
QuickCheck Testing for Fun and Profit

John Hughes

Chalmers University of Technology,
S-41296 Gothenburg,

Sweden

1 Introduction

One of the nice things about purely functional languages is that functions often
satisfy simple properties, and enjoy simple algebraic relationships. Indeed, if the
functions of an API satisfy elegant laws, that in itself is a sign of a good design—
the laws not only indicate conceptual simplicity, but are useful in practice for
simplifying programs that use the API, by equational reasoning or otherwise. It
is a comfort to us all, for example, to know that in Haskell the following law
holds:

reverse (xs++ys) == reverse xs++reverse ys

where reverse is the list reversal function, and ++ is list append.
It is productive to formulate such laws about one’s code, but there is always

the risk of formulating them incorrectly. A stated law which is untrue is worse
than no law at all! Ideally, of course, one should prove them, but at the very
least, one should try out the law in a few cases—just to avoid stupid mistakes.
We can ease that task a little bit by defining a function to test the law, given
values for its free variables:

prop_revApp xs ys =
reverse (xs++ys) == reverse xs++reverse ys

Now we can test the law just by applying prop_revApp to suitable pairs of lists.
Inventing suchpairs of lists, and running the tests, is tedious, however.Wouldn’t

it be fun to have a tool that would perform that task for us? Then we could simply
write laws in our programs and automatically check that they are reasonable
hypotheses, at least. In 1999, Koen Claessen and I built just such a tool for
Haskell, called “QuickCheck” [4,5,7,6]. Given the definition above, we need only
pass prop_revApp to quickCheck to test the property in 100 random cases:

> quickCheck prop_revApp
Falsifiable, after 2 tests:
[1,-1]
[0]

Doing so exposes at once that the property is not true! The values printed are a
counter-example to the claim, [1,-1] being the value of xs, and [0] the value of
ys. Indeed, inspecting the property more closely, we see that xs and ys are the

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 1–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 J. Hughes

wrong way round in the right hand side of the law. After correcting the mistake,
quickChecking the property succeeds:

> quickCheck prop_revApp
OK, passed 100 tests.

While there is no guarantee that the property now holds, we can be very much
more confident that we did not make a stupid mistake. . . particularly after run-
ning another few thousand tests, which is the work of a few more seconds.

We wrote QuickCheck for fun, but it has turned out to be much more useful
and important than we imagined at the time. This paper will describe some of
the uses to which it has since been put.

2 A Simple Example: Skew Heaps

To illustrate the use of QuickCheck in program development, we shall implement
skew heaps (a representation of priority queues), following Chris Okasaki [15]. A
heap is a binary tree with labels in the nodes,

data Tree a = Null | Fork a (Tree a) (Tree a)
deriving (Eq, Show)

empty = Null

such that the value in each node is less than any value in its subtrees:

invariant Null = True
invariant (Fork x l r) = smaller x l && smaller x r
smaller x Null = True
smaller x (Fork y l r) = x <= y && invariant (Fork y l r)

Thanks to the invariant, we can extract the minimum element (i.e. the first
element in the queue) very cheaply:

minElem (Fork x _ _) = x

To make other operations on the heap cheap, we aim to keep it roughly balanced—
thenthe cost of traversing a branch will be logarithmic in the number of elements.
This is achieved in a skew heap by inserting elements into the two subtrees
alternately. No extra information is needed in nodes to keep track of where to
insert next: we always insert into the left subtree, but swap the subtrees after
each insertion—skewing the heap—so that the next insertion chooses the other
subtree.

insert x Null = Fork x Null Null
insert x (Fork y l r) = Fork (min x y) r (insert (max x y) l)

We expect that the two subtrees of a node should be “roughly balanced”, but
what does this mean precisely? A moment’s thought suggests that the left and
right subtrees should contain precisely the same number of elements after an odd

QuickCheck Testing for Fun and Profit 3

number of insertions, but the right subtree may be one element larger than the
left one after an even number of insertions. We conjecture that skew heaps are
balanced in the following sense:

balanced Null = True
balanced (Fork _ l r) = (d==0 || d==1) && balanced l && balanced r

where d = weight r - weight l

weight Null = 0
weight (Fork _ l r) = 1 + weight l + weight r

Now we can use QuickCheck to test our conjecture. To do so we need to
generate random skew heaps. Since the only function so far that constructs skew
heaps is insert, we can construct any reachable skew heap by choosing a random
list of elements, and inserting them into the empty heap:

make :: [Integer] -> Tree Integer
make ns = foldl (\h n -> insert n h) empty ns

We can now formulate the two properties we are interested in as follows:

prop_invariant ns = invariant (make ns)
prop_balanced ns = balanced (make ns)

We gave make a specific type to control the generation of test data: QuickCheck
generates property arguments based on the type expected, and constraining
the type of make is a convenient way to constrain the argument types of both
properties at the same time. (If we forget this, then QuickCheck cannot tell what
kind of test data to generate, and an “ambiguous overloading” error is reported).
Now we can invoke QuickCheck to confirm our conjecture:

Skew> quickCheck prop_invariant
OK, passed 100 tests.
Skew> quickCheck prop_balanced
OK, passed 100 tests.

We also need an operation to delete the minimum element from a heap. Al-
though finding the element is easy (it is always at the root), deleting it is not,
because we have to merge the two subtrees into one single heap.

deleteMin (Fork x l r) = merge l r

(In fact, merge is usually presented as part of the interface of skew heaps, even
if its utility for priority queues is less obvious). If either argument is Null, then
merge is easy to define, but how should we merge two non-empty heaps? Clearly,
the root of the merged heap must contain the lesser of the root elements of l
and r, but that leaves us with three heaps to fit into the two subtrees of the new
Fork—l, r and h below—so two must be merged recursively. . . but which two?

4 J. Hughes

merge l Null = l
merge Null r = r
merge l r | minElem l <= minElem r = join l r

| otherwise = join r l

join (Fork x l r) h = Fork x ...

The trick is to realize that the two subtrees of a node are not created equal: we
ensured during insertion that the left subtree is never larger than the right one.
So any recursion should be on the left subtree, guaranteeing that the size of the
recursive argument at least halves at each call, and that the total number of calls
is logarithmic in the size of the heaps. Thus we should merge l with h above, not
r, and because merging increases the size of the heap, skew the subtrees again,
so that the next merge will choose r instead.

join (Fork x l r) h = Fork x r (merge l h)

Is this really right? Let us test our properties again! Of course, now skew
heaps can be constructed by a combination of insertions and deletions, so our
method of generating random reachable heaps is no longer complete. Now we
must generate heaps from a random sequence of insertions and deletions:

data Op = Insert Integer | DeleteMin
deriving Show

make ops = foldl op Null ops
where op h (Insert n) = insert n h

op Null DeleteMin = Null
op h DeleteMin = deleteMin h

One difficulty is that a random sequence of insertions and deletions may attempt
to delete an element from an empty heap, provoking an error. There are various
ways to avoid this: we could arrange not to generate such sequences in the first
place, we could generate arbitrary sequences but discard the erroneous ones, or
we can simply ignore any deletions that are applied to an empty heap. In the
code above we chose the last alternative, because it is the simplest to implement.

Note that make now has a different type—it expects a list of Ops as its
argument—and thus so do our two properties. To test them, QuickCheck needs
to be able to generate values of the Op type, and to make that possible, we must
specify a generator for this type.

QuickCheck generators are an abstract data type, with a rich collection of
operations for constructing them. Indeed, provision of first-class generators is
one of the main innovations in QuickCheck. We use the Haskell class system to
associate generators with types, by defining instances of

class Arbitrary a where
arbitrary :: Gen a

The Gen type is also a monad, making available the monad operations

QuickCheck Testing for Fun and Profit 5

return :: a -> Gen a

to construct a constant generator, and

(>>=) :: Gen a -> (a -> Gen b) -> Gen b

to sequence two generators—although we usually use the latter via Haskell’s
syntactic sugar, the do-notation.

So, we specify how Op values should be generated as follows:

instance Arbitrary Op where
arbitrary =
frequency [(2,do n <- arbitrary; return (Insert n)),

(1,return DeleteMin)]

The frequency function combines weighted alternatives—here we generate an
insertion twice as often as a deletion, since otherwise the resulting heaps would
often be very small. In the first alternative, we choose an arbitrary Integer
and generate an Insert containing it; in the second alternative we generate a
DeleteMin directly.

Now we can check that any sequence of insertions and deletions preserves the
heap invariant

Skew> quickCheck prop_invariant
OK, passed 100 tests.

and that skew heaps remain balanced:

Skew> quickCheck prop_balanced
Falsifiable, after 37 tests:
[DeleteMin,Insert (-9),Insert (-18),Insert (-14),Insert 5,
Insert (-13),Insert (-8),Insert 13,DeleteMin,DeleteMin]

Oh dear! Clearly, deletion does not preserve the balance condition. But maybe
the balance condition is too strong? All we really needed above was that the left
subtree is no larger than the right—so let’s call a node “good” if that is the case.

good (Fork _ l r) = weight l <= weight r

Now, if all the nodes in a heap are good, then insert and merge will still run in
logarithmic time. We can define and test the property that all nodes are good:

Skew> quickCheck prop_AllGood
Falsifiable, after 55 tests:
[Insert (-7),DeleteMin,Insert (-16),Insert (-14),DeleteMin,
DeleteMin,DeleteMin,Insert (-21),Insert (-8),Insert 3,
Insert (-1),Insert 1,DeleteMin,DeleteMin,Insert (-12),
Insert 17,Insert 13]

Oh dear dear! Evidently, skew heaps contain a mixture of good and bad nodes.

6 J. Hughes

Consulting Okasaki, we find the key insight behind the efficiency of skew
heaps: although bad nodes are more costly to process, they are cheaper to con-
struct! Whenever we construct a bad node with a large left subtree, then at the
same time we recurse to create an unusually small right subtree—so this recur-
sion is cheaper than expected. What we lose on the swings, we regain on the
roundabouts, making for logarithmic amortized complexity.

To formalise this argument, Okasaki introduces the notion of “credits”—each
bad node carries one credit, which must be supplied when it is created, and can
be consumed when it is processed.

credits Null = 0
credits h@(Fork _ l r) =
credits l + credits r + if good h then 0 else 1

Since we cannot directly observe the cost of insertion and deletion, we define a
function cost_insert h that returns the number of recursive calls of insert
made when inserting into h, and cost_deleteMin h, which returns the number
of calls of join made when deleting from h (definitions omitted). Now, we claim
that on average each insertion or deletion in a heap of n nodes traverses only
log2 n nodes, and creates equally many new, possibly bad nodes, so 2*log2 n
credits should suffice for each call. (The first log2 n credits pay for the recursion
in this call, and the second log2 n credits pay for bad nodes in the result).

If we now specify

prop_cost_insert n ops =
cost_insert h <= 2*log2 (weight h) + 1
where h = make ops

then QuickCheck finds a counterexample1, because this property only holds on
average, but when we take credits into account

prop_cost_insert n ops =
cost_insert h + credits (insert n h)
<=
2*log2 (weight h) + 1 + credits h
where h = make ops

then the property passes hundreds of thousands of tests. Likewise, the property

prop_cost_deleteMin ops =
h/=Null ==>
cost_deleteMin h + credits (deleteMin h)
<=
2*log2 (weight h) + credits h

where h = make ops

1 Only one test case in around 3,000 is a counterexample. This is because the method
we use to generate heaps produces rather few bad nodes. Counterexamples can
be found more quickly by generating heaps directly, rather than via insert and
deleteMin, so that the proportion of bad nodes can be increased.

QuickCheck Testing for Fun and Profit 7

succeeds (where we have used QuickCheck’s implication operator ==> to state
a precondition that must hold in every test case, to avoid the error that would
result by calling deleteMin on the empty heap).

Each of these properties states that the credits allocated for the operation,
together with the accumulated credits in the heap, suffice both to pay for the
operation itself, and for the credits retained in its result. So any sequence of in-
sertions and deletions, starting with the empty heap, will incur only logarithmic
cost per operation.

Why bother to test these properties, when Okasaki has already proved them?
Well, the proof is informal, and proofs can be wrong. Okasaki’s statements are
in terms of “big O” notation, rather than the precise formulations above—the
“+ 1” in prop_cost_insert came as a surprise, for example. Finally, we might
have transcribed Okasaki’s code incorrectly—or deliberately altered it. Actually,
Okasaki uses a different definition of insert:

insert x h = merge (Fork x Null Null) h

This simplifies the proof, because now both insertion and deletion are defined in
terms of merge, so only merge need be considered in the proof. But this definition
of insert does not preserve balance, even when there are no deletions, which
leads me to prefer my own definition above. Also, a specialised insertion function
is likely to be more efficient than one using merge. But is it safe to replace the
definition of insert with an optimised one with a different result? Okasaki’s
proof no longer applies directly, but the property above shows that it is.

We can take this example further. So far, we have tested the heap invariant
and complexity properties. But apart from these, do insert and delete actu-
ally implement priority queues? To answer that, we need a specification that they
should fulfill. One good way to specify them is via an abstract model of priority
queues—such as ordered lists. Insertion is then modelled by the standard func-
tion to insert into an ordered list, and deletion is modelled by the function tail.
To formalise this, we define a function mapping each skew heap to its model:

model :: Tree Integer -> [Integer]
model h = sort (flatten h)

flatten Null = []
flatten (Fork a l r) = a : flatten l ++ flatten r

Now, given a function f on ordered lists, and a function g on heaps, we can
define a property stating that f correctly models g on a heap h, as follows:

(f ‘models‘ g) h =
f (model h) == model (g h)

and formulate the correctness of insertion and deletion like this:

prop_insert n ops = ((List.insert n) ‘models‘ insert n) h
where h = make ops

prop_deleteMin ops = size h>0 ==> (tail ‘models‘ deleteMin) h
where h = make ops

8 J. Hughes

Testing these properties succeeds, and after running many thousands of tests we
can be reasonably confident that the stated properties do actually hold.

What this example shows us is that QuickCheck changes the way we test
code. Instead of focussing on the choice of test cases—trying to guess which
cases may reveal errors—we leave that instead to QuickCheck, and focus on
the properties that the code under test should satisfy. Program development
with QuickCheck strongly resembles formal program development, emphasizing
formal models, invariants, and so on—but with labour-intensive proofs replaced
by instant feedback from testing.

This approach has proved very attractive to the Haskell community, and
QuickCheck has become widely used. One of the most impressive applications
is in the development of Data.ByteString, described elsewhere in this volume.
The code contains over 480 QuickCheck properties, all tested every time a new
version of the code is checked in. The various ByteString types are modelled ab-
stractly by lists of characters—just as we modelled skew heaps by ordered lists
above. Many properties test that ByteString operations are accurately mod-
elled by their list equivalents, just like our prop_insert and prop_deleteMin.
Data.ByteString achieves its high performance in part by programming GHC’s
optimiser with custom rewrite rules that perform loop fusion and other optimi-
sations. Of course, it’s vital that such rewrite rules, which are applied silently
to user code by the compiler, preserve the meanings of programs. Around 40
QuickCheck properties are used to test that this is in fact the case.

QuickCheck is also used by Haskell developers in industry. For example, Galois
Connections’ Cryptol compiler uses 175 QuickCheck properties, tested nightly,
to ensure that symbolic functions used by the compiler correspond correctly to
their Haskell equivalents.

3 Software Testing

QuickCheck is a novel approach to software testing. But software testing enjoys
a somewhat patchy reputation among academics. Dijkstra’s influence runs deep:
his famous observation that “Program testing can at best show the presence of
errors, but never their absence” suggests that mere testing is a waste of time.
His comment in the preface to A Discipline of Programming, that “None of the
programs in this monograph, needless to say, has been tested on a machine”,
makes us almost ashamed to admit that we do indeed test our own code! We
know that even after rigorous testing, countless errors remain in production
software—around one every hundred lines on average [13]. Those errors impose
a real cost on software users—according to a Congressional report in 2002, $60
billion annually to the US economy alone. That is a lot of money, even in the
US—$200 a year for every man, woman and child. Isn’t it time to give up on
such an inadequate technique, and adopt formal program verification instead?

Before drawing that conclusion, let us put those figures in perspective. The
US software industry turns over $200–$240 billion per year. Thus the additional
cost imposed by residual errors is around 25–30%. To be economically viable,

QuickCheck Testing for Fun and Profit 9

even a development method that guarantees to eliminate all software errors must
cost no more than this—otherwise it is more economical simply to live with the
errors. How does formal program verification measure up?

An impressive recent case study is Xavier Leroy’s construction of the back
end of a certified C compiler using Coq [12]. Leroy wrote around 35,000 lines
of Coq, of which the compiler itself made up around 4,500 lines, and concluded
that the certification was around eight times larger than the code that it applied
to. It is reasonable to infer that certification also increased the cost of the code
by a similar factor. While such a cost is acceptable in the aerospace domain that
Leroy was addressing, it is clearly not acceptable for software development in
general. It is not reasonable to expect formal verification to compete with testing
unless the cost can be cut by an order of magnitude2.

Thus we can expect testing to be the main form of program verification for
a long time to come—it is the only practical technique in most cases. This does
not mean that practitioners are happy with the current state of the art! But
while they are concerned with the problem of residual errors, they are really
rather more concerned about the cost of testing—around half the cost of each
software project. This cost is particularly visible since it is concentrated towards
the end of each project, when the deadline is approaching, sometimes imposing
an uncomfortable choice between skimping on testing and meeting the deadline.
Current best practice is to automate tests as far as possible, so they can be run
nightly, and to derive additional value from automated test cases by interpreting
them as partial specifications, as Extreme Programming advocates [3].

Yet automated testing of this sort has its problems. It is a dilemma to decide,
for each property that the code should satisfy, whether one should write one
test case, or many? Writing a single test case makes for concise test code, with
a clear relationship between test cases and properties—but it may fail to test
the property thoroughly, and it may be hard to infer what the property is from
a single example. Writing many test cases is more thorough, but also more
expensive, imposes future costs when the test code must be maintained, and
may obscure the “partial specification” by its sheer bulk—anyone reading the
testing code may fail to see the wood for the trees. As an example of the code
volumes involved, Ericsson’s AXD301 ATM-switch is controlled by 1.5 million
lines of Erlang code, which is tested by a further 700,000 lines of test cases!

A further problem is that nightly regression testing is really testing for errors
that have already been found—while it protects against the embarrassment of
reintroducing a previously fixed error, it is clear that unless the code under test
is changed, no new errors can be found. Indeed, 85% of errors are found the first
time a test case is run [8], so repeating those tests nightly is only a cheap way to

2 This is also the motivation for “lightweight” formal methods such as Microsoft’s Static
Driver Verifier [2] or ESC/Java [9], which use automated proof techniques to reveal
bugs at a very low cost in programmer time. But these tools offer no guarantees of
correctness—a fact brought home by ESC/Java’s use of an unsound theorem prover!
They can “at best show the presence of errors, but never their absence” just like
testing—although potentially with greater accuracy and at lower cost.

10 J. Hughes

find the remaining 15%. In other words, it can only play a relatively small part
in the overall testing process.

QuickCheck has the potential to address all of these problems. QuickCheck
properties make much better specifications than automated test cases, because
they cover the general case rather than one or more examples. For the same
reason, there is no need to write more than one QuickCheck property for each
logical property to be tested—a wide variety of cases will be generated anyway.
Thus QuickCheck code can be concise and maintainable, without compromising
the thoroughness of testing. Moreover, each time QuickCheck is run, there is
a chance of new test cases being generated, so if QuickCheck is run nightly
then, as time passes, we can expect more and more errors to be found. We
have demonstrated in practice that the same QuickCheck property can reveal
widely varying errors, depending on the data which is generated. As a bonus,
QuickCheck adds value to formal specifications by interpreting them as testing
code, making it more worthwhile to construct them in the first place.

We conclude that not only is testing here to stay, but that a tool such as
QuickCheck has much to offer software developers in industry today.

4 Shrinking

One of the problems with randomly generated test inputs is that they can con-
tain much that is irrelevant—the “signal”, that causes a test to fail, can be
hidden among a great deal of “noise”, that makes it hard to understand the
failure. We saw an example of this above, where the counter-example found to
prop_balanced was the long sequence of operations

[DeleteMin,Insert (-9),Insert (-18),Insert (-14),Insert 5,
Insert (-13),Insert (-8),Insert 13,DeleteMin,DeleteMin]

Clearly, at the very least the first DeleteMin is irrelevant, since it has no effect
at all—it is ignored by the make function that converts this list to a skew heap!

To address this problem, newer versions of QuickCheck automatically shrink
failing test cases after they are found, reporting a “minimal” one in some sense.
Using one of these new versions instead, testing prop_balanced might yield

Skew> quickCheck prop_balanced
Falsifiable, after 22 successful tests (shrunk failing case 10 times):
[Insert (-9),Insert 12,Insert 8,Delete]

in which the failing case has been reduced to just four operations. Moreover,
we know that removing any of these four would make the test succeed: all four
operations are essential to the failure. (There is no guarantee, though, that there
is no shorter sequence that provokes a failure: just that one cannot be obtained
by removing an element from this particular test case. We do still sometimes
produce longer failing cases for this property.)

Shrinking failing cases dramatically increases QuickCheck’s usefulness. In
practice, much time is devoted either to simplifying a failing case by hand, or

QuickCheck Testing for Fun and Profit 11

to debugging and tracing a complex case to understand why it fails. Shrinking
failing cases automates the first stage of diagnosis, and makes the step from
automated testing to locating a fault very short indeed.

5 Quviq QuickCheck

Although QuickCheck proved popular among Haskell users, the industrial Haskell
community is still rather small. However, Erlang supports functional program-
ming, and enjoys a mainly industrial community of users. Moreover, that com-
munity is growing fast: downloads of the Erlang system were running at 50,000
a month in June 2006, and have been growing quite consistently at 80% a year
for the past six years. I therefore decided to develop a version of QuickCheck for
Erlang, now called Quviq QuickCheck.

At first sight, adapting QuickCheck for Erlang appears to be rather diffi-
cult: Erlang lacks lazy evaluation, and many of the functions in QuickCheck’s
interface must be non-strict; Erlang lacks a static type-checker, and Haskell
QuickCheck chooses generators based on the type of argument a property ex-
pects; QuickCheck’s generator type is a monad, and we make extensive use
of Haskell’s do-notation to define generators. In fact, none of these difficulties
proved to be especially problematic.

– QuickCheck functions which must be lazy only use their lazy arguments
once, so instead of call-by-need it is sufficient to use call-by-name—and this
is easily simulated by passing 0-ary functions as parameters instead (for-
tunately, Erlang supports first-class functions). We spare the user the need
to pass such functions explicitly by using Erlang macros (distinguished by
names beginning with a ’?’) to generate them. Thus Quviq QuickCheck sim-
ply provides an interface made up to a large extent of macros which expand
to function calls with functions as parameters.

– While Haskell QuickCheck does choose generators for property arguments
based on their type, it has always provided a way to supply a generator ex-
plicitly as well. In Erlang, we must simply always do this. This is a smaller
cost than it seems, because in more complex situations, the type of an ex-
pected argument is rarely sufficient to determine how it should be generated.

– We can use a monad in Erlang too, in the same way as in Haskell. While
we lack Haskell’s do-notation, we can give a convenient syntax to monadic
sequencing even so, via a macro.

The example in the introduction can be rewritten in Erlang like this:

prop_revApp() ->
?FORALL(Xs,list(int()),
?FORALL(Ys,list(int()),
lists:reverse(Xs++Ys)
==
lists:reverse(Xs)++lists:reverse(Ys))).

12 J. Hughes

There are trivial differences: Erlang function definitions use an arrow (->), vari-
ables begin with a capital letter (Xs), external function calls name the mod-
ule as well as the function to be called (lists:reverse). The main difference,
though, is the use of the ?FORALL macro, whose arguments are a bound variable,
a generator, and the scope of the ∀—the expansion of FORALL(X,Gen,Prop) is
just eqc:forall(Gen,fun(X)->Prop end). By using generators which look like
types (list(int())), and macro parameters which bind variables, we provide a
very natural-looking notation to the user.

Testing this property yields

13> eqc:quickcheck(example:prop_revApp()).
..........Failed! After 11 tests.
[1]
[-3,1]
Shrinking.....(5 times)
[0]
[1]

in which the counterexample found is displayed both before and after shrinking.
In this case, we can see that QuickCheck not only discarded an unnecessary
element from one of the lists, but shrank the numbers in them towards zero. The
fact that the minimal counterexample consists of [0] and [1] tells us not only
that both lists must be non-empty, but gives us the additional information that
if the 1 were shrunk further to 0, then this would no longer be a counterexample.

Quviq QuickCheck thus offers a very similar “look and feel” to the original.

6 State Machine Specifications

In early 2006 we began to apply QuickCheck to a product then under devel-
opment at Ericsson’s site in Älvsjö (Stockholm). But real Erlang systems use
side-effects extensively, in addition to pure functions. Testing functions with side-
effects using “vanilla QuickCheck” is not easy—any more than specifying such
functions using nothing but predicate calculus is easy—and we found we needed
to develop another library on top of QuickCheck specifically for this kind of test-
ing. That library has gone through four quite different designs: in this section
we shall explain our latest design, and how we arrived at it.

As a simple example, we shall show how to use the new library to test the
Erlang process registry. This is a kind of local name server, which can register
Erlang process identifiers under atomic names, so that other processes can find
them. The three operations we shall test are

– register(Name,Pid) to register Pid under the name Name,
– unregister(Name) to delete the process registered as Name from the registry,

and
– whereis(Name)which returns the Pid registered with that Name, or the atom

undefined if there is no such Pid.

QuickCheck Testing for Fun and Profit 13

Although register is supposed to return a boolean, it would clearly be mean-
ingless to test properties such as

prop_silly() ->
?FORALL(Name,name(),
?FORALL(Pid,pid(),
register(Name,Pid) == true)).

The result of register depends on what state it is called in—and so we need to
ensure that each operation is called in a wide variety of states. We can construct
a random state by running a random sequence of operations—so this is what
our test cases will consist of. We also need to ensure that each test case leaves
the process registry in a “clean” state, so that the side-effects of one test do not
affect the outcome of the next. This is a familiar problem to testers.

We made an early decision to represent test cases symbolically, by an Erlang
term, rather than by, for example, a function which performs the test when
called. Thus if a test case should call unregister(a), then this is represented
by the Erlang term {call,erlang,unregister,[a]}—a 4-tuple containing the
atom call, the module name and function to call3, and a list of arguments. The
reason we chose a symbolic representation is that this makes it easy to print out
test cases, store them in files for later use, analyze them to collect statistics or
test properties, or—and this is important—write functions to shrink them.

We can thus think of test cases as small programs, represented as abstract
syntax. A natural question is then: how powerful should the language of test
cases be? Should we allow test cases to contain branching, and multiple execution
paths? Should we allow test cases to do pattern matching? For a researcher in
programming languages, it is tempting to get carried away at this point, and
indeed early versions of our library did all of the above. We found, though, that
it was simply not worth the extra complexity, and have now settled for a simple
list of commands. We do not regard this is a significant loss of power—after all,
when a test fails, we are only interested in the path to the failure, not other paths
that might conceivably have been taken in other circumstances.

We did find it essential to allow later commands access to the results of earlier
commands in the same test case, which presents a slight problem. Remember
that test generation, when the symbolic test case is created, entirely precedes
test execution, when it is interpreted. During test generation, the values re-
turned by commands are unknown, so they cannot be used directly in further
commands—yet we do need to generate commands that refer to them. The
solution, of course, is to let symbolic test cases bind and reuse variables. We
represent variables by Erlang terms of the form {var,N}, and bindings by terms
of the form {set,{var,N},{call,Mod,Fun,Args}}. The test cases we generate
are actually lists of such bindings—for example,

[{set,{var,1},{call,erlang,whereis,[a]}},
{set,{var,2},{call,erlang,register,[b,{var,1}]}}]

3 unregister is a standard function, exported by the module erlang.

14 J. Hughes

which represents the Erlang code fragment

Var1 = erlang:whereis(a),
Var2 = erlang:register(b,Var1)

We refer to Erlang terms of the form {var,. . .} and {call,. . . } as symbolic
values. They represent values that will be known during test execution, but must
be treated as “black boxes” during test generation—while it is permissible to
embed a symbolic value in a generated command, the actual value it represents
cannot be used until test execution. Of course, this is an application of staged
programming, which we know and love.

Now, in order to generate sensible test cases, we need to know what state the
system under test is in. Thus we base our test generation on a state machine,
modelling enough about the actual state to determine which calls make sense,
and express the desired properties of their outputs. In this case, we need to
know which pids are currently registered. We also need to know which pids are
available to register: to guarantee that the pids we use don’t refer, for example,
to crashed processes, we will generate new process identifiers in each test case—
and these need to be held in the test case state. Thus we can represent our state
using a record with two components:

-record(state,{pids, % list(symbolic(pid()))
regs}). % list({name(),symbolic(pid())})

initial_state() -> #state{pids=[], regs=[]}.

We have indicated the expected type of each field in a comment: pids should
be a list of (symbolic) process identifiers, spawned during test generation, while
regs should be a list of pairs of names and (symbolic) pids.

To define such a state machine, the QuickCheck user writes a module ex-
porting a number of callbacks, such as initial_state() above, which tell
QuickCheck how the state machine is supposed to behave. This idea is quite
familiar to Erlang users, because it is heavily used in the OTP (Open Telecoms
Platform) library.

We define how commands are generated in each state via a callback function
command(State):

command(S) ->
frequency([{1,stop},

{10,oneof(
[{call,?MODULE,spawn,[]}]++
[{call,erlang,register,
[name(),elements(S#state.pids)]}

|| S#state.pids/=[]]++
[{call,erlang,unregister,[name()]},
{call,erlang,whereis,[name()]}

])}]).

QuickCheck Testing for Fun and Profit 15

Test cases are generated by starting from the initial state, and generating a
sequence of commands using this generator, until it generates the atom stop.
Thus, on average, the generator above will result in test cases which are 11
commands long. We choose (with equal probability) between generating a call
to spawn (a function defined in the current module ?MODULE to spawn a dummy
process), register, unregister, and whereis. Generating a call to register
chooses one of the elements of the pids field of the state—to guarantee that
such a choice is possible, we include this possibility only if this field is non-empty.
([X || Y] is a degenerate list comprehension with no generator, which returns
either the empty list if Y is false, or [X] if Y is true).

We also separately define a precondition for each command, which returns
true if the command is appropriate in the current state. It may seem unneces-
sary to define both a command generator, which is supposed to generate an ap-
propriate command for the current state, and a precondition, which determines
whether or not it is. There are two reasons to define preconditions separately:

– We may wish to generate a wider class of commands, then exclude some of
them via a more restrictive precondition—for example, after testing reveals
that a tighter precondition is needed than we first supposed!

– Shrinking deletes commands from a test case, which means that the following
commands in a shrunk test case may appear in a different state from the
one they were generated in. We need to be able to determine whether they
are still appropriate in the new state.

In this example, though, we need state no non-trivial preconditions:

precondition(S,{call,_,_,_}) -> true.

Of course, we also have to define how each command changes the state. This is
done by the next_state(S,V,{call,Mod,Fun,Args}) callback, which returns
the state after Mod:Fun(Args) is called in state S, with the result V. In this
example, spawn adds its result to the list of available pids,

next_state(S,V,{call,?MODULE,spawn,_}) ->
S#state{pids=[V | S#state.pids]};

(where [X|Y] means “X cons Y”, and S#state{pids=...} is a record update that
returns a record equal to S except for its pids field). The register operation
records its arguments in the regs component of the state,

next_state(S,V,{call,erlang,register,[Name,Pid]}) ->
S#state{regs=[{Name,Pid} | S#state.regs]};

unregister removes its argument from that component,

next_state(S,V,{call,erlang,unregister,[Name]}) ->
S#state{regs=[{N,P} || {N,P} <- S#state.regs, N/=Name]};

while whereis leaves the state unchanged:

next_state(S,V,{call,erlang,whereis,[Name]}) -> S.

16 J. Hughes

These clauses make up a simple specification of the intended behaviour of the
operations under test. The only tricky point to note is that the result parameter,
V, is symbolic during test generation—its value will be {var,1}, {var,2} etc.
Thus the states that we build are also partly symbolic—for example, spawn-
ing a new process and registering it under the name a results in the state
{state,[{var,1}],[{a,{var,1}}]}. We also use the next_state callback dur-
ing test execution, when it is applied to real values rather than symbolic ones—
during execution the state after the same two operations will be something like
{state,[<0.51.0>],[{a,<0.51.0>}]}.

Finally, we define a postcondition for each command—if any postcondition
fails, then the test case fails. To begin with, let us define a trivial postcondition,
so that tests fail only if an exception is raised.

postcondition(S,{call,_,_,_},R) -> true.

Now, using the state machine library, we define a property to test:

prop_registration() ->
?FORALL(Cmds,commands(?MODULE),
begin {H,S,Res} = run_commands(?MODULE,Cmds),

[catch unregister(N) || {N,_} <- S#state.regs],
[exit(P,kill) || P <- S#state.pids],
?WHENFAIL(io:format("~p\n~p\n",[H,Res]),

Res==ok)
end).

Here commands(?MODULE) generates test cases using the callbacks in the current
module, and run_commands(?MODULE,Cmds) runs those test cases, returning a
history (list of states and results), final state, and “result”, which is ok if the
test case succeeded. The next two lines clean up after the test case, by unregis-
tering any processes that were left registered, and killing the processes that were
spawned. For convenience, we use the ?WHENFAIL macro to add an action that
is performed only in failing cases—we print out the history and result.

Testing this property immediately reveals a problem:

15> eqc:quickcheck(registration_eqc:prop_registration()).
.Failed! After 2 tests.
[{set,{var,1},{call,registration_eqc,spawn,[]}},
...
{set,{var,41},{call,erlang,register,[a,{var,26}]}}]

...
Shrinking.....(5 times)
[{set,{var,4},{call,erlang,unregister,[a]}}]
[]
{exception,
{’EXIT’,{badarg,[{erlang,unregister,[a]},

{eqc_statem,run_commands,5},...

QuickCheck Testing for Fun and Profit 17

We can see immediately how effective shrinking is: a test case of 41 commands
was shrunk to just one! This single call to unregister(a) failed with a badarg
exception, and the rest of the output is an uninteresting stack backtrace.

The problem in this case is that unregister raises an exception if there is no
registered process with the given name—so if a test case begins with unregister,
then it is bound to fail. Our specification does not take this into account. There
are two ways to do so:

– Positive testing—restrict test cases to avoid the exception, by adding a suit-
able precondition to unregister (and optionally modifying the command
generator to avoid generating such commands in the first place), or

– Negative testing—catch the exception in a local version of unregister which
we use in test cases instead, and define a postcondition to check that the
exception is raised in the correct cases.

Whichever approach we choose, QuickCheck quickly reveals another problem:

60> eqc:quickcheck(registration_eqc:prop_registration()).
Failed! After 1 tests.
...
Shrinking.........(9 times)
[{set,{var,5},{call,registration_eqc,spawn,[]}},
{set,{var,6},{call,erlang,register,[a,{var,5}]}},
{set,{var,16},{call,erlang,register,[a,{var,5}]}}]

[{{state,[],[]},<0.869.0>},{{state,[<0.869.0>],[]},true}]
{exception,
{’EXIT’,{badarg,[{erlang,register,[a,<0.869.0>]},

...

Of course! We tried to register process a twice! If we try to register a process with
the same name as an already registered process, we would expect registration to
fail! Indeed, the Erlang documentation confirms that register should raise an
exception if either the name, or the process, is already registered. We define a
function to test for this case

bad_register(S,Name,Pid) ->
lists:keymember(Name,1,S#state.regs) orelse
lists:keymember(Pid,2,S#state.regs)

(lists:keymember(Key,I,L) tests whether a Key occurs as the Ith component
of any tuple in the list L). We define a local version of register which catches
the exception, and add a postcondition to check that the exception is raised
exactly when bad_register returns true.

Testing quickly revealed another error, in the case:

[{set,{var,4},{call,...,spawn,[]}},
{set,{var,5},{call,...,register,[c,{var,4}]}},
{set,{var,12},{call,...,spawn,[]}},
{set,{var,13},{call,...,register,[c,{var,12}]}},
{set,{var,21},{call,...,register,[a,{var,12}]}}]

18 J. Hughes

The problem here was not that the second call to register raised an exception—
that was expected. The test case failed because the postcondition of the third
call to register was not satisfied—the call succeeded, but was specified to fail.
The reason was an error in our specification—the definition of next_state above
takes no account of whether or not register raises an exception. As a result,
after the first two calls to register then our state contained both processes
{var,4} and {var,12}, registered with the same name c! Then the third call
was expected to raise an exception, because the process being registered was
already registered as c. Correcting the specification, so that next_state returns
an unchanged state if bad_register is true, fixed the problem. In fairness, the
Erlang documentation does not say explicitly that the process is not registered
if register raises an exception, even if that is a fairly obvious interpretation!

A subtlety: note that when we use bad_register in next_state, then it is
applied to a partially symbolic state. So when bad_register tests whether the
pid is already registered, it compares a symbolic pid with those in the state.
Fortunately this works: symbolic pids are always variables bound to the result
of a spawn, and different calls to spawn return different pids—so two symbolic
pids are equal iff the pids they are bound to are equal. Care is required here!

We have now seen all of our state machine testing library: to summarize, the
user defines callback functions

– command and precondition, which are used during test generation to gen-
erate and shrink test cases that “make sense”,

– postcondition, which is used during test execution to check that the result
of each command satisfies the properties that it should,

– initial_state and next_state, which are used during both test generation
and test execution to keep track of the state of the test case.

Given these callbacks, the user can generate test cases using commands(Mod),
and run them using run_commands(Mod,Cmds).

As we saw in the example, the definitions of these callbacks make up a simple
and natural specification of the code under test. We quickly found misconceptions
in our specification, and enhanced our understanding of the process registry.
While most of the information in our specification is also present in the Erlang
documentation, we did discover and resolve at least a slight ambiguity—that a
process is not actually registered when register raises an exception.

As an interesting extension of this example, we decided to test the process
registry in the presence of crashing processes. We could easily model process
crashes at known points by inserting operations to stop processes explicitly into
our test cases4. The Erlang documentation says nothing about a relationship
between process termination and the registry, but we discovered, by refining our
QuickCheck specification, that such a relationship does indeed exist. In brief,
dead processes are removed automatically from the registry; attempts to register
a dead process apparently succeed (return true), but do not change the registry
state. This means that sequences such as
4 This doesn’t test a process crashing during a call to a registry operation.

QuickCheck Testing for Fun and Profit 19

register(a,Pid),
register(a,Pid)

can indeed succeed—if Pid refers to a dead process. We discovered that stopping
a process causes it to be removed from the registry—but only after other pro-
cesses have had a chance to run! To obtain predictable behaviour, we stopped
processes using

stop(Pid) -> exit(Pid,kill), erlang:yield().

where the call to yield() gives up control to the scheduler, allowing time for
deregistration. Without such a yield(), a sequence such as

register(a,Pid),
stop(Pid),
unregister(a)

may or may not succeed, depending on whether or not the scheduler preempts
execution after the stop! We were quickly able to develop a formal specifica-
tion covering this aspect too, despite the absence of documentation—and in the
process discovered details that are unknown even to many Erlang experts.

7 Ericsson’s Media Proxy

We developed our state machine library in parallel with a project to test Eric-
sson’s Media Proxy, then approaching release. The Media Proxy is one half of
a media firewall for multimedia IP-telephony—it opens and closes “media pin-
holes” to allow media streams corresponding to calls in progress to pass through
the firewall, thus preventing other IP packets from travelling through the owner’s
network for free, and defending equipment behind the firewall from denial of ser-
vice attacks. The Media Proxy opens and closes media pinholes in response to
commands from a Media Gateway Controller, a physically separate device which
monitors signalling traffic to detect calls being set up and taken down.

This architecture, of a Media Gateway controlled by a Media Gateway Con-
troller, is standardised by the International Telecommunication Union. The ITU
specifies the protocol to be used for communication between the two—the H.248,
or “Megaco” protocol [16]. This specification is quite complex: the current version
is 212 pages long. The Media Proxy only uses a subset of the full protocol though,
which is defined in an internal Ericsson document, the Interwork Description—a
further 183 pages. The Media Proxy is controlled by about 150,000 lines of Erlang
code, of which perhaps 20,000 lines are concerned with the Megaco protocol.

When we began our project, the Media Proxy had already completed Function
Test, and was undergoing System Test in preparation for release. This process
takes 3-4 months, during with the development team focus all their efforts on
finding and fixing errors. The team follow a disciplined approach to testing, with
a high degree of test automation, and have a strong track record for quality and
reliability [18]. We worked with Ulf Wiger and Joakim Johansson at Ericsson to

20 J. Hughes

test the Megaco interface of the Media Proxy in parallel, by using QuickCheck
to generate sequences of Megaco messages to send to the Proxy, and check that
its replies were valid.

The biggest part of the work lay in writing generators for Megaco messages.
These messages can carry a great deal of information, and the message datatype
is correspondingly complex. It is specified in the ITU standard via an ASN.1
grammar, which specifies both the logical structure of messages, and their bi-
nary representation on a communications channel, both at the same time. This
grammar can be compiled by the Erlang ASN.1 compiler into a collection of Er-
lang record types, together with encoding and decoding functions for the binary
representation. We could thus generate messages as Erlang data structures, and
easily encode them and send them to the Proxy—and this test infrastructure
was already in place when we began our project.

We did try generating purely random messages conforming to the ASN.1
grammar, and sending them to the Proxy. This was not a successful approach:
the messages were all semantic nonsense, and so were simply rejected by the
Proxy. This could be an effective form of negative testing, but in this project
we were more concerned to test the positive behaviour of the Proxy—that it
responds correctly to meaningful messages.

Thus we had to write QuickCheck generators for complex structures, respect-
ing all the constraints stated in the standard and the Interwork Description. To
give a flavour of this, here is a fragment of the ASN.1 grammar in the standard,
specifying the structure of a media descriptor:

MediaDescriptor ::= SEQUENCE
{ termStateDescr TerminationStateDescriptor OPTIONAL,
streams CHOICE
{ oneStream StreamParms,
multiStream SEQUENCE OF StreamDescriptor

} OPTIONAL,
...

}

A media descriptor is a record (sequence), with fields termStateDescr, streams,
etc. Some of the fields can be optional, as in this case, and each field name is
followed by its type. In this case the streams field is of a union type—it can either
be tagged oneStream and contain the parameters of a single media stream, or it
can be tagged multiStream and contain a list (sequence) of stream descriptors.
Clearly the protocol designers expect a single media stream to be a common
case, and so have included an optimised representation for just this case.

The Interwork Description restricts media descriptors a little, as follows:
MediaDescriptor ::= SEQUENCE
{ streams CHOICE
{ oneStream StreamParms,
multiStream SEQUENCE OF StreamDescriptor

}
}

QuickCheck Testing for Fun and Profit 21

When generating media descriptors, we must thus choose between the oneStream
form and the multiStream form, depending on how many streams are to be
included. The QuickCheck generator is as follows:

mediadescriptor(Streams) when Streams=/=[] ->
{mediaDescriptor,
#MediaDescriptor{ streams =

case Streams of
[{Id,Mode}] ->
oneof([{oneStream,streamParms(Mode)},

{multiStream,[stream(Id,Mode)]}]);
_ -> {multiStream,

[stream(I,M) || {I,M}<-Streams]}
end}}.

Analysing this code, we can distinguish three distinct parts.

– Datastructure construction—the ’MediaDescriptor’ record paired with a
mediadescriptor tag, containing a streams field that is either a oneStream
or a multiStream. Very similar code appears in conventional test cases.

– We analyse the streams to be included, distinguishing the cases of one stream
and many streams. Here we express part of the logic of the specification.

– At one point, we embed a QuickCheck function—oneof—to express a choice
between alternatives.

Thus the code looks mostly familiar to Ericsson developers—the overhead of
turning it in to a QuickCheck generator is very light.

Another example: the standard specifies stream parameters as follows,

StreamParms ::= SEQUENCE
{ localControlDescriptor LocalControlDescriptor OPTIONAL,
localDescriptor LocalRemoteDescriptor OPTIONAL,
remoteDescriptor LocalRemoteDescriptor OPTIONAL,
...,
statisticsDescriptor StatisticsDescriptor OPTIONAL

}

but the Interwork Description says also that “LocalControl will be included in all
cases except when no media (m-line) is defined in the remote SDP”, the remote
SDP being a part of the remote descriptor appearing among the stream parame-
ters above. Thus we need to know whether or not a remote media will be defined,
at the time we decide whether or not to include a local control descriptor. There
are quite simply two cases for stream parameters: with, and without, a defined
remote media. This is simple enough to express in a QuickCheck generator—we
simply decide which case we are in first:

streamParms(Mode) ->
?LET(RemoteMediaDefined, bool(),

22 J. Hughes

case RemoteMediaDefined of
true ->
#StreamParms{ localControlDescriptor =

localControl(Mode),
localDescriptor =
localDescriptor(RemoteMediaDefined),
remoteDescriptor =
remoteDescriptor(RemoteMediaDefined)};

false -> ...
end).

Wechoosearandomboolean,RemoteMediaDefined,andifitistrue,webothinclude
a local control descriptor, and pass the boolean inward to remoteDescriptor,
which then ensures that an m-line is indeed generated. ?LET(X,G1,G2) binds the
variable X to the value generated by G1 in the generator G2—it is syntactic sugar
for the ‘bind’ operator of the generator monad, and corresponds to Haskell’s do-
notation. Of course, this code itself is quite trivial—the interesting thing is that
we can only write it thanks to the monadic interface that generators provide.

As soon as our message generators were complete, we began to experience
crashes in the Media Proxy. They turned out to be related to the StreamParms
above. The ASN.1 specification says that all the fields of a StreamParms record
are optional—which means that it is valid to omit them all, which QuickCheck
quickly did. Yet the ITU standard also defines an alternative concrete syntax
for messages, as readable ASCII—and we were actually using the ASCII form
of messages, to ease debugging. The ASCII form of messages is generated and
parsed by a hand-written encoder and decoder—obviously, these cannot be gen-
erated from the ASN.1 grammar, because they use another syntax. That syntax
in turn is defined in the ITU standard by an ABNF grammar. . . and this gram-
mar requires a StreamParms record to contain at least one field! It doesn’t matter
which field it is, but at least one must be there. This story illustrates the dangers
of giving two formal descriptions of the same thing, with no way to enforce con-
sistency! Now, one would expect the ASCII encoder to reject the messages we
generated with empty StreamParms, but it turned out that Ericsson’s encoder
followed the ASN.1 specification and permitted an empty record, while the de-
coder followed the ABNF and required at least one field. Thus we could generate
and encode a message, that when sent to the Media Proxy, caused its decoder
to crash. Clearly, the underlying fault here is in the standard, but Ericsson’s
encode and decoder should at least be consistent.

Our next step was to generate valid command sequences. The Megaco stan-
dard defines twelve different commands that the controller can send to the gate-
way, but we focussed on the three most important, which manipulate the state
of a call, or context as they are known in Megaco-speak.

– The Add command adds a caller (or termination) to a context, creating the
context if it does not already exist. Terminations are added to a context
one-by-one—the Megaco standard permits arbitrarily many callers in a call,
while the Media Proxy is designed to handle a maximum of two.

QuickCheck Testing for Fun and Profit 23

– The Modify command modifies the state of a termination, typically activating
media streams once both terminations have been added to a context.

– The Subtract command is used to remove a termination from a context—
when a call is over, both terminations need to be subtracted. When the
last termination is subtracted from a context, the context is automatically
deleted from the Proxy.

The normal case is that two terminations are added to a context, they are both
modified to activate their streams, and then they are both subtracted again.

Contexts and terminations are assigned identifiers when they are first added
to the Proxy, which are returned to the controller in the Proxy’s reply to the
Add message. These identifiers are then used in subsequent messages to refer to
already created contexts and terminations. So it was vital that the test cases we
generated could use the replies to previous messages, to construct later ones.

We used a predecessor of our state machine testing library to generate and
run sequences of Megaco commands. We used a state which just tracked the
identifier and state of each termination created by the test case:

-record(state,
termination=[] % list({symbolic(termid()),termstate()})

).

(The empty list is a default field value). For each termination, we kept track of
which context it belonged to, and the streams that it contained:

-record(termstate,
context, % symbolic(contextid())
streams=[] % list({streamid(),streammode()})

).

Note that since both termination identifiers and context identifiers are allocated
by the Proxy, then they are unknown during test generation, and are represented
by symbolic components of the state. For example, the identifier of the first
termination added might be represented by

{call,?MODULE,get_amms_reply_termid,[{var,1}]}

where get_amms_reply_termid extracts the identifier of a new termination from
the reply to an Add message. As before, since we know where each termination
and context identifier is created, we can refer to them symbolically by unique
expressions, and compare identifiers by comparing their symbolic form.

We generated Add, Modify, and Subtract commands, being careful to modify
and subtract only existing terminations, and to add no more than two termina-
tions at a time to any context. To achieve the latter, we defined functions on
the state to extract a list of singleton contexts (those with only a single termi-
nation), and pair contexts (those with two terminations). We could use these
functions during test generation, thanks to our unique symbolic representation
for context identifiers—we could tell, just from the symbolic state, whether or

24 J. Hughes

not two terminations belonged to the same context. Using these functions, we
could define, for example, a precondition for Add, which ensures that we never
try to add a third termination to any context:

precondition(S,{call,_,send_add,[Cxt,Streams,Req]}) ->
lists:member(Cxt,
[?megaco_choose_context_id
| singletoncontexts(S)]);

(Here ?megaco_choose_context_id is a “wild card” context identifier, which
intructs the Proxy to allocate a new context—so this precondition allows Adds
which both create new contexts and add a termination to an existing one.)

All of the sequences we generated were valid according to the Interwork De-
scription, and so should have been executed successfully by the Proxy. But they
were not—we found a total of four errors by this means. In each case, shrinking
produced a minimal command sequence that provoked the error.

– Firstly, adding one termination to a context, and then modifying it imme-
diately, led to a crash. This turned out to be because the code for Modify
assumed that each media stream would have two “ends”—when only one
termination was present, this was not the case.

– Secondly, adding a termination to a new context, and then subtracting it
immediately, also led to a crash. Interestingly, we found this bug one day, but
could not reproduce it on the next. This was because the main development
team had also found the bug, and issued a patch in the meantime!

– Thirdly, adding two terminations to a context, and then modifying one of
them, led to a crash if the two terminations had differing numbers of streams.
For example, an attempt to connect a caller with audio and video to a caller
with only audio might lead to this failure. The underlying reason was the
same as in the first case: Modify assumed that every stream has two ends.

– Lastly, adding two terminations to a context, removing the second, adding
a third and removing it again, and adding a fourth and removing it again,
provoked a crash when the fourth termination was removed! We found this
case by shrinking a sequence of over 160 commands, which demonstrates
the power of shrinking quite convincingly! It is a test case that a human
tester would be very unlikely to try. Of course, it is also unlikely to occur in
practice—but the particular test case is just a symptom, not a cause. The
underlying cause turned out to be that data-structures were corrupted the
first time a termination was removed. Even if the corruption was survivable
in the normal case, it is obviously undersirable for a system to corrupt its
data. If nothing else, this is a trap lying in wait for any future developer
modifying the code. It is interesting that QuickCheck could reveal this fault,
despite knowing nothing at all about the Proxy’s internal data.

One observation we made was that after each bug was found, virtually every
run of QuickCheck found the same problem! There seems always to be a “most
likely bug”, which is more likely to be reported than any other. This is partly

QuickCheck Testing for Fun and Profit 25

because of shrinking: a longer sequence provoking a more subtle bug, such as
the fourth one above, is likely also to provoke the most likely one—at least, once
some commands have been deleted. So shrinking tends to transform any failing
case into one for the most likely bug. We found that, to make progress, we had
to add bug preconditions to our specification to guarantee that the known bugs
would not be provoked. For example, we changed the precondition for Modify to

precondition(S, {call,_,send_modify,[Cxt,...]}) ->
lists:member(Cxt, paircontexts(S));

to avoid the first bug above. Formulating these bug preconditions is useful in
itself: it makes us formulate a hypothesis about when the bug appears, test the
hypothesis by verifying that the precondition does indeed avoid the bug, and
document the bug in the form of this extra precondition.

This entire study took only around 6 days of work (spread over 3 months),
during which we wrote about 500 lines of QuickCheck code (since reduced to
300 by using our latest state machine library). Bearing in mind that the Proxy
was already well tested when we started, finding five errors is a very good result.

In a way, it is rather surprising that such simple sequences as the first three
cases above were not tested earlier! We believe this is because, while it is quite
easy to adapt existing test cases by varying parameters in the messages they
contain, it is much harder to construct a sensible sequence of messages from
scratch. Indeed, a number of “normal case” sequences are contained in the In-
terwork Description, and it is likely that these formed a basis for early testing at
least. By generating any valid message sequence, we could explore a much wider
variety of sequences than could reasonably be tested by manually constructed
cases—and so the bugs were there to be found.

We were curious to know how valuable QuickCheck would have been if it
had been available earlier in the development process. To find out, we recovered
an older version of the Proxy software from Ericsson’s source code repository,
and tested it using the same QuickCheck specification. We found nine errors
in six hours, most of the time being spent on formulating appropriate bug pre-
conditions, so that the next bug could be discovered. Ericsson’s fault reporting
database contained just two reported faults for that version of the software, one
of which was among the nine that QuickCheck found, and the other of which
was in a lower level part of the software not tested by our specification. This
suggests QuickCheck could have helped to find many bugs much earlier. It also
demonstrates that the same properties can be used to find many different errors.

It is true that the bugs we found (with the exception of the Add/Subtract prob-
lem) would not have affected Ericsson’s customers—because the Media Proxy
is initially sold only as part of a larger system, which also contains an Ericsson
media gateway controller. Ericsson’s controller does not send message sequences
of the kind that we discovered provoke bugs. On the other hand, we may wonder
how the Proxy developers know that? After all, the interface between the two
is specified by the Interwork Description, which makes no such restrictions. It
turns out that the documentation does not tell the whole truth—the teams devel-
oping the two products also communicate informally, and indeed, the products

26 J. Hughes

have been tested together. So if Ericsson’s controller did send sequences of this
sort, then the bugs would probably have been found sooner. Part of the benefit
of QuickCheck testing may thus be to clarify the specification—by making our
“bug preconditions” part of the Interwork Description instead. Clarifying the
specification is important, not least because the Media Proxy will eventually be
used together with controllers from other manufacturers, and at that point it
will be important to specify precisely what the Proxy supports.

This project was both instructive and sufficiently successful to persuade Er-
icsson to invest in a larger trial of QuickCheck. We are now in the process of
training more users, and helping to introduce QuickCheck testing into several
other projects at varying stages of development. We look forward to exciting
developments as a result!

8 Concurrency

Concurrent programs are more difficult to test with QuickCheck, because they
may exhibit non-deterministic behaviour. Finding a test case which sometimes
fails is not nearly as useful as finding a test case which always fails. In particular,
shrinking is difficult to apply when testing is non-deterministic, because the
smaller tests performed while we search for a simplest failing case may succeed
or fail by chance, leading to very unpredictable results. Nevertheless, we have
had some success in applying QuickCheck to concurrent programs.

In one experiment, we tested a distributed version of the process registry,
written by Ulf Wiger to provide a global name server. We constructed an ab-
stract model of the registry, much like that in section 6, and used it to test that
sequences of register, whereis and unregister calls returned the expected re-
sults. Then we wrote a property stating that for all pairs of command sequences,
executed in separate processes, each call gave the expected result.

Unfortunately, the “expected result” depends on how the calls in the two
processes are interleaved. Observing the actual interleaving is difficult, espe-
cially since the registry need not service the calls in the order in which they
are made! Indeed, all we can really require is that the results returned by the
registry calls in each process correspond to some interleaving of the two com-
mand sequences—any interleaving will do. We therefore formalised precisely this
property in QuickCheck. Potentially we might need to explore all possible inter-
leavings of the two sequences, and compare their results to the abstract model,
which would be prohibitively expensive. However, we discovered that a simple
depth-first search, cut off as soon as the interleaving prefix was inconsistent with
the actual results, gave a fast testable property.

Initially, testing succeeded—because the Erlang scheduler allocates quite long
time slices, and so although we spawned two parallel processes, each one ran
to completion within its first time-slice. But then we instrumented the imple-
mentation of the registry with calls to yield() between atomic operations, thus
ensuring that execution of our two processes would indeed be interleaved. As soon
as we did so, we began to find errors. Moreover, they were repeatable, because
by calling yield() so often, we were effectively using cooperative multi-tasking

QuickCheck Testing for Fun and Profit 27

instead of the pre-emptive variant, and since the Erlang scheduler is actually a
deterministic algorithm, it schedules cooperatively multi-tasking programs in a
deterministic way. This form of testing proved to be very effective, and ultimately
forced a complete redesign of the distributed process registry.

In another experiment, Hans Svensson applied QuickCheck to fault-tolerant
distributed leader election algorithms [1]. In such algorithms, a group of nodes
elect one to be the “leader”, for example to maintain a global state. If the
current leader crashes, a new one must be elected, and something sensible must
also happen if a crashed leader recovers. Correctness properties include that a
leader is eventually elected, and all nodes informed of its identity, and that there
are never two leaders at the same time.

Svensson used an extension of QuickCheck which records a trace of events,
and—by acknowledging events at random—controls the scheduling in ths system
under test. The recorded traces then revealed whether or not testing succeeded.

Svensson began by testing an open source implementation by Thomas Arts
and Ulf Wiger, already in use in the Erlang community. QuickCheck (and an-
other random testing tool) revealed problems so severe that the code had to
be abandoned. Svensson implemented a different algorithm due to Stoller [17],
whose proof of correctness supplied many lemmata that could be tested by
QuickCheck. Interestingly, QuickCheck revealed an error here too, connected
with the way that node crashes are detected in Erlang, but it was easily fixed.

Both algorithms were proven correct in the literature, but their implementa-
tions did not work. The underlying reason is interesting: theoretical papers quite
rightly make simplifying assumptions about the environment the algorithm will
be used in, but real systems do not fulfill them precisely. Practitioners need
to adapt the algorithms to the real situation, but then the correctness proofs
no longer really apply. In fact, the assumptions are rarely even stated formally,
with the result that we cannot really say whether the bug in the second im-
plementation is also present in Stoller’s paper—it depends on an aspect of the
environment where Stoller’s assumptions are not 100% precise.

Thus another way to use QuickCheck is to gain confidence that a formally
verified algorithm has been correctly transferred to a real situation!

9 Testing Imperative Code

Can QuickCheck testing be applied to code written in imperative languages?
Certainly it can! In fact, we tested the Media Proxy by sending it Megaco com-
mands over TCP/IP—the fact that the Proxy software itself was also written in
Erlang was quite irrelevant. In one of our follow-up projects, the system under
test is actually written in C++, but this requires no changes at all in the ap-
proach. Provided we can conveniently invoke the system under test from Erlang
or Haskell, then we can test it using QuickCheck.

But what if we just want to test a C or C++ API, for example, rather than
a system that obeys commands sent over a network? Koen Claessen has worked
extensively on this. One quite successful approach is just to generate random

28 J. Hughes

C programs that exercise the API, and compile and run them in each test! C
compilers are fast enough to make this practical. Another method is to generate
an interpreter for API calls from an API specification, link that interpreter with
the code under test, and run it in a separate process. QuickCheck can then be
used to generate sequences of calls which are sent to the interpreter for execution,
and to check the results which are sent back. By using this approach, Claessen
has found (and simplified) many bugs in C++ applications.

Would it make more sense to make a native version of QuickCheck for C or
C++? In fact, Claessen has done this too. The result was certainly fast, but
ultimately, not as satisfactory. Remember that QuickCheck code consists not
only of random generators, but usually also of a formal model of the system
under test. QuickCheck is most effective if these models can be built simply
and easily, and here, declarative programming languages are playing to their
strengths. In comparison, a native imperative version is clumsy to use.

In fact, I believe that testing code is a very promising application area for
declarative languages. It is not performance-critical, and since it does not form
a part of the final system, the constraints on choice of programming language
are much looser than usual. Indeed, it is already quite common to use a separate
test scripting language, different from the implementation language of the code
under test—so why shouldn’t that language be declarative? I believe that the
barriers to adopting declarative languages are much lower in this area than for
programming in general—particularly if that makes a tool such as QuickCheck
more convenient to use. Time will tell if I am correct!

10 Erlang vs. Haskell

It is interesting to compare Erlang and Haskell as host languages for QuickCheck.
We initially expected an Erlang version to be a little clumsier to use than the
Haskell original, because of the lack of lazy evaluation, Haskell’s type system,
and monadic syntax (see section 5). Yet the difficulties these caused turned out
to be minor. On the other hand, Erlang’s lack of a type system turned out to
bring unexpected benefits. For example, the Haskell QuickCheck generator for
times of day, represented as pairs of hours and minutes, is

liftM2 (,) (choose 0 23) (choose 0 59)

(where (,) is the pairing operator, and liftM2 lifts it to operate on monadic
values). The Erlang QuickCheck generator is

{choose(0,23), choose(0,59)}

(where {X,Y} is Erlang’s notation for pairs). The Erlang notation is more con-
cise and intuitive, and definitely easier to sell to customers! In general, Quviq
QuickCheck permits any data-structure containing embedded generators to be
used as a generator for data-structures of that shape—something which is very
convenient for users, but quite impossible in Haskell, where embedding a gener-
ator in a data-structure would normally result in a type error. This technique is
used throughout the generators written at Ericsson.

QuickCheck Testing for Fun and Profit 29

Moreover, our approach to state machine testing involved symbolic represen-
tations of programs. In Haskell, we would need to define a datatype to represent
function calls, with one constructor per function under test, and write an inter-
preter for those calls—just as we did in section 2 for insert and deleteMin.
In Erlang, we could represent a call just by two atoms and a (heterogenous)
argument list, and provide a single generic interpreter run_commands, thanks
to Erlang’s ability to call a function given only its name and arguments. This
reduces the programming effort for the library user quite significantly.

Of course, the penalty for using Erlang is that type errors are not found by
a type checker! Instead they must be found by testing. . . but this is easier than
usual thanks to QuickCheck. We made many type errors when constructing the
complex datatype of messages intended for the Media Proxy—but we found
them immediately by testing that all messages we generated could be encoded
to ASCII, and decoded again. Far from being second best, we conclude that
Erlang is actually a very suitable host language for QuickCheck!

11 Discussion

Random testing is an old technique [10], which is attracting renewed interest—
as shown, for example, by the new International Workshop on Random Testing,
first held this year. It has been very successful for so-called fuzz testing, where
nonsense inputs are supplied to try to provoke software to crash [14]—“monkey
testing” of GUIs is an example of this. Random testing is more difficult to apply
for positive testing, where meaningful inputs are supplied to the software under
test, and its correct behaviour is tested. QuickCheck’s flexible control of random
generation makes it particularly suitable for this task.

Shrinking failing test cases is a powerful diagnostic technique, due to Hilde-
brandt and Zeller [11], who used it, for example, to shrink a test case that
crashed Mozilla from 95 user actions on a web page consisting of almost 900
lines of HTML, to three user actions on one line of HTML ! Their delta debug-
ging method starts from two tests, a successful one and a failing one, and uses a
generic algorithm to search the space between them for two most-similar tests,
one successful, and one failing. QuickCheck searches only from a failed test,
towards smaller test cases, but using arbitrary user-defined shrinking methods.

Even though shrinking is powerful, we find it works best when the original
failing test is not too large. New QuickCheck users are often tempted to generate
large test cases, probably because doing so by hand is labour intensive, while
using QuickCheck it is easy. Yet large test cases run slowly—so fewer tests can be
run in a reasonable time—and when they fail, the reason is hard to understand.
Shrinking them is at best time consuming (because many tests must be run), and
at worst, may not result in as small a failing test as possible. In our experience,
it is better to run many, many small tests, rather than a smaller number of
large ones. Most errors can be provoked by a small test case, once the error
is understood—and it is these small test cases which we want QuickCheck to
find.

30 J. Hughes

There are, of course, errors that no small test can find, such as errors that
occur when a large table overflows. We encountered such an error when testing an
implementation of purely function arrays, represented as binary trees with lists of
up to ten elements in the leaves. An optimised array construction function failed
when constructing a tree more than two levels deep. . . that is, with more than
40 elements. QuickCheck rarely provoked this case, until we explicitly increased
the test size. Yet, in such cases, the software should still work if the table were
smaller, or if the lists in the leaves were up to three elements, rather than ten—so
why not reduce these constants for testing? Doing so makes the boundary cases
much more likely to be exercised, and so increases the probability of revealing
errors. When looking for a needle in a haystack, nothing helps so much as making
the haystack smaller!

We have found that a complete formal specification of the code under test
is often unnecessary. Simple properties are often enough to reveal even subtle
errors, which is good news for testers. A nice example is our discovery of data-
structure corruption in the Media Proxy, using properties which only interact
with it via protocol commands. However, more precise specifications may find
errors with fewer tests, and find smaller failing cases, because the error is revealed
faster. In our example, a single Add and Subtract would have been sufficient to
reveal the corruption, instead of the seven-command sequence we found.

One subtle change that QuickCheck brings about is a change in the economic
value of failing test cases. Developers tend to pounce on the first failing case,
re-run it, turn on debugging and tracing, and generally invest a lot of effort in
understanding that particular case. When test cases are constructed painfully by
hand, or even reported in the field, then this makes sense—test cases are valu-
able, compared to the developer’s time. When a new failing case can be generated
in seconds, then this no longer makes sense. Perhaps the next run of QuickCheck
will find a smaller case, and save much diagnostic effort! It makes sense to gener-
ate several failing cases, and choose the simplest to work with, rather than rush
into debugging as soon as the first failure is found. Or, if the cases found are
overcomplex, it may be worthwhile to improve the shrinking strategy, and see
whether that leads to a simpler case to debug. Improved shrinking may bring
benefits in many future tests as well, so the effort is well invested.

We have found that testing with QuickCheck is perceived as quite difficult
by developers. It is initially hard to see what to test, and the temptation is to
make minor random variation of parameter values, rather than formulate more
general properties. Using QuickCheck successfully is close in spirit to finding a
good way to formalise a problem—which has occupied plenty of researchers over
the years! It is therefore important to develop good “model specifications” that
developers can follow, and to simplify, simplify, simplify the use of QuickCheck
as much as possible. A good example of this is our state machine testing library,
which is built entirely on top of the QuickCheck core. In principle, this could
have been written by any user—but in practice, if it took me four iterations
to get the design right, after seven years experience of QuickCheck, then it is
unreasonable to expect new users to develop such toolkits for themselves.

QuickCheck Testing for Fun and Profit 31

Thomas Arts and I have founded a start-up, Quviq AB, to develop and
market Quviq QuickCheck. Interestingly, this is the second implementation of
QuickCheck for Erlang. The first was presented at the Erlang User Conference
in 2003, and made available on the web. Despite enthusiasm at the conference, it
was never adopted in industry. We tried to give away the technology, and it didn’t
work! So now we are selling it, with considerably more success. Of course, Quviq
QuickCheck is no longer the same product that was offered in 2003—it has been
improved in many ways, adapted in the light of customers’ experience, extended
to be simpler to apply to customers’ problems, and is available together with
training courses and consultancy. That is, we are putting a great deal of work
into helping customers adopt the technology. It was naive to expect that simply
putting source code on the web would suffice to make that happen, and it would
also be unreasonable to expect funding agencies to pay for all the work involved.
In that light, starting a company is a natural way for a researcher to make an
impact on industrial practice—and so far, at least, it seems to be succeeding.

Finally, recall that Koen Claessen and I originally developed QuickCheck for
fun. Perhaps for that very reason, using QuickCheck is fun! We see developers
on our courses filled with enthusiasm, raring to test their code. Testing is not
always seen to be so alluring—indeed, it is often regarded as something of a
chore. QuickCheck really makes testing fun—and that, in itself, is a worthwhile
achievement.

Acknowledgements

Most of the material in this paper is based on joint work, with my colleages Koen
Claessen and Hans Svensson at Chalmers, Thomas Arts at the IT University in
Gothenburg, and Ulf Wiger and Joakim Johansson at Ericsson. Time constraints
made it impossible to write this paper together, but their contributions are here
nonetheless. Any mistakes are, of course, my own!

References

1. Thomas Arts, Koen Claessen, John Hughes, and Hans Svensson. Testing imple-
mentations of formally verified algorithms. In Proceedings of the 5th Conference
on Software Engineering Research and Practice in Sweden, 2005.

2. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-
drusek, S. Rajamani, and A. Ustuner. Thorough static analysis of device drivers.
In EuroSys 2006, 2006.

3. Kent Beck. Extreme Programming Explained: Embrace Change, Second Edition.
Addison Wesley Professional, second edition, November 2004.

4. Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random test-
ing of haskell programs. In ICFP ’00: Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming, pages 268–279, New York,
NY, USA, 2000. ACM Press.

5. Koen Claessen and John Hughes. Testing monadic code with quickcheck. In Haskell
’02: Proceedings of the 2002 ACM SIGPLAN workshop on Haskell, pages 65–77,
New York, NY, USA, 2002. ACM Press.

32 J. Hughes

6. Koen Claessen and John Hughes. Specification-based testing with QuickCheck. In
Jeremy Gibbons and Oege de Moor, editors, Fun of Programming, Cornerstones of
Computing. Palgrave, March 2003.

7. Koen Claessen, Colin Runciman, Olaf Chitil, John Hughes, and Malcolm Wallace.
Testing and tracing lazy functional programs using quickcheck and hat. In Jo-
han Jeuring and Simon Peyton Jones, editors, 4th Summer School in Advanced
Functional Programming, volume 2638 of LNCS. Springer, 2003.

8. Mark Fewster and Dorothy Graham. Software test automation: effective use of test
execution tools. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
1999.

9. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming Language Design and Imple-
mentation (PLDI’2002), volume 37, pages 234–245, June 2002.

10. Dick Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia of Software
Engineering, pages 970–978. Wiley, 1994.

11. Ralf Hildebrandt and Andreas Zeller. Simplifying failure-inducing input. In ISSTA
’00: Proceedings of the 2000 ACM SIGSOFT international symposium on Software
testing and analysis, pages 135–145, New York, NY, USA, 2000. ACM Press.

12. Xavier Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In POPL, pages 42–54, 2006.

13. John Marciniak and Robert Vienneau. Software engineering baselines. Technical
report, Data and Analysis Center for Software, 1996. http://www.dacs.dtic.mil/
techs/baselines/.

14. Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the
reliability of unix utilities. Commun. ACM, 33(12):32–44, 1990.

15. Chris Okasaki. Fun with binary heap trees. In Jeremy Gibbons and Oege de Moor,
editors, Fun of Programming, Cornerstones of Computing, pages 1–16. Palgrave,
March 2003.

16. Telecommunication Standardization sector of ITU. ITU-T Rec. H248.1, gate-
way control protocol. Technical report, International Telecommunication Union,
September 2005.

17. S. Stoller. Leader election in distributed systems with crash failures. Technical
Report 169, Indiana University, 1997.

18. Ulf Wiger, Gösta Ask, and Kent Boortz. World-class product certification
using erlang. SIGPLAN Not., 37(12):25–34, 2002.

	Introduction
	A Simple Example: Skew Heaps
	Software Testing
	Shrinking
	Quviq QuickCheck
	State Machine Specifications
	Ericsson's Media Proxy
	Concurrency
	Testing Imperative Code
	Erlang vs. Haskell
	Discussion

