available the monad operations

QuickCheck Testing for Fun and Profit 5

return :: a -> Gen a
to construct a constant generator, and
(>>=) :: Gen a -> (a -> Gen b) -> Gen b

to sequence two generators—although we usually use the latter via Haskell’s
syntactic sugar, the do-notation.
So, we specify how Op values should be generated as follows:

instance Arbitrary Op where
arbitrary =
frequency [(2,do n <- arbitrary; return (Insert n)),
(1,return DeleteMin)]

The frequency function combines weighted alternatives—here we generate an
insertion twice as often as a deletion, since otherwise the resulting heaps would
often be very small. In the first alternative, we choose an arbitrary Integer
and generate an Insert containing it; in the second alternative we generate a
DeleteMin directly.

Now we can check that any sequence of insertions and deletions preserves the
heap invariant

Skew> quickCheck prop_invariant
0K, passed 100 tests.

and that skew heaps remain balanced:

Skew> quickCheck prop_balanced

Falsifiable, after 37 tests:

[DeleteMin,Insert (-9),Insert (-18),Insert (-14),Insert 5,
Insert (-13),Insert (-8),Insert 13,DeleteMin,DeleteMin]

Oh dear! Clearly, deletion does not preserve the balance condition. But maybe
the balance condition is too strong? All we really needed above was that the left
subtree is no larger than the right—so let’s call a node “good” if that is the case.

good (Fork _ 1 r) = weight 1 <= weight r

Now, if all the nodes in a heap are good, then insert and merge will still run in
logarithmic time. We can define and test the property that all nodes are good:

Skew> quickCheck prop_AllGood

Falsifiable, after 55 tests:

[Insert (-7),DeleteMin,Insert (-16),Insert (-14),DeleteMin,
DeleteMin,DeleteMin, Insert (-21),Insert (-8),Insert 3,
Insert (-1),Insert 1,DeleteMin,DeleteMin,Insert (-12),
Insert 17,Insert 13]

Oh dear dear! Evidently, skew heaps contain a mixture of good and bad nodes.

6 J. Hughes

Consulting Okasaki, we find the key insight behind the efficiency of skew
heaps: although bad nodes are more costly to process, they are cheaper to con-
struct! Whenever we construct a bad node with a large left subtree, then at the
same time we recurse to create an unusually small right subtree—so this recur-
sion is cheaper than expected. What we lose on the swings, we regain on the
roundabouts, making for logarithmic amortized complexity.

To formalise this argument, Okasaki introduces the notion of “credits”—each
bad node carries one credit, which must be supplied when it is created, and can
be consumed when it is processed.

credits Null = O
credits h@(Fork _ 1 r) =
credits 1 + credits r + if good h then O else 1

Since we cannot directly observe the cost of insertion and deletion, we define a
function cost_insert h that returns the number of recursive calls of insert
made when inserting into h, and cost_deleteMin h, which returns the number
of calls of join made when deleting from h (definitions omitted). Now, we claim
that on average each insertion or deletion in a heap of n nodes traverses only
log2 n nodes, and creates equally many new, possibly bad nodes, so 2¥log2 n
credits should suffice for each call. (The first log2 n credits pay for the recursion
in this call, and the second log2 n credits pay for bad nodes in the result).
If we now specify

prop_cost_insert n ops =
cost_insert h <= 2*log2 (weight h) + 1
where h = make ops

then QuickCheck finds a counterexaumpl7 because this property only holds on
average, but when we take credits into account

prop_cost_insert n ops =
cost_insert h + credits (insert n h)
<=
2xlog2 (weight h) + 1 + credits h
where h = make ops

then the property passes hundreds of thousands of tests. Likewise, the property

prop_cost_deleteMin ops =
h/=Null ==
cost_deleteMin h + credits (deleteMin h)
<=
2x1log2 (weight h) + credits h
where h = make ops

1 Only one test case in around 3,000 is a counterexample. This is because the method
we use to generate heaps produces rather few bad nodes. Counterexamples can
be found more quickly by generating heaps directly, rather than via insert and
deleteMin, so that the proportion of bad nodes can be increased.

QuickCheck Testing for Fun and Profit 7

succeeds (where we have used QuickCheck’s implication operator ==> to state
a precondition that must hold in every test case, to avoid the error that would
result by calling deleteMin on the empty heap).

Each of these properties states that the credits allocated for the operation,
together with the accumulated credits in the heap, suffice both to pay for the
operation itself, and for the credits retained in its result. So any sequence of in-
sertions and deletions, starting with the empty heap, will incur only logarithmic
cost per operation.

Why bother to test these properties, when Okasaki has already proved them?
Well, the proof is informal, and proofs can be wrong. Okasaki’s statements are
in terms of “big O” notation, rather than the precise formulations above—the
“+ 1”7 in prop_cost_insert came as a surprise, for example. Finally, we might
have transcribed Okasaki’s code incorrectly—or deliberately altered it. Actually,
Okasaki uses a different definition of insert:

insert x h = merge (Fork x Null Null) h

This simplifies the proof, because now both insertion and deletion are defined in
terms of merge, so only merge need be considered in the proof. But this definition
of insert does not preserve balance, even when there are no deletions, which
leads me to prefer my own definition above. Also, a specialised insertion function
is likely to be more efficient than one using merge. But is it safe to replace the
definition of insert with an optimised one with a different result? Okasaki’s
proof no longer applies directly, but the property above shows that it is.

We can take this example further. So far, we have tested the heap invariant
and complexity properties. But apart from these, do insert and delete actu-
ally implement priority queues? To answer that, we need a specification that they
should fulfill. One good way to specify them is via an abstract model of priority
queues—such as ordered lists. Insertion is then modelled by the standard func-
tion to insert into an ordered list, and deletion is modelled by the function tail.
To formalise this, we define a function mapping each skew heap to its model:

model :: Tree Integer -> [Integer]
model h = sort (flatten h)

flatten Null = []
flatten (Fork a 1 r) = a : flatten 1 ++ flatten r

Now, given a function f on ordered lists, and a function g on heaps, we can
define a property stating that £ correctly models g on a heap h, as follows:

(f ‘models‘ g) h =
f (model h) == model (g h)

and formulate the correctness of insertion and deletion like this:

prop_insert n ops = ((List.insert n) ‘models‘ insert n) h
where h = make ops

prop_deleteMin ops = size h>0 ==> (tail ‘models‘ deleteMin) h
where h = make ops

8 J. Hughes

Testing these properties succeeds, and after running many thousands of tests we
can be reasonably confident that the stated properties do actually hold.

What this example shows us is that QuickCheck changes the way we test
code. Instead of focussing on the choice of test cases—trying to guess which
cases may reveal errors—we leave that instead to QuickCheck, and focus on
the properties that the code under test should satisfy. Program development
with QuickCheck strongly resembles formal program development, emphasizing
formal models, invariants, and so on—but with labour-intensive proofs replaced
by instant feedback from testing.

This approach has proved very attractive to the Haskell community, and
QuickCheck has become widely used. One of the most impressive applications
is in the development of Data.ByteString, described elsewhere in this volume.
The code contains over 480 QuickCheck properties, all tested every time a new
version of the code is checked in. The various ByteString types are modelled ab-
stractly by lists of characters—just as we modelled skew heaps by ordered lists
above. Many properties test that ByteString operations are accurately mod-
elled by their list equivalents, just like our prop_insert and prop_deleteMin.
Data.ByteString achieves its high performance in part by programming GHC’s
optimiser with custom rewrite rules that perform loop fusion and other optimi-
sations. Of course, it’s vital that such rewrite rules, which are applied silently
to user code by the compiler, preserve the meanings of programs. Around 40
QuickCheck properties are used to test that this is in fact the case.

QuickCheck is also used by Haskell developers in industry. For example, Galois
Connections’ Cryptol compiler uses 175 QuickCheck properties, tested nightly,
to ensure that symbolic functions used by the compiler correspond correctly to
their Haskell equivalents.

3 Software Testing

QuickCheck is a novel approach to software testing. But software testing enjoys
a somewhat patchy reputation among academics. Dijkstra’s influence runs deep:
his famous observation that “Program testing can at best show the presence of
errors, but never their absence” suggests that mere testing is a waste of time.
His comment in the preface to A Discipline of Programming, that “None of the
programs in this monograph, needless to say, has been tested on a machine”,
makes us almost ashamed to admit that we do indeed test our own code! We
know that even after rigorous testing, countless errors remain in production
software—around one every hundred lines on average [I3]. Those errors impose
a real cost on software users—according to a Congressional report in 2002, $60
billion annually to the US economy alone. That is a lot of money, even in the
US—$200 a year for every man, woman and child. Isn’t it time to give up on
such an inadequate technique, and adopt formal program verification instead?
Before drawing that conclusion, let us put those figures in perspective. The
US software industry turns over $200-$240 billion per year. Thus the additional
cost imposed by residual errors is around 25-30%. To be economically viable,

QuickCheck Testing for Fun and Profit 9

even a development method that guarantees to eliminate all software errors must
cost no more than this—otherwise it is more economical simply to live with the
errors. How does formal program verification measure up?

An impressive recent case study is Xavier Leroy’s construction of the back
end of a certified C compiler using Coq [12]. Leroy wrote around 35,000 lines
of Coq, of which the compiler itself made up around 4,500 lines, and concluded
that the certification was around eight times larger than the code that it applied
to. It is reasonable to infer that certification also increased the cost of the code
by a similar factor. While such a cost is acceptable in the aerospace domain that
Leroy was addressing, it is clearly not acceptable for software development in
general. It is not reasonable to expect formal verification to compete with testing
unless the cost can be cut by an order of magnitudeg.

Thus we can expect testing to be the main form of program verification for
a long time to come—it is the only practical technique in most cases. This does
not mean that practitioners are happy with the current state of the art! But
while they are concerned with the problem of residual errors, they are really
rather more concerned about the cost of testing—around half the cost of each
software project. This cost is particularly visible since it is concentrated towards
the end of each project, when the deadline is approaching, sometimes imposing
an uncomfortable choice between skimping on testing and meeting the deadline.
Current best practice is to automate tests as far as possible, so they can be run
nightly, and to derive additional value from automated test cases by interpreting
them as partial specifications, as Extreme Programming advocates [3].

Yet automated testing of this sort has its problems. It is a dilemma to decide,
for each property that the code should satisfy, whether one should write one
test case, or many? Writing a single test case makes for concise test code, with
a clear relationship between test cases and properties—but it may fail to test
the property thoroughly, and it may be hard to infer what the property is from
a single example. Writing many test cases is more thorough, but also more
expensive, imposes future costs when the test code must be maintained, and
may obscure the “partial specification” by its sheer bulk—anyone reading the
testing code may fail to see the wood for the trees. As an example of the code
volumes involved, Ericsson’s AXD301 ATM-switch is controlled by 1.5 million
lines of Erlang code, which is tested by a further 700,000 lines of test cases!

A further problem is that nightly regression testing is really testing for errors
that have already been found—while it protects against the embarrassment of
reintroducing a previously fixed error, it is clear that unless the code under test
is changed, no new errors can be found. Indeed, 85% of errors are found the first
time a test case is run [8], so repeating those tests nightly is only a cheap way to

2 This is also the motivation for “lightweight” formal methods such as Microsoft’s Static
Driver Verifier [2] or ESC/Java [9], which use automated proof techniques to reveal
bugs at a very low cost in programmer time. But these tools offer no guarantees of
correctness—a fact brought home by ESC/Java’s use of an unsound theorem prover!
They can “at best show the presence of errors, but never their absence” just like
testing—although potentially with greater accuracy and at lower cost.

10 J. Hughes

find the remaining 15%. In other words, it can only play a relatively small part
in the overall testing process.

QuickCheck has the potential to address all of these problems. QuickCheck
properties make much better specifications than automated test cases, because
they cover the general case rather than one or more examples. For the same
reason, there is no need to write more than one QuickCheck property for each
logical property to be tested—a wide variety of cases will be generated anyway.
Thus QuickCheck code can be concise and maintainable, without compromising
the thoroughness of testing. Moreover, each time QuickCheck is run, there is
a chance of new test cases being generated, so if QuickCheck is run nightly
then, as time passes, we can expect more and more errors to be found. We
have demonstrated in practice that the same QuickCheck property can reveal
widely varying errors, depending on the data which is generated. As a bonus,
QuickCheck adds value to formal specifications by interpreting them as testing
code, making it more worthwhile to construct them in the first place.

We conclude that not only is testing here to stay, but that a tool such as
QuickCheck has much to offer software developers in industry today.

4 Shrinking

One of the problems with randomly generated test inputs is that they can con-
tain much that is irrelevant—the “signal”, that causes a test to fail, can be
hidden among a great deal of “noise”, that makes it hard to understand the
failure. We saw an example of this above, where the counter-example found to
prop_balanced was the long sequence of operations

[DeleteMin,Insert (-9),Insert (-18),Insert (-14),Insert 5,
Insert (-13),Insert (-8),Insert 13,DeleteMin,DeleteMin]

Clearly, at the very least the first DeleteMin is irrelevant, since it has no effect
at all—it is ignored by the make function that converts this list to a skew heap!
To address this problem, newer versions of QuickCheck automatically shrink
failing test cases after they are found, reporting a “minimal” one in some sense.
Using one of these new versions instead, testing prop_balanced might yield

Skew> quickCheck prop_balanced
Falsifiable, after 22 successful tests (shrunk failing case 10 times):
[Insert (-9),Insert 12,Insert 8,Deletel

in which the failing case has been reduced to just four operations. Moreover,
we know that removing any of these four would make the test succeed: all four
operations are essential to the failure. (There is no guarantee, though, that there
is no shorter sequence that provokes a failure: just that one cannot be obtained
by removing an element from this particular test case. We do still sometimes
produce longer failing cases for this property.)

Shrinking failing cases dramatically increases QuickCheck’s usefulness. In
practice, much time is devoted either to simplifying a failing case by hand, or

QuickCheck Testing for Fun and Profit 11

to debugging and tracing a complex case to understand why it fails. Shrinking
failing cases automates the first stage of diagnosis, and makes the step from
automated testing to locating a fault very short indeed.

5 Quviq QuickCheck

Although QuickCheck proved popular among Haskell users, the industrial Haskell
community is still rather small. However, Erlang supports functional program-
ming, and enjoys a mainly industrial community of users. Moreover, that com-
munity is growing fast: downloads of the Erlang system were running at 50,000
a month in June 2006, and have been growing quite consistently at 80% a year
for the past six years. I therefore decided to develop a version of QuickCheck for
Erlang, now called Quviq QuickCheck.

At first sight, adapting QuickCheck for Erlang appears to be rather diffi-
cult: Erlang lacks lazy evaluation, and many of the functions in QuickCheck’s
interface must be non-strict; Erlang lacks a static type-checker, and Haskell
QuickCheck chooses generators based on the type of argument a property ex-
pects; QuickCheck’s generator type is a monad, and we make extensive use
of Haskell’s do-notation to define generators. In fact, none of these difficulties
proved to be especially problematic.

— QuickCheck functions which must be lazy only use their lazy arguments
once, so instead of call-by-need it is sufficient to use call-by-name—and this
is easily simulated by passing 0-ary functions as parameters instead (for-
tunately, Erlang supports first-class functions). We spare the user the need
to pass such functions explicitly by using Erlang macros (distinguished by
names beginning with a ’?’) to generate them. Thus Quvigq QuickCheck sim-
ply provides an interface made up to a large extent of macros which expand
to function calls with functions as parameters.

— While Haskell QuickCheck does choose generators for property arguments
based on their type, it has always provided a way to supply a generator ex-
plicitly as well. In Erlang, we must simply always do this. This is a smaller
cost than it seems, because in more complex situations, the type of an ex-
pected argument is rarely sufficient to determine how it should be generated.

— We can use a monad in Erlang too, in the same way as in Haskell. While
we lack Haskell’s do-notation, we can give a convenient syntax to monadic
sequencing even so, via a macro.

The example in the introduction can be rewritten in Erlang like this:

prop_revApp() ->
?FORALL(Xs,list(int()),
?FORALL(Ys,list(int()),
lists:reverse(Xs++Ys)

lists:reverse(Xs)++lists:reverse(Ys))).

12 J. Hughes

There are trivial differences: Erlang function definitions use an arrow (->), vari-
ables begin with a capital letter (Xs), external function calls name the mod-
ule as well as the function to be called (1ists:reverse). The main difference,
though, is the use of the ?ZFORALL macro, whose arguments are a bound variable,
a generator, and the scope of the V—the expansion of FORALL (X, Gen,Prop) is
just eqc:forall(Gen,fun(X)->Prop end). By using generators which look like
types (1ist (int ())), and macro parameters which bind variables, we provide a
very natural-looking notation to the user.
Testing this property yields

13> eqc:quickcheck(example:prop_revApp()).
.......... Failed! After 11 tests.

[-3,1]

Shrinking..... (5 times)
(o]

(1]

in which the counterexample found is displayed both before and after shrinking.
In this case, we can see that QuickCheck not only discarded an unnecessary
element from one of the lists, but shrank the numbers in them towards zero. The
fact that the minimal counterexample consists of [0] and [1] tells us not only
that both lists must be non-empty, but gives us the additional information that
if the 1 were shrunk further to 0, then this would no longer be a counterexample.
Quviq QuickCheck thus offers a very similar “look and feel” to the original.

6 State Machine Specifications

In early 2006 we began to apply QuickCheck to a product then under devel-
opment at Ericsson’s site in Alvsjo (Stockholm). But real Erlang systems use
side-effects extensively, in addition to pure functions. Testing functions with side-
effects using “vanilla QuickCheck” is not easy—any more than specifying such
functions using nothing but predicate calculus is easy—and we found we needed
to develop another library on top of QuickCheck specifically for this kind of test-
ing. That library has gone through four quite different designs: in this section
we shall explain our latest design, and how we arrived at it.

As a simple example, we shall show how to use the new library to test the
Erlang process registry. This is a kind of local name server, which can register
Erlang process identifiers under atomic names, so that other processes can find
them. The three operations we shall test are

— register(Name,Pid) to register Pid under the name Name,

— unregister (Name) to delete the process registered as Name from the registry,
and

— whereis(Name) which returns the Pid registered with that Name, or the atom
undefined if there is no such Pid.

QuickCheck Testing for Fun and Profit 13

Although register is supposed to return a boolean, it would clearly be mean-
ingless to test properties such as

prop_silly() ->
?FORALL (Name ,name (),
?FORALL(Pid,pid (),
register (Name,Pid) == true)).

The result of register depends on what state it is called in—and so we need to
ensure that each operation is called in a wide variety of states. We can construct
a random state by running a random sequence of operations—so this is what
our test cases will consist of. We also need to ensure that each test case leaves
the process registry in a “clean” state, so that the side-effects of one test do not
affect the outcome of the next. This is a familiar problem to testers.

We made an early decision to represent test cases symbolically, by an Erlang
term, rather than by, for example, a function which performs the test when
called. Thus if a test case should call unregister(a), then this is represented
by the Erlang term {call,erlang,unregister, [a]l}—a 4-tuple containing the
atom call, the module name and function to calﬁ, and a list of arguments. The
reason we chose a symbolic representation is that this makes it easy to print out
test cases, store them in files for later use, analyze them to collect statistics or
test properties, or—and this is important—write functions to shrink them.

We can thus think of test cases as small programs, represented as abstract
syntax. A natural question is then: how powerful should the language of test
cases be? Should we allow test cases to contain branching, and multiple execution
paths? Should we allow test cases to do pattern matching? For a researcher in
programming languages, it is tempting to get carried away at this point, and
indeed early versions of our library did all of the above. We found, though, that
it was simply not worth the extra complexity, and have now settled for a simple
list of commands.