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Introduction

Assumptions concerning the probability distribution and the dynamic of asset

returns are among the most important aspects in financial modelling, due to their

implications on asset pricing and risk evaluation and management.

Since the early work due to Bachelier (1900), the dynamic of asset prices is assumed

to be a Gaussian stochastic process. In order to guarantee the positivity of the price,

successive studies slightly modify this hypothesis by assuming that the dynamic of

the logarithm of the price is a Gaussian process. The use of the Gaussian hypothesis

allows to obtain analytical solutions in many problems of asset pricing, asset portfolio

management and risk evaluation.

Nevertheless, Gaussian models often fails to produce satisfactory results when

applied to real data. Many contributions in the literature, see for example Fama

(1965), Fama and Roll (1968), Mandelbrot (1963), Barnes and Downes (1973) and

the more recent study due to Mandelbrot (1990), evidenced how observed asset

returns exhibit asymmetry, excess of kurtosis and multi-modality, which leads to

the rejection of the normality hypothesis. These features are present on financial

data when observed with a monthly frequency and become clearer when data are

collected with higher frequencies (i.e. weekly or daily). In order to account for

these features it is necessary to introduce different assumptions on asset return

distribution.

The first aim of this thesis is to remove the Gaussian distribution and the linearity

assumptions in some well know financial models. We consider asset portfolio models

with shortfall constrains, non-Gaussian asset return distributions and dynamics.

The inference process on these models becomes difficult and classical Maximum

Likelihood (ML) approach exhibits some limitations.

The second aim is to provide inference tools for nonlinear and non-Gaussian
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financial models. We choose to apply Bayesian approach to statistical inference due

to its strong probabilistic basis and to the great flexibility of the approach. Moreover

the Bayesian framework is strictly related to decision theory and this feature gives

a strong economic interpretability to results obtained through Bayesian inference.

The first element of flexibility of the Bayesian framework, with respect to the ML

approach, regards the way to put constrains on the parameters of an econometric

model. In fact a prior distribution is a versatile instrument to reach this goal.

Furthermore in the ML approach, the presence of multiple local maximum makes

difficult the choice of the estimator and implies that the standard asymptotic

theory for ML estimation and the test theory don’t apply. The Bayesian approach

avoids these problem as parameters are random variables, with prior and posterior

distributions defined on the parameter space. Posterior distribution contains all the

information on the parameters. and point estimates are obtained by averaging over

the parameter space, weighting by the posterior distribution of the parameters or

by the simulated posterior distribution.

Moreover variable dimension problems can be easily treated in the Bayesian

approach and this allows to make inference also on the dimension of the model

using simulation techniques such as Reversible Jump Markov Chain Monte Carlo or

Birth and Death Markov Chain Monte Carlo.

Recently the flexibility of the Bayesian modelling has been rediscovered in making

inference on dynamic models, indeed in this context, the ML approach has several

limitations. First inference on unobservable variables can be carried out only

conditionally on the parameters of the model, thus neglecting the variability of

the parameters’ estimators. Secondly the state space representation of complex and

parameterized models is not always available. The Bayesian approach, which allows

to joint estimate hidden states and unknown parameters and provides a general

state space representation also for nonlinear and non-Gaussian models, overcome

these difficulties. Furthermore, due to this general way of representing stochastic

dynamic models, traditional Markov Chain Monte Carlo simulation techniques and

recently developed sequential simulation methods, like particle filters, can be easily

applied.

Within the Bayesian framework, analytical solutions of the estimation problem

do not often exist and numerical solution is needed. Thus Monte Carlo simulation
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methods, such as Markov Chain Monte Carlo (MCMC), become a natural way for

making inference since they can be included in the inference process in immediate

way. The use of simulations introduces a computational complexity instance.

However in the last decade, the increase in the computational speed and power

of computers gives a strong impulse to the Bayesian framework.

An important aim of this thesis is to show how traditional and recently developed

Monte Carlo simulation techniques result particularly useful in the analysis of non-

linear and non-Gaussian financial models.

In particular we start analysing (Chapter 4) a portfolio optimisation problem,

with shortfall constrains. We remove the traditional hypothesis of Gaussian

distributed asset returns introducing heavy tail distributions and suggest to use

Monte Carlo simulation method to solve the resulting optimisation problem.

Furthermore we study (Chapter 5) the use of mixtures of non-Gaussian distribution

in making empirical evidence on financial data. We suggest the use of the mixtures

of α-stable distributions and provide a Bayesian model to make inference on

the mixture. We show how the use of the Markov Chain Monte Carlo method

becomes fundamental to solve the estimation problem. Finally we treat simulation

base inference methods on discrete time dynamic models for financial time series.

We provide (Chapter 2) an updated review of the Bayesian simulation based

inference for dynamic econometric models. Then we focus (Chapter 6) on stochastic

volatility models with Markovian jumps and with a non-Gaussian innovation process.

Inference on this kind of models is particularly difficult due to the stochastic

structure of the model that exhibit two levels of latent processes. We study how

sequential Monte Carlo methods apply to this generalised stochastic volatility model

in order to make inference on the hidden log-volatility and Markov jump processes

and on the parameters of the model.

In the following the give a detailed description of the thesis contents. This thesis

can be divided in two parts. The first one corresponds to chapters one, two and

three. It reviews simulation methods and serves as introduction to the research work

developed in the second part, which corresponds to chapters four, five and six.

The first chapter introduces to Monte Carlo methods and motivates the use of

simulation for the numerical solution of integration problems, which arise when

treating financial models; for example, when making inference in a Bayesian
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framework both on static and dynamic probability models or solving portfolio

optimisation problems. We review, also through some examples, the simulation

techniques, which will be used in the subsequent chapters. In particular we introduce

importance sampling, accept/reject and finally Markov chain Monte Carlo methods.

The second chapter deals with the time evolution of the financial variables, which

represents an important issue in financial econometrics. Stochastic dynamic models

allow to describe more accurately many features of the financial variables. An

accurate financial modelling is relevant not only in forecasting and asset pricing,

but also in a risk evaluation and management perspective.

Many time-varying phenomena can be represented through dynamic models, but

often there is a trade-off between the modelling accuracy and the complexity of the

resulting model. Moreover the degree of complexity is increased by the use of latent

factors. In time series analysis, latent factors are often introduced to model the

heterogeneous time evolution of the observed process. The presence of unobserved

components makes the maximum likelihood inference more difficult to apply. A

Bayesian approach is thus preferable since it allows to treat general state space

models and makes easier the simulation based approach to parameters estimation

and latent factors filtering.

The main aim of the chapter two is to define a Bayesian dynamic model and

the related inference problems of parameters estimation and hidden states filtering.

Furthermore the chapter analyses the simulation based inference and show how

traditional simulation methods, like the single-move Gibbs sampler and the multi-

move Gibbs sampler apply to a dynamic model. Finally the chapter introduces

recently developed sequential Monte Carlo simulation methods, focusing on Particle

Filters. Throughout the chapter, many examples illustrate how Bayesian simulation

based inference apply to basic Stochastic Volatility and Business Cycle models.

In Chapter three we make some empirical analysis on financial data in order

to evidence some basic features of financial time series. This chapter shows how

skewness, excess of kurtosis, multi-modality and volatility clustering characterize

the evolution of asset prices of both the stock and bond markets and also of the

liquidity market. This chapter motivates the use of non-linear and non-Gaussian

models, which will be developed in the subsequent chapters.
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Chapter four deals with portfolio models. In asset allocation problems financial

managers generally assume normally distributed returns even if extreme realizations

usually have an higher frequency than in the Gaussian case. This specification error

conducts to an effective risk of the portfolio which is higher than the theoretical

one. We propose stochastic optimisation based on a Monte Carlo simulation

approach, to solve an asset allocation problem, with shortfall constraint and to

evaluate the exact portfolio risk-level, in presence of misspecified tails behaviour.

We assume that returns are generated by a multivariate Student-t distribution,

while in reality returns come from a multivariate distribution where each marginal

is a Student-t but with different degrees of freedom. Stochastic optimisation allows

us to value the effective risk for managers. In the specific case analysed, we

also found that a multivariate density resulting from different Student-t marginal

distributions produces a shortfall probability and a shortfall return level that

can be well approximated by assuming a multivariate Student-t with adequately

degrees of freedom. The proposed stochastic optimisation approach could be

an important instrument for investors who need a qualitative assessment of the

reliability and sensitivity of their investment strategies when their models are

potentially misspecified.

In Chapter five we propose a flexible parametric model for asset returns and

suggest inference tools for the parameter estimation. In financial modelling the

Gaussian distribution results unsatisfactory and reveals difficulties in fitting data

with skewness, heavy tails and multimodality, thus α-stable distributions have been

considered. The use of these distributions allows for modelling skewness and heavy

tails but gives rise to inferential problems related to the parameter estimation. We

generalise the stable distribution framework by introducing a model that accounts

also for multimodality. In particular we introduce a stable mixture model and a

suitable reparameterisation of the mixture, which allow us to make inference on the

mixture parameters. We develop a full Bayesian approach and MCMC simulation

techniques for the estimation of the posterior distribution.

Chapter six deals with dynamic modelling of financial data. First we briefly

review some stochastic volatility (SV) models proposed in the literature. These

models allow to account for time-varying volatility and for clustering in volatility.

Secondly we focus on SV models with jumps and propose a Markov Switching
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Stochastic Volatility (MSSV) model, with an heavy tail observable process. Due to

the economic interpretation of the hidden volatility regimes, these models have many

financial applications like asset allocation, option pricing and risk management.

The Markov switching process is able to capture clustering effects and jumps in

volatility. Heavy tail innovations account for extreme variations in the observed

process. Accurate modelling of the tails is important when estimating quantiles is

the major interest like in risk management applications.

The second important aim of the chapter is to deal with inference on heavy tails

MSSV models. We follow a Bayesian approach to state filtering and parameter

estimation, focusing on recently developed simulation based filtering techniques,

called Particle Filter (PF). Simulation based filters are sequential Monte Carlo

algorithms, which are useful when assuming non-linear and non-Gaussian latent

variable models and when processing data sequentially. We study how auxiliary

particle filters behave for heavy tail latent variables model. Furthermore we analyse

how PF apply to heavy tails MSSV model in order to update parameter estimates

and state filtering as new observations become available.

This thesis has been developed during a one year working experience at GRETA

Ass., University of Venice and a two year visiting period at CEREMADE, University

Paris IX (Dauphine). The following research works come from this thesis

- Casarin R. and Gobbo M., (2002), ”Metodi Monte Carlo per la valutazione

di opzioni finanziarie”, in Proceedings of the Summer School in Quantitative

Finance, Auronzo di Cadore 29-31 May 2002, Departments of Applied

Mathematics, University Ca’ Foscari of Venice.

- Billio M. Casarin R. and Sartore D., (2003), ”Bayesian inference in dynamic

models with latent factors”, forthcoming, Monography of Official Statistics,

edited by Eurostat. Presented at the 4th Colloquium on Modern Tools for

Business Cycle Analysis in Luxembourg on 20-22 October 2003.

- Billio M. and Casarin R., (2003), ”Extreme Returns in a Shortfall Risk

Framework”, in Atti della giornata di studio Metodi Numerici per la Finanza,

30 May 2003, Applied Mathematics Department, University ”Ca’ Foscari”,

Venice.
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- Billio M., Casarin R. and Toniolo G., (2002), ”Extreme Returns in a Shortfall

Risk Framework”, Working Paper, GRETA n. 0204 and in Proceedings of

8th International Conference Forecasting Financial Markets Meeting, London

2002.

- Casarin, R., (2004), ”Bayesian Inference for Mixture of Stable Distributions”,

forthcoming, Working Paper CEREMADE. Presented at the Young

Statistician Meeting, Cambridge 14-15 April 2003.

- Casarin, R., (2003), ”Bayesian Inference for Mixture of Stable Distributions”,

in Atti del Convegno Modelli Complessi e Metodi Computazionali Intensivi

per la Stima e la Previsione , 4-6 Semptember 2003, Statistics Department,

University ” Ca’ Foscari”, Venice.

- Casarin, R., (2004),”Bayesian Inference for Markov Switching Stochastic

Volatility Models”, forthcoming, Working Paper CEREMADE. Presented at

the 4th International Workshop on Objective Bayesian Methodology, CNRS,

Aussois, 15-20 June 2003. It received the Springer’s Award as best poster

session.
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Chapter 1

Monte Carlo Methods

1.1 Integration Problems

In financial modelling and when making inference on financial data many integration

problems arise and the analytical solution is often not available. Moreover it is often

necessary to integrate functions over a high dimensional space. In the next section

we will show how these kind of problems arise, for example, in a Bayesian inference

context. In the following we will adopt a notation similar to the one in Robert and

Casella [8].

Assume we are interested in the solution of the following integration problem

Ep (g(X)) =

∫

. . .

∫

g(x)p(x)dx (1.1)

where p(x) is the probability distribution function (p.d.f.) of the random variable

X and g(x) is an arbitrary function, whose expectation is finite. If this integral does

not admit an analytical solution numerical methods are needed.

The most straightforward approach consists in discretising the domain of the

function g(x)p(x), with a finite set of points. Then the multiple integral can

be approximated through a multiple summation. Consider a two dimensional

integration problem, x = (x1, x2), the numerical approximation of the integral is

Ep (g(X)) ≈ 1

N2

N∑

i=1

N∑

j=1

g(xi,j)p(xi,j)∆
2 (1.2)

where xi,j = (x+ i∆, x+ j∆)′. We assume x and x are the minimum value and the

9
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maximum value respectively of both x1 and x2. Thus the length of the interval is

∆ = x− x.

This basic numerical integration method becomes inefficient for high dimension

integration problems and although many modifications of the method have been

proposed, they exhibit the same inefficiency problem. Thus an alternative method

is needed. In particular Monte Carlo simulation methods allow to perform efficient

numerical integration also in high dimension problems.

1.1.1 The Bayesian Paradigm

In the following we briefly review the integration problems which arise when making

inference. Due to its recent diffusion in the financial econometric literature, we focus

on the Bayesian approach to statistical inference, which represents an alternative

to the frequentist approach. Bayesian inference has been recently rediscovered

in finance because the approach is strongly based on probability theory and also

on decision theory, and this allows to give to inference results also an economic

interpretation. Furthermore Bayesian approach allows a greater flexibility in

stochastic modelling and in using simulation methods to solve complex problems.

The Bayes’ theorem is the probabilistic result which plays a central role in

Bayesian inference.

Theorem 1.1.1. (Bayes’ theorem)

Given the probability space Ω, if A,B ∈ Ω are two events such that P (B) 6= 0 then

P (A|B) =
P (B|A)P (A)

P (B)
(1.3)

Let X be the observation space and Θ the parameter space. We assume that

the random variable x ∈ X follows a distribution in the parametric distribution

family p(x|θ), with θ ∈ Θ. A Bayesian statistical model is defined by considering

the unknown parameters θ as a random variable, with a prior distribution π(θ),

defined on the parameter space.

By applying the Bayes’ theorem for continuous random variables, we obtain the
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posterior distribution of the parameters

π(θ|x) =
p(x|θ)π(θ)

∫

X

p(x|θ)π(θ)dθ
=
p(x|θ)π(θ)

p(x)
(1.4)

where p(x|θ)π(θ) is the joint distribution and p(x) is the marginal distribution of x.

The Bayesian theorem can be interpreted as a learning process, because it allows

to include in the posterior distribution of θ, the information on θ contained in the

observation x. One of the advantage in using the Bayesian approach for inference

is that the whole posterior distribution of the parameter is available and not only a

point estimate of the parameter, as in classical inference.

In order to complete the description of the Bayesian inference approach we use a

Bayesian Decision Theory framework. The solution to a statistical inference problem

is thus a decision d ∈ D, defined on the decision space, D. When making inference

on θ, the decision space is just the parameter space: D = Θ. Moreover we introduce

a decision criteria, called loss function, L(θ, d), which is an application from Θ×D
in [0,+∞).

The best decision is called Bayes estimator and is obtained by minimizing the

expected value, taken with respect to p(x) and π(θ|x), of the loss function.

Definition 1.1.1. (Bayes estimator)

Given a prior distribution π and a loss function L, the Bayes estimator, δπ of θ is

δπ(x) = arg inf
δ∈D

∫

X

∫

Θ

L(θ, δ(x))p(x|θ)π(x)dθdx (1.5)

A very commonly used loss function is the squared error loss: L(θ, d) = (θ−d)2. As

stated in the following theorem, if the loss is a quadratic function then the Bayes

estimator is the posterior mean (see Robert [7]).

Theorem 1.1.2. Given a prior distribution π and a quadratic loss function, the

Bayes estimator is the mean of the posterior distribution

δπ(x) = Eπ(θ|x) (θ) =

∫

Θ
θp(x|θ)π(θ)dθ

∫

Θ
p(x|θ)π(θ)dθ

(1.6)

We conclude that the posterior distribution gives all the information for the

parameter inference. However, it is often not easy to find an analytical solution of
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the integration problem given in equation (1.4), thus a numerical approximation is

needed. In particular Monte Carlo simulation methods (see section 1.2) are widely

used integration techniques, which reveal extremely efficient in high dimension

problems. In the literature on Bayesian inference, Markov Chain Monte Carlo

methods (see section 1.3) play a central role, because they represent flexible

simulation techniques that apply also to complex posterior distribution, requiring

to know the posterior of interest only up to a proportionality constant.

1.2 Monte Carlo Methods

Monte Carlo methods allow to generate random values from a desired distribution.

Through sequences of random numbers it is possible to approximate and to solve

numerically many problems involving stochastic quantities, which have not an

analytical solution. The main idea is to replace stochastic quantities in the problem

by simulated random numbers. The method has been introduced in physics by Ulam

and Von Neumann [11] and then becomes popular in other fields like finance (Boyle

[1]), statistics (Geman and Geman [3]).

In order to solve the integration problem given in Equation (1.1) through the

Monte Carlo simulation method, we generate a sequence of N random values

{x1, . . . ,xN} from the distribution p(x) and approximate the integral by the

following Monte Carlo estimator

Ep (g(x)) ≈ 1

N

N∑

i=1

g(xi) (1.7)

which is defined for any function g(x) and for every distribution p(x). By the laws of

large numbers this estimator converges to Ep (g(x)) with N → ∞. The variance of

the Monte Carlo estimator can be reduced through variance reduction methods (also

called acceleration methods), like antithetic variables, stratified sampling, control

variables methods (see Casella and Robert [8] for statistical applications and Dupire

B. [2] for a review on financial applications).

One of the main issue in stochastic simulation is the generation of random values

from a given distribution.

Uniform random number generation represents the first step in Monte Carlo



13

simulation, the other random variables simulation methods being based on the

generation of uniforms. The key idea in generating random numbers or pseudo-

random numbers is to produce, through an algorithm, a sequence of numbers which

exhibit all the features of a random phenomena. These features can be tested

through some tests, like goodness of fit tests, autocorrelation, runs test, etc. (see

Ripley [6] for further details).

A widely used algorithm is the linear congruential method. The sequence, {Xn}n,

of pseudo-random number is generated as follows

Xn+1 = (Xna+ b)modM (1.8)

where a, b and M are parameters of the algorithm which determines the number

of iterations before repeated values are generated (periodicity). If b = 0, then

the random number generator is called multiplicative congruential method. For a

right setting of this parameter see Press et al. [5]. From the sequence of random

numbers {Xn}n, it is possible to generate numbers, {Un}n, uniformly distributed in

the interval [0, 1), by means of the following transformation

Un =
Xn

M
(1.9)

Once uniform pseudo-random number have been generated it is possible to simulate

random values from any desired distribution by means of other algorithms.

In the one dimensional case the straightforward way to generate a random values

from p(x) is to apply the inverse cumulative distribution function (c.d.f.) method. If

the c.d.f. F (x) of p(x) is known and can be inverted, then a uniform pseudo-random

value u ∼ U[0,1] can be used to generate a random value x from p(x). By applying

the generalized inverse c.d.f. to u

F−(x) = inf {x|F (x) ≥ u} (1.10)

it follows that x ∼ p(x) (see Ripley [6]). In the following example we show how to

generate random values from a Weibull distribution through the inverse cumulative

density function method.
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Figure 1.1: The histogram represents 10,000 drawn from a Weibull distribution,
We(1.5, 0.5). The line indicates the true p.d.f.

Example 1.2.1 - Weibull distribution

Consider the Weibull distribution We(α, λ)

p(x) = αxα−1eλ−eλxα

I[0,∞)(x) (1.11)

then the c.d.f. and its inverse are

F (x) = 1 − e−eλxα ⇐⇒ F−(u) =

(

− ln(1 − u)

eλ

) 1
α

(1.12)

respectively. In order to simulate {x1, . . . , xN}, withN = 10.000, from We(1.5, .0.5),

we generate uniform pseudo-random numbers {u1, . . . , uN} through the mixed linear

congruential algorithm (with seed = 9) and then apply the inverse c.d.f. to these

uniform numbers. Figure 1.1 shows the true density and the histogram of the

simulated random values.

�

If the random variable x does not admit the inverse c.d.f. then it is possible to

apply other methods like Accept/Reject and Importance Sampling, which allow to

generate values from the distribution of interest by simulating from an instrumental

distribution.
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1.2.1 Importance Sampling

The key idea used in importance sampling is to generate random values through

an instrumental distribution q(x), called importance distribution, and to correct the

resulting simulated function by means of the ratio between the true density and the

instrumental density

Ep (g(X)) =

∫

g(x)p(x)dx =

∫

g(x)
p(x)

q(x)
q(x)dx = (1.13)

= Eq (g(X)w(X)) ≈ 1

N

N∑

i=1

g(xi)w(xi)

where

w(xi) =
p(xi)

q(xi)
, i = 1, . . . , N (1.14)

are called importance weights. The resulting Monte Carlo estimator is unbiased

and converges to Ep (g(X)) as N → ∞, whatever the choice of the instrumental

distribution q and as long as supp(q) ⊃ supp(p). Note however that a good choice

of the distribution q may reduce the variance of the estimator, which is

Eq(g
2(X)

p2(X)

q2(X)
) = Ep(g

2(X)
p(X)

q(X)
) (1.15)

Therefore instrumental distributions with tails lighter than those of p are not

appropriate for importance sampling. Moreover if the ratio p/q is unbounded then

importance weights vary widely giving too much importance to a few values xi. If

the ratio p/q is bounded, then the instrumental distribution can be used also for an

Accept/Reject algorithm (see example 1.2.2).

In order to improve the efficiency of the Monte Carlo estimator an alternative is

to use the following importance sampling estimator

Ep (g(X)) ≈
1
N

∑N
i=1 g(xi)w(xi)

1
N

∑N
i=1w(xi)

(1.16)

where w(x) are the importance weights. Note however that the estimator is no more

unbiased because the quantity at the denominator is a random variable (see Casella

and Robert [8]).
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1.2.2 Accept-Reject

This method is similar to the importance sampling and allows to simulate from the

target distribution, p(x), by simulating from an instrumental distribution f(x). The

method is particularly useful because the knowledge of the target distribution, up

to a multiplicative constant, is required

p(x) ≤Mf(x) (1.17)

moreover the ratio between the instrumental and the target distributions must be

bounded. The algorithm consists in generating X ∼ f(X) and U ∼ U[0,1] and to

accept the proposed value X if U ≤ p(X)/Mg(X). If reject a new pair (X,U)

must be simulated. All the accepted values follow the target distribution p(x) (see

Casella and Robert [8]). In the literature many extensions of the basic Accept/Reject

algorithm have been proposed. For example, the Envelope Accept/Reject method

(also called Extended Rejection Method, see for example Press et al. [5] and

Rubinstein [9]), is particularly useful when evaluating the target distribution requires

high computing time. By means of a second auxiliary distribution the evaluation

of the target distribution is avoided. Another extension is the Adaptive Rejection

Sampling, which works for log-concave densities and represents a universal sampling

method (see Casella and Robert [8]).

We show, through the example (1.2.2), how importance sampling and Accept-Reject

algorithms apply to the simulation of a Student-t distribution.

Example 1.2.2 - A comparison between Monte Carlo estimators

The Student-t is one of the most used distribution in non-Gaussian financial models,

due to the flexibility in modelling the tail behaviour. In this dissertation Student-t

has been used in a portfolio model with shortfall probability constraints (see Chapter

4) and in a stochastic volatility model with jumps (see Chapter 6). A general way

to simulate the distribution can be found in Ripley [6], see also Chapter 4. In this

example we show and compare alternative methods to simulate from the Student-t

distribution. Consider a Student-t, T (ν, µ, σ), with µ = 0, σ = 1 and degrees of
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freedom, ν. The p.d.f is

p(x) =
Γ(ν+1

2
)/Γ(ν

2
)

(νπ)1/2

(

1 +
x2

ν

)− ν+1
2

(1.18)

and the instrumental function (Cauchy distribution, C(0, 1))

q(x) =
1

π

(
1 + x2

)−1
(1.19)

Note that the ratio φ(x) = p(x)/q(x) is bounded

φ(x) =
p(x)

q(x)
=

Γ(ν+1
2

)/Γ(ν
2
)

(νπ)1/2

(

1 +
x2

ν

)− ν+1
2

π(1 + x2) =

=
Γ(ν+1

2
)

Γ(ν
2
)

√
πν

ν
2

1 + x2

(ν + x2)
ν+1
2

≤ sup
x∈R

φ(x) =

=
Γ(ν+1

2
)

Γ(ν
2
)

2
√
πν

ν
2

(ν + 1)
ν+1
2

= M(ν) < +∞ (1.20)

For ν = 3 and ν = 7 the upper bound M(ν) is equal to 3
√

3/4 and 74/(275
√

7)

respectively.

We conclude that importance weights and the variance of the associated Monte

Carlo estimator are finite. Moreover under this condition Accept-Reject algorithm

also applies. In particular, for the following functions

h1(x) = x, h2(x) = |x|0.1, h3 = Ix>1.96 (1.21)

we compare the Accept/Reject Estimator, δAR, with the Importance Sampling

Estimator, δIS, and with the Rescaled Importance Sampling Estimator, δISW , which

are defined as follow

δAR =
1

n

n∑

i=1

h (Zi) (1.22)

δIS =
1

n+ t− 1

n+t−1∑

i=1

p (Zi)

q (Zi)
h (Zi) (1.23)

δISW =

n+t−1∑

i=1

p(Zi)
q(Zi)

h (Zi)

n+t−1∑

i=1

p (Zi)/q (Zi)

(1.24)
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Table 1.1: A comparison between Importance Sampling and Accept-Reject
estimators, on random values from Student-t with 3 and 7 degrees of freedom.

ν E(h1) E(h2) E(h3) V(h1) V(h2) V(h3)
δAR 0.015346 0.961646 0.073609 2.647580 0.012189 0.068199

3 δIS 0.005401 0.967645 0.070808 1.723947 0.130797 0.047196
δISW 0.005363 0.960764 0.070304 1.7 ·10−8 1.3 ·10−9 0.5 ·10−9

δAR 0.016674 0.950258 0.048152 1.412509 0.010560 0.045840
7 δIS 0.002970 0.957760 0.044096 1.273078 0.217395 0.027264

δISW 0.002946 0.949761 0.043727 1.3 ·10−8 2.1 ·10−9 0.3 ·10−9

In order to simulate from the instrumental distribution q(x) we use the inverse

c.d.f. of the Cauchy distribution, x = F−(u) = tan(π(u−0.5)), with u ∼ U[0,1]. The

uniform pseudo-random numbers come from a mixed linear congruential algorithm.

Table 1.1 contains the results with n + t = 10, 000 simulated values for the

Importance Sampling estimators and with n = 10, 000 − t simulated values for

the Accept/Reject estimator.

We conclude that, in this example, rescaled estimators perform better, in terms of

efficiency, than simple importance sampling and Accept/Reject estimators.

�

To conclude this section, note that if the distribution of interest p(x) is too complex,

then it can be difficult to find an easily-sampled distribution which is sufficiently

similar to p(x). In that case both importance sampling and Accept/Reject methods

are difficult to apply and can conduce to Monte Carlo estimators with a high

variance. Thus alternative methods, like Markov Chain Monte Carlo (MCMC),

are needed.

1.3 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) methods represent valid alternative sampling

techniques that allow to avoid the complexity problem previously discussed, by

drawing non-i.i.d. samples from the desired distribution, p(x). These samples are

produced using a discrete stochastic process, called Markov Chain. Moreover, in this

dissertation, Markov chains are used also in a financial modelling perspective, for
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capturing jumps in stochastic volatility process (see Chapter 6). Due to the central

role of this kind of process, in the following we briefly review some basic properties

and results on Markov chains.

1.3.1 Markov Chains

MCMC algorithms are based on the specification of the transition kernel of a Markov

Chain. Thus the properties of this kind of stochastic processes are necessary in order

to understand MCMC simulation algorithms and in order to study their convergence.

Consider a sequence of X -valued random samples {Xt}∞t=0 on the state space

X . The elements of X represent the possible states of a dynamic system, with

Xt representing the random state at time t. The time evolution of the system is

described trough a transition kernel.

Definition 1.3.1. (Transition kernel, see Casella and Robert [8])

A transition kernel is a function K defined on X × B(X ) such that:

1. ∀x ∈ X , K(x, ·) is a probability measure;

2. ∀A ∈ B(X ), K(·, A) is measurable.

The transition kernel K(x, x′) for a Markov chain, defined on the continuous

state space X , denotes the conditional probability of transition: P(X ∈ A|x) =
∫

A
K(x, x′)dx′, which is the probability of the next state being in A given that the

current state is x. In the discrete case, the transition kernel is a transition matrix

with elements: Px,x′ = P(Xt+1 = x′|Xt = x), for x, x′ ∈ X .

At time t = 0 the state X0 has the initial distribution π(X0). Through the kernel

and the initial distribution it is possible to define a stochastic process (Markov

chain), which obeys the first-order Markov property in time. That is, given the

current state of the process, the distribution of the next state is independent of the

past values of the process.

Definition 1.3.2. (Markov chain)

Given a transition kernel K(·, ·), a sequence of random variables {Xt}∞t=0 is a Markov

chain if the conditional distribution of Xt+1 given the past values of chain is the same
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as the distribution of Xt+1 given xt, that is:

P(Xt+1 ∈ A|x0, x1, . . . , xt) = P(Xt+1 ∈ A|xt) =

∫

A

K(xt, dx) (1.25)

for all xt ∈ X and A ∈ B(X ).

The transition kernel needs to satisfy some conditions in order to ensure that the

associated Markov chain has a desired invariant distribution, which is unique and

reachable from any starting point of the process. The stability properties of a Markov

chain are thus strictly related to the definition of invariant measure.

Definition 1.3.3. (Invariant distribution)

We say that a Markov chain has σ-finite invariant measure (or stationary measure)

π for the transition kernel K, if

π(B) =

∫

X

K(x,B)π(dx), ∀B ∈ B(X ) (1.26)

Once a Markov chain has reached the stationary distribution, all subsequent samples

will also be from that distribution. Note however that uniqueness of the invariant

distribution is not guaranteed and the Markov chain is not guaranteed to be able to

reach it from every starting point.

The property of irreducibility plays a crucial role in the stability of a Markov

chain and in the convergence of the Markov chain algorithms.

Definition 1.3.4. (Irreducibility)

A Markov chain is irreducible with respect a measure φ, if ∀A ∈ B(X ) with φ(A) > 0,

there exists n such that Kn(x,A) > 0,∀x ∈ X .

In previous definition we set K1(x,A) = K(x,A), while Kn(x,A) denotes the n-

times composition of the transition kernel, i.e. Kn(x,A) =
∫

X
Kn−1(x′, A)K(x, dx′).

In other words, a Markov chain is irreducible, if it is possible to eventually get to

any other state, from any state to which φ assigns positive probability measure.

Moreover if n = 1 the chain is defined strongly φ-irreducible.

Define the number of passages of Xt in A ∈ B(X ) as follow

ηA =
∞∑

t=1

IA(Xt) (1.27)
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then good stability of the Markov chain can be guaranteed by requiring the chain

to revisit any subset A of the state space infinitely often, at least from almost all

starting points. This property can be formalized through the definition of recurrence.

Definition 1.3.5. (Recurrence)

An Markov chain {Xt} is recurrent if there exists a measure ϕ such that {Xt} is

irreducible and ∀A ∈ B(X ) such that ϕ(A) > 0, Ex {ηA} = ∞ for every x ∈ A.

An irreducible and recurrent chain is positive recurrent if it has an invariant

probability measure. Otherwise it is null recurrent. Note that the recurrence

property requires an infinite average number of visits to every small set of X . It is

possible to ensure that each state is revisited infinitely often for every path of the

Markov chain by the definition of Harris recurrence.

Definition 1.3.6. A set A is Harris recurrent if Px(ηA = ∞) = 1 for all x ∈ A.

The chain {Xt} is Harris recurrent if there exists a measure ψ such that {Xt} is

ψ-irreducible and for every set A with ψ(A) > 0, where A is Harris recurrent.

Before introducing some important convergence results on Markov chains we give

the following definition.

Definition 1.3.7. (Aperiodicity)

An irreducible Markov chain is aperiodic if ∀x ∈ X , g.c.d.{t > 0, Kn(x, x) > 0} = 1.

The first result is the uniqueness of the invariant distribution and the ergodicity of

the chain, that is, the independence on the starting point of the chain.

Theorem 1.3.1. (Ergodic chain)

If the Markov chain, {Xt} is aperiodic an positive recurrent, then its invariant

distribution π(·) is the unique probability distribution satisfying π(x′) =
∫

X
π(x)Kn(x′, x)dx, ∀x′ ∈ X and ∀n ≥ 0 and the chain is said to be ergodic.

For other definitions of ergodicity, like uniform ergodicity and geometric ergodicity,

see Casella and Robert [8].

The following convergence result is particularly important when approximating

expectation by means of a MCMC simulation algorithm. We denote with Sn(h) =
1
n

∑n
i=1 h(Xi), a sum of transforms of random variables. The following result holds.
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Theorem 1.3.2. (Law of Large Numbers for Markov chains)

If the chain {Xt} has σ-finite invariant measure π, the following statements are

equivalent

1. If f, g ∈ L1(π) with
∫
g(x)dπ(x) 6= 0 then

lim
n−→∞

Sn(f)

Sn(g)
=

∫
f(x)dπ(x)

∫
g(x)dπ(x)

(1.28)

2. The Markov chain {Xt} is Harris recurrent.

Observe that the previous result does not require the chain to be positive recurrent

but only to be positive and this represents a strong results, because the convergence

is assured even if the invariant measure π is not finite.

Most Markov chains used in practice satisfy a more restrictive condition, that is

the chain has to be time reversible.

Theorem 1.3.3. (Time reversible Markov chains)

A Markov chain is time reversible with respect to distribution π if and only if

∀B,C ⊂ X the detailed balance condition

∫

B

∫

C

π(x)K(x′, x)dx′dx =

∫

C

∫

B

π(x′)K(x, x′)dxdx′ (1.29)

is satisfied. Equivalently, the detailed balance condition holds if and only if

π(dx)K(x, dx′) = π(dx′)K(x′, dx), ∀x, x′ ∈ X (1.30)

Further details on Markov chains can be found for example in Meyn and Tweedie [4],

other theoretical results on convergence can be found in Tierney [10], while Casella

and Robert [8] also provides some techniques for monitoring convergence.

1.3.2 Metropolis Hastings

Metropolis-Hastings (M.-H.) algorithm allows to sample from the target distribution

p(x), known up to a normalising constant, using an ergodic Markov chain {Xt}



23

with stationary distribution p(x). Through a proposal distribution q(x|y) the M.-H.

algorithm defines a Markov chain with the following transition kernel

K(x, y) = ρ(x, y)q(y|x) + (1 − r(x))δx(y) (1.31)

where r =
∫
ρ(x, y)q(dy|x) and δx(y) is the Dirac measure. The steps of the M.-H.

algorithm are

Algorithm 1.3.1. (Metropolis-Hastings)

Given x(t) such that p(x(t)) > 0

1. Draw a value yt from Yt ∼ q(y|x(t))

2. Take

X(t+1) =

{

yt with probability ρ(x(t), yt)

x(t) with probability 1 − ρ(x(t), yt)
(1.32)

where

ρ(x, y) = min

{
p(y)

p(x)

q(x|y)
q(y|x) , 1

}

(1.33)

3. Jump to step 1 incrementing t of 1.

It can be shown that the M.-H. chain has stationary or invariant distribution p. In

order to assure the chain to be sampling values from p it is necessary to impose

some minimal regularity conditions on both the target density, p and the proposal

distribution q. In what follows, it will be always supposed that the support of p is

connected and that

supp p(x) ⊆
⋃

x∈ supp p(x)

supp q(·|x) (1.34)

If the support is not connected, there would be some subsets of the support that

could never be visited. Recalling the definition 1.3.3 of invariant probability measure

for a Markov chain and theorem (1.3.3) on the time reversibility, it is sufficient to

check the M.-H. chain satisfies the detailed balance condition. For the first term of

the transition kernel, the detailed balance condition holds, because
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ρ(x, y)q(y|x)p(x) =

= min

{
p(y)

p(x)

q(x|y)
q(y|x) , 1

}

q(y|x)p(x) =

= min {p(y)q(x|y), p(x)q(y|x), 1} = (1.35)

= min

{

1,
p(x)

p(y)

q(y|x)
q(x|y)

}

q(x|y)p(y) =

= ρ(y, x)q(x|y)p(y)

while the second term of the transition kernel satisfies to

(1 − ρ(x))δx(y)p(x) = (1 − ρ(y))δy(x)p(y) (1.36)

since due to the multiplication with the Dirac measure, both sides of the equation

are not zero only when x = y.

We conclude the section with a convergence result for the Metropolis-Hastings

algorithm.

Theorem 1.3.4. Given a M.-H. Markov chain, {Xt}, if q(y|x) > 0 for every

(x, y) ∈ X × X and

1. if h ∈ L1(p), then

lim
T→∞

1

T

T∑

t=1

h(X(t)) =

∫

h(x)p(x)dx (1.37)

almost everywhere with respect to p;

2. if the M.-H. satisfies to P
(
p(X(t))q(Y (t)|X(t)) ≤ p(Y (t))q(X(t)|Y (t))

)
< 1,

which means that the proposal can not be the transition kernel of a reversible

chain with invariant distribution p, then

lim
n→∞

sup
B

∣
∣
∣
∣

∫

Kn(x,B)µ(dx) − p(B)

∣
∣
∣
∣
= 0 (1.38)

for every initial distribution µ.
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For a proof of the theorem and for further details on Markov Chain in connection

with Monte Carlo method see Tierney [10] and Robert and Casella [8].

The choice of the proposal distribution plays a crucial role in the implementation

of the M.-H. algorithm. If the proposal gives low probability to subset of the support

of p where p put high probability, then the convergence of the M.-H. to p is very slow.

There are many possible choices for the proposal distribution. In this dissertation

(see Chapter 5) we use all the following kind of proposals for the implementation

of a Metropolis-Hastings step in a Gibbs sampler algorithm for mixture of stable

distribution.

When q(y|X(t)) = q(y) the M.-H. algorithm is called independent Metropolis-

Hastings algorithm and is similar to the Accept/Reject method. However although

the proposals are independent, the resulting simulated values are not independent

because the probability of acceptance of Y (t) depends on the previous value of the

M.-H. chain, x(t).

When the proposal is q(y|X (t)) = g(y−X(t)), then the M.-H. algorithm is called

random walk Metropolis-Hastings because the resulting M.-H. chain is a random

walk on X . In fact the algorithm has the equivalent representation

Y (t) = X(t) + εt (1.39)

where εt follows a distribution g independent of x(t).

In random walk M.-H. algorithms it is possible to control the variance of the error

term and by choosing the variance of the distribution g it is also possible to obtain

the desired level of acceptance rate.

1.3.3 Gibbs Sampling

The Gibbs sampler has been introduced in image processing by Geman and Geman

[3] and it is a method of construction of a Markov Chain {X(t)}∞t=0 with multivariate

stationary distribution p(X), where X ∈ X is a random vector. In Bayesian

inference, this simulation method is particularly useful when the posterior density

is defined on a high dimension space. If the random vector X can be written as
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X = (X1, . . . , Xr) and if we can simulate from the full conditional densities:

(Xi|x1, . . . , xi−1, xi+1, . . . , xr) ∼ pi(xi|x1, . . . , xi−1, xi+1, . . . , xr) (1.40)

then the Gibbs sampling applies the associated transition kernel, from X(t) to X(t+1),

is described by the following algorithm

Algorithm 1.3.2. (Gibbs Sampler)

Given the state X(t) = x(t) at time t, generate the state X(t+1) as follows:

1. X
(t+1)
1 ∼ p(x1|x(t)

2 , . . . , x
(t)
r )

2. X
(t+1)
2 ∼ p(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
r )

3. . . .

4. X
(t+1)
i ∼ p(xi|x(t+1)

1 , x
(t)
2 , . . . , x

(t)
i−1, x

(t)
i+1, . . . , x

(t)
r )

5. . . .

6. X
(t+1)
r ∼ p(xr|x(t+1)

1 , x
(t+1)
2 , . . . , x

(t+1)
r−1 )

Under some regularity conditions the Markov chain produced by the algorithm

converges to the desired stationary distribution (see Robert and Casella [8]).

Each full conditional distribution of the Gibbs sampler can be simulated with a

standard method like transformation method, accept/reject or importance sampling.

If the full conditional is too much complex and standard methods do not apply, then

a Metropolis-Hastings step can be used. The resulting algorithm is called Hybrid

Sampler (see Robert and Casella [8] for further details on this algorithm).
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Chapter 2

Monte Carlo Methods for

Dynamic Models

2.1 Introduction

The analysis of dynamic phenomena, which evolve over time is a common problem

to many fields like engineering, physics, biology, statistics, economics and finance.

A time varying system can be represented through a dynamic model, which is

constituted by an observable component and an unobservable internal state. The

hidden state vector represents the desired information that we want to extrapolate

from the observations.

Several kinds of dynamic models have been proposed in the literature for time

series analysis and many approaches have been used for the estimation of these

models. The seminal work of Kalman [23] and Kalman and Bucy [24] introduces

filtering techniques (Kalman-Bucy filter) for continuous valued, linear and Gaussian

dynamic systems. Another relevant work on dynamic model analysis is due to

Maybeck [35], [36], [37]. He motivates the use of stochastic dynamic systems

in engineering and examines filtering, smoothing and estimation problems for

continuous state space models, in both a continuous and a discrete time framework.

1Part of this work is in Billio M. Casarin R. and Sartore D., (2003), ”Bayesian inference in

dynamic models with latent factors”, forthcoming, Monography of Official Statistics, edited by

Eurostat. Presented at the 4th Colloquium on Modern Tools for Business Cycle Analysis in

Luxembourg on 20-22 October 2003.

29
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Moreover Harvey [21] extensively studies state space representation of dynamic

models for time series analysis and treats the use of Kalman filter for states and

parameters estimation, in continuous state space setting. Hamilton [20] analyzes

several kinds of time series models and in particular introduces a filter (Hamilton-

Kitagawa filter) for discrete time and discrete valued dynamic system. This filter

can be used for dynamic models with a finite number of state values.

Bauwens, Lubrano and Richard [2] compare maximum likelihood inference with

Bayesian inference on static and dynamic econometric models. Harrison and West

[22] treat the problem of the dynamic model estimation in a Bayesian perspective.

They give standard filtering and smoothing equations for Gaussian linear models

and investigate the estimation problem for conditionally Gaussian linear models

and for general nonlinear and non-Gaussian models. They review some Markov

Chain Monte Carlo simulation techniques for filtering and smoothing the state

vector and for estimating parameters. Moreover, also the problem of processing data

sequentially has been examined through the use of the adaptive importance sampling

algorithm. Kim and Nelson [26] analyze Monte Carlo simulation methods for non-

linear discrete valued model (switching regimes models). Recently, Durbin and

Koopman [15] propose an updated review on Markov Chain Monte Carlo methods

for estimation of general dynamic models, with both a Bayesian and a maximum

likelihood approach.

Sequential simulation methods for filtering and smoothing in general dynamic

models have been recently developed to overcome some problems of the traditional

MCMC methods. As pointed out by Liu and Chen [31], Gibbs sampler is less

attractive when we consider on-line data processing. Furthermore Gibbs sampler

may be inefficient when simulated states are very sticky and the sampler has

difficulties to move in the state space. In these situations, the use of sequential

Monte Carlo techniques and in particular of particle filter algorithms may result

more efficient. Doucet, Freitas and Gordon [12] provide the state of the art on

sequential Monte Carlo methods. They discuss both applications and theoretical

convergence results for these algorithms, with special attention to particle filters.

In the economic and financial literature (for example on business cycle analysis and

on asset pricing), dynamic models are used to capture some well known features of

the economic time series: comovement, heavy tails and asymmetry. Comovement
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of economic variables can be modelled by means of dynamic factor models. Heavy

tails and asymmetry denotes an heterogeneous dynamic of the economic variable.

If the behavior of the economic or financial time series depends on the phase of

the economic cycle or of the financial market, then asymmetry arises. Moreover

if the frequency of large deviations from the mean of the economic or financial

variable is high, then heavy tails appear. In order to model heavy tails, stochastic

volatility models and non-Gaussian innovations can be used. We refer to Chapter 6

for a review on stochastic volatility models and briefly review in the following the

literature on economic cycle models. In order to capture asymmetry Goldfeld and

Quandt [17] introduced Markov Switching (MS) models for serially uncorrelated

data, while Hamilton [19] applies MS to serially correlated time series. In their

models parameter are allowed to depend on the hidden state of the economic cycle.

This state may assume only two values, which are interpreted as: positive growth

trend and negative growth trend.

A different way to model asymmetry in time series can be found in Tong [50] and

Potter [41]. They introduce threshold autoregressive models (TAR). In this class of

model, the phase of the economic cycle is determined by means of a threshold on

the level of the observable variable. Parameters depend on the phase of the cycle.

All above cited approaches and in particular the original work due to Hamilton

[19], have been successively extended in many directions.

Kim [25] applies Markov Switching to dynamic linear model in a Bayesian

approach. Kim and Nelson [26] analyze general Markov Switching dynamic models

and provide Bayesian inference tools together with MCMC simulation techniques.

In his switching model Hamilton [19] assumes that the growth rate of real output

depend by an unobserved Markov switching variable. This variable can assume only

states accordingly to the two phases of the business cycle: positive trend growth and

negative trend growth. This hypothesis seems to be too restrictive when looking at

data. In particular transitory and permanent components characterize recession

phases. Thus Kim and Murray [27] and Kim and Piger [28] divide economic cycle

in three phases: recession, high-growth and normal-growth.

Another kind of extension to the basic model of Hamilton [19] concerns the

duration of the phases of the business cycle. Sichel [46], Durland and McCurdy [14],

Watson [51] and Diebold and Rudebusch [11] assume that the transition probability
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of the Markov switching problem depend on the duration of the current phase of

the cycle.

Finally, multivariate extensions to the Hamilton [19] univariate MS model have

been suggested by Diebold and Rudebusch [11] and Krolzig [30].

The chapter is structured as follows. Section 2.2 introduces the general

representation of a dynamic model in a Bayesian framework and deals with stochastic

volatility models and with conditionally normal linear models, which do not admit

analytical filtering and smoothing densities. Section 2.3 reviews simulation based

methods for inference. In particular the section reviews MCMC methods, presents

an adaptive importance sampling algorithm and discusses particle filter algorithms.

Through some examples, applications of the particle filter to stochastic volatility

and business cycle models are provided. Section 2.4 concludes.

2.2 Bayesian Dynamic Models

In the following we give a quite general formulation of a probabilistic dynamic

model and we obtain some fundamental relations for Bayesian inference on it. This

definition of dynamic model would be general enough to include time series models

analyzed in Kalman [23], Hamilton [20], Harrison and West [22] and in Doucet,

Freitas and Gordon [12]. Throughout this chapter, we use a notation similar to

that one commonly used in particle filter literature (see Doucet, Freitas and Gordon

[12]).

We denote by {xt; t ∈ N}, xt ∈ X , the hidden state vectors of the system,

by {yt; t ∈ N0}, yt ∈ Y , the observable variables and by θ ∈ Θ the parameter

vector of the model. We assume that state space, observation space and parameter

space respectively are X ⊂ R
nx , Y ⊂ R

ny and Θ ⊂ R
nθ . nx, ny and nθ represent

the dimensions of the state vector, of the observable variable and of the parameter

vector respectively.

The main advantage in using the general Bayesian state space representation of

a dynamic model, is that it accounts also for nonlinear and non-Gaussian models.

The Bayesian state space representation is given by an initial distribution p(x0|θ), a

measurement density p(yt|xt,y1:t−1, θ) and a transition density p(xt|x0:t−1,y1:t−1, θ).

The dynamic model is
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yt ∼ p(yt|xt,y1:t−1, θ) (2.1)

p(xt|x0:t−1,y1:t−1, θ) (2.2)

x0 ∼ p(x0|θ) , with t = 1, . . . , T (2.3)

where p(x0|θ) can be interpreted as the prior distribution on the initial state of the

system.

By x0:t
∆
= (x0, . . . ,xt) and by y1:t

∆
= (y1, . . . ,yt) we denote respectively the

collection of state vectors and of observable vectors, up to time t. We denote by

x−t
∆
= (x0, . . . ,xt−1,xt+1, . . . ,xT ) the collection of all the state vectors without the

t-th element. The same notation is used also for the observable variable and for the

parameter vectors.

If the transition density depends on the past, only through the last value of the

hidden state vector, the dynamic model is defined first-order Markovian. In this

case the system becomes

(yt|xt) ∼ p(yt|xt,y1:t−1, θ) (2.4)

(xt|xt−1) ∼ p(xt|xt−1,y1:t−1, θ) (2.5)

x0 ∼ p(x0|θ) , with t = 1, . . . , T. (2.6)

Assuming that the first-order Markov property holds is not restrictive because a

Markov model of order p can always be rewritten as a first-order Markovian model.

The stochastic volatility model given in the example 2.2.1, is a dynamic model,

which are now widely used in finance. The chapter 6 of this dissertation also deals

with stochastic volatility models, focusing on simulation based inference tools for

this kind of models.

Example 2.2.1 - (Stochastic Volatility Models)

Two of the main features of the financial time series are time varying volatility

and clustering phenomena in volatility. Thus stochastic volatility models have been

introduced, in order to account for these features. An example of stochastic log-

volatility model is
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Figure 2.1: Simulated paths of 1,000 observations from the observable process yt,
with time varying volatility and of the stochastic volatility process ht. We simulate
the model given in Example 2.2.1, with φ = 0.9, ν = 0.1 and σ2 = 1.

yt ∼ N
(
0, eht

)
(2.7)

ht ∼ N
(
ν + φht−1, σ

2
)

(2.8)

h0 ∼ N
(
0, σ2

)
, with t = 1, . . . , T (2.9)

where yt is the observable process, with time varying volatility and ht represents

the stochastic log-volatility process. In Fig. 2.1 we exhibit a simulated path of the

observable process yt and of the stochastic volatility process ht.

�

In the following we discuss the three main issues which arise when making

inference on a dynamic model, i.e.: filtering, predicting and smoothing. We present

general solutions to these problems, but note that, without further assumptions on

the densities, which characterize the dynamic model, these solutions are not yet

analytical.
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2.2.1 State Estimation

We treat here the problem of estimation of the hidden state vector when parameters

are known. We are interested in estimating the density p(xt|y1:s, θ). If t = s the

density of interest is called filtering density, if t < s it is called smoothing density,

finally if t > s it is called prediction density.

For the dynamic model given in equations (2.4), (2.5) and (2.6) we assume that

at time t the density p(xt−1|y1:t−1, θ) is known. Observe that if t = 1 the density

p(x0|y0, θ) = p(x0|θ) is the initial distribution of the dynamic model.

Applying the Chapman-Kolmogorov transition density, we obtain the one step

ahead prediction density

p(xt|y1:t−1, θ) =

∫

X

p(xt|xt−1,y1:t−1, θ)p(xt−1|y1:t−1, θ)dxt−1 (2.10)

As the new observation yt becomes available, it is possible, using the Bayes theorem,

to update the prediction density and to filter the current state of the system. The

filtering density is

p(xt|y1:t, θ) =
p(yt,xt|y1:t−1, θ)

p(yt|y1:t−1, θ)
=
p(yt|xt,y1:t−1, θ)p(xt|y1:t−1, θ)

p(yt|y1:t−1, θ)
(2.11)

where p(xt|y1:t−1, θ) is the prediction density determined at the previous step and

the density at the denominator is the marginal of the current state and observable

variable joint density

p(yt|y1:t−1, θ) =

∫

X

p(yt,xt|y1:t−1, θ)dxt =

∫

X

p(yt|xt,y1:t−1, θ)p(xt|y1:t−1, θ)dxt.

(2.12)

At each date t, it is possible to determine the K-steps-ahead prediction density,

conditional on the available information y1:t. Given the dynamic model described

by equations (2.4), (2.5) and (2.6), the K-steps-ahead prediction density of the state

vector xt can be evaluated iteratively. The first step is

p(xt+1|y1:t, θ) =

∫

X

p(xt+1|xt,y1:t, θ)p(xt|y1:t, θ)dxt (2.13)
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Figure 2.2: The causality structure of a Markov dynamic model with hidden states
is represented by means of a Directed Acyclic Diagram (DAG). A box around the
variable indicates the variable is known, while a circle indicates a hidden variable.

and the k-th step, with k = 1, . . . , K, is

p(xt+k|y1:t, θ) =

∫

X

p(xt+k|xt+k−1,y1:t, θ)p(xt+k−1|y1:t, θ)dxt+k−1 (2.14)

where

p(xt+k|xt+k−1,y1:t, θ) =

∫

Yk−1

p(xt+k|xt+k−1,y1:t+k−1, θ)p(dyt+1:t+k−1|y1:t, θ) (2.15)

where Yk = ⊗k
i=1Yi is the k-times Cartesian product of the state space. Similarly,

the K-steps-ahead prediction density of the observable variable yt+K conditional on

the information available at time t is determined as follow

p(yt+K |y1:t, θ) =

∫

Y

p(yt+K |xt+K ,y1:t+K−1, θ)p(dyt+1:t+K−1|y1:t, θ)p(dxt+K |y1:t, θ)

(2.16)

Due to the high number of integrals that must be solved, previous densities may

be difficult to evaluate with general dynamics. From a numerical point of view

simulation methods, like MCMC algorithms or Particle Filters allow us to overcome

these difficulties; while from an analytical point of view to obtain simpler relations

we need to introduce some simplifying hypothesis on the dynamics of the model.

For example if we assume that the evolution of the dynamic model does not depend
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on the past values of the observable variable y1:t, then equations (2.3), (2.5) and

(2.6) become

(yt|xt) ∼ p(yt|xt, θ) (2.17)

(xt|xt−1) ∼ p(xt|xt−1, θ) (2.18)

x0 ∼ p(x0|θ) , with t = 1, . . . , T . (2.19)

The causality structure of this model has been represented through the Directed

Acyclic Graph (DAG) exhibited in Fig. 2.2. Under previous assumptions the

filtering and prediction densities simplify as follows

p(xt|y1:t−1, θ) =

∫

X

p(xt|xt−1, θ)p(xt−1|y1:t−1, θ)dxt−1 (2.20)

p(xt|y1:t, θ) =
p(yt|xt, θ)p(xt|y1:t−1, θ)

p(yt|y0:t−1, θ)
(2.21)

p(xt+K |y1:t, θ) =

∫

X

p(xt+K |xt+K−1, θ)p(xt+K−1|y1:t, θ)dxt+K−1 (2.22)

p(yt+K |y1:t, θ) =

∫

X

p(yt+K |xt+K , θ)p(xt+K |y1:t, θ)dxt+K . (2.23)

We conclude this section with two important recursive relations. Both these

relations can be proved starting from the definition of joint smoothing density and

assuming that the Markov property holds.

The first relation is the sequential filtering equation

p(x0:T |y1:T , θ) = p(x0:T−1|y1:T−1, θ)
p(yT |xT , θ)p(xT |xT−1, θ)

p(yT |y1:T−1, θ)
. (2.24)

which is particularly useful when processing data sequentially and it is fundamental

in implementing Particle Filter algorithms. A proof of this relation is given in

Appendix A.

The second recursive relation provides factorization of the smoothing density of

the state vectors x0:T , given the information, y1:T , available at time T

p(x0:T |y1:T , θ) = p(xT |y1:T , θ)
T−1∏

t=0

p(xt|xt+1,y1:t, θ). (2.25)
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See the proof in Appendix A. The proof differs from that one given in Carter

and Köhn [6] because we consider the general model in equations (2.4)-(2.6), with

transition and measurement densities depending on past values of yt. Note that

the density p(xt|xt+1,y1:t, θ), which appears in the joint smoothing density, can be

represented through the filtering and the prediction densities

p(xt|xt+1,y1:t, θ) =
p(xt+1|xt,y1:t, θ)p(xt|y1:t, θ)

p(xt+1|y1:t, θ)
. (2.26)

This factorization of the smoothing density is also relevant when inference is

carried out through simulation methods. See for example the multi-move Gibbs

sampler of Carter and Köhn [6] and the particle filter algorithms.

Only in some well known cases, these filtering densities admit an analytical form.

For the normal linear dynamic model, filtering and smoothing density are given by

the Kalman filter. See Harrison and West [22] for a Bayesian analysis of the Kalman

filter. See Harvey [21] for a frequentist approach to the Kalman filter.

In the next section and in Chapter 6, we introduce some well known classes of

dynamic models, which does not admit a tractable analytical representation of the

filtering, prediction and smoothing densities. The next section deals with conditional

normal linear models, which are widely used in the economic and financial analysis

(see Kim and Nelson [26]). In Chapter 6 we analyse inference on Markov switching

stochastic volatility models.

2.2.2 Conditionally Gaussian Linear Models

A lot of models used in economic and financial literature belong to the class of the

conditionally normal dynamic linear models. These are defined as follows

yt = F (st)xt + V (st)εt εt ∼ N (0, I)

xt+1 = G(st)xt +W (st)ηt ηt ∼ N (0, I) (2.27)

where εt is independent of ηt and where st is a sequence of random variables. Looking

at the Bayesian literature, Harrison and West [22] call this model multi-process

model. In the classification proposed by these authors, if st = st−1 = s, ∀t the
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Figure 2.3: Simulation from the Markov switching stochastic trend model given in
Example 2.2.2. We set parameters to be α = 0.3, σε = 0.1,ρ = 0.8, µ0 = −2.5, µ1 =
0.5, ση = 0.1, p11 = 0.97, p22 = 0.99.

model is a multi-process of the first kind, while if st is a stochastic process, the

model is a multi-process of second kind.

Note that if st is a discrete time and finite state Markov chain with known

transition probabilities, the model is called jump Markov linear system or Markov

switching linear model with parameters evolving over time. In the following we

consider an example of Markov switching normal linear model.

Example 2.2.2 - (Stochastic Latent Factor Model with Markov Switching)

Many business cycle models can be represented as a Markov switching linear model.

Let yt be the observable variable and xt the latent factor, which has to be extracted.

The switching model is

yt = αxt + σεεt εt ∼ N (0, 1) (2.28)

xt+1 = µ(st+1) + ρ xt + σηηt+1 ηt+1 ∼ N (0, 1) (2.29)

st ∼Markov(P), with st ∈ {0, 1} (2.30)

where µ(st) = µ+ νst and P is the transition matrix.
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This kind of model can be found in Kim and Nelson [26]. The absence of analytical

filtering densities makes Bayesian simulation based inference a possible solution to

the filtering problem.

We use parameters, estimated in Kim and Nelson [26], to simulate the MS model.

Fig. 2.3 exhibits simulation paths of 1, 000 observations of the Markov switching

process, the latent factor and the observable variable, respectively.

�

2.3 Simulation Based Filtering

The main aim of this section is to review both some traditional and recently

developed inference methods for nonlinear and non-Gaussian models. We focus

on the Bayesian approach and on simulation based methods. First Markov

Chain Monte Carlo methods are reviewed with particular attention to the single-

move Gibbs sampler due to Carlin, Polson and Stoffer [5] and to the multi-

move Gibbs sampler due to Carter and Köhn [6] and Frühwirth-Schnatter [16].

Moreover some basic sequential Monte Carlo simulation methods are introduced.

We examine the adaptive importance sampling algorithm due to West [52], [53],

the sequential importance sampling algorithm and more advanced sequential Monte

Carlo algorithms called Particle Filters (see Doucet, Freitas and Gordon [12]).

Finally, note that another important issue in making inference on dynamic

models is the estimation of the parameter vector. In a Bayesian MCMC based

approach parameters are estimated together with the hidden states of the model,

by simulating from the posterior distribution of the model. Also in a sequential

importance sampling approach and following the engineering literature, a common

way to solve the parameter estimation problem is to treat parameters θ as hidden

state of the system (see Berzuini et al. [3]). The model is restated assuming

time dependent parameter vectors θt, and imposing a constraint on the evolution:

θt = θt−1. The constraint can be expressed also in terms of transition probability as

follows

θt ∼ δθt−1(θt), t = 0, . . . , T (2.31)
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where δx∗(x) denotes the Dirac delta function. The Bayesian model is then

completed by assuming a prior distribution p(θ0) on the parameter vector. We

refer to Chapter 6 for a wider treatment of the parameter estimation problem in a

sequential Monte Carlo approach.

2.3.1 The Gibbs Sampler

In previous sections we examine some estimation algorithms for filtering, predicting

and smoothing the state vector of a quite general probabilistic dynamic model. In

order to examine Gibbs sampling methods, we consider the following dynamic model

(yt|xt) ∼ p(yt|xt,y1:t−1, θ) (2.32)

(xt|xt−1) ∼ p(xt|xt−1,y1:t−1, θ) (2.33)

x0 ∼ p(x0|θ) (2.34)

θ ∼ p(θ) , with t = 1, . . . , T. (2.35)

The estimation problem is solved in a Bayesian perspective by evaluating the

mean of the joint posterior density of the state and parameter vectors p(x0:T , θ|y1:T ).

Tanner and Wong [48] motivates this solution by the data augmentation principle,

which consists in considering the hidden state vectors as nuisance parameters.

If an analytical evaluation of the posterior mean is not possible, then simulation

methods and in particular Monte Carlo Markov Chain apply. The most simple

solution is to implement a single-move Gibbs sampler (see Carlin, Polson and Stoffer

[5] and Harrison and West [22]). This method generates the states one at a time using

the Markov property of the dynamic model to condition on the neighboring states.

However the first order Markov dependence between adjacent states induces a high

correlation between outputs of the Gibbs sampler and causes a slow convergence of

the algorithm. To solve this problem Carter and Köhn [6] and Frühwirth-Schnatter

[16] simultaneously proposes multi-move Gibbs sampler. The main idea of this

method is to generate simultaneously all the state vectors using analytical filtering

and smoothing relations.

Their approach is less general than that of Carlin, Polson and Stoffer [5], but

for linear dynamic models with Gaussian mixture innovations in the observation

equation, their approach is more efficient.
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In particular the multi-move Gibbs sampler has a faster convergence to the

posterior distribution and the posterior moment estimates have smaller variance.

These results are supported theoretically by Liu, Wong and Kong [33], [34] and

Müller [38], who shows that generating variables simultaneously produces faster

convergence than generating them one at a time.

The idea of grouping parameters (or hidden states) when simulating is now

commonly in Bayesian inference on stochastic models, with latent factors. For

example, multi-move MCMC algorithms have been used for stochastic volatility

models by Kim, Shephard and Chib [29] and extended to generalized stochastic

volatility models by Chib, Nardari and Shephard [8]. Shephard [44] and Shephard

and Pitt [45] discussed multi-move MCMC algorithms to non-Gaussian time series

models . Finally, an alternative way of simulating from the smoothing density of

the state vectors is discussed in De Jong and Shephard [10].

In the following we briefly present how to implement the single-move Gibbs

sampler for parameters and states estimation. On the time interval {1, . . . , T}, the

conditional posterior distributions of the parameter vector and of the state vectors

are

p(θ|x0:T ,y1:T ) ∝ p(θ)p(x0|θ)
T∏

t=1

p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ) (2.36)

p(x0:T |y1:T , θ) ∝ p(x0|θ)
T∏

t=1

p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ). (2.37)

A basic Gibbs sampler is obtained by simulating sequentially from the parameter

vector posterior (parameter simulation step) in equation (2.36) and from the state

vectors posterior (data augmentation step) in equation (2.37) conditionally on the

parameter vector simulated at the previous step. When conditional distributions

cannot be directly simulated, the corresponding steps in the Gibbs algorithm can be

replaced by Metropolis-Hastings steps. The resulting algorithms are called hybrid

sampling algorithms and they are validated in Tierney [49].

A generic Gibbs sampler can be used for simulating the posterior of the parameter

vector conditional on the simulated state vectors.

The single-move Gibbs sampler for the state vectors, conditional on the simulated

parameter vector, is then obtained by drawing each state vector conditionally on the
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other simulated state vectors.

Algorithm 2.3.1. - Gibbs sampler for the parameter vector

Given simulated vectors θ(i) and x
(i)
0:T , generate the parameter vector

1. θ
(i+1)
1 ∼ p(θ1|θ(i)

2 , . . . , θ
(i)
nθ ,x

(i)
0:T ,y1:T )

2. θ
(i+1)
2 ∼ p(θ2|θ(i+1)

1 , θ
(i)
3 , . . . , θ

(i)
nθ ,x

(i)
0:T ,y1:T )

3. . . .

4. θ
(i+1)
k ∼ p(θk|θ(i+1)

1 , . . . , θ
(i+1)
k−1 , θ

(i)
k+1, . . . , θ

(i)
nθ ,x

(i)
0:t,y1:T )

5. . . .

6. θ
(i+1)
nθ ∼ p(θnθ

|θ(i+1)
1 , . . . , θ

(i+1)
nθ−1,x

(i)
0:T ,y1:T )

Algorithm 2.3.2. - Single-Move Gibbs Sampler -

(i) Simulate θ(i) through Algorithm 2.3.1;

(ii) Given θ(i) and x
(i)
0:T , simulate state vectors

7. x
(i+1)
0 ∼ p(x0|x(i)

2:T ,y1:T , θ
(i+1))

8. x
(i+1)
1 ∼ p(x1|x(i+1)

0 ,x
(i)
2:T ,y1:T , θ

(i+1))

9. . . .

10. x
(i+1)
t ∼ p(xt|x(i+1)

0:t−1,x
(i)
t+1:T ,y1:T , θ

(i+1))

11. . . .

12. x
(i+1)
T ∼ p(xT |x(i+1)

0:T−1,y1:T , θ
(i+1))

Single-move algorithm can be implemented for general dynamic models.

Moreover, note that the dynamic model given in equations (2.32)-(2.35) satisfies
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to the Markov property. In this case the full posterior density of the state vector,

given in the single-move Gibbs sampler (see the Algorithm 2.3.2), is

p(xt|x−t,y1:T , θ) ∝ p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ)p(xt+1|xt,y1:t, θ) (2.38)

and the implementation of the algorithm becomes easier. For the general model

described in Equations (2.32)-(2.35), with measurement and transition densities

depending on past values of the observable variable y1:t−1, the proof of Equation

(2.38) is given in Appendix B.

Example 2.3.1 - (Stochastic Volatility Model, Example 2.2.1 continued)

We illustrate, through this example, how simulation based Bayesian inference applies

to dynamic models. In particular, we develop a single-move Gibbs sampler for the

stochastic volatility model given in Example 2.2.1. Note that the stochastic volatility

model can be rewritten as follows

yt = eht/2εt , εt ∼ N (0, 1) (2.39)

ht = ν + φht−1 + σηt , ηt ∼ N (0, 1) (2.40)

with t = 1, . . . , T. (2.41)

The completed likelihood function of this model is

L(φ, ν, σ2|y1:T , h0:T ) =

=
T∏

t=1

1

(2π)1/2eht/2
exp

{

−y
2
t e

−ht

2

}
1

(2πσ2)1/2
exp

{

−(ht − ν − φht−1)
2

2σ2

}

=

=
1

(2π)T (σ2)
T
2

exp

{

−1

2

T∑

t=1

(y2
t e

−ht + ht) −
1

2σ2

T∑

t=1

(ht − ν − φht−1)
2

}

(2.42)

In order to conclude the description of the Bayesian dynamic model we take the

following prior distributions on the parameters φ, ν, σ2 and h0
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φ ∼ N (a, b2)I(−1,+1)(φ) (2.43)

ν ∼ N (c, d2) (2.44)

σ2 ∼ IG(α, β) (2.45)

h0 ∼ N (0, σ2) (2.46)

where IG(·, ·) indicates the Inverse Gamma distribution. Note that for the

parameter φ we use a truncated Normal distribution, but a Uniform distribution

U[−1,1] could alternatively be used. In the first part of the single-move Gibbs sampler,

the parameters are simulated from the posterior distributions, through the following

three steps

(i) Simulate φ ∼ π(φ|σ2, ν, y1:T , h0:T ), where

π(φ|σ2, ν, y1:T , h0:T ) ∝ (2.47)

∝ exp

{

− 1

2σ2

T∑

t=1

(ht − ν − φht−1)
2

}

1

(2π)1/2b
exp

{

−(φ− a)2

2b2

}

I(−1,+1)(φ) ∝

∝ exp

{

−1

2

[

φ2

(

1

b2
+

∑T
t=1 h

2
t−1

σ2

)

− 2φ

(

a

b2
+

∑T
t=1 ht−1(ht − ν)

σ2

)]}

I(−1,+1)

∝ N (ã, b̃2)I(−1,+1)(φ)

with

ã = b̃2

(

a

b2
+

1

σ2

T∑

t=1

ht−1(ht − ν)

)

, b̃2 =

(

1

b2
+

1

σ2

T∑

t=1

h2
t−1

)−1

(ii) Simulate ν ∼ π(ν|φ, σ2, y1:T , h0:T ), where

π(ν|φ, σ2, y1:T , h0:T ) ∝ (2.48)

∝ exp

{

− 1

2σ2

T∑

t=1

(ht − ν − φht−1)
2

}

exp

{

−(ν − c)2

2d2

}
1

(2π)1/2d
∝

∝ exp

{

−1

2

[

ν2(
1

d2
+
T

σ2
) − 2ν

(

c

d2
+

∑T
t=1(ht − φht−1)

σ2

)]}

∝

∝ N (c̃, d̃2)
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with

c̃ = d̃2

(

c

d2
+

1

σ2

T∑

t=1

(ht − φht−1)

)

, d̃2 =

(
1

d2
+
T

σ2

)−1

(iii) Simulate σ2 ∼ π(σ2|φ, ν, y1:T , h0:T ), where

π(σ2|φ, ν, y1:T , h0:T ) ∝ (2.49)

∝
(

1

σ2

)(T+1)
2

exp

{

− 1

2σ2

T∑

t=1

(ht − ν − φht−1)
2 − h2

0

2σ2

}

βαe−β/σ2

Γ(α)(σ2)α+1
I[0,∞)(σ

2) ∝

∝ exp

{

− 1

2σ2
(2β +

T∑

t=1

(ht − ν − φht−1)
2 + h2

0)

}(
1

σ2

)α+T+1
2

+1

I[0,∞)(σ
2) ∝

∝ IG(α̃, β̃)

with

α̃ = α +
T + 1

2
, β̃ = β +

1

2

[
T∑

t=1

(ht − ν − φht−1)
2 + h2

0

]

In the second part of the single-move Gibbs sampler, the hidden variables, {ht}T
t=1,

are sampled once at time, from the following posterior distribution

π(ht|h−t, y1:T , ν, φ, σ
2) ∝ exp

{

−(y2
t e

−ht + ht)

2

}

exp

{

−(ht − ν − φht−1)
2

2σ2
− (ht+1 − ν − φht)

2

2σ2

}

(2.50)

for t = 1, . . . , T . Due to the presence of the quantity e−ht in the exponential any

standard simulation method easily applies here. Moreover the posterior distribution

is known up to a normalising constant, thus the M.-H. algorithm can be used. The

proposal distribution can be obtained by replacing the function
(
y2

t e
−ht + ht

)
in

equation (2.50), with (log y2
t +1)+(ht−log y2

t )
2/2, which is its the second order Taylor

expansion, around log (y2
t ). We simulate ht from the following proposal density
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Figure 2.4: Graph of the true (solid line) and filtered (dotted line) densities. The
filtered density has been obtained by averaging 50,000 values, simulated through the
single-move Gibbs sampler, given in example 2.3.1.

q(ht|h−t, y1:T , ν, φ, σ
2) ∝ (2.51)

∝ exp

{

−(ht − log y2
t )

2

4
− (ht − ν − φht−1)

2

2σ2
− (ht+1 − ν − φht)

2

2σ2

}

∝

∝ exp

{

−h
2
t

2

(
1 + φ2

σ2
+

1

2

)

+ ht

(
ν(1 − φ) + φ(ht−1 + ht+1)

σ2
+

log y2
t

2

)}

∝

∝ N (µ, σ̃2)

with

µ =
(
(ν(1 − φ) + φ(ht−1 + ht+1))σ

−2 + log y2
t /2
)
σ̃2 , σ̃2 =

(
1 + φ2

σ2
+

1

2

)−1

We apply the single-move Gibbs sampler to the synthetic dataset exhibited in Fig.

2.1. We use a burn-in sample of 10,000 observations to reduce the dependence on the

initial conditions of the sampler and take the remaining 40,000 values to calculate

the parameter estimates, which are represented in Table 2.1.

Figure 2.4 shows the true stochastic log-volatility versus the filtered volatility.

Figures 2.5 and 2.6 show the raw output of the single-move Gibbs sampler and

the ergodic means respectively. Figures 2.7 and 2.8 show the autocorrelation of the

simulated values and the histograms of the posterior distributions, respectively.
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Table 2.1: Bayesian estimates of the parameters φ, ν and σ2. We use a burn-in
sample of 10,000 observations and calculate the parameter estimates by averaging
40,000 raw values simulated from the posterior distributions, by means of the Gibbs
sampler.

Parameters True Estimates St. Dev. 2.5% percentile 97.5% percentile

φ 0.9 0.9096 0.0146 0.8813 0.9370
ν 0.1 0.0754 0.0350 0.0048 0.1382
σ2 1 1.0075 0.0313 0.9487 1.0712

Simulations have been carried out on a PC with Intel 2400 MHz processor, using

routines implemented in Gauss 3.2.8.

�

Although the simplification due to the first order Markov property of the dynamic

model makes the single-move Gibbs sampler easier to implement, some problems

arise. In particular, the Markovian dependence between neighboring states generates

correlation between outputs of the Gibbs sampler and origins slower convergence to

the posterior distribution (see Carter and Köhn [6]). A consequence is that if an

adaptive importance sampling is carried out by running parallel single-move Gibbs

samplers, the number of replications before convergence of the parameter estimates

is high.

A general method to solve this autocorrelation problem in the output of the Gibbs

sampler is to group parameters (or states) and to simulate them simultaneously. This

idea has been independently applied by Carter and Köhn [6] and by Frühwirth-

Schnatter [16] to dynamic models and the resulting algorithm is the multi-move

Gibbs sampler. Furthermore Frühwirth-Schnatter [16] shows how the use of the

multi-move Gibbs sampler improves the convergence rate of an adaptive importance

sampling algorithm and makes a comparison with a set of parallel single-move Gibbs

samplers. The implementation of the multi-move Gibbs sampler depends on the

availability of the analytical form of filtering and smoothing densities.

We give here a general representation of the algorithm, but its implementation

is strictly related to the specific analytical representation of the dynamic model.

Given the simulated parameter vector obtained through the Gibbs sampler in the

Algorithm 2.3.1, the multi-move Gibbs sampler is in Algorithm 2.3.3.
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Figure 2.5: Sample of 50,000 parameter values simulated from the posterior
distributions of the stochastic volatility model, through the single-move Gibbs
sampler.
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Figure 2.6: Ergodic averages of the parameter values simulated from the posterior
distributions of the stochastic volatility model, through the single-move Gibbs
sampler.
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Figure 2.7: The graph exhibits the autocorrelation functions, ρφ, ρν and ρσ2 , with
lags n = 1, . . . , 100, calculated on the 50,000 parameter values simulated from the
posterior distribution.
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Figure 2.8: The figure show the histogram of 50,000 parameter values simulated
from the posterior distributions and the Gaussian kernel density reconstruction.
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The algorithm has been derived trough the recursive smoothing relation given

in equation (2.25). Moreover, at each simulation step the posterior density is

obtained by means of estimated prediction and filtering densities. By applying

the fundamental relation given in equation (2.26) we obtain

p(xt|x(i+1)
t+1 ,y1:t, θ

(i+1)) =
p(x

(i+1)
t+1 |xt, θ

(i+1))p̂(xt|y1:t, θ
(i+1))

p̂(x
(i+1)
t+1 |y1:t, θ(i+1))

(2.52)

We stress once more that the multi-move Gibbs sampler does not easily apply to

nonlinear and non-Gaussian models. Thus in a MCMC approach, the single-move

Gibbs sampler remains the only numerical solution to the estimation problem.

Sequential sampling algorithm represents an alternative to MCMC methods.

Algorithm 2.3.3. - Multi-Move Gibbs Sampler -

(i) Simulate θ(i) through Algorithm 2.3.1;

(ii) Given θ(i) and x
(i)
0:T , run analytical filtering relations in order to estimate

prediction and filtering densities for each t = 0, . . . , T

7. p̂(xt|y1:t−1, θ
(i+1))

8. p̂(xt|y1:t, θ
(i+1))

(iii) Simulate state vectors by means of the recursive factorization of the smoothing

density

9. x
(i+1)
T ∼ p(xT |y1:T , θ

(i+1))

10. x
(i+1)
T−1 ∼ p(xT−1|x(i+1)

T ,y1:T−1, θ
(i+1))

11. . . .

12. x
(i+1)
t ∼ p(xt|x(i+1)

t+1 ,y1:t, θ
(i+1))

13. . . .

14. x
(i+1)
1 ∼ p(x1|x(i+1)

2 ,y1, θ
(i+1))
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Sequential Monte Carlo algorithms allow us to make inference on general dynamic

models. One of the early sequential methods proposed in the literature is Adaptive

Importance Sampling, which will be discussed in the next section.

2.3.2 Adaptive Importance Sampling

The adaptive sequential importance sampling scheme is a sequential stochastic

simulation method which adapts progressively to the posterior distribution also

by means of the information contained in the samples, which are simulated at

the previous steps. The adaptation mechanism is based on the discrete posterior

approximation and on the kernel density reconstruction of the prior and posterior

densities. West [52] proposed this technique in order to estimate parameters of static

models. West [53] and West and Harrison [22] successively extended the method in

order to estimate parameters and states of dynamic models.

The first key idea is to use importance sampling (see Robert and Casella [43]) in

order to obtain a weighted random grid of evaluation points in the state space. Let

{xi
t, w

i
t}nt

t=1 be a sample drawn from the posterior p(xt|y1:t, θ) through an importance

density gt. The prediction density, given in equation (2.20), can be approximated

as follow

p(xt+1|y1:t, θ) ≈
nt∑

i=1

wi
tp(xt+1|xi

t, θ) (2.53)

The second key idea, implemented in the adaptive importance sampling

algorithm of West [53], is to propagate points of the stochastic grid by means of the

transition density and to build a smoothed approximation of the prior density. This

approximation is obtained through a kernel density estimation. West [53] suggested

to use Gaussian or Student-t kernels due to their flexibility in approximating other

densities. For example, the Gaussian kernel reconstruction is

p(xt+1|y1:t, θ) ≈
nt∑

i=1

wi
tN(xt+1|mta+ xi

t(1 − a), h2Vt) (2.54)

The final step of the algorithm consists in updating the prior density and in

producing a random sample, {xi
t+1, w

i
t+1}nt+1

i=1 , from the resulting posterior density.
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The sample is obtained by using the kernel density estimate as importance density.

Adaptive importance sampling is represented through algorithm 2.3.4.

Algorithm 2.3.4. - Adaptive Sequential Importance Sampling -

Given a weighted random sample {xi
t, w

i
t}nt

t=1, for i = 1, . . . , nt

1. Simulate x̃i
t+1 ∼ p(xt+1|xi

t, θ)

2. Calculate mt =
∑nt

i=1w
i
tx̃

i
t+1, Vt =

∑nt

i=1 w
i
t(x̃

i
t+1 −mt)

′(x̃i
t+1 −mt)

3. Generate from the Gaussian kernel

xi
t+1 ∼

nt∑

i=1

wi
tN(xt+1|(mta+ xi

t(1 − a)), h2Vt)

4. Update the weights wi
t+1 ∝ wi

t
p(yt+1|xi

t+1)p(xi
t+1|x

i
t)

N(xi
t+1|(mta+(1−a)xi

t),h
2Vt)

The main advantage of this algorithms relies in the smoothed reconstruction of the

prior density. This kernel density estimate of the prior allows to obtain adapting

importance densities and to avoid the information loss, which comes from cumulating

numerical approximation over time. Furthermore this technique can be easily

extended to account for a sequential estimation of the parameter (see the recent

work due to Liu and West [32]).

However adaptive importance sampling requires the calibration of parameters a

and h, which determines the behavior of the kernel density estimate. The choice of

that shrinkage parameters influences the convergence of the algorithm and heavily

depends on the complexity of the model studied.

Finally, adaptive importance sampling belongs to a more general class of

sequential simulation algorithms, which are particulary efficient for on-line data

processing and which have some common problems like sensitivity to outliers and

degeneracy. In next paragraph we review some general particle filters.
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2.3.3 Particle Filters

In the following we focus on Particle filters, also referred in the literature as Bootstrap

filters, Interacting particle filters, Condensation algorithms, Monte Carlo filters and

on the estimation of the states of the dynamic model. See also Doucet, Freitas

and Gordon [12] for an updated review on the particle filter techniques, on their

applications and on the main convergence results for this kind of algorithms.

The main advantages of particle filters are that they can deal with nonlinear and

non-Gaussian noise and can be easily implemented, also in a parallel mode. Moreover

in contrast to Hidden Markov Model filters, which work on a state space discretised

to a fixed grid, particle filters focuse sequentially on the higher probable regions

of the state space. This is feature is common to Adaptive Importance Sampling

algorithm exhibited in the previous section.

Assume that the parameter vector θ of the dynamic model given in equations

(2.17), (2.18) and (2.19) is known. Different versions of the particle filter exist in

the literature and different simulation approaches like rejection sampling, MCMC

and importance sampling, can be used for the construction of a particle filter. We

introduce particle filters applying the importance sampling reasoning.

At each time step t + 1, as a new observation yt+1 arrives, we are interested in

predicting and filtering the hidden variables and the parameters of a general dynamic

model. In particular we search how to approximate prediction an filtering densities

given in Equations (2.20) and (2.21) by means of sequential Monte Carlo methods.

Assume that the weighted sample {xi
t, w

i
t}N

i=1 has been drawn from the filtering

density at time t

p̂(xt|y1:t, θ) =
N∑

i=1

wi
tδ{xi

t}
(dxt) (2.55)

Each simulated value xi
t is called particle and the particles set, {xi

t, w
i
t}N

i=1, can be

viewed as a random discretization of the state space X , with associated probabilities

weights wi
t. It is possible to approximate, by means of this particle set, the prediction

density given in Eq. (2.21) as follows

p(xt+1|y1:t, θ) =

∫

X

p(xt+1|xt, θ)p(xt|y1:t, θ)dxt '
N∑

i=1

wi
tp(xt+1|xi

t, θ) (2.56)
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Figure 2.9: Particles evolution in the SIS particle filter.

which is called empirical prediction density and is denoted by p̂(xt+1|y1:t, θ).

By applying the Chapman-Kolmogorov equation it is also possible to obtain an

approximation of the filtering density given in Eq. (2.21)

p(xt+1|y1:t+1, θ) ∝ p(yt+1|xt+1, θ)p(xt+1|y1:t, θ) '
N∑

i=1

p(yt+1|xt+1, θ)p(xt+1|xi
t, θ)w

i
t

(2.57)

which is called empirical filtering density and is denoted by p̂(xt+1|y1:t+1, θ).

Assume now that the quantity E(f(xt+1)|y1:t+1) is of interest. It can be evaluated

numerically by a Monte Carlo sample {xi
t+1, w

i
t+1}N

i=1, simulated from the filtering

distribution

E(f(xt+1)|y1:t+1) '
1
N

∑N
i=1 f(xi

t+1)w
i
t+1

1
N

∑N
i=1w

i
t+1

. (2.58)
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A simple way to obtain a weighted sample from the filtering density at time t+1

is to apply importance sampling to the empirical filtering density given in equation

(2.57). This step corresponds to propagate the initial particle set (see Fig. 2.9)

through the importance density q(xt+1|xi
t,yt+1, θ). Moreover if we propagate each

particle of the set through the transition density p(xt|xi
t−1, θ) of the dynamic model,

then particle weights update as follows

wi
t+1 ∝

p(yt+1|xt+1, θ)p(xt+1|y1:t, θ)w
i
t

q(xt+1|xi
t,yt+1, θ)

= wi
t p(yt+1|xi

t+1, θ) (2.59)

This is the natural choice for the importance density, because the transition

density represents a sort of prior at time t for the state xt+1. However, as underlined

in Pitt and Shephard [40] this strategy is sensitive to outliers. See also Crisan

and Doucet [9], for a discussion on the choice of the importance densities. They

focused on the properties of the importance density, which are necessary for the a.s.

convergence of the sequential Monte Carlo algorithm.

The basic particle filter developed through previous equations is called

Sequential Importance Sampling (SIS). In Algorithm 2.3.5, we give a pseudo-code

representation of this method.

The Sequential importance sampling permits to obtain recursive updating of the

particles weights and is based on the sequential decomposition of the joint filtering

density and on a particular choice of the importance density. To evidence these

aspects we consider the following smoothing problem.

We want to approximate the smoothing density p(x0:t+1|y1:t+1, θ), of the state

vectors as follows

p(x0:t+1|y1:t+1, θ) '
N∑

i=1

w̃i
t+1δ{xi

0:t+1}
(dx0:t+1) (2.60)

by simulating {xi
0:t+1}N

i=1 from a proposal distribution q(x0:t|y1:t, θ) and by correcting

the weights of the resulting empirical density. The correction step comes from an

importance sampling argument, thus the unnormalized particles weights 1 are defined

1Note that importance sampling requires to know the importance and the target distributions
up to a proportionality constant, thus the unnormalized weights may not sum to one. However
normalized importance sampling weights can be easily obtained as follows

w̃i
t =

wi
t

∑N

j=1
w

j
t

i = 1, . . . , N and t = 1, . . . , T.
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as follows

wi
t+1

∆
=
p(xi

0:t+1|y1:t+1, θ)

q(xi
0:t+1|y1:t+1, θ)

. (2.61)

The key idea used in SIS consists in obtaining a recursive relation for the weights

updating. This property makes them particulary appealing for on-line applications.

Algorithm 2.3.5. - SIS Particle Filter -

Given the initial set of particles {xi
t, w

i
t}N

i=1, for i = 1, . . . , N :

1. Simulate xi
t+1 ∼ q(xt+1|xi

t,yt+1, θ)

2. Update the weights: wi
t+1 ∝ wi

t
p(yt+1|xi

t+1,θ) p(xt+1|xi
t;θ)

q(xt+1|xi
t,yt+1,θ)

Assume that the dynamic model of interest is the one described by equations

(2.17), (2.18) and (2.19) and choose the importance density to factorize as follows:

q(x0:t+1|y1:t+1, θ) = q(x0:t|y1:t, θ)q(xt+1|x0:t,y1:t+1, θ), then the weights can be

rewritten in a recursive form

wi
t+1 = wi

t

p(yt+1|xi
t+1, θ)p(x

i
t+1|xi

t, θ)

q(xi
t+1|xi

t+1,yt+1, θ)
(2.62)

This relation can be proved by using the Bayes rule and the Markov property of

the system (see the proof in Appendix B).

Example 2.3.2 - (SV Model and SIS algorithm, Example 2.2.1 continued)

The first aim of this example is to show how sequential importance sampling applies

to a specific Bayesian dynamic model. We consider the SV model introduced through

the example 2.2.1. In the following, we assume that the parameters are known,

because we want to study how SIS algorithms work just for filtering the log-volatility.

The second aim of this example, is to evidence the degeneracy problem, which arises

in using SIS algorithms. Given the initial weighted particle set {hi
t, w

i
t}, the SIS filter

performs the following steps

The normalization procedure causes the loss of the unbiasness property because the quantity at
the denominator is a random variable.
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(i) Simulate hi
t+1 ∼ N (ht+1|ν + φhi

t, σ
2)

(ii) Update the weights as follow

w̃i
t+1 ∝ wi

tp(yt+1|hi
t+1, θ) ∝

∝ wi
t exp

{

−1

2

[

y2
t+1e

−hi
t+1 + hi

t+1

]}

(iii) Normalize the weights

wi
t+1 =

w̃i
t+1

∑N
j=1 w̃

j
t+1

By applying the SIS algorithm to the synthetic data, simulated in Example 2.2.1,

we obtain the filtered log-volatility represented in Fig. 2.10. Note that after some

iterations the filtered log-volatility does not fit well to the true log-volatility. The

Root Mean Square Error (RMSE) defined as

RMSEt =

{∑t
u=1(h̃u − hu)

2

t

} 1
2

, (2.63)

measures the distance between the true and the filtered series. In the Fig. 2.11

the RMSE cumulates rapidly over time. Moreover, the same figure exhibits

the estimated variance of the particle weights. This indicator shows how the

SIS algorithm degenerates after 430 iterations. The discrete probability mass

concentrates on one particle, the others particle having null probability.

�

As evidenced in Example 2.3.2 and as it is well known in the literature (see for

example Arulampalam, Maskell, Gordon and Clapp [1]), that basic SIS algorithms

have a degeneracy problem. After some iterations the empirical distribution

degenerates into a single particle, because the variance of the importance weights is

non-decreasing over time (see Doucet et al. [13]). In order to solve the degeneracy

problem, the Sampling Importance Resampling (SIR) algorithm has been introduced

by Gordon, Salmond and Smith [18].
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Figure 2.10: True (solid line) versus Filtered (dotted line) log-volatility obtained by
applying a SIS algorithm, with N = 3, 000 particles at each time step.
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Figure 2.11: The Root Means Square Error between true and filtered log-volatility,
and the estimated variance of the particle weights, which allows us to detect
degeneracy of the particle weights.
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Figure 2.12: Particles evolution in the SIR particle filter.

This algorithm belongs to a wider class of bootstrap filters, which use a re-

sampling step to generate a new set of particles with uniform weights. This step

introduces diversity in particle set, avoiding degeneracy. In Algorithm 2.3.6, we give

a pseudo-code representation of this method.

Note that in the SIR particle filter, we assumed q(xt+1|xi
t,yt+1, θ) = p(xt+1|xi

t, θ).

Moreover, due to the resampling step, the weights are uniformly distributed over

the particle set: wi
t = 1/N , thus the weights updating relation becomes: w̃i

t+1 ∝
wi

t p(yt+1|xi
t+1, θ) ∝ p(yt+1|xi

t+1, θ).

However, the basic SIR algorithm produces a progressive impoverishment (loss of

diversity) of the information contained in the particle set, because of the resampling

step and of the fact that particles do not change over filter iterations.

Many solutions have been proposed in literature. We recall the Regularised

Particle Filter proposed by Musso, Oudjane and LeGland [39], which is based on a

discretisation of the continuous state space.
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Algorithm 2.3.6. - SIR Particle Filter -

Given the initial set of particles {xi
t, w

i
t}N

i=1, for i = 1, . . . , N :

1. Simulate x̃i
t+1 ∼ q(xt+1|xi

t,yt+1, θ)

2. Update the weights: w̄i
t+1 ∝ p(yt+1|x̃i

t+1, θ)

3. Normalize the weights: w̃i
t+1 = w̄i

t+1 (
∑N

j=1 w̄
j
t+1)

−1, for i = 1, . . . , N .

4. Simulate {xi
t+1}N

i=1 from the empirical density {x̃i
t, w̃

i
t}N

i=1

5. Assign wi
t+1 = 1/N , for i = 1, . . . , N .

Gilks and Berzuini [4] propose the SIR-Move algorithm, which moves particles

after the re-sampling step. Thus, particle value changes and the impoverishment is

partially avoided. Finally, Pitt and Shephard [40] introduce the Auxiliary Particle

Filter (APF) and applied it to a Gaussian ARCH-type stochastic volatility model.

They find that the auxiliary particle filter works well and that the sensibility to

outliers is lower than in the basic filters. In the following we focus on the APF

algorithm.

In order to avoid re-sampling, the APF algorithm uses an auxiliary variable

to select most representative particles and to mutate them through a simulation

step. Then weights of the regenerated particles are updated through an importance

sampling argument. In this way particles with low probability do not survive to

the selection and the information contained in the particle set is not wasted. In

particular the auxiliary variable µi
t contains and resumes the information on the

previous particle set and it is used in the selection step to sample the random

particle index. Note that the empirical filtering density given in Eq. (2.57) is a

mixture of distributions, which can be reparameterised by introducing an auxiliary

variable i ∈ {1, . . . , N}, which indicates the component of the mixture. The joint

distribution of the hidden state and of the index i is
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p(xt+1, i|y1:t+1, θ) =
p(yt+1|y1:t,xt+1, i)

p(yt+1|y1:t, θ)
p(xt+1, i|y1:t, θ) = (2.64)

=
p(yt+1|xt+1, θ)

p(yt+1|y1:t, θ)
p(xt+1|i,y1:t, θ)p(i|y1:t, θ) =

=
p(yt+1|xt+1, θ)

p(yt+1|y1:t, θ)
p(xt+1|xi

t, θ)w
i
t.

The basic idea of the APF is to refresh the particle set while reducing the loss

of information due to this operation. Thus, the algorithm generates a new set of

particles by jointly simulating the particle index i (selection step) and the selected

particle value xt+1 (mutation step) from the reparameterised empirical filtering

density, according to the following importance density

q(xj
t+1, i

j|y1:t+1, θ) = q(xj
t+1|y1:t+1, θ)q(i

j|y1:t+1, θ)

= p(xj
t+1|xij , θ)(p(yt+1|µij

t+1, θ)w
ij

t ) (2.65)

for j = 1, . . . , N . Note that the index is sampled using weights which are

proportional to the observation density conditional on a summary statistics on

the initial particle set. In this way, less informative particles are discarded.

The information contained in each particle is evaluated with respect to both the

observable variable and the initial particle set. By following the usual importance

sampling argument, the updating relation for the particle weights is

wj
t+1

∆
=

p(xj
t+1, i

j|y1:t+1, θ)

q(xj
t+1, i

j|y1:t+1, θ)

=
p(xj

t+1|xij , θ)p(yt+1|xj
t+1, θ)w

ij

t

p(xj
t+1|xij , θ)p(yt+1|µij

t+1, θ)w
ij
t

(2.66)

=
p(yt+1|xj

t+1, θ)

p(yt+1|µij
t+1, θ)

In Algorithm 2.3.7 we give a pseudo-code representation of the Auxiliary Particle

Filter.
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Algorithm 2.3.7. - Auxiliary Particle Filter -

Given the initial set of particles {xj
t , w

j
t}N

j=1, for j = 1, . . . , N :

1. Calculate µj
t+1 = E(xt+1|xj

t , θ)

2. Simulate ij ∼ q(i|y1:t+1, θ) ∝ wi
t p(yt+1|µi

t+1, θ) with i ∈ {1, . . . , N}

3. Simulate xj
t+1 ∼ p(xt+1|xij

t , θ)

4. Update particles weights: w̃j
t+1 ∝

p(yt+1|x
j
t+1,θ)

p(yt+1|µij

t+1,θ)
.

5. Normalize the weights: wi
t+1 = w̃i

t+1 (
∑N

j=1 w̃
j
t+1)

−1, for i = 1, . . . , N .

In Examples 2.3.3 and 2.3.4 we show how resampling can improve the performance

of the basic SIS algorithm. In particular, we apply SIR and APF algorithms to

the stochastic volatility model, illustrated in Example 2.2.1 and make a comparison

between them, in terms of Root Means Square Error.

Example 2.3.3 - (SV Model and SIR algorithm, Example 2.3.2 continued)

In this example we show how the selection (or resampling) step can improve the

performance of the basic Sequential Importance Sampling algorithm when applied

to the Stochastic Volatility model given in Example 2.2.1.

In order to implement SIR algorithm we introduce a resampling step after the

propagation of the initial set of particle {hi
t, w

i
t = 1/N}N

i=1. The steps of the SIR are

(i) Simulate h̃i
t+1 ∼ N (ht+1|ν + φhi

t, σ
2)

(ii) Update the weights

w̄i
t+1 ∝ wi

tp(yt+1|h̃i
t+1, θ) ∝

∝ wi
t exp

{

−1

2

[

y2
t+1e

−h̃i
t+1 + h̃i

t+1

]}
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Figure 2.13: True (solid line) versus Filtered (dotted line) log-volatility obtained by
applying a SIR algorithm, with N = 3, 000 particles at each time step.
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Figure 2.14: The first graph compares SIS and SIR algorithms in terms of Root
Means Square Error between true and filtered log-volatility. The second graph shows
the estimated variance of the particle weights, which allows us to detect degeneracy
of the particle weights.
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(iii) Normalize the weights

w̃i
t+1 =

w̄i
t+1

∑N
j=1 w̄

j
t+1

(iv) Simulate hi
t+1 ∼

∑N
i=1 w̃

i
t+1δh̃i

t+1

(v) Set wi
t+1 = 1/N , ∀i = 1, . . . , N

By applying the SIR algorithm to the synthetic data, simulated in Example 2.2.1,

we obtain the filtered log-volatility represented in Fig. 2.13. In Fig. 2.14, the first

graph on the left compares SIS and SIR algorithm performances evaluated in terms of

RMSE. Note how resampling, (selection step), effectively improves the performance

of the basic SIS filter, avoiding the degeneracy of the particle weights and reducing

the RMSE.

�

Example 2.3.4 - (SV Model and APF algorithm, Example 2.3.2 continued)

In this example we apply an Auxiliary Particle Filter Algorithm to the Stochastic

Volatility model given in Example 2.2.1.

In order to implement the algorithm we introduce a selection step before the

propagation of the set of particles
{
hj

t , w
j
t = 1/N

}N

j=1
. The steps of the APF are

(i) Calculate µj
t+1 = φhj

t + ν for j =, . . . , N

(ii) Simulate ij ∼∑N
j=1w

j
tN (yt+1|µj

t+1) for j =, . . . , N

(iii) Simulate h̃j
t+1 ∼ N

(

ht+1|ν + φhij

t , σ
2
)

for j =, . . . , N

(iv) Update the weights

w̄j
t+1 ∝ N (yt+1|0, eh̃j

t+1)

N (yt+1|0, eµij

t+1)
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Figure 2.15: True (solid line) versus Filtered (dotted line) log-volatility obtained by
applying an APF algorithm, with N = 3, 000 particles at each time step.
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Figure 2.16: The first graph compares SIS, SIR and APF algorithms in terms of Root
Means Square Error between true and filtered log-volatility. The second graph shows
the estimated variance of the particle weights, which allows us to detect degeneracy
of the particle weights.
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(iii) Normalize the weights

w̃j
t+1 =

w̄i
t+1

∑N
j=1 w̄

j
t+1

Note that, for simulating auxiliary variables ij, Pitt and Shephard [40] suggest to use

another proposal distributions, based on the Taylor expansion of the measurement

distribution.

By applying the APF algorithm to the synthetic data, simulated in Example 2.2.1,

we obtain the filtered log-volatility represented in Fig. 2.15. In Fig. 2.16, the

first graph on the left compares SIS, SIR and APF algorithms in terms of RMSE.

Although the variability in the weights of the particle set and the RMSE are greater

than in the SIR algorithm, there is not degeneracy and the performance of APF

algorithm is superior than that one of the basic SIS algorithm. The poor performance

of the APF with respect to the SIR algorithm evidence a well known problem of

this kind of algorithm. When the transition density exhibits a high noise variance

the use of APF does not improve filtering results.

�

We conclude this section with a brief discussion of the problem of parameter

estimation (see Chapter 6 for a more detailed analysis), for dynamic models with

hidden variables, in a sequential data-processing approach. In principle parameter

estimate and state filtering can be treated separately (see Storvik [47]). In many

applications of particle filter techniques, parameters are treated as known and

MCMC parameter estimates are used instead of the true parameter values. But

in this way parameter estimate are not continuously updated as the hidden states.

MCMC is typically a off-line approach, it does not allow the sequential updating

of parameter estimates, as new observations arrive. Moreover, when applied

sequentially, MCMC estimation method is more time consuming than particle filter

algorithms.

One of the main issue in researching on particle filter is the inclusion of the

parameter estimation procedure in the state filtering algorithm. Some studies have

already extended sequential Monte Carlo techniques in order to jointly estimate

state vectors and parameter. See Berzuini et al. [3] and Storvik [47] for a general
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discussion of the problem and Liu and West [32] for the joint application of the

adaptive importance sampling and the auxiliary particle filter. In the following we

briefly show how joint parameter estimation and states filtering apply to a Bayesian

dynamic model. In particular we apply the algorithm of Liu and West to the

stochastic latent factor model given in Example 2.2.2. We refer to Chapter 6 for an

updated review of the on-line parameter estimation problem, with applications to

Markov switching stochastic volatility models.

Example 2.3.5 - (APF and Latent Factor Models, Example 2.2.2 continued)

The aim of this example is to show how particle filter algorithms apply to a widely

used class of economic dynamic models: Markov switching stochastic latent factor

models. In these models latent factor represents the trend of the market, while

the switching states are the phases (growth and recession) of the market or of the

economy.

We apply APF algorithm to synthetic data in order to show the efficiency of the

algorithm and to detect possible degeneracy of the weights.

We refer to the Markov switching model given in Example 2.2.2 and apply the

algorithm due to Liu and West [32]. This algorithm combines adaptive importance

sampling for sequentially estimating the parameter vector with the auxiliary particle

filter for filtering and predicting the hidden state. Observe that the latent structure

of the MS model in the example exhibits two levels. The first one is given by

the stochastic latent factor xt and the second one is given by the regime switching

process st. This stochastic structure makes the inference more difficult than in the

simpler Hamilton’s MS models.

The adaptation of the algorithm of Liu and West [32] to our MS model give us

the following Particle Filter algorithm.

Algorithm 2.3.8. - APF for the Business Cycle Model -

Given an initial set of particles {xi
t, s

i
t, θ

i
t, w

i
t}N

i=1:

1. Compute Vt =
∑N

i=1(θ
i
t − θ̄t)(θ

i
t − θ̄t)

′wi
t and θ̄t =

∑N
i=1 θ

i
tw

i
t
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2. For i = 1, . . . , N and with a and b well chosen tuning parameters, calculate

the following summarizing constant:

(a) S̃i
t+1 = arg max

l∈1,2
P(st+1 = l|st = si

t)

(b) X̃ i
t+1 = µi

t + νi
tS̃

i
t+1 + ρi

tx
i
t

(c) θ̃i
t = aθi

t + (1 − a)θ̄t, where θ̃ = (α̃, σ̃ε, ρ̃, µ̃, ν̃, σ̃η, p̃11, p̃22)

3. For i = 1, . . . , N :

(a) Simulate ki ∝ q(k|y1:t+1, θ) = N(yt+1|α̃k
t X̃

k
t+1, σ̃

k
ε t)w

k
t , with k ∈

{1, . . . , N}
(b) Simulate θi

t+1 from N(θ̃ki

t , b
2Vt)

(c) Simulate si
t+1 ∈ {1, 2} from P(si

t+1 = i|ski

t )

(d) Simulate xi
t+1 from N(µi

t+1 + νi
t+1s

i
t+1 + ρi

t+1x
ki

t , σ
i
η t+1)

4. Update weights w̃i
t+1 ∝ N(yt+1|αi

t+1x
i
t+1, σ

i
ε t+1)/N(yt+1|α̃ki

t X̃
ki

t+1, σ̃
ki

ε t)

5. Normalize weights wi
t+1 = w̃i

t+1 (
∑N

i=1 w̃
i
t+1)

−1, for i = 1, . . . , N .

The tuning parameters a and b are equal to 3δ−1
2δ

and
√

1 − a2 respectively, where

we chose δ = 0.99 as suggested in West [53].

Figure 2.17 shows on-line estimation of parameters α, σε, ρ, µ0, µ1, ση, p11,

p22 obtained by running APF algorithm on the synthetic dataset exhibited in Fig.

2.3. We use a set of N = 1000 particles to obtain empirical filtering and prediction

densities. All computation have been carried out on a Pentium IV 2.4 Ghz, and

the APF algorithm has been implemented in GAUSS 4.0. Figure 2.18 shows on-line

estimation of the latent factor xt and of the switching process st.

In order to detect the absence of degeneracy in the output of the APF algorithm

we evaluate at each time step the Survival Rate. It is defined as the number of

particles survived to the selection step over the total number of particles. Particles

set degenerates when persistently exhibiting a high number of dead particles from

a generation to the subsequent one. Survival rate is calculated as follow

SRt = {N −
N∑

i=1

I{0}(Card(Ii,t))}N−1 (2.67)
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Figure 2.17: On-line parameter estimates. Graphs exhibit at each date the empirical
mean and the quantiles at 0.275 and 0.925 for each parameter.
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Figure 2.18: Sequentially filtered latent factor, xt, over T = 1, 000 observations.
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Figure 2.19: Survival Rate of the particle set at each time step.

where Ii,t = {j ∈ {1, . . . , N}|ijt = i} is the set of all random index values, which are

selecting, at time t, the i-th particle. If at time t the particle k does not survive to

the selection step then the set Ik,t becomes empty. Graph 2.19 shows the survival

rate at each time step. The rate does not decrease thus we conclude that the APF

algorithm does not degeneracy in our study.

�



72

2.4 Conclusion

In this work we describe the Bayesian approach to general dynamic models analysis.

We briefly review the literature on the latent factor dynamic models, focusing on

the Bayesian approach and recognizing the importance of simulation based methods

in Bayesian inference.

To deeply review simulation based methods in latent factor dynamic models we

analyze the problems of state filtering and parameter estimation for quite general

dynamic models used in time series analysis, such as business cycle and stochastic

volatility models. We discuss general filtering, predicting and smoothing relations

and give a proof of these relations.

In the second part of the work, we provide a review of the Bayesian simulation

based inference and develop through some examples the application of the simulation

based inference to switching latent factor models and to stochastic volatility models.

Traditional MCMC methods, like single-move and multi-move Gibbs sampler have

been discussed. Moreover, sequential Monte Carlo methods have been introduced

by means of the adaptive importance sampling algorithm. Finally we analyze basic

sequential techniques and recently developed sequential techniques like particle filter

algorithms.
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Appendix A - General Filtering

Proof. - Recursive filtering relation given in Equation (2.24) -

Consider the joint posterior density of the state vectors, conditional on the

information available at time T

p(x0:T |y1:T , θ) =
p(x0:T ,yT |y1:T−1, θ)

p(yT |y1:T−1, θ)
=

= p(x0:T−1|y1:T−1, θ)
p(xT ,yT |x0:T−1,y1:T−1, θ)

p(yT |y1:T−1, θ)
=

= p(x0:T−1|y1:T−1, θ)
p(yT |x0:T ,y1:T−1, θ)p(xT |x0:T−1,y1:T−1, θ)

p(yT |y1:T−1, θ)
=(2.68)

= p(x0:T−1|y1:T−1, θ)
p(yT |xT ,y1:T−1, θ)p(xT |xT−1,y1:T−1, θ)

p(yT |y1:T−1, θ)
=

= p(x0:T−1|y1:T−1, θ)
p(yT |xT , θ)p(xT |xT−1, θ)

p(yT |y1:T−1, θ)
.

where the last line is due to the Markov property of the measurement and transition

densities.

�

Proof. - Recursive smoothing density given in Equation (2.25) -

Consider the joint posterior density of the state vectors, conditional on the available

information y1:T

p(x0:T |y1:T , θ) =

= p(xT |y1:T , θ)p(x0:T−1|xT ,y1:T , θ) =

= p(xT |y1:T , θ)p(xT−1|xT ,y1:T , θ)p(x0:T−2|xT−1:T ,y1:T , θ) =

Bayes
= p(xT |y1:T , θ)

p(yT |xT−1:T ,y1:T−1, θ)p(xT−1|xT ,y1:T−1, θ)

p(yT |xT ,y1:T−1, θ)
p(x0:T−2|xT−1:T ,y1:T , θ) =

Markov
= p(xT |y1:T , θ)

p(yT |xT ,y1:T−1, θ)p(xT−1|xT ,y1:T−1, θ)

p(yT |xT ,y1:T−1, θ)
p(x0:T−2|xT−1:T ,y1:T , θ) =(2.69)

= p(xT |y1:T , θ)p(xT−1|xT ,y1:T−1, θ)p(x0:T−2|xT−1,y1:T , θ).

By applying iteratively Bayes theorem and Markov property of the dynamic model

we obtain the recursive smoothing relation
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p(x0:T |y1:T , θ) =

= p(xT |y1:T , θ)p(xT−1|xT ,y1:T−1, θ)
T−2∏

t=0

p(xt|xt+1,y1:T , θ)

= p(xT |y1:T , θ)p(xT−1|xT ,y1:T−1, θ)
T−2∏

t=0

p(xt|xt+1,y1:t,yt+1:T , θ) (2.70)

Bayes
= p(xT |y1:T , θ)p(xT−1|xT ,y1:T−1, θ)

T−2∏

t=0

p(yt+1:T |xt:t+1,y1:t, θ)p(xt|xt+1,y1:t, θ)

p(yt+1:T |xt+1,y1:t, θ)

Markov
= p(xT |y1:T , θ)p(xT−1|xT ,y1:T−1, θ)

T−2∏

t=0

p(yt+1:T |xt+1,y1:t, θ)p(xt|xt+1,y1:t, θ)

p(yt+1:T |xt+1,y1:t, θ)

= p(xT |y1:T , θ)
T−1∏

t=0

p(xt|xt+1,y1:t, θ).

�
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Appendix B - Simulation Based Filtering

Proof. - Single-Move Gibbs Sampler, Equation (2.38) -

Consider the full posterior density of the t-th state vector and apply the

independence assumption between yt+1:T and xt

p(xt|x−t,y1:T , θ) = p(xt|x−t,y1:t,yt+1:T , θ)

=
p(xt,yt+1:T |x−t,y1:t, θ)

p(yt+1:T |x−t,y1:t, θ)
=

=
p(yt+1:T |x0:T ,y1:t, θ)p(xt|x−t,y1:t, θ)

p(yt+1:T |x−t,y1:t, θ)
=

=
p(yt+1:T |x−t,y1:t, θ)p(xt|x−t,y1:t, θ)

p(yt+1:T |x−t,y1:t, θ)
=

= p(xt|x−t,y1:t, θ).

We can simplify the last density as follow

p(xt|x−t,y1:t, θ) = p(xt|x0:t−1,xt+1:T ,y1:t, θ) =

=
p(xt:T ,yt|x0:t−1,y1:t−1, θ)

p(xt+1:T ,yt|x0:t−1,y1:t−1, θ)
=

=
p(xt+1:T ,yt|x0:t,y1:t−1, θ)p(xt|x0:t−1,y1:t−1, θ)

p(xt+1:T ,yt|x0:t−1,y1:t−1, θ)
=

=
p(xt+1:T |x0:t,y1:t, θ)p(yt|x0:t,y1:t−1, θ)p(xt|x0:t−1,y1:t−1, θ)

p(xt+1:T ,yt|x0:t−1,y1:t−1, θ)
=

Markov
=

p(xt+1:T |x0:t,y1:t, θ)p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ)

p(xt+1:T ,yt|x0:t−1,y1:t−1, θ)
.

The full posterior density of the t-th state vector is thus proportional to

p(xt|x−t,y1:t, θ) ∝
p(xt+1:T |x0:t,y1:t, θ)p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ) =

= p(xt+2:T |x0:t+1,y1:t, θ)p(xt+1|x0:t,y1:t, θ)p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ) =

Markov
= p(xt+2:T |x0:t+1,y1:t, θ)p(xt+1|xt,y1:t, θ)p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ) ∝
∝ p(xt+1|xt,y1:t, θ)p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ).
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�

Proof. - Recursive weights updating relation given in Equation (2.62) -

Starting from the definition of importance weights

wt+1
∆
=

p(x0:t+1|y1:t+1, θ)

q(x0:t+1|y1:t+1, θ)
=

Bayes
=

p(x0:t+1,yt+1|y1:t, θ)

q(x0:t+1|y1:t+1, θ)p(yt+1|y1:t, θ)
=

=
p(x0:t|y1:t, θ)p(xt+1,yt+1|y1:t,x0:t, θ)

q(x0:t+1|y1:t+1, θ)p(yt+1|y1:t, θ)
=

=
p(x0:t|y1:t, θ)

q(x0:t+1|y1:t+1, θ)

p(yt+1|x0:t+1,y1:t, θ)

p(yt+1|y1:t, θ)
p(xt+1|x0:t,y1:t, θ) =(2.71)

Markov
=

p(x0:t|y1:t, θ)

q(x0:t+1|y1:t+1, θ)

p(yt+1|xt+1, θ)

p(yt+1|y1:t, θ)
p(xt+1|xt, θ) =

=
p(x0:t|y1:t, θ)

q(x0:t|y1:t, θ)

p(yt+1|xt+1, θ)p(xt+1|xt, θ)

p(yt+1|y1:t, θ)q(xt+1|x0:t,y1:t+1, θ)
=

= wt
p(yt+1|xt+1, θ)p(xt+1|xt, θ)

p(yt+1|y1:t, θ)q(xt+1|x0:t,y1:t+1, θ)
.

Thus particle weights updating recursive relation is

wt+1 ∝ wt
p(yt+1|xt+1, θ)p(xt+1|xt, θ)

q(xt+1|xt,yt+1, θ)
. (2.72)

Moreover, if we assume that the importance density for the state xt+1 is the

transition density: q(xt+1|xt,yt+1, θ) = p(xt+1|xt, θ), then equation (2.72) simplifies

to

wt+1 ∝ wt p(yt+1|xt+1, θ). (2.73)

�
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[6] Carter C.K. and Köhn R., (1994), On Gibbs Sampling for State Space

Models, Biometrika, Vol. 81, n.3, 541-553.

[7] Casarin R., (2003), Bayesian Inference for Markov Switching Stochastic

Volatility Models, working paper, CEREMADE, forthcoming.

[8] Chib S., Nardari F. and Shephard N. (2002), Markov chains Monte

Carlo methods for stochastic volatility models, Journal of Econometrics,

108(2002), pp. 281-316.

77



78

[9] Crisan D. and Doucet A. (2000), Convergence of sequential Monte Carlo

methods, Technical Report 381, CUED-F-INFENG.

[10] De Jong P. and Shephard N. (1995), The Simulation Smoother for Time

Series Models, Biometrika, Vol. 82, Issue 2, pp. 339-350.

[11] Diebold F.X. and Rudebusch G.D., (1996), Measuring Business Cycles: A

Modern Perspective, The Review of Economics and Statistics, 78, 67-77.

[12] Doucet A., Freitas J.G. and Gordon J., Sequential Monte Carlo Methods in

Practice, Springer Verlag, New York.

[13] Doucet A., Godsill S. and Andrieu C. (2000), On sequential Monte Carlo

sampling methods for Bayesian filtering, Statistics and Computing,Vol. 10,

pp. 197-208.

[14] Durland J. and McCurdy T., (1994), Duration-dependent transitions in

a markov model of u.s. gnp growth, Journal of Business and Economic

Statistics, 12, 279-288.

[15] Durbin J. and Koopman S.J., (2001), Time Series Analysis by State Space

Methods, Oxford University Press.
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Chapter 3

Financial Modelling

3.1 Financial Data

3.1.1 Returns

Before starting a brief empirical analysis of some well known financial time series,

we give some basic definitions and notation. Financial analysis concentrates on

returns rather than raw prices because a return is a complete scale free measure of

an investment opportunity and they display better statistical properties.

Let Pt indicate the raw price of an asset at time t. The simple net return Rt

when holding the asset between t− 1 and t is

Rt =
Pt − Pt−1

Pt−1

and the simple gross return is 1 + Rt. The gross return over the holding period

t− k, . . . , t is obtained compounding the single period simple gross returns

1 +Rt(k) = (1 +Rt)(1 +Rt−1) · . . . · (1 +Rt−k+1)

Note that each simple net return must be associated to an interval of time.

Multiperiod returns may be annualised to make investments with different horizon

comparable

ARt(k) =

(
k−1∏

j=0

(1 +Rt−j)

) 1
k

− 1

83
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Another way to compound return is based on the natural logarithm transformation

of gross return. The continuously compounded return or log-return is

rt = log(1 +Rt) = log

(
Pt

Pt−1

)

= pt − pt−1

where lower case indicates log has been taken. The multiperiod returns are defined

as follow

rt(k) = log(1 +Rt(k)) = rt + . . .+ rt−k+1

The main disadvantage in using continuously compounded return is that the simple

return of a portfolio, Rpt, is a weighted average of simple returns of the assets, Rit,

Rpt =
N∑

i=1

wipRit

while continuously compounded returns have not this property since the log of the

sum is different from the sum of the log

rpt 6=
N∑

i=1

wiprit

Finally we consider the case when the asset pays dividend, Dt, just before the price at

time t, Pt. The simple and the continuously compounded dividend adjusted returns

are

Rt =
Pt +Dt

Pt−1

− 1

rt = log(Pt +Dt) − log(Pt−1)

3.1.2 Financial Indexes

In the construction of stock (or bond) price indices such as the S&P500, S&P100,

FTSE100, CAC40, NIKKEI, MSCI Indices, JP Morgan indices, etc. the effect

of capitalisation changes on return measurement is taken into account through
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renormalisation factors. Resulting returns are thus adjusted for dividend and

capitalisation changes due to spin off and splits. Simple returns are

R =
Ptft +Dt

Pt−1

− 1 (3.1)

where ft is an renormalisation factor for changes in capitalisation. The weight of

each stock in the index involves its market capitalisation and is obtained as follow

wi,t =
Pi,tQi,t

∑N
i=1 Pi,tQi,t

(3.2)

where N is the number of assets in the index, Pi,t and Qi,t are the price and number

of shares outstanding for the i-th asset at time t.

The resulting index is called value weighted because variations in the index value are

determined overall by the stocks with a high number of outstanding share, which

are stocks with a high market value.

In order to assure that a value weighted index remains comparable over time, a

renormalisation factor must be used. When events, such as stock splits occur, the

price of the stock and the market value do not change, thus no adjustment to the

index is needed. When events, such as spin-offs, share repurchase and issuances,

special cash dividends, company changes occur, then market value and stock index

value change. This variation is not due to market movements and thus the stock

index must be adjusted through a renormalisation factor.

In this chapter we will use some indices which have already been adjusted for

dividends and capitalisation changes.

3.2 Graphical and Statistical Analysis

In this section we briefly review some useful tools for time series analysis. In

particular we focus on some tools which allows to detect skewness, excess of kurtosis

and more generally the absence of normality in the observed variables.

3.2.1 Q-Q Plot

A very useful graphical tool for comparing two distribution is the Quantile-Quantile

Plot (Q-Q Plot). This graphical techniques is based on the definition of quantiles.



86

Define the p-th quantile as the value x that satisfies to

Q(p) = inf {x : F (x) ≥ p} (3.3)

or in other words the smallest value of x such that

Pr {X < Q(p)} ≤ p (3.4)

Through the Q-Q plot the empirical quantiles from data can be compared to the

theoretical quantiles from a given distribution, say the normal. If the underlying

data comes from the assumed theoretical distribution then the two set of quantiles

should be the same and the plot of the empirical quantiles against those obtained

from the theoretical distribution must lie on the 45 degree line. If the Q-Q plot does

not lie on a straight line, the two distributions differ along some dimension.

The interpretation of the Q-Q plot can reveal many interesting features of the

empirical distribution. If there are a few points above or below the straight line

then these may be outliers from the base distribution. An S shaped curve means

that the empirical distribution is leptokurtic and has thicker tails then the theoretical

distribution. An inverted S indicates that the empirical distribution is platykurtic

and exhibits thinner tails than the theoretical one.

3.2.2 Jarque-Bera Normality Test

The mean, µ, and the variance, σ2, capture the first two moments, µ1 and µ2, of a

distribution, in other words the location and the dispersion of the random variable,

X, around the central value. Higher order moments capture other features of the

shape of the density. In particular Skewness (left and right) is important when a

distribution is asymmetric and has the left (right) tail longer than the other. One

measure of the degree of skewness is the index of asymmetry

α3 =
E(X − µ)3

σ3
=
µ3

σ3
. (3.5)

Kurtosis measures the concentration of the values around the mean or the

peakedness of the distribution. If the values are highly concentrated around the
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mean the distribution is called platykurtic. If there is a high concentration on the

tails the distribution is leptokurtic. A measure of kurtosis is

α4 =
E(X − µ)4

σ4
=
µ4

σ4
. (3.6)

For a normal distribution, the asymmetry index is zero and the kurtosis is 3. The

Jarque-Bera test allows to verify if a random variable follow a normal distribution.

The Jarque-Bera statistic involves the empirical estimation of asymmetry index and

kurtosis and compares it with those that we would expect from a normal distribution

JB =
T − k

6

(

S2 +
1

4
(K − 3)

)

(3.7)

where S and K are the sample estimates of α3 and α4, T represents the number of

observations and k the number of parameters that have been estimated. Under the

null hypothesis of a normal distribution, the JB statistic asymptotically follows a

χ2 distribution with 2 degrees of freedom. Null hypothesis is rejected at 95% if the

JB statistic is greater than 5.99 and at 99% if the JB statistic is greater than 9.21.

3.2.3 Goodness of Fit Test

Goodness of Fit (GoF) tests are used to verify if a sample of data comes from a

given distribution. In the literature many GoF tests have been proposed. In the

following the briefly review some well know tests, which will be used in this chapter.

The Chi-Square test groups data in k classes and compares the observed

frequencies with that one obtained with a theoretical distribution. The test statistic

proposed by K. Pearson is

χ2 =
k∑

i=1

(Ni − n p0
i )

2

n p0
i

(3.8)

where Ni is the observed frequency for the i-th class and n p0
i the frequency we

would expect for the theoretical distribution. The test is sensitive to the choice of

the number of classes. Under the null hypothesis, that data follow the theoretical

distribution the χ2 statistic asymptotically follows a χ2
k−1. If q parameters of the

theoretical distribution have been estimated then the statistic follows a χ2
k−q−1
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Another important test is the Kolmogorov-Smirnov (KS) test. Given a sample

X1, . . . , Xn, the KS statistic, Dn, requires the estimation of the empirical cumulative

density function (EDF)

Fn(x) =
1

n

n∑

i=1

I(−∞,x](Xi)

and evaluates the maximum distance between the EDF and the theoretical

cumulative density function F (x)

Dn = sup
x

|Fn(x) − F (x)|

If the random variables X1, . . . , Xn are i.i.d then the limiting distribution of

Kn =
√
nDn is known and can be used for a GoF test. If the statistic is greater

than the critical value the null hypothesis will be rejected.

If the theoretical distribution belongs to a parametric family F (x, θ), θ ∈ Θ and the

parameters θ is unknown, then it can be estimated and the resulting distribution

used in the KS test. The limiting distribution under the null hypothesis has been

tabulated in D’Agostino and Stephens [1].

In this chapter we use two extensions of the Kolmogorov-Smirnov statistics: the

Cramér von Mises and the Anderson Darling. These tests belong to the general

class of quadratic statistics

Q = n

∫ +∞

−∞

(Fn(x) − F (x))2 ϕ(x)dF (x) (3.9)

where ϕ(x) is a weighting function. If ϕ(x) = 1, we obtain the Cramér von Mises

statistic, denoted by W 2. If ϕ(x) = F (x) (1 − F (x))−1 we obtain the Anderson

Darling statistic, denoted with A2. The statistics W 2 and A2 can be approximated

as follow

W 2 =
n∑

i=1

{

F [xi −
(2i− 1)

2n
]

}2

A2 = −n−
{

n∑

i=1

(2i− 1)

n
(lnF (xi) + ln(1 − F (xn+1−i)))

}
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In both cases if the test statistics result greater than a given critical value, the null

hypothesis (the sample come from the theoretical distribution) will be rejected.

3.3 Some Empirical Results

The main aim of this section is to verify the absence of normality on financial data.

The analysis concerns the international market, since we want to show that the high

frequency of extreme returns is a phenomenon widely diffused and independent of a

specific geographical area. Moreover we will study financial time series from various

markets, i.e. stock, bonds and liquidity markets. We will use both statistical and

graphical analysis to find evidence also of skewness, kurtosis, multimodality and

clustering volatility.

3.3.1 Stock Indexes

First we analyse the S&P 500 index in order to evidence, through graphical and

statistical analysis, the existence of some well known stylized facts for financial time

series, i.e. excess of kurtosis, skewness, multimodality and volatility clustering. We

consider annual returns on the S&P500 index, including dividend, observed with a

monthly frequency on the time interval 01/1970-04/2001 and with a daily frequency

on the time interval 02/01/1990-24/01/2003.

For the monthly frequency, the Jarque Bera test given in Tab. 3.1 allows to

accept the null hypothesis of normally distributed returns. Also Goodness of Fit

tests (i.e. χ2, Kolmogorov-Smirnov, Cramer von Mises and Anderson Darling) given

in Tab. 3.2 confirm normality. Nevertheless S&P500 index returns exhibit positive

excess of kurtosis, 3.14, and negative skewness, -0.207. These elements suggest that

data may also come from a distribution different from a Gaussian one. One of the

most used alternative to the normal distribution is the Student-t. Thus we test

the hypothesis Student-t distributed returns for various degrees of freedom. The

Anderson Darling statistic captures the ability of a theoretical distribution to fit

the tails of the empirical distribution. Thus we use this statistic to choose the best

Student-t. Tab. 3.2 shows that the Student-t which exhibits the highest Anderson

Darling statistic’s p-value, has 7 degrees of freedom.
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Table 3.1: Jarque Bera test on S&P 500 annual returns. Monthly observations over
the period 01/1970-04/2001. The null hypothesis has been accepted with a p-Value
of 0.247. E-Views software has been used for the test.

J.-B. Test S&P 500 Index
Observations 364

Mean 0.147
Standard Deviation 0.158

Skewness -0.207
Excess of Kurtosis 0.14

Min Value -0.389
Max Value 0.611

Test Statistic 2.794
Critical Value 1% 9.21
Critical Value 5% 5.99

p-Value 0.247
Normality Hypoth. Accepted

Table 3.2: Goodness of Fit tests on S&P 500 annual returns. Monthly observations
over the period 01/1970-04/2001. For χ2 test we use S-Plus, the other tests have
been implemented in GAUSS. We use critical values of the modifies test statistics (in
D’Agostino and Stephens [1]) for testing normality and Student-t (7 d.f.) hypothesis
when parameters are estimated.

χ2 Kolm. Smir. Cr.v. Mises A.Darling
Test Statistic 16.769 0.675 0.08 0.495

Critical Value 1% 38.932 1.035 0.179 1.035
Critical Value 5% 32.671 0.895 0.126 0.752
Critical Value 10% - 0.819 0.104 0.631

p-Value 0.725 - - 0.211
Normality Hypoth. Accepted Accepted Accepted Accepted

Test Statistic 27.044 0.046 0.142 0.974
Critical Value 1% 38.932 0.085 0.743 3.857
Critical Value 5% 32.671 0.071 0.461 2.492
Critical Value 10% - 0.064 0.347 1.933

p-Value 0.169 0.438 - 0.371
Student-t (7 d.f.) Hypoth. Accepted Accepted Accepted Accepted
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Table 3.3: Jarque Bera test on MSCI stock index annual returns. Monthly
observations on the period 01/1986-12/1999. E-Views software has been used for
the test.

J.-B. Test MSCI Europe MSCI North America
Mean 0.140 0.156

Standard Deviation 0.175 0.133
Skewness -0.050 -0.338

Excess of Kurtosis -0.617 -0.186
Min Value -0.197 -0.216
Max Value 0.532 0.496

Test Statistic 2.635 4.375
Critical Value 1% 9.210 9.210
Critical Value 5% 5.991 5.991

p-Value 0.2679 0.1122
Normality Hypoth. Accepted Accepted

Table 3.4: Goodness of Fit tests on MSCI stock index annual returns. Monthly
observations on the period 01/1986-12/1999. For χ2 test we use S-Plus, the other
tests have been implemented in GAUSS. We use critical values of the modifies test
statistics (in D’Agostino and Stephens [1]) for testing normality hypothesis when
parameters are estimated.

χ2 Kolm. Smir. Cr.v. Mises A.Darling
MSCI Europe

Test Statistic 14.095 0.709 0.051 0.461
Critical Value 1% 30.578 1.0350 0.179 1.035
Critical Value 5% 24.996 0.8950 0.126 0.752
Critical Value 10% - 0.8190 0.104 0.631

p-Value 0.518 - - 0.256
Normality Hypoth. Accepted Accepted Accepted Accepted

MSCI North America
Test Statistic 16.952 0.92649 0.14139 0.8937

Critical Value 1% 30.578 1.0350 0.179 1.035
Critical Value 5% 24.996 0.8950 0.126 0.752
Critical Value 10% - 0.8190 0.104 0.631

p-Value 0.322 - - 0.0211
Normality Hypoth. Accepted Rejected 5% Rejected 5% Rejected 5%
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As exhibited in Tab. 3.3, elements of skewness and kurtosis are present also in

MSCI stock index returns when observed with a monthly frequency, although the

Jarque Bera statistics and the Goodness of Fit tests (see Tab. 3.4) suggest to accept

the null hypothesis of Gaussian distributed returns.

We can conclude that returns of the analysed stock indexes (i.e. S&P500, MSCI

North America and MSCI Europe) exhibit kurtosis and skewness which cannot be

modelled through the Gaussian distribution. Moreover an accurate modelling of

the tails becomes important in risk measurement and management, thus heavy tail

distributions should be used instead of the Gaussian one.

In the following we show how skewness and excess of kurtosis become markedly

evident, on stock market indexes, when these variables are observed at higher

frequency (i.e. daily frequency). Moreover we find evidence of time varying volatility

and volatility clustering (see Fig. 3.1).
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Figure 3.1: Daily returns on S&P500 stock index.

The first graph in Fig. 3.2 shows the histogram of the S&P500 daily returns, the

Gaussian kernel density estimation and the best normal distribution. The second

graph evidences that the left tail of best normal distribution do not fit well the tail

of the empirical density. Daily returns exhibit a positive excess of kurtosis and this
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Figure 3.2: Histogram, Gaussian kernel density estimation and the best normal for
daily returns on S&P500 stock index.
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Figure 3.3: Q-Q Plots for daily returns on S&P500 stock indexes.
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Table 3.5: Jarque Bera test on S&P 500 annual returns observed with daily frequency
over the period 02/01/1990-24/01/2003. The null hypothesis has been rejected with
a p-Value of 0. E-Views software has been used for the test.

J.-B. Test S&P 500 Index
Observations 3410

Mean 0.000315
Standard Deviation 0.010368

Skewness -0.016920
Excess of Kurtosis 0.896477

Min Value -0.068657
Max Value 9.957315

Test Statistic 2157.347
Critical Value 1% 9.210
Critical Value 5% 5.991

p-Value 0.0000
Normality Hypothesis Rejected

can be detected also in the Q-Q plot (Fig. 3.3). Tab. 3.5 evidences the presence

of positive excess of kurtosis and negative asymmetry. The Jarque Bera statistic

allows to reject the Gaussian distribution hypothesis.

We conclude that on stock market heavy tails and asymmetry are two marked

features of the asset returns when data are observed both with a monthly and a

daily or higher frequency. Therefore models alternative to the Gaussian distribution

are needed. For this reason in this thesis we analyse non-Gaussian and nonlinear

models. In particular in Chapter 4 we use Student-t distributions in a portfolio

model, in Chapter 5 we propose mixtures of α-stable distributions for asset returns

and finally in Chapter 6 we analyse a stochastic volatility model with non-Gaussian

innovations and a Markovian jump components.

3.3.2 Bond Indexes

In this paragraph we analyse the features of time series on the bond market. In

particular we consider the returns on the JP Morgan bond indexes.

In Tab. 3.6 we analyse the normality of the returns in the following countries: Great

Britain, Japan, France and Belgium, over the period 01/1986-01/2000. For these

markets the Jarque Bera test allows to accept the Gaussian distribution hypothesis
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for the returns series of all the bond indexes. Nevertheless all time series exhibit

negative skewness and excess of kurtosis.

Table 3.6: Jarque Bera test on JP Morgan bond indexes annual return. Monthly
observation over the period 01/1986-01/2000. E-Views software has been used for
the test.

J.-B. Test Great Britain Japan France Belgium
Observations 157 157 157 157

Mean 0.114405 0.064719 0.094355 0.092792
Standard Deviation 0.067214 0.055158 0.060213 0.047616

Skewness -0.352192 -0.37995 -0.22498 -0.3093
Excess of Kurtosis -0.094495 -0.18288 -0.0127 -0.3114

Min Value -0.07032 -0.0895 -0.05496 -0.02507
Max Value 0.27148 0.185556 0.256071 0.189196

Test Statistic 3.94 5.3117 1.4112 4.1472
Critical Value 1% 9.21 9.21 9.21 9.21
Critical Value 5% 5.991 5.991 5.991 5.991

p-Value 0.1395 0.0702 0.4938 0.1257
Normality Hypothesis Accepted Accepted Accepted Accepted

We extend the analysis to the daily frequency data and consider JP Morgan index

returns in the following countries: Great Britain, Japan, France, Germany, Italy

and Belgium, on the period (04/11/1988-13/01/2003).

The time series are represented in Fig. 3.4. All indexes exhibit time varying volatility

and clustering in volatility, which contribute to rise the kurtosis of the empirical

distribution. Fig. 3.5 shows the histograms, the Gaussian kernel estimation of the

empirical density function and the best normal approximation. For each histogram

a detailed representation of the tails behavior is given. Note that in all the analysed

series the estimated Gaussian density is not able to fit the tails of the estimated

empirical density which always exhibits fatter tails. This feature is evident also

in the Q-Q plots given in Fig. 3.6. In order to statistically detect heavy tails we

conduct the Jarque Bera test. From Tab. 3.8, it results that returns exhibit negative

asymmetry and positive excess of kurtosis.
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Figure 3.4: Time series of daily returns on JPM Bond indexes.
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daily returns on JPM Bond indexes.
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Figure 3.6: Q-Q Plots for daily frequency returns on JPM Bond indexes.

Table 3.7: Jarque Bera Test on JPM bond indexes annual return. Daily frequency
observations over the period 04/11/1988-13/01/2003. E-Views software has been
used for the test.

J.-B. Test Belgium France G. Britain Germany Italy Japan
Observations 3922 3922 3922 3922 3922 3922

Mean 0.00323 0.0062 0.0055 0.0020 0.0095 0.0040
Std. Dev. 0.2068 0.2497 0.3458 0.2113 0.26955 0.22125
Skewness -0.2017 -0.1561 0.1322 -0.5948 -0.5100 -0.4643

Exc. of Kurt. 4.6296 1.8485 4.1773 3.6658 10.4277 4.0600
Min Value -1.1681 -1.2044 -2.1581 -1.6660 -2.5066 -1.3889
Max Value 1.6323 1.1707 2.7469 0.9962 2.4778 1.1211

Test Statistic 3529.28 574.37 2863.10 2427.36 17939.53 2834.71
Crit. Val. 1% 9.21 9.21 9.21 9.21 9.21 9.21
Crit. Val. 5% 5.991 5.991 5.991 5.991 5.991 5.991

p-Value 0 0 0 0 0 0
Norm. Hyp. Rejected Rejected Rejected Rejected Rejected Rejected
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3.3.3 Liquidity Market

In this section we show how the Gaussian distribution hypothesis can be sometimes

rejected also due to multimodality of the empirical distribution. In particular we

consider 3-months interest rate on Eurodeposits observed with daily frequency over

the period 01/11/1986-13/01/2003, for the following countries: USA, UK, Japan,

France, Italy and Germany. Fig. 3.7 shows the interest rate time series, which have

been analysed.
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Figure 3.7: Daily Eurodeposits interest rates. Daily observations over the period
01/11/1986-13/01/2003.

Also in this case, graphical analysis gives us quite clear results. The histogram

of these series are represented in Fig. 3.8 and the existence of various modes

(multimodality) in all the interest rate distributions is clear. Empirical distributions

show multimodality and are moreover platykurtic, as result from the QQ-Plots given

in Fig. 3.9.

Fixed income investment, i.e. Eurodeposits, are less sensitive to shock in financial

markets. Thus negative events are less frequent and the decay rate of the tails is

sub-exponential. The joint effect of these features on the Jarque Bera normality

test are given in Tab. 3.8. For all the series there are negative skewness, negative
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Table 3.8: Jarque Bera test on 3-month Eurodeposits interest rates (daily frequency).
E-Views software has been used for the test.

J.-B. Test Italy Germany Japan USA France UK
Observations 4444 4444 4444 4444 3922 4444

Mean 8.6910 5.2204 2.7654 5.6791 6.2529 8.1976
Std. Dev. 3.6405 2.1643 2.5873 1.9396 2.7820 3.2053
Skewness -0.0818 0.8487 0.5606 -0.1242 0.3690 0.7314

Ex. of Kurt. -0.7807 -0.6889 -0.9508 -0.264 -1.3272 -0.6236
Min Value 2.5 2.5 -0.0312 1.296 2.5 3.765
Max Value 21 9.875 8.4375 10.5 14.25 15.5625

Test Statistic 117.82 621.46 400.22 24.40 376.92 468.33
Crit. Val. 1% 9.21 9.21 9.21 9.21 9.21 9.21
Crit. Val. 5% 5.991 5.991 5.991 5.991 5.991 5.991

p-Value 0 0 0 0 0 0
Norm. Hypoth. Rejected Rejected Rejected Rejected Rejected Rejected

excess of kurtosis and the hypothesis of normal distributed interest rates has been

rejected.
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Figure 3.8: Histogram, Gaussian kernel density estimation and the best normal for
daily 3-month Eurodeposits interest rates.
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Figure 3.9: Q-Q Plots for daily 3-month Eurodeposits interest rates.
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Chapter 4

Extreme Returns in a Shortfall

Risk Framework

4.1 Introduction

In asset allocation problems, the assumption on the probability distribution of

future returns is an important aspect. In many theoretical and empirical works,

a normal or log-normal distribution is usually assumed. It is well known that

the normal distribution has several attractive properties: it is easy to use and

produces tractable results in many analytical exercises; all moments of positive order

exist, and it is completely characterized by its first two moments, thus establishing

the link with the mean-variance optimization theory. Normal distribution arises

as the limiting distribution of a whole class of statistical testing and estimation

procedures, and therefore plays a central role in empirical modelling exercises.

One of the main characteristics of the normal distribution is that its tails decay

exponentially toward zero; thus extreme realizations are very unlikely. However,

this seems to contradict empirical findings on asset returns, which evidence that

1Part of this work is in:

Billio M. and Casarin R., (2003), ”Extreme Returns in a Shortfall Risk Framework”, in Atti

della giornata di studio Metodi Numerici per la Finanza, 30 May 2003, Applied Mathematics

Department, University ”Ca’ Foscari”, Venice.

Billio M., Casarin R. and Toniolo G., (2002), ”Extreme Returns in a Shortfall Risk Framework”,

Working Paper, GRETA n. 0204 and in Proceedings of 8th International Conference Forecasting

Financial Markets Meeting, London 2002.

103



104

returns’ distribution generally exhibits leptokurtic behaviour, i.e. has fatter tails

than the normal distribution. This means that extreme returns of either sign

occur far more often in practice than predicted by the normal model. For financial

managers, who are interested in risk management, these are crucial aspects. It

is typically suggested that the use of leptokurtic instead of normal distributions in

asset allocation problems leads to more prudent asset portfolios. In other words, it is

commonly believed that optimal asset allocations under the assumption of normally

distributed returns have a higher Value at Risk (VaR) than the model suggests if

returns in reality follow a leptokurtic distribution.

By means of Monte Carlo simulations we study an asset allocation problem under

a given shortfall constraint, and we show that this idea is not generally valid. The

use of simulation methods allows testing the effects of assuming different kinds of

returns distribution in modelling asset class returns. To illustrate this point, we

consider a simple one-period asset allocation problem with one shortfall constraint 1

(see [25], Telser [28] and Kataoka [14]).

As is known from the safety first principle, the shortfall constraint reflects the

investors typical desire to limit downside risk by putting a (probabilistic) upper

bound on the maximum loss. In other words, the investor wants to determine an

optimal asset allocation for a given Value at Risk. Results obtained reveal that the

degree of shortfall probability plays a crucial role in determining the effects of the

choice between a fat tailed and a normal distribution. These effects concern the

composition of optimal asset allocations as well as consequences of misspecification

of the degree of fat-tailedness for the downside risk measure2.

If the shortfall is moderately large, say 5%, then the assumption of fat tails

1An extensive literature exists since the fifties, known as Downside Risk Approach. It tries
to explain the risk associated to an investment, exclusively evaluating downside oscillations of
returns. The Downside Risk is an alternative to the more common standard deviation concept,
generally used by financial managers in asset allocation problems. Although these approaches
were already developed at the beginning of the fifties, they were followed in the mid seventies
with the introduction of the lower partial moment framework (see Harlow [7]). A special case of
lower partial moments is the safety first principle (see Roy [25]). This principle allows investors to
identify portfolios revealing a minimum probability to fall under a specified return level.

2A first analysis of these important aspects was provided by Lucas and Klassen [18] which
studied an analogous problem in an analytical way. The main aim of this work is to examine closely
these aspects valuing the effects on optimal financial portfolio when each asset studied follows a
different marginal probability distribution. To make this possible the Monte Carlo method seems
to be the most suitable instrument.
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results in more aggressive asset allocations. As a consequence, if reality is fat-tailed,

optimal asset allocations that are based on the normal distribution may be far too

prudent for a given 95% confidence level VaR.

If the shortfall is small, say, 1%, then the use of leptokurtic distribution leads to

more prudent asset allocations. Consequently, an optimal asset mix that is based

on a normality assumption, will violate a 99% confidence level VaR if reality is

leptokurtic. We show that the true VaR may in that case exceed the VaR obtained

by simulation by over 30%. After these first results, we analyse the effects, on the

portfolio management, when the distribution of each asset returns considered, shows

a different behaviour. In fact, it is quite unrealistic to suppose that the probability

distribution of each financial class shows the same degrees of leptokurtosis. Through

the Monte Carlo method it is possible to study the effects on the true risk when

the data come from a mixed distribution while the manager uses a multivariate

distribution with identically distributed marginal distributions.

The main result is that a correct estimate of the degrees of freedom for each of

them is a necessary condition in order to have no excessive loss of information, an

adequate formulation of the optimal strategy and, consequently, a correct perception

of the true risk. We have also noted that for the particular combination we used, it

is possible to find a multivariate distribution with identically distributed marginal

distributions able to approximate the empirical one, with a loss of information that

could be minimal. This means that we can simplify the problem with no excessive

loss of generalities, which may be very useful when we solve complex mathematical

models. The analysis we carry out may be very important to understand which

approach a manager could follow to identify the most suitable distribution of

probability to use. We concentrate on the interaction between different distribution

assumptions made by the manager on the one hand and, on the other, the resulting

optimal financial management decisions and downside risk measures. In particular,

we pay close attention to the effect of financial policies and VaR if the probability

of extreme returns is underestimated.

The structure of the work is as follows. In §4.2 we present the asset allocation

problem and the class of probability distributions considered. In Section 4.3 we

examine how the problem can be solved through a Monte Carlo approach, and

in particular we concentrate on the stochastic optimization aspects. After this
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analysis, we give some general characterizations of the theoretical effect of fat tails

on the problem at hand (see Section 4.4) and a numerical illustration of the model,

initially using the returns of three financial assets class (cash, stocks and bonds)

identically distributed (see Section 4.5) and then differently distributed (see Section

4.7). Parameters of the probability distribution (mean, variance, correlation matrix),

are estimated on three U.S. asset categories. Following the empirical example, in

Sections 4.6 and 4.7, we study the effect of misspecification of the return distribution

on downside risk.

4.2 The Portfolio Model

We consider a one-period model with n asset categories. At the beginning of the

period, the manager can invest the money available in any of the n asset categories

and short positions are not allowed.

The objective of the investment manager is to maximize the expected return on

the portfolio, subject to a shortfall constraint. This shortfall constraint states that

with a sufficiently high probability 1−α (with α being a small number), the return

on the portfolio will not fall below the threshold return rlow.

Formally, the asset allocation problem can be written as follows:

Max
x∈Rn

E

(
n∑

i=1

xiri

)

(4.1)

s.t.

P

(
n∑

i=1

xiri < rlow

)

≤ α (4.2)

n∑

i=1

xi = 1 (4.3)

xi ≥ 0 (4.4)

where xi and ri , (with i = 1, 2, . . . , n), denote the fraction of capital invested in the

asset category i, and the (stochastic) return on asset category i, respectively. The

operator E(·) is the expectations operator with respect to the probability distribution

P of the asset returns. The probabilistic constraint in (4.2) fixes the permitted VaR

for feasible asset allocation strategies. We know that Value at Risk is the maximum



107

amount that can be lost with a certain confidence level in a given period. In the

setting of (4.2) with rlow < 0, the VaR per Euro invested is −rlow with a confidence

level of 1 − α.

Our aim is to study the effect of extreme returns on the solution of the asset

allocation problem in Equations (4.1) to (4.4). We need therefore to introduce

a stochastic optimisation technique by simulation and then a class of probability

distribution that allows for fat tails. The class of Student-t distributions meets

these requirements.

The probability density function of n-dimensional multivariate Student-t

distribution is given by:

Tn(r;µ,Ω, ν) =
Γ((ν + n)/2)|Ω|−1/2

Γ(ν/2)(πν)n/2

(

1 +
(r − µ)′Ω−1(r − µ)

ν

)−(ν+n)/2

(4.5)

where Γ(·) denotes the gamma function, r = (r1, r2, . . . , rn)′ denotes the vector of

stochastic asset returns, and µ, Ω−1 and ν denote the mean, the precision matrix

and the degrees of freedom parameter of the Student-t distribution, respectively.

For sake of simplicity, in the following we will denote the Student-t distribution

with the alternative notation: t(ν), omitting the specification of scale and location

parameters.

It’s important to note that Ω satisfies the following relation:

Ω =

(

1 − 2

ν

)

V (4.6)

where V denotes the variance-covariance matrix.

The degrees of freedom parameter ν determines the degrees of leptokurtosis. ν has to

be strictly positive. The smaller ν, the fatter the tails of the Student-t distribution.

The Student-t distribution has the normal distribution as special case: (4.5) reduces

to the normal density with mean µ and covariance matrix Ω if ν → ∞.

The first two moments of the Student-t distribution play an important role in the

subsequent analysis. These moments are given by E(r) = µ and E((r−µ)(r−µ)′) =

νΩ/(ν − 2), and they require ν > 1 and ν > 2, respectively.

Figure (4.1) displays several univariate Student-t distributions. The distributions

are scaled in such a way that they all have zero mean and unit variance. It is clearly



108

-5 -3 -1 1 3 5

0.1

0.3

0.5

0.7
T

1(
r;0

,(1
-2

/v
),v

)
Normal
t(3)
t(7)

Figure 4.1: Student-t distribution for various values of degrees of freedom parameter.

seen that for lower values of ν, the tails of the distribution become fatter and the

distribution becomes more peaked near the centre µ = 0.

We have to note that µ and V are usually unknown and they are therefore

estimated (m,V ) from historical time series. So we have:

µ ∼= m (4.7)

Ω ∼=
(

1 − 2

ν

)

Ṽ (4.8)

In our analysis m and Ṽ are considered fixed. In the following sections we use

the Monte Carlo approach to analyse an asset allocation problem with shortfall

constraint, from the manager’s point of view.

Our aim is to consider the effects on the portfolio, when the probability

distribution of asset returns shows a leptokurtic behaviour, and the concrete risk

borne by the financial manager.
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4.3 Monte Carlo Simulation Approach to

Stochastic Optimisation

We use a Monte Carlo simulation approach in order to solve the optimization

problem, and to compute numerically nontrivial integrals. There are many features

that distinguish this method from most of the others generally used. First it can

handle problems of far greater complexity and size than most other methods. The

robustness and simplicity of the Monte Carlo approach are its strengths. Second,

the Monte Carlo method is intuitively based on the law of large numbers and

central limit theorem. The probabilistic nature of the Monte Carlo method has

important implications. The result of any Monte Carlo procedure is a random

variable. Any numerical method has errors, but the probabilistic nature of the Monte

Carlo errors puts structure on the errors that we can exploit. In particular, the

accuracy of the Monte Carlo method can be controlled by adjusting the sample size.

The Monte Carlo method uses pseudo random numbers to solve a given problem;

that is, deterministic sequences generated using pseudo random generators, such as

linear congruential generators (Ripley [22]), that seem to be random 3. We also

know that these generators give an identical sequence of pseudorandom numbers

if the same seed is set. The random numbers generated are good ones if they are

uniformly distributed, statistically independent, and reproducible (Rubinstein [26]).

In order to solve our financial problem, we need to simulate assets returns from

different probability distributions. Initially we generate random numbers from a

normal distribution with mean µ and variance-covariance matrix V and then from

a multivariate Student-t distribution with ν degrees of freedom 4.

Let Z have a standard multivariate normal distribution, let Y have a multivariate

chi-square distributions with ν degrees of freedom, and let Z and Y be independent,

3In this work we have used the Mixed Congruential Generator in the following form: Xi+1 =
aXi + c (modm) for i = 1, 2, . . . , N and with c = 0, m = 231 − 1 and a = 397204094

4There exist many algorithms that allow the transformation of random numbers extracted from
a uniform distribution into normally distributed random numbers. Many of these techniques are
very well explained in Rubinstein [26] and Ripley [22] (see, for example, Box Müller algorithm,
Monro algorithm, etc.).



110

then:

X =
Z

√

Y/ν
(4.9)

has a multivariate Student-t distribution with ν degrees of freedom.

It is known that the Monte Carlo method allows numerical solutions of complex

mathematical problems to be obtained, where mathematical procedures seem

inadequate. Stochastic optimization problems are an example. We consider a

stochastic optimisation problem in the following form:

x∗ = arg max
x∈U

E{g(x, Z)} (4.10)

where Z is a random variable with p.d.f. fZ(z) and U is the set of admissible

solutions. The solution of the problem (4.10) needs the computation of E(·). A

numerical solution can be performed by simulation of the objective function and

then by applying standard optimisation techniques. The most simple idea (see

Judd [12] for some examples of application in economics, Robert [23], Robert and

Casella [24] for an introduction to other stochastic optimisation methods) is to take

a sample of size D of the random variable Z, and to approximate E{g(x, Z)} by its

sample mean:

1

D

D∑

i=1

g(x, Zi) (4.11)

where Zi ∼ fZ(z). Then all standard numerical optimisation techniques can be

applied.

We use this approach to solve our portfolio problem. In fact the use of

Monte Carlo integration is quite natural for such problems since we are essentially

simulating the problem. The solution is denoted by x̃∗ and approximates the true

solution x∗, it gives us the fraction of capital has to be invested in each asset class

to maximise portfolio’s expected return.

The quality of this procedure depends on the size D and how well the integral is

approximated by the random sample mean. We are therefore interested in knowing

the sample size D and the number of samples N of D draws, necessary to obtain a
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”good” estimate. To do that, we control the error from the analytical solution 5 and

the standard deviation of each estimate. In our optimisation problem we have found

that for D = 10, 000 and N = 100, we can approximate the underlying distribution

adequately and obtain an accurate estimate with a very small standard error.

Although there exist analytical techniques to choose the optimal number of

simulation N (see Rubinstein [26]), graphical techniques are often preferred (see

Robert [23], Robert and Casella [24]). They permit the choice of the adequate

simulations number, necessary to obtain the stabilisation of the solution. The

higher N , the better the solution approximation, because the variance of sample

mean reduces to zero. In Appendix A, we can find the convergence in the estimated

solution for portfolio fractions invested in cash, bonds and stocks, when data come

from the normal distribution. For cash and bonds, the stabilisation is quite evident.

For bonds, the interval in which the fraction moves is very small, therefore the

volatility is imperceptible.

4.4 Theoretical Effects

We have seen that the parameter ν plays a prominent role in our asset allocation

problem, through its presence in the shortfall constraint. Decreasing ν has two

effects. First of all, the tails of the distribution become fatter, resulting in a higher

probability of extreme events for fixed precision matrix Ω−1. As can be seen in (4.6),

the precision matrix is not independent of ν if the variance of the returns is held

fixed. As ν decreases, the eigenvalues of the precision matrix increase. As a result,

the distribution becomes more concentrated around the mean µ. The composite

effect on the shortfall constraint of altering ν depends critically on the shortfall

probability α.

It can be shown that for a sufficiently small value of α, the shortfall constraint

becomes less binding if the distribution used tends to normal. The reverse holds if

we consider sufficiently large values of α.

It is interesting to present the break-even shortfall probability for the normal

distribution obtained by simulation, i.e., the value of α, as a function of ν such that

5The analytical solution is obtained by calculating integrals ”analytically” instead of
”numerically”. For multivariate distributions (such as normal or Student-t), it can be obtained by
using a common calculator.
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the shortfall constraint for that value of ν is as binding as the shortfall constraint

for the corresponding normal distribution (results are similar to those obtained by

Lucas and Klaassen [18]). More precisely, given the random variables u ∼ N (µ, σ)

and w ∼ T (µ,Ω, ν) and a shortfall probability α, then the quantile associated to α,

for the two distributions is

ΦN (rlow
N ) =

∫ rlow
N

−∞

uN (u;µ, σ)du = α ⇔ rlow
N = Φ−1

N (α) (4.12)

ΦT (rlow
T ) =

∫ rlow
T

−∞

wT (w;µ,Ω, ν)dw = α ⇔ rlow
T = Φ−1

T (α) (4.13)

In order to obtain the critical shortfall probability α(ν), for a fixed value of ν we

take rlow
N = rlow

T and solve w.r.t. α the resulting non linear equation

Φ−1
T (α) = Φ−1

N (α) (4.14)

Such a value of α, produces the same solution under either normality assumption

or the assumption of a Student-t distribution with ν degrees of freedom for the asset

returns. The values of α(ν), are given in Figure 4.2. This graph indicates the critical

shortfall probability ranges from α = 1.8% for ν = 3 to α = 3.6% for ν = 10. For

values of α below these critical levels, the effect of fat tails on the shortfall constraint

dominates the effect caused by increased precision. In these cases, the probability

restriction in (4.2) for the Student-t distribution is more binding for a given asset

allocation than in the case of normally distributed asset returns.

Again, the reverse holds for values of α above the critical level. In our empirical

study, we use α = 0.5%, α = 1%, α = 5% and α = 10% in order to illustrate both

settings.

4.5 Results

To illustrate our results, we present and solve through a Monte Carlo approach

an asset allocation problem (similar to which studied by Lucas and Klaassen [18]),

involving three U.S. asset categories: cash, stocks, and bonds. For cash, we use the

return on one month Eurodollar deposits. Stock returns are based on the S&P 500

and include dividends. Bond returns are computed using holding period returns on
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Figure 4.2: Critical Shortfall Probability α(ν) for Student-t distribution with ν
degrees of freedom (benchmark is the normal distribution).

10-year Treasury bonds. We consider annual returns over the period 1983-1994. All

data are obtained from Datastream. Initially, we need to compute the mean and

variance of the returns series. Let x1, x2 and x3 denote the amount invested in cash,

stocks, and bonds, respectively, and let the corresponding returns be denoted by r1,

r2 and r3. Then r = (r1, r2, r3)
′ has mean and standard deviation:

Cash Stocks Bond

µ′ = (6.8% 17% 12.3%)

Cash Stocks Bond

σ′ = (2.3% 14.7% 10.5%)

and the correlation matrix:

ρ =







1 0.01 0.18

0.01 1 0.73

0.18 0.73 1







(4.15)

In Table 4.1 we consider results obtained for two values of shortfall probability
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(α = 0%, α = 5%) and for several values of the shortfall return rlow at the levels of

0%, −5%, −10% 6

Thus, for example, the combination (α, rlow) = (1%, 0%), means that the

manager requires an asset mix that results in no loss with a 99% probability.

Similarly, the combination (α, rlow) = (5%, −5%), means that the manager is

satisfied with a 5% Value at Risk per Euro invested with a confidence level of 95%

probability.

Table 4.1: Optimal asset allocation obtained through Monte Carlo simulation (E*
indicates the expected portfolio returns).

ν rlow = 0%
Cash Stock Bond E∗ Cash Stock Bond E∗

Shortfall probability 5% Shortfall probability 1%
3 28.10% 66.70% 5.10% 13.90% 80.80% 19.20% 0.00% 8.70%
5 46.30% 50.10% 3.50% 12.10% 80.00% 20.00% 0.00% 8.80%
7 49.00% 48.50% 2.50% 11.90% 78.50% 21.50% 0.00% 9.00%
10 50.30% 47.20% 2.50% 11.70% 77.70% 22.30% 0.00% 9.10%
∞ 51.60% 45.90% 2.50% 11.60% 75.60% 24.40% 0.00% 9.30%

rlow = −5%
Cash Stock Bond E∗ Cash Stock Bond E∗

Shortfall probability 5% Shortfall probability 1%
3 0.00% 100.00% 0.00% 17.00% 58.50% 40.00% 1.50% 11.00%
5 3.80% 88.30% 7.90% 16.30% 58.20% 40.20% 1.60% 11.00%
7 8.00% 84.50% 7.60% 15.90% 56.30% 42.00% 1.80% 11.10%
10 10.20% 82.80% 7.00% 15.60% 54.60% 43.50% 1.90% 11.30%
∞ 12.30% 80.60% 7.00% 15.40% 50.70% 46.70% 2.60% 11.70%

rlow = −10%
Cash Stock Bond E∗ Cash Stock Bond E∗

Shortfall probability 5% Shortfall probability 1%
3 0.00% 100.00% 0.00% 17.00% 38.80% 57.20% 4.00% 12.90%
5 0.00% 100.00% 0.00% 17.00% 38.70% 57.30% 4.00% 12.90%
7 0.00% 100.00% 0.00% 17.00% 36.20% 59.80% 4.00% 13.10%
10 0.00% 100.00% 0.00% 17.00% 33.40% 62.40% 4.30% 13.40%
∞ 0.00% 100.00% 0.00% 17.00% 27.90% 67.00% 5.10% 13.90%

Using the optimisation library available in GAUSS 3.1.4, we compute in

simulation the optimal values of xi satisfying the shortfall constraint in (4.2) for

several values of ν. The main results are presented in Table 4.1.

Some obvious effects in Table 4.1 are that the optimal asset mixes become more

aggressive if the shortfall constraint is loosened. This can be done by increasing the

allowed shortfall probability α or by lowering the required shortfall return rlow , i.e.

increasing the Value at Risk per Euro invested. If we focus on the effects of ν, we

note the difference between the α = 5% and the α = 1% case.

6The studies we made use in particular four values of shortfall probability (0.5%, 1%, 5%, 10%),
and five values of shortfall return ( 0%, −3%, −5%, −7%, −10%). Table 4.1 only indicates the
main results obtained in our work.
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In the 5% case, increasing the fatness of the tails of the asset returns’ distribution

P then leads to more aggressive asset allocation. The optimal asset mixes involve

less of the relatively safe cash and more of the risky assets, stocks and bonds. The

effect is more pronounced if the required shortfall return rlow is lower.

Although the results that fat tails lead to more aggressive asset mixes may seem

counterintuitive at first sight, it is easily understood, given the results we have seen

analysing Figure 4.2. In fact, decreasing ν while keeping the variance fixed has

two opposite effects. First, the probability of extreme (negative) returns increases,

leading to more prudent asset allocation strategies. Second, the precision of the

distribution increases, leading to more certainty about the spread of the outcome

and, thus, to a more aggressive strategy.
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Figure 4.3: Shortfall Probability Efficient Frontiers obtained in simulation.

For a shortfall probability of 5%, the latter of these two effects dominates. In

the case of 1% shortfall probability, the opposite occurs. Decreasing ν now leads

to more prudent asset mixes. Again the effect is more pronounced if the required

shortfall return rlow is lower.

Figure 4.3 shows the effects on expected portfolio returns, for different

distributions, when the shortfall probability vary7. Curves obtained by simulations,

7rlow has been set equal to 0%.
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are labelled Shortfall Probability Efficient Frontiers (SPEF)8 (see Rudolf [27]), and

represent all the efficient portfolios, given a certain level of risk (expressed by the

shortfall probability). On the left side of the graph, we obtain lower expected returns

decreasing the degrees of freedom. The reverse holds on the right side. In particular,

the SPEF obtained from the normal distribution intercepts all the others in different

points for a level of α that is the same decrypted in Figure 4.2.

Through the Monte Carlo study, it is also possible to determine the effects of a

variation of the shortfall probability on the fractions invested in each asset. If we

observe Figure 4.9 (Appendix B), we can note that the higher the level of α, the

lower the fraction invested in cash, since to obtain more aggressive portfolios the

manager directs capitals in riskier assets. However, while for a sufficiently small

value of α (i.e. 0.5%, 1% ), a normal distribution shows lower value invested in

cash than the other distributions, for higher levels of shortfall probability (i.e. 5%,

10% ), the lowest percentages in liquid assets are obtained augmenting the degrees

of leptokurtosis. The reverse holds for stocks. In fact for this asset category, the

behaviour is exactly reverse to which showed by cash, since there exists a trade-

off between liquid and risky asset in order to obtain efficient portfolios. Fractions

invested in bonds shows instead a more complex behaviour. In general, we can say

that initially the percentage is increasing for smaller value of shortfall probability,

and it is decreasing for higher value of shortfall probability.

The intersection between the curve of the normal distribution and the others

in this case too, occurs for the values of showed in Figure 4.2. However, in this

particular case each curve intercepts the others in more than one point, so they are

more difficult to analyse.

It is also interesting to observe the expected returns behaviour when the shortfall

return varies (given the shortfall probability level). We have choose to graph the

expected returns behaviour for α = 1% and for α = 5%. In Appendix C we can

note that the higher the shortfall return value, the lower the expected return, but

while for α = 1% the fat tail effect dominates, for an α = 5% the highest values

are obtained when asset returns are leptokurtic. For very high losses levels (ex.

10%), it makes no difference if we use the normal distribution or a Student-t with

8They are an alternative representations of the Efficient Frontier, known from the Portfolio
Theory.
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different degrees of freedom, since the portfolio always contains only risky assets

(100% stocks).

We can make the same analysis, observing the effects on the fractions invested

in each asset, varying rlow for different levels of shortfall probability. The results are

indicated in Appendix D.

As we can note, the lower the losses, the higher the fraction invested in cash,

since the manager is more ”conservative”; for the same reason, the fraction invested

in stocks is decreasing. For bonds, the behaviour is not regular, and the fraction

shows it is be decreasing for α = 1%, while it appears initially increasing and then

decreasing for α = 5%. As we know, for α = 1% the fat tail effect dominates and

therefore the fraction invested in risky assets is much higher if data come from the

normal distribution; the reverse holds for α = 5%.

4.6 Effects of Misspecified Tail Behaviour

The probability distribution P is taken by the investment manager as a description

of the true distribution of the asset returns. We label the distribution used by the

manager Pm and the true distribution Pt . These distributions are characterized by

the parameter specifications (µm,Ωm, νm) and (µt,Ωt, νt) respectively.

Obviously, the manager would do best by matching µm,Ωm and νm to µt,Ωt and

νt, respectively. However, the manager can fail to match all the parameters of the

distribution used to solve (4.1) and (4.2) to those of the true distribution Pt.

The effects of misspecification of means µm and/or covariance Ωm has been

investigated in the literature (see, e.g. Chopra and Ziemba [1]). We concentrate

here on the possible mismatch between the true degree of leptokurtosis and the

degree of leptokurtosis used by the investment manager, while assuming that means

and covariance of the returns are precisely estimated.

The most obvious example of such a situation is the use of the normal distribution

for solving (4.1), while the asset returns are actually fat-tailed. The mismatch

between νm and νt can have important effects for the feasibility and efficiency of

the optimal asset mixes. We assume that for a given value of νm , the manager

chooses µm and Ωm, in such a way that the mean and variance of Pm match the

corresponding moments of the true distribution Pt . This amounts to setting
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µm = µt (4.16)

Ωm = (1 − 2ν−1
m )

νtΩt

νt − 2
(4.17)

(4.18)

We assume, that the true mean µt and variance νtΩt/(νt − 2) are observed

without error. Of course (4.16) and (4.17) are only estimates of the underlying

true parameters. We abstract from the associated estimation error for exposition

purposes and in order to fully concentrate on the effects of fat tails (the results

would be very similar if slightly different values for the means and variances were

used, thus allowing for estimation error). Let xm denote the optimal strategy of

the investment manager using the distribution Pm with νm degrees of freedom. The

appropriate values of xm can be found in Table 4.1.

We want to compute the effect of using xm when the data follow the distribution

Pt instead of Pm. In particular, we are interested in the effect of a discrepancy

between νm and νt on the shortfall constraint.

We can quantify this effect in at least two different ways. First, we can use

the strategy xm while keeping the required shortfall return rlow constant and

compute the actual shortfall probability α∗ under the true probability measure

Pt. Alternatively, we can use the strategy xm while keeping the required shortfall

probability α constant and compute the corresponding shortfall return r∗,low, i.e.,

the (negative) Value at Risk per Euro invested.

First consider the case of fixed rlow. We then compute

α∗ = Pt

(
3∑

i=1

xm,i(1 + ri) ≤ 1 + rlow

)

(4.19)

where xm,i , is the optimal asset allocation to category i for νm (see Table 4.1).

So (1 − α∗) is the true confidence level of the investment manager’s value at risk,

given the asset allocation xm.

In particular, we generate in simulation the asset returns from a distribution

with νt degrees of freedom, and evaluate the shortfall constraint under the strategy

xm. This allows us to estimate the true risk for the financial manager.
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We have seen that different values for rlow produce similar results, so we present

only the case with rlow = 0%. The results are given in Figure 4.4. The right panel

in the figure gives the results if the optimal strategy is computed with α = 5%. The

first thing to note is that, as expected, the true shortfall probability α∗ is equal to

α, if and only if the investment manager uses the correct distribution, i.e., νm = νt.

Second, if the investment manager uses a distribution that has thinner tails than

those of the true distribution, then the manager is conservative in the sense that the

shortfall constraint in (4.2) is not binding.
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Figure 4.4: True Shortfall Probability for several combinations of νm and νt, obtained
by simulation.

This holds even though the manager may believe the constraint to be binding

based on the (misspecified) distribution Pm of the asset returns. As a result,

efficiency could be gained by using the correct degree of leptokurtosis. By contrast, if

the manager uses a distribution with a fatter tail than reality, the shortfall constraint

is violated.

If we consider the case α = 1% , the results are reversed. If a thin-tailed

distribution is assumed for the asset returns, e.g., the one based on normality, and if

reality is leptokurtic, then the shortfall constraint is violated. Moreover, if ν < νt ,

the shortfall probability constraint is not binding. These results are directly relevant

for risk management, because one minus the true shortfall probability equals the

manager’s required confidence level for the value at risk −rlow > 0. For example,

for a 99% confidence level VaR, our results imply that the true confidence level of

the manager’s computed VaR is smaller than 99% if the manager uses the normal
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Table 4.2: Differences (r∗,low − rlow) in basis points.
νm rlow = 0% rlow = −5% rlow = −10%

νt νt νt

3 7 ∞ 3 7 ∞ 3 7 ∞
Shortfall probability 5%

3 0 -249 -296 202 -153 -218 - - -
7 178 0 -33 313 0 -57 - - -
∞ 201 32 0 352 54 0 - - -

Shortfall probability 1%
3 0 43 88 0 53 164 0 71 243
7 -45 0 51 -56 0 117 -74 0 181
∞ -105 -60 0 -210 -135 0 -301 -205 0

distribution while reality is fat-tailed. Note that, although the absolute difference

between α∗ and α in Figure 4.4 is smaller for α = 1% than for α = 5% , the relative

differences are approximately equal for different combinations of (νm, νt).

To illustrate the effect on the shortfall return rlow, for fixed α, we compute the

required shortfall return r∗,low such that:

α = Pt

(
3∑

i=1

xm,i(1 + ri) ≤ 1 + r∗,low

)

(4.20)

The differences (r∗,low − rlow), in basis points, obtained in simulation, are

presented in Table 4.2. Remember that rlow is the Value at Risk per Euro invested

if rlow < 0. Therefore, r∗,low in (4.20), is the managers true VaR if the investment

policy xm based on Pm is used.

The qualitative results are similar to those in Figure 4.4. For high values of α,

using a distribution Pm , which has thin tails compared to reality Pt, produces a

conservative strategy. Again, the opposite holds for small values of the shortfall

probability α.

The impact of using the normal distribution for Pm if reality is fat-tailed is quite

substantial. Assume the postulated required minimum return rlow is −5%, i.e., a

Value at Risk of 5 cents per Euro invested. That is, with a maximum probability

of α, the manager is willing to take losses exceeding 5% of the invested notional

principal.

If α = 5%, the true shortfall return can be as much as 352 basis points above
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the postulated level, implying a shortfall return of about -1.45% instead of -5%,

with a probability of 95%. Exploiting the fat tail property in this case can lead to

more aggressive asset allocations and, therefore, efficiency gains for a given level of

shortfall.

Alternatively, consider the case α = 1%. Using a normal scenario generator

(νm = ∞), for a reality with νt = 3 now leads to a violation of the shortfall

constraint. While the manager believes the maximum loss with a 99% probability

is 5% of the invested notional, the actual loss, given that probability, may be about

210 basis points higher, or 7.12%, an increase of over 40%. In this case a correct

assessment of the degree of leptokurtosis will lead to a more correct assessment of

risk and to the exclusion of infeasible strategies. All these effects are even more

pronounced if the manager is, a priori, willing to take higher losses, i.e., if rlow is

lower. These results have obvious important consequences for Value at Risk analyses.

Using a distribution with an incorrect tail behaviour may lead to portfolios with a

minimum required return r∗,low that can be as much as 301 basis points below the

minimum return rlow imposed by the model. In value at risk calculations, this implies

that the true VaR may deviate by more than 30% from what an incorrectly specified

Extreme Returns in a Shortfall Risk Framework model suggests. This illustrates the

importance of trying to get the tail behaviour of the distribution used to solve (4.1)

and (4.2) right.

4.7 Asset Returns and Tails Behaviour

The analysis carried out, allowed us to value the true risk for the financial manager,

when the degrees of freedom of the empirical distribution are not correctly estimated.

Nevertheless, the results we have showed up to now are based on the idea that

returns of the three asset classes considered are identically distributed. As we know,

this hypothesis is quite unrealistic, given the heterogeneity of the financial indexes

studied. We therefore decide to develop our analysis, using a different probability

distribution for each index, remaining in the Student-t class. The use of stochastic

optimisation techniques allow us to extend the study of the asset allocation problems

for particular multivariate distribution for which in general it is not possible to obtain

the result in a closed form. This approach makes it necessary to determine which
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Student-t combination seems able to fit the empirical distribution adequately. To do

this, we have analysed, through several tests 9, the behaviour of some distributions

of financial indexes 10, for each asset category (cash, stocks, bonds), valuing for each

of them the existence of fat-tails, and the parametric distribution that allows us to

obtain the best fit for the empirical distribution on the tails. The test results show

that the normal distribution is often unable to capture the behaviour of the tails,

since financial time series are usually leptokurtic, while the Student-t distribution

seems more adequate to capture the fat-tails effect.

In particular, tests indicate that for stocks, the Student-t with 7 degrees of

freedom seems a good approximation of the empirical distribution in the extreme

returns area. Otherwise, bonds seem to prefer Student-t with 8 degrees of freedom.

Finally, cash behaviour does not appear unimodal, and for this reason no Student-t

appears suitable to fit the empirical distribution adequately. Yet, some statistical

tests seem to accept the null hypothesis that some of the cash indexes studied follow

a Student-t distribution with 30 degrees of freedom (well approximated by a normal).

For this reason we use this marginal distribution to simulate returns even if we know

that it is not the most suitable. In fact our objective is to study the effects on the

portfolio model when the empirical distribution is fat-tails, and in particular when

each asset class presents a different degree of leptokurtosis. To do this, we generate

asset returns simulating from the Student-t class, which present leptokurtic but not

plurimodal or asymmetric characteristics.

Making use of tests results, we now calculate the optimal investment strategy and

expected portfolio returns, generating asset returns from a multivariate distribution
11, where marginal distributions are t(30), t(7) and t(8). We label this new

9We have used two categories of tests: graphical tests and statistical tests. The first category
includes QQ-plots, and the study of the empirical density function and empirical distribution
function with respect to theoretical ones. The second category includes Jaque Bera normality
tests, Chi-square tests, Anderson Darling tests, Kolmogorov-Smirnov tests and Cramer von Mises
tests (see DAgostino and Stephens [2]).

10We consider annual returns. For stocks, indexes analysed are: S&P 500 over the period
(1/1/1970- 1/4/2001), MSCI Europe and MSCI North America over the period (1/1/1986-
1/12/1999); for bonds: JP Morgan Great Britain, JP Morgan Japan, JP Morgan France, JP
Morgan Belgium over the period (1/1/1986-1/1/2000); for cash: Euro-Mark 3 mth, Euro-Franc
3 mth, Euro-Lire 3 mth, Euro-Yen 3 mth, Euro-£ 3 mth, and Euro-$ 3 mth over the period
(1/1/1985-1/4/2001). All data are obtained from Datastream.

11Note that it is not a multivariate Student-t distribution, because each t has different degrees
of freedom. Moreover the covariance between marginal random variables is no more proportional
to the covariance matrix used in equation 4.15 to simulate from that multivariate distribution.
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distribution as ”Mixed” with mean µ and variance-covariance matrix V . To impose

the desired correlative structure to the simulated series, we use the calibration

method.

In particular, given two variables x and w, where x ∼ t(νx) and w ∼ t(νw),

we say that the correlation between x and w is ρ∗ if there exists a value (τ ∗)

for the parameter τ such that ρ∗ = f(τ ∗, νx, νw), where f is the correlation

between the components of the random vector given in (4.9). It is very difficult

to obtain an analytical solution, and therefore we use the Monte Carlo method

to calibrate τ step by step, until we obtain the desired value for ρ(ρ∗)12. In our

case, we impose a correlation matrix τ to the multivariate normal in Equation

4.9 and simulate a sample from the multivariate ”Mixed” distribution. Then we

vary τ until the correlation matrix ρ estimated on simulated data is equal to the

desired correlation matrix ρ∗. This calibration method has been recently used

also in Palmitesta and Provasi [20] in order to fit the parameters of the Koehler-

Symanowski distributions on real data. They minimize the distance between the

correlation matrix simulate from the multivariate Koehler-Symanowski distribution

and correlation matrix estimated on real data.

We now examine the effects on asset allocation strategies. In particular, we can

note that results obtained combining Student-t with different degrees of freedom

(see Appendix D) are intermediate between those obtained using a multivariate

Student-t with 7 degrees of freedom and with 10 degrees of freedom. This aspect

is very important in a risk management framework because the use of different

marginal distributions gives more information than previous analysis. This means

that financial manager can invest with higher precision in the estimates of optimal

strategies and of expected returns. Furthermore, it is important to note that for

different combinations (for example t(15), t(3) and t(9)), where the leptokurtosis

degree is very different, the loss of information could be very high if we choose a

distribution with identically distributed marginal distributions.

Following the same techniques used in previous sections, we now concentrate our

analysis on the study of effective risk associated with the investment if the financial

manager uses a distribution Pm 6= Pt.

We have seen that we can quantify these effects in at least two different ways:

12ρ∗ used is indicated in (4.15).
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first, we can use the strategy xm while keeping the required shortfall return rlow

constant and compute the actual shortfall probability α∗ a under the true probability

measure Pt. Alternatively, we can use the strategy xm while keeping the required

shortfall probability a constant and compute the corresponding shortfall return

r∗,low.

Figure 4.5 indicates the level of α∗ if the manager uses the distribution t(νm) and

the data follow the Mixed distribution. This analysis has been made, using α = 5%

and α = 1% 13

For α = 5% , if the investment manager uses a distribution that has thinner

tails than reality, then the manager is conservative, in the sense that the shortfall

constraint in (4.2) is not binding, while if the investment manager uses a distribution

that has fatter tails than reality, the shortfall constraint is violated.

As we know, if we consider the case α = 1%, the results are reversed. If a thin-

tailed distribution is assumed for the asset returns, e.g., the one based on normality,

and if reality is leptokurtic, then the shortfall constraint is violated. Moreover, if

νm < νt, the shortfall constraint is not binding.

It is interesting to note the relationship that exists between Mixed distribution,

t(7) and t(10).

2 4 6 8 10 12
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0.008
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0.014
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t(10)

2 4 6 8 10 12
0.04
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*α *α

mν mν

%1=α %5=α

Figure 4.5: True Shortfall Probability for Mixed distribution, t(7) and t(10); α = 1%
and α = 5%.

If we use a shortfall probability α = 5% in the model, then the values of true

13We have set rlow = 0%
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Table 4.3: Differences (r∗,low − rlow) in basis points. Data generated from Mixed
distribution.

Shortfall probability=5%
νm rlow = 0% rlow = −5% rlow = −10%
3 -253 -157 -
5 -37 -59 -
7 -4 -3 -
10 23 21 -
∞ 27 45 -

Shortfall probability= 1%
3 43 47 71
5 33 39 70
7 3 10 13
10 -16 -39 -67
∞ -62 -137 -198

shortfall probability α∗(νm) are not only intermediate to those obtained using the

other two distributions, but we can demonstrate that they are very close to what we

could have by generating data from a t(7), for every level of νm. If we use a shortfall

probability α = 1% in the model, when the data come from ”Mixed” distribution,

the behaviour of α∗(νm) seems initially intermediate for νm = 3, and very close to t(7)

curve, for higher degrees of freedom. For example, if the manager uses a distribution

t(3), when the data follow a Mixed distribution, we obtain α∗ = 0.75%, while if

the manager uses a distribution with thinner tails, the true shortfall probability

for Mixed distribution tends to the true shortfall probability for t(7) one. It is

important to consider that the interval in which the curve oscillates is very small,

and for this reason every variation seems imperceptible. The second analysis we

can do is to study the differences rlow − r∗,low in basis points, when data come from

Mixed distribution. Results obtained are indicated in Table 4.3.

For α = 5%, if the investment manager uses a distribution with tails heavier than

reality, the loss could exceed rlow. For α = 1%, the loss could exceed rlow only if the

investment manager uses a distribution with tails thinner than reality. Furthermore,

for α = 1% and rlow = −5%, the impact of using the normal distribution to explain

the empirical distribution behaviour if reality is ”Mixed”, is quite substantial. In

fact the manager is willing to take losses exceeding 5% of 137 basis points, i.e.

an increase of over 30%. It is interesting to note that for νm = 7, the difference
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rlow − r∗,low is very small and for α = 5% it tends to zero, decreasing the rlow level.

For α = 1%, the difference becomes smaller with the reduction of losses. From

this study we can conclude that for the case analysed, a multivariate Student-t

distribution with 7 degrees of freedom seems a good approximation of the Mixed

distribution. For the financial manager it could be simpler to use a multivariate

t(7) with identically distributed marginal distributions, without excessive loss

of information on the true risk. However, if this result held for the specified

combination used t(30), t(7), t(8), in general we can not extend our conclusions

for the enormous number of combinations of marginal distributions. This means

that before any application, it is wise for the financial manager to analyse whether

an approximation of the mixed distribution can cause losses of information and thus

undesired effects for risk management.

4.8 Conclusion

In our work, we have investigated the effects of extreme returns on the optimal

asset allocation problem with a shortfall constraint, using a Monte Carlo simulation

approach. We have seen that financial markets usually show a ”non-normal”

behaviour, since the tails of returns distributions often appear very heavy. Extreme

returns can be modelled by using a statistical distribution with fatter tails than

those of a normal distribution. We have used the Student-t distribution to show

the salient effects of fat tails in financial decision context. Initially, we have

analysed the effects on asset allocation choices when all asset returns are identically

distributed. This analysis is not very realistic, but has allowed us to discover the

true risk for the financial manager when the behaviour of empirical distribution

is incorrectly estimated. We have then tried to simulate data from a multivariate

distribution where each marginal distribution has a different degree of leptokurtosis.

For each of these two analyses, we may conclude that a correct assessment of the

fattailedness of asset returns is important for the determination of optimal asset

allocation. If asset allocations are based on the normal distribution, the resulting

allocation may be either inefficient or unfeasible if reality is non-normal. Both

effects can be quite substantial. Then, it appears that the shortfall probability

set by the investment manager plays a crucial role for the nature of the effect
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of leptokurtic asset returns. If the shortfall probability is set sufficiently high,

using normal scenarios for the leptokurtic asset return leads to overly prudent and

therefore inefficient asset allocations. If the shortfall probability is sufficiently small,

however, the use of normal scenarios leads to unfeasible strategies if reality is fat-

tailed. This second result implies that the Value at Risk of a given portfolio may

be underestimated if the tail behaviour of asset returns is not captured adequately.

Our results show that the actual VaR can be substantially higher than the model

suggests in such cases. Extreme Returns in a Shortfall Risk Framework In studying

the ”Mixed” distribution we have also shown by simulation that another important

aspect in financial analysis is the correct specification of the marginal distribution

for each asset analysed. This aspect becomes crucial when there is a shortfall

constraint in the asset allocation problem and at the same time the asset class

return has a different tails behaviour. For our particular case, we have seen that

the resulting optimal allocation obtained with the use of Mixed distribution could

be adequately approximated by a multivariate Student-t at certain level of shortfall

probability and shortfall return. Furthermore we obtain the following result of

interest. When asset classes returns have a ”Mixed distribution”, the assumption

of Student-t distribution with misspecified degrees of freedom produces effective

shortfall probability and effective shortfall return which differ from the desired ones.

However these errors have known upper and lower bounds. Even if this result

can be very useful for the financial manager, since he can enormously simplify

the mixed problem, in general, given any ”mixed distribution”, we do not know

what its adequate approximation is and so we can not conclude that an adequate

approximation always exists for all combinations of marginal distributions. For

this reason, the use of stochastic simulation in the study we have performed in this

article, is a very effective instrument to choose the optimal strategy to apply in asset

allocation problems, and in particular when we use a shortfall constraint. In a more

general sense, our findings imply that a good characterisation of the distribution

of asset returns is needed in a financial decision context involving downside risk.

Such a characterisation may require not only the specification of usual measures

like mean and variance, but also a correct specification of additional features of the

distribution of asset returns, such as the tail behaviour or degree of leptokurtosis.

Specification and estimation of such additional features can proceed along familiar
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lines, for example using parametric or non-parametric methods. Regardless of the

method chosen, our results provide insights into the general effects of different type of

leptokurtic distributions on optimal asset allocations and associated risk measures.

The results are therefore valuable to investors who require a qualitative assessment

of the reliability and sensitivity of their adopted investment strategies in case their

models are potentially misspecified.
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A.Convergence Analysis of the Solution Increasing

the Simulation’s Number
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Figure 4.6: Fraction invested in Cash increasing the simulations’ number
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Figure 4.7: Fraction invested in Stocks increasing the simulations’ number
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Figure 4.8: Fraction invested in Bonds increasing the simulations’ number
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B.Fraction Invested, Varying the Shortfall

Probability
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Figure 4.9: Fraction invested in Cash varying the shortfall probability level.
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Figure 4.10: Fraction invested in Stocks varying the shortfall probability level.
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Figure 4.11: Fraction invested in Bonds varying the shortfall probability level.
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C.The Effects of the Shortfall Return Level on the

Optimal Allocation
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Figure 4.12: Expected return, varying the shortfall return for α = 5% and α = 1%.
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Figure 4.13: Fraction invested in Cash for different distributions (α = 1%, α = 5%).
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Figure 4.14: Fraction investd in Stocks for different distributions (α = 1%, α = 5%).
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Figure 4.15: Fraction invested in Bonds for different distributions (α = 5%, α = 1%).



133

D.Rersults Obtained for Mixed Distribution

Table 4.4: Expected portfolio return (Mixed distribution).
α

rlow 0.5% 1% 5% 10%
0% 8.442 8.980 11.825 16.182

(0.012) (0.013) (0.026) (0.043)
-3% 9.612 10.313 14.190 17.000

(0.016) (0.016) (0.034) (0.000)
-5% 10.306 11.127 15.760 17.000

(0.019) (0.020) (0.043) (0.000)
-7% 10.955 11.971 16.982 17.000

(0.021) (0.025) (0.017) (0.0000)
-10% 11.938 13.151 17.000 17.000

(0.026) (0.024) (0.000) (0.000)
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Table 4.5: Fraction invested in each asset class (Mixed distribution)
α

rlow 0.5% 1% 5% 10% Asset
83.878 78.665 49.254 7.813 CASH
(0.111) (0.112) (0.203) (0.343)

0% 16.092 21.261 47.643 91.695 STOCK
(0.110) (0.111) (0.216) (0.361)
0.0285 0.0731 3.101 0.491 BONDS
(0.010) (0.024) (0.015) (0.026)
72.302 64.982 25.277 0.000 CASH
(0.139) (0.139) (0.232) (0.000)

-3% 27.179 33.776 67.382 1.000 STOCK
(0.136) (0.139) (0.232) (0.000)
0.518 1.238 7.340 0.000 BONDS

(0.021) (0.006) (0.094) (0.000)
65.245 56.596 8.516 0.000 CASH
(0.164) (0.167) (0.239) (0.000)

-5% 33.485 41.261 83.476 1.000 STOCK
(0.165) (0.172) (0.463) (0.000)
1.269 2.142 8.011 0.000 BONDS

(0.021) (0.013) (0.224) (0.000)
57.928 48.348 0.144 0.000 CASH
(0.185) (0.202) (0.055) (0.000)

-7% 39.164 48.593 99.778 1.000 STOCK
(0.195) (0.214) (0.081) (0.000)
2.907 3.058 0.077 0.000 BONDS

(0.011) (0.017) (0.027) (0.000)
47.797 35.883 0.000 0.000 CASH
(0.216) (0.200) (0.000) (0.000)

-10% 48.208 60.088 1.000 1.000 STOCK
(0.237) (0.219) (0.000) (0.000)
3.994 4.028 0.000 0.000 BONDS

(0.030) (0.023) (0.000) (0.000)
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Chapter 5

Bayesian Inference for Mixtures of

Stable Distributions

5.1 Introduction

In many different fields such as hydrology, telecommunications, physics and finance,

Gaussian models reveal difficulties in fitting data that exhibits a high degree of

heterogeneity; thus stable distributions have been introduced as a generalisation of

the Gaussian model. Stable distributions allow also for infinite variance, skewness

and heavy tails. The tails of a stable distribution decay like a power function,

allowing extreme events to have higher probability mass than in Gaussian model.

For a summary of the properties of the stable distributions see Zoloratev [42] and

Samorodnitsky and Taqqu [36], which provide a good theoretical background on

heavy-tailed distributions. The practical use of heavy-tailed distributions in many

different fields is well documented in the book of Adler, Feldman and Taqqu [1],

which also reviews the estimation techniques.

In finance, the first studies on the hypothesis of stable distributed stock prices

1Part of this work is in:

Casarin, R., (2004), ”Bayesian Inference for Mixture of Stable Distributions”, forthcoming,

Working Paper CEREMADE. Presented at the Young Statistician Meeting, Cambridge 14-15

April 2003.

Casarin, R., (2003), ”Bayesian Inference for Mixture of Stable Distributions”, in Atti del

Convegno Modelli Complessi e Metodi Computazionali Intensivi per la Stima e la Previsione ,

4-6 Semptember 2003, Statistics Department, University ” Ca’ Foscari”, Venice.
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can be attributed to Mandelbrot [22], Fama [13], [14] and Fama and Roll [15],

[14]. They propose stable distributions and give some statistical instruments for the

inference on the characteristic exponent. The use of stable distributions has been

motivated also on the basis of empirical evidence from financial markets. Brenner [5]

uses the notion of stationarity of the time series to explain stability of stock prices.

An illuminating work on inference for stable distributions is due to Buckle [6], who

makes also an empirical analysis on daily stock prices, using a full Bayesian approach

to estimate stable distributions parameters and finding significant evidence of the

stable distribution hypothesis.

There are many recent works treating the use of stable distributions in finance.

For example see Bradley and Taqqu [4] and Mikosch [26] for an introduction to the

use of stable distributions in financial risk modelling. The work of Mittnik, Rachev

and Paolella [25] and of Rachev and Mittnik [31] provides a quite complete analysis

of the theoretical and empirical aspects of the stable distributions in finance.

Other early studies, performing empirical analysis on stocks prices, suggest to use

mixtures of distributions in order to modelling the financial markets heterogeneity.

Barnes and Downes [2] use the same estimation techniques of Fama and Roll [16] in

order to discuss the results of Teichmoeller [39]. They find that for some stock the

property of stability does not hold and that the characteristic exponent varies across

the stocks. In order to account for this kind of heterogeneity of the stock prices

the authors suggest mixture of stable distributions as an alternative hypothesis.

Simkowitz and Beedles [3] perform an empirical analysis focusing on the asymmetry

of stock returns. They find that the skewness of the stock returns is frequently

positive and dependent on the level of the characteristic exponent. They conclude

that securities distributions may be better modelled through mixtures of stable

distributions. Finally an extensive empirical analysis due to Fieltz and Rozelle [17]

shows that mixtures of Gaussian, or non-Gaussian distributions can better describe

stock prices. In particular the authors suggest to use non-Gaussian stable mixtures

model with changing scale parameter because it directly accounts for skewness. We

can conclude that the problem of multimodality and in general of heterogeneity is

well documented in the financial literature, also from the earlier studies on the stable

distributions. Thus an appropriate modelling is needed.

Observe that, in order to account for heterogeneity and non-linear dependencies
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exhibited by the data, stable distributions have been already introduced in different

kind of statistical models. For instance in survival models, the heterogeneity within

survival times of a population are modelled trough common latent factors, which

follow stable distributions, see for example Qiou, Ravishanker and Dey [29]. Stable

distributions are also used to model heterogeneity over time. For an introduction to

time series models with stable noises, see Qiou and Ravishanker [30] and Mikosch

[26].

Different estimation methods for stable distributions have been proposed in the

literature. For a full Bayesian approach see Buckle [6], for a maximum likelihood

approach see DuMouchel [11] and for MCEM approach with application to time

series with symmetric stable innovations see Godsill [21].

The first aim of our work is to propose a stable distributions mixture model in

order to capture the heterogeneity of data. In particular we want to account for

multimodality, which is present, for example, in financial data. The second goal of

the work is to provide some inferential tools for stable distributions mixtures. As

suggested in the literature on Gaussians mixtures (see for example Robert [34]), we

propose a particular reparameterisations of the mixture model in order to make more

easy the statistical inference on the mixture parameters. Furthermore we use both

a full Bayesian approach and MCMC simulation techniques in order to estimate the

parameters.

The maximum likelihood approach (see for example McLachlan and Peel [23]) to the

mixture model implies numerical difficulties, which rely on the fact that for many

parametric density family the likelihood surface has singularities. Furthermore,

as pointed out by Stephens [38], the likelihood may have several local maximum

and it will be difficult to justify the choice of one of these point estimates. The

presence of several local maximum and of singularities implies that the standard

asymptotic theory for maximum likelihood estimation and the test theory do not

apply in the mixture context. The Bayesian approach avoids these problem as

parameters are random variables, with prior and posterior distributions defined on

the parameter space. Thus it is no more necessary to choose between several local

maximum, because point estimates are obtained by averaging over the parameter

space, weighting by the posterior distribution of the parameters or by the simulated

posterior distribution.
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The structure of the work is as follows. Section 5.2 defines a stable distribution

and the method to simulate from a stable. Section 5.3 provides an introduction to

some basic Markov Chain Monte Carlo(MCMC) methods for mixtures and exhibits

the Bayesian model and the Gibbs sampler for a stable distribution. Section 5.4

describes the Bayesian model for stable mixtures, with particular attention to the

missing data structure of the stable mixture model and the Gibbs sampler for stable

mixture is developed in the case where the number of components is fixed. Section

5.5 provides some results of the Bayesian stable mixture model on financial dataset.

Section 5.6 concludes.

5.2 Simulating from a Stable Distribution

The existence of simulation methods for stable distributions opens the way to

Bayesian inference on the parameters of this distribution family. In this section

we define a stable random variable and briefly describe the method to simulate

from a stable distribution, first proposed by Chamber, Mallows and Stuck [8] and

then discussed also in Weron [41]. We use this method in our work, to generate

dataset to test the efficiency of the MCMC based Bayesian inference approach. In

the following we denote a stable distribution by Sα(β, δ, σ). Stable distributions do

not generally have an explicit probability density function and are thus conveniently

defined through their characteristic function. The most well known parametrisation

is defined in Samorodnitsky and Taqqu [36].

Definition 5.2.1. (Stable distribution)

A random variable X has stable distribution Sα(β, δ, σ) if its parameters are in the

following ranges: α ∈ (0, 2], β ∈ [−1,+1], δ ∈ (−∞,+∞), σ ∈ (0,+∞) and if its

characteristic function can be written as

E[exp(i ϑ x)] =

{

exp(−|σϑ|α)(1 − i β(sign(ϑ))tan(πα/2) + iδϑ) if α 6= 1;

exp(−|σϑ|(1 + 2 i βln|ϑ|sign(ϑ)/π) + iδϑ) if α = 1.

(5.1)

where ϑ ∈ R.

The stable distribution is thus completely characterised through the following four

parameters: the characteristic exponent α, the skewness parameter β, the location
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parameter δ and finally the scale parameter σ. An equivalent parametrisation

is proposed by Zoloratev [42]. For a review on all the equivalent definitions of

stable distribution and on all their properties see Samorodnitsky, Taqqu [36]. The

distribution Sα(β, 0, 1) is usually called standard stable and when α ∈ (0, 1) it is

called positive stable because the support of the density is the positive half of the

real line. In this case the characteristic function reduces to

E [exp(iθx)] = e−|θ|α (5.2)

Stable distributions admit explicit representation of the density function only in

the following cases: the Gaussian distribution S2(0, σ, δ), the Cauchy distribution

S1(0, σ, δ) and the Lévy distribution S1/2(1, σ, δ).

The algorithm we used for simulating a standard stable (see Chamber, Mallows and

Stuck [8] and Weron [41]) is the following

(i) Simulate

V ∼ U[−π
2
, π
2
] (5.3)

W ∼ εxp(1); (5.4)

(ii) If α 6= 1 then

Z = Sα,β
sin(α(V +Bα,β))

cos(V )1/α

(
cos(V − α(V +Bα,β))

W

) 1−α
α

(5.5)

Bα,β =
arctan(βtan(πα

2
))

α

Sα,β = (1 + β2tan2(
πα

2
))

1
2α

If α = 1 then

Z =
2

π

[

(
π

2
+ βV ) tan(V ) − β log(

W cos(V )
π
2

+ βV
)

]

(5.6)

Once a value Z from a standard stable Sα(β, 0, 1) has been simulated, in order to

obtain a value X from a stable distribution with scale parameter σ and location

parameter δ, the following transformation is required

X =

{

Z + δ if α 6= 1

σZ + 2
π
βσ log(σ) + δ if α = 1
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Figure 5.1: Simulation from stable distribution S1.65(−0.8, 0.00053, 0.0079).

Fig. 5.1 exhibits simulated data from a stable distribution. We use the parameters

estimated by Buckle [6] on financial time series.

5.3 Bayesian Inference for Stable Distributions

In order to make inference on the parameters of a stable distribution in a Bayesian

approach it is necessary to specify a hierarchical model on the parameters of

the distribution. Often, the resulting posterior distribution of the Bayesian

model cannot be calculated analytically, thus it is necessary to chose a numerical

approximation method. Monte Carlo simulation techniques provide an appealing

solution to the problem because, in high dimensional space, they are more efficient

than traditional numerical integration methods and furthermore they require the

densities involved in the posterior to be known only up to a normalising constant.

In the following the basic Markov Chain Monte Carlo (MCMC ) techniques will be

introduced and the Gibbs sampler for a stable distribution will be discussed.
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5.3.1 MCMC Methods for Bayesian Models

As evidenced in Chapter 1, in Bayesian inference many quantities of interest can be

represented in the integral form

I(θ) = Eπ(θ|x){f(θ)} =

∫

X

f(θ)π(dθ|x) (5.7)

where π(θ|x) is the posterior distribution of the parameter θ ∈ X given the observed

data x = (x1, . . . , xk). In many cases to find an analytical solution to the integration

problem is difficult and a numerical approximation is needed. A way to approximate

the integral is to simulate the posterior distribution and to average the simulated

values of f(θ). In particular the MCMC methods consist in the construction of a

Markov chain
{
θ(t)
}n

t=1
and in the following approximation of the integral given in

Eq. (5.7)

In(θ) =
1

n

n∑

t=1

f(θ(t)) (5.8)

which is a consistent estimator of the quantity of interest

In(θ)
a.s.−→ Eπ(θ|x){f(θ)} (5.9)

In some cases, as in mixture models, is not possible to simulate directly from the

posterior distribution and a further simulation step (completion step) is needed. All

MCMC algorithms are based on the construction of a discrete time Markov Chain,

through the specification of its transition kernel. Thus the properties of this kind

of stochastic process are useful in order to study the convergence of the MCMC

simulation algorithms.

We recall that the irreducibility of the chain is a sufficient condition in order to

guarantee the convergence of In to the quantity of interest given in Eq. (5.7).

Theorem 5.3.1. (Law of Large Numbers)

If the Markov chain {Θ}∞t=0 is irreducible and has σ-finite invariant measure π, then

∀f, g ∈ L1(π), with
∫
g(θ)dπ(θ) 6= 0

lim
n→∞

In(f)

In(g)
=

∫
f(θ)dπ(θ)
∫
g(θ)dπ(θ)

(5.10)

where In(h) = 1
n

∑n
i=1 h(Θi).
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For a brief introduction to Markov chains and to Markov Chain Monte Carlo

methods we refer to Chapter 1. Further details on Markov chains can be found

for example in Meyn and Tweedie [24], other theoretical results on convergence

are in Tierney [40], finally Robert and Casella [35] provides some techniques for

monitoring convergence.

5.3.2 The Gibbs Sampler

The Gibbs sampler has been introduced in image processing by Geman and Geman

[19] (see also Chapter 1 for a general introduction to MCMC methods and to Gibbs

sampling) and it is a method of construction of a Markov Chain {Θ(t)}∞t=0 with

multivariate stationary distribution π(θ|(x)), where θ ∈ χ. This simulation method

is particularly useful when the posterior density is defined on a high dimension space.

If the random vector θ can be written as θ = (θ1, . . . , θp) and if we can simulate

from the full conditional densities

(θi|θ1, . . . , θi−1, θi+1, . . . , θp) ∼ πi(θi|θ1, . . . , θi−1, θi+1, . . . , θp,x) (5.11)

then the associated Gibbs sampling algorithm is given by the following transition

kernel from θ(t) to θ(t+1):

Definition 5.3.1. (Gibbs Sampler)

Given the state Θ(t) = θ(t) at time t, generate the state Θ(t+1) as follows

1. Θ
(t+1)
1 ∼ π(θ1|θ(t)

2 , . . . , θ
(t)
p ,x)

2. Θ
(t+1)
2 ∼ π(θ2|θ(t+1)

1 , θ
(t)
3 , . . . , θ

(t)
p ,x)

3. . . .

4. Θ
(t+1)
p ∼ π(θp|θ(t+1)

1 , θ
(t+1)
2 , . . . , θ

(t+1)
p−1 ,x)

Under some regularity conditions the Markov chain produced by the algorithm

converges to the desired stationary distribution (see Robert and Casella [35]).



147

5.3.3 The Gibbs Sampler for Univariate Stable

Distributions

In this paragraph we give a description of the Gibbs sampler proposed by Buckle [6]

in order to estimate the characteristic exponent α of a stable distribution. It is known

(see Section 5.1 ) how to simulate values from a stable distribution; furthermore it is

possible to represent the stable density in integral form, by introducing an auxiliary

variable y, as suggested by Buckle [6]. The stable density is obtained by integrating

with respect to y the bivariate density function of the pair (x, y)

f(x, y|α, β, σ, δ) =
α

|α− 1| exp

{

−| z

τα,β(y)
|α/(α−1)

} ∣
∣
∣
∣

z

τα,β(y)

∣
∣
∣
∣

α/(α−1)
1

|z| (5.12)

(x, y) ∈ (−∞, 0) × (−1/2, lα,β) ∪ (0,∞) × (lα,β, 1/2) (5.13)

τα,β(y) =
sin(παy + ηα,β)

cos(πy)

[
cos(πy)

cos(π(α− 1)y) + ηα,β

](α−1)/α

(5.14)

ηα,β = β min(α, 2 − α)π/2 (5.15)

lα,β = −ηα,β/πα (5.16)

where z = x−δ
σ

. Previous elements allow to perform simulation based Bayesian

inference on the parameters of the stable distribution. The Bayesian model is

described through the Directed Acyclic Graph (DAG) in Fig. 5.2. Suppose to observe

n realizations x = (x1, . . . , xn) from a stable distribution Sα(β, σ, δ) and simulate a

vector of auxiliary variables y = (y1, . . . , yn), then the completed likelihood and the

completed posterior distribution are respectively

L(x,y|θ) =
n∏

i=1

f(xi, yi|θ) (5.17)

π(θ|x,y) =
L(x,y|θ)π(θ)

∫

Θ
L(x,y|θ)π(θ)dθ

∝
n∏

i=1

f(xi, yi|θ)π(θ) (5.18)

where θ = (α, β, δ, σ) is the stable parameter vector varying in the parameter space

Θ.

In the following we suppose to observe n values from a standard stable distribution

Sα(β, 1, 0) and we assume the other parameters to be known. Parameters α and

β are estimated by simulating from the complete posterior distribution and by
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Figure 5.2: DAG of the Bayesian model for inference on stable distributions. It
exhibits the hierarchical structure of priors, and hyperparameters. A single box
around a quantity indicates that it is a known constant, a double box indicates the
variable is observed and a circle indicates the random variable is not observable.
The directed arrows show the dependence structure of the model. We use the the
prior suggested by Buckle [6].

averaging simulated values. Simulations from the posterior distribution are obtained

by iterating the following steps of the Gibbs sampler

(i) Update the completing variable

π(yi|α, β, δ, σ, zi) ∝ exp

{

1 −
∣
∣
∣
∣

zi

τα,β(yi)

∣
∣
∣
∣

α
(α−1)

}∣
∣
∣
∣

zi

τα,β(yi)

∣
∣
∣
∣

α
(α−1)

(5.19)

with i = 1, . . . , n.

(ii) Simulate from the complete full conditional distributions

π(α|β, δ, σ,x,y) ∝ αn

|α− 1|n exp

{

−
n∑

i=1

∣
∣
∣
∣

zi

τα,β(yi)

∣
∣
∣
∣

α
(α−1)

}
n∏

i=1

∣
∣
∣
∣

zi

τα,β(yi)

∣
∣
∣
∣

α
(α−1)

π(α) (5.20)

π(β|α, δ, σ, zi, yi) ∝ exp

{

−
n∑

i=1

∣
∣
∣
∣

zi

τα,β(yi)

∣
∣
∣
∣

α
(α−1)

}
n∏

i=1

∣
∣
∣
∣

1

τα,β(yi)

∣
∣
∣
∣

α
(α−1)

π(β) (5.21)
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π(δ|α, β, σ, zi, yi) ∝ exp

{

−
n∑

i=1

∣
∣
∣
∣

zi

τα,β(yi)

∣
∣
∣
∣

α
(α−1)

}
n∏

i=1

∣
∣
∣
∣

zi

τα,β(yi)

∣
∣
∣
∣

α
(α−1) 1

|xi − δ| π(δ)(5.22)

π(σ|α, β, σ, zi, yi) ∝
(

1

σα/(α−1)

)n

exp

{

− 1

σα/(α−1)

n∑

i=1

∣
∣
∣
∣

(xi − δ)

τα,β(yi)

∣
∣
∣
∣

α/(α−1)
}

π(σ)(5.23)

where π(α), π(β), π(δ), π(σ) are the prior distributions on the parameters, y is a

vector of auxiliary variables (y1, . . . , yn) and τα,β is a function of y defined in Eq.

(5.14).

In order to simulate from the density function given in equation (5.19) we apply

the accept reject method (see Devroye [9]), because the density is proportional to a

function which has finite support (− 1
2
, 1

2
) and which is bounded with value 1 at the

maximum y∗, where y∗ is such that τα,β(y∗) = x. To emphasize numerical problems

which arise in making inference on stable distributions, we plot in Fig. 5.4 the

density function of y for different values of x. Note that for all values of α ∈ (0, 1),

high values of x make the density function spiked around the mode. Thus the basic

accept method performs quite poorly. A way to improve the simulation method is

to build a histogram with the rejected values and to use it as an envelope in the

accept reject algorithm.

Due to the way the parameter α enters in the likelihood, the densities given in

Equations (5.20), (5.21), (5.22) and (5.23) are undulating and rather concentrated,

therefore as suggested by Buckle [6] and Ravishanker and Qiou [30] we introduce the

following reparametrisations which give a more manageable form of the conditional

posteriors of α, β and δ

vi = τα,β(yi) (5.24)

φi =
τα,β

xi − δ
(5.25)

the resulting posteriors are
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π(α|β, δ, σ,x,v) ∝ αn

|α− 1|n exp

{

−
n∑

i=1

∣
∣
∣
∣

zi

vi

∣
∣
∣
∣

α
(α−1)

}
n∏

i=1

∣
∣
∣
∣

zi

vi

∣
∣
∣
∣

α
(α−1)

∣
∣
∣
∣

dτα,β

dy

∣
∣
∣
∣

−1

τα,β(y)=vi

π(α)(5.26)

π(β|α, δ, σ, zi, vi) =
n∏

i=1

∣
∣
∣
∣

dτα,β

dy

∣
∣
∣
∣

−1

τα,β(y)=vi

π(β) (5.27)

π(δ|α, β, σ, zi, vi) ∝
n∏

i=1

∣
∣
∣
∣

dτα,β

dy

∣
∣
∣
∣

−1

τα,β(y)=φi(xi−δ)

π(δ) (5.28)

At each step of the reparametrised Gibbs sampler, the Jacobian of the

transformation,
∣
∣
∣
dτα,β

dy

∣
∣
∣

−1

, must be evaluated in yi = τ−1
α,β(vi). Due to the complexity

of the function τα,β, its inverse has not an analytical expression. Therefore, following

Buckle [6], the inverse transformation is determined numerically. We use the

modified safeguard Newton algorithm proposed in Press et al. [28].

In order to simulate from the posteriors given in Equations (5.26), (5.27) and (5.28)

we use Metropolis-Hastings algorithm (see Chapter 1 for an introduction to Monte

Carlo Markov Chain methods)

Given θ
(k−1)
i

(i) Generate from the proposal distribution θ∗i ∼ q(θi|θ(k−1)
i )

(ii) Take:

θ
(k)
i =

{

θ∗i with probability ρ(θ
(k−1)
i , θ∗i )

θ
(k−1)
i with probability 1 − ρ(θ

(k−1)
i , θ∗i )

where: ρ(θ
(k−1)
i , θ∗i ) = 1 ∧

{

π(θ∗i |θ−i)

π(θ
(k−1)
i |θ−i)

q(θ
(k−1)
i )

q(θ∗i )

}

.

In order to simulate the full conditional posteriors given in Eq. (5.26) and (5.27), we

use a beta distribution, Be(a, b) as proposal. The sample generated from the beta

distribution is not independent because in order to simulate the k-th value of the

M.-H. chain, we pose the mean of the beta distribution to be equal to the (k− 1)-th

value of the chain. In setting a and b, the parameters of the proposal distribution

we distinguish the following cases
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{

a =
α2

k−1 (1−αk−1)−v αk−1

v

b = a1−αk−1

αk−1

when α ∈ [0, 1)

and

{

a = (αk−1−1)2 (2−αk−1)−v (αk−1−1)

v

b = a 2−αk−1

(αk−1−1)

when α ∈ (1, 2]

where αk−1 is the value generated by the Metropolis-Hastings chain at step (k − 1)

and v is the variance of the proposal distribution. This parameters choice allows

us also to avoid numerical problems related to the evaluation of the Metropolis-

Hastings acceptance ratio in the presence of fat tailed and quite spiked likelihood

functions.

We use a gaussian random walk proposal to simulate the full conditional posterior

of the location parameter (Eq. (5.28)).

In order to complete the description of the hierarchical model and of the associated

Gibbs sampler, we consider the following joint prior distribution

I(α)(1,2]
1

2
I(β)[−1,1]

1√
2πb3

e
−

(δ−a3)2

2b3 I(δ)(−∞,+∞)
ba4
4

Γ(a4)

e−
b4
θ

θa4+1
I(θ)[0,∞) (5.29)

where θ = σ
α

α−1 . We use informative priors for the location and scale parameters.

For δ we assume a normal distribution. Note that the prior distribution of θ is the

inverse gamma distribution IG(a4, b4), which is a conjugate prior of the distribution

given in equation (5.23). Simulations of the parameter σ can be obtained from the

simulated values of θ by a simple transformation. Finally for parameters α and β

we assume non informative priors.

We show the efficiency of the MCMC based Bayesian inference, running the Gibbs

sampler on simulated dataset. In the following examples we discuss the numerical

results and also some computational remarks related to different values of the

characteristic exponent.

Example 5.3.1 - (Positive α-Stable Distributions)

Fig. 5.5, in Appendix A, exhibits the dataset of 1,000 observations generated from

the positive stable distribution S0.5(0.9, 0, 1). Figures 5.6, 5.7 give the results of
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15, 000 iterations of the Gibbs sampler relative to the characteristic exponent α,

and the asymmetry parameter β, for an increasing number of simulations. Figures

5.8, 5.9 exhibit the ergodic averages. Note that convergence has been achieved after

6,000 iterations. In the first experiment we use uniform priors for α and β. We

set the variance of the proposal distribution (see Eq. 5.46) at v = 0.0001 for α, at

v = 0.0009 for β and the starting values of the Gibbs sampler at α = 0.2 and β = 0.5.

Figures 5.10 and 5.11 exhibit the estimated acceptance rate for the M.-H. steps in

the Gibbs sampler, for an increasing number of simulations. The histograms of the

posteriors are depicted in figures 5.12 and 5.13. Note that through the Gibbs sample

it is also possible to obtain the confidence intervals for the estimated parameters and

to perform a goodness of fit test.

�

Example 5.3.2 - (α-Stable Distributions with α > 1)

Note that in the first dataset α is less than 1, therefore the moment of order less

than two are infinite. In some applications like in finance, in order to give an

interpretation to the result it is preferable to work at least with finite first order

moments. Therefore we verify the efficiency of the Gibbs sampler also on a sample

generated from a stable distribution with α ∈ (1, 2]. Fig. 5.14 in Appendix A exhibits

the dataset of 1,000 values simulated from the stable distribution S1.5(0.9, 0, 1).

Gibbs sampler realisations and ergodic averages are represented respectively in

figures 5.15, 5.16 and in figures 5.17, 5.18. Convergence has been achieved after

6,000 iterations. In the experiment we use uniform priors for α and β and set the

variance of the proposal distribution at v = 0.0005 for α, at v = 0.0009 for β and

the starting values of the Gibbs sampler at α = 1.2 and β = 0.2. Figures 5.19,

5.20 exhibit the estimated acceptance rate, for an increasing number of simulations.

Finally, posterior distributions are depicted in figures 5.21 and 5.22.

�

For each dataset, Table 5.1 summarizes the estimated parameters, the standard

deviations and the estimated acceptance rates of the M.-H. steps of the Gibbs

sampler. Results are obtained on a PC with Intel 1063 MHz processor, using



153

routines implemented in C/C++. We validate the MCMC code by checking that

without any data the estimated joint posterior distribution correspond to the joint

prior.

Table 5.1: Numerical results - Ergodic Averages over 15,000 Gibbs realisations.

First Dataset: S0.5(0.9, 0, 1)

Parameter True Value Starting Value Estimate(∗) Std.Dev. Acc. Rate
α 0.5 0.2 0.54 0.02 0.11
β 0.9 0.5 0.95 0.07 0.14

Second Dataset: S1.5(0.9, 0, 1)

Parameter True Value Starting Value Estimate(∗∗) Std.Dev. Acc. Rate
α 1.5 1.2 1.46 0.04 0.49
β 0.9 0.2 0.96 0.04 0.21

(*)Time (sec): 4259
(**)Time (sec): 4128

5.4 Bayesian Inference for Mixtures of Stable

Distributions

In this section we extend the Bayesian framework, introduced in the previous

section, to the mixtures of stable distributions. In many situations data may

exhibit simultaneously: heavy tails, skewness, and multimodality. In time series

analysis, the multimodality of the empirical distribution can also find a justification

in a heterogeneous time evolution of the observed phenomena. For example, the

distribution of financial time series like prices or prices volatility may have many

modes because the stochastic process evolves over time following different regimes.

Stable distributions allow for skewness and heavy tails, but not for multimodality.

Thus a way to model these features of the data, is to introduce stable mixtures.

Furthermore the use of stable mixtures is appealing also because they have normal

mixtures as special case, which is a widely studied topic (see for example Stephens

[38], Richardson and Green [32]). Other relevant works on the Bayesian approach to

the mixture models estimation are Diebolt and Robert [10], Escobar and West [12]

and Robert [34], [33]. In Appendix C some examples of two components stable



154

mixtures are exhibited. We simulate stable mixtures with different parameters

setting, in order to understand the influence of each parameter on the shape of

the mixture’s distribution.

5.4.1 The Missing Data Model

In the following we define a stable mixture model, while assuming to known the

number of mixture components. Under a practical point of view the number of

components may be detected by looking at the number of modes in the distribution

or by performing a statistical test, see section 5.5. Let L be the finite number of

mixture components and f(x|αl, βl, δl, σl) the l-th stable distribution in the mixture,

then the mixture model m(x|θ, p) is

m(x|θ, p) =
L∑

l=1

plf(x|θl) (5.30)

with
L∑

l=1

pl = 1, pl ≥ 0, l = 1, . . . , L

where θl = (αl, βl, δl, σl), l = 1, . . . , L are the parameter vector and θ = (θ1, . . . , θL)

. In the following we suppose L to be known. In order to perform Bayesian inference

two steps of completion are needed. First, we adopt the same completion technique

used for stable distributions. The auxiliary variable, y, is introduced in order to

obtain an integral representation of the mixture distribution

m(x|θ, p) =
L∑

l=1

pl

∫ 1/2

−1/2

f(x, y|θl) dy. (5.31)

The second step of completion is introduced in order to reduce the complexity

problem, which arises in simulation based inference for mixtures. The completing

variable (or allocation variable), ν = {ν1, . . . , νL} is defined as follow

νl =

{

1 if x ∼ f(x, y|θl)

0 otherwise
with l = 1, . . . , L (5.32)

and is used to select the mixture component. The allocation variable is not

observable and this missing data structure can be estimated by following a simulation
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based approach. Simulations from the mixture model can be performed in two step:

first, simulating the allocation variable; second, simulating a mixture component

conditionally on the allocation variable. The resulting demarginalized mixture

model is

m(x, ν|θ, p) =
L∏

l=1

(

pl

∫ 1/2

−1/2

f(x, y|θl) dy

)νl

,

L∑

l=1

νl = 1 (5.33)

This completion strategy is now quite popular in Bayesian inference for mixtures

(see Robert [33], Robert and Casella [35], Escobar and West [12] and Diebolt and

Robert [10]). For an introduction to Monte Carlo methods in Bayesian inference

from data modeled by mixture of distributions see also Neal [27] and for a discussion

of the numerical and identifiability problems in mixtures inference see Richardson

and Green [32], Stephens [37] and Celeux, Hurn and Robert [7].

5.4.2 The Bayesian Approach

The Bayesian model for inference on stable mixtures is represented through the DAG

in Fig. 5.3. Before specifying the Bayesian model we introduce two distributions that

are quite useful in Bayesian inference form mixtures: the multinomial distribution

and the Dirichlet distribution.

Definition 5.4.1. (Multinomial distribution)

The random variable X = (x1, . . . , xL) has L dimensional multinomial distribution

if its density function is

M(n, p1, ..., pL) =

(

n

x1 . . . xL

)

px1
1 · . . . · pxL

L I∑xl=n (5.34)

where
∑L

l=1 pl = 1 and pl ≥ 0, l = 1, . . . , L.

As suggested in the literature on gaussian mixtures, in the following we assume

a multinomial prior distribution for the completing variable ν: V ∼ fV (ν) =

ML(1, p1, . . . , pL).

Definition 5.4.2. (Dirichlet distribution)
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Figure 5.3: DAG of the Bayesian hierarchical model for inference on stable mixtures.
Note that the completing variable ν is not observable. Thus, two levels of completion,
y and ν, are needed for a stable mixture model.

The random variable X = (x1, . . . , xL) has L dimensional Dirichlet distribution if

its density function is

D(δ1, ..., δL) =
Γ(δ1 + ...+ δL)

Γ(δ1) · . . . · Γ(δL)
xδ1−1

1 · . . . · xδL−1
L IS(x) (5.35)

where δl ≥ 0, l = 1, . . . , L and S = {x = (x1, . . . , xL) ∈ R
L|∑ xl = 1, xl > 0 l =

1, . . . , L} is the simplex of R
L.

We assume that the parameters of the discrete part of the mixture distribution

has the standard conjugate Dirichlet prior: (p1, . . . , pL) ∼ DL(δ1, . . . , δL), with

hyperparameters δ1 = . . . = δL = 1
L
.

Observing n independent values, x = (x1, . . . , xn), from a stable mixture, the

likelihood and the completed likelihood are respectively

L(x,y|θ, p) =
n∏

i=1

L∑

l=1

pl

∫ 1/2

−1/2

f(xi, yi|θl)dyi (5.36)

L(x,y, ν|θ, p) =
n∏

i=1

L∏

l=1

(plf(xi, yi|θl))
νil (5.37)
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where y = (y1, . . . , yn) and ν = (ν1, . . . , νn) are respectively the auxiliary variable

and the allocation variable vectors and θ = (θ1, . . . , θL) and p = (p1, . . . , pL) are the

mixture’s parameters vectors. From the completed likelihood and from the priors it

follows that the complete posterior distribution of the Bayesian mixture model is:

π(θ, p|x,y, ν) ∝
n∏

i=1

{
L∏

l=1

(f(xi, yi|θl))
νil π(νi)

}

π(θ)π(p). (5.38)

Bayesian inference on the mixture parameters requires the calculation of the

expected value from the posterior distribution. A closed form solution of this

integration problem does not exist, thus numerical methods are needed. The

introduction of auxiliary variables, that are not observable, simplifies inference for

mixtures and also suggests the way to approximate numerically the problem. In

fact the auxiliary variables can be replaced by simulated values and the simulated

completed likelihood can be used for calculating the posterior distributions.

Furthermore in order to approximate numerically the posterior means is necessary

to perform simulations from the posterior distributions of the parameters and to

average the simulated values.

5.4.3 The Gibbs Sampler for Mixtures of Stable

Distributions

Gibbs sampling allows us to simulate from the posterior distribution avoiding

computational difficulties due to the dimension of the parameter vector. Due to

the ergodicity of the Markov chain generated by the Gibbs sampler, the choice of

the initial values is arbitrary. In particular we choose to simulate them from the

prior. The steps of the Gibbs sampler for a mixture model can be grouped in:

simulation of the full conditional distributions and augmentation by the completing

variables

(i) Simulate initial values: ν
(0)
i , y

(0)
i , i = 1, . . . , n and p(0) respectively from

ν
(0)
i ∼ ML(1, p1, . . . , pL) (5.39)

y
(0)
i ∼ f(yi|θ, ν, xi) ∝ exp{1 −

∣
∣
∣
∣

zi

τα,β(yi)

∣
∣
∣
∣

α/(α−1)

}
∣
∣
∣
∣

zi

τα,β(yi)

∣
∣
∣
∣

α/(α−1)

(5.40)

p(0) ∼ DL(δ, . . . , δ). (5.41)
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(ii) Simulate from the full conditional posterior distributions

π(θl|θ−l, p,x,y,v) ∝
n∏

i=1

{f(xi, yi|θl) pl}νil π(θl) l = 1, . . . , L (5.42)

π(p1, . . . , pL|θ,x,y,v) = D(δ + n1(ν), . . . , δ + nL(ν)) (5.43)

(iii) Update the completing variables

π(yi|θ, p,x,y−i,v) ∝ exp

{

1 −
∣
∣
∣
∣

xi

τα,β(yi)

∣
∣
∣
∣

α/(α−1)
}∣
∣
∣
∣

xi

τα,β(yi)

∣
∣
∣
∣

α/(α−1)

(5.44)

π(νi|θ, p,x,y,v−i) = ML(1, p∗1, . . . , p
∗
L) (5.45)

for i = 1, . . . , n, where

z =
x− δ

σ

nl(ν) =
n∑

i=1

νil , l = 1, . . . , L

p∗l =
plf(xi, yi|θl)

∑L
l=1 f(xi, yi|θl)pl

, l = 1, . . . , L.

Steps (5.43) and (5.45) of the Gibbs sampler are proved in Appendix D. Observe that

simulations from the conditional posterior distribution of Eq.(5.43) can be obtained

by running the Gibbs sampler given in equations (5.20)-(5.23), conditionally to

the value of the completing variable ν. To simulate from the Dirichlet posterior

distribution given in Eq. (5.43), we use the algorithm proposed by Casella and

Robert [35], while to draw value from the multinomial posterior distribution of Eq.

(5.45), we use the algorithm proposed by Fishman [18].

In Examples 5.4.1 and 5.4.2, we verify the efficiency of the Gibbs sampler on some

test samples simulated from stable mixtures. For each mixture’s component we

assume the joint prior distribution given in equation (5.29). Furthermore, for the

shake of simplicity, we consider L = 2. Because of the quite irregular form of

the density f(xi, yi|θl), during the MCMC based estimation, some computational

difficulties were encountered in evaluating the probability p∗l of each mixture’s

component. Thus we introduce the following useful reparameterisation and

approximation
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q∗l =







eg1(xi,yi)−g2(xi,yi)

eg1(xi,yi)−g2(xi,yi)+1
if g1 > g2 or g1 ≤ g2

1 if g1 � g2

0 otherwise

where gl(xi, yi) = log(pl f(xi, yi|θl)), with l = 1, 2.

Table 5.2: Numerical results - Ergodic Averages over 15,000 Gibbs realisations.

Dataset: 0.5S1.7(0.3, 1, 1) + 0.5S1.3(0.5, 30, 1)

Par. True Value Starting Value Estimate(∗) Std.Dev. Acc. Rate
α1 1.7 1.9 1.66 0.09 0.32
α2 1.3 1.9 1.36 0.07 0.41
β1 0.3 0.8 0.28 0.09 0.41
β2 0.5 0.8 0.37 0.10 0.42
p1 0.5 0.4 0.52 0.02 -

Dataset: 0.5S1.3(0.3, 1, 1) + 0.5S1.3(0.8, 30, 1)

Par. True Value Starting Value Estimate(∗∗) Std.Dev. Acc. Rate
α 1.3 1.7 1.25 0.08 0.23
β1 0.3 0.5 0.15 0.03 0.11
β2 0.8 0.5 0.95 0.05 0.13
p1 0.5 0.5 0.75 0.09 -
p2 0.5 0.5 0.25 0.09 -

(*)Time (sec):9249
(**)Time (sec):9525

Example 5.4.1 - (α-Stable Mixture with varying β and α)

In this example, we apply the Gibbs sampler to a synthetic dataset of 1,000

observations generated from the stable mixture: 0.5S1.7(0.3, 1, 1)+0.5S1.3(0.5, 30, 1).

Fig. 5.29 in Appendix E exhibits the dataset. In the M.-H. step of the Gibbs sampler,

we set v=0.0001 for β and v=0.005 for α.

Result are briefly represented in Table 5.4.3 and graphically described in Figg. 5.30-

5.33. Note that the presence in the mixture model, of distribution with different

tails behaviour, produces some problems in the convergence of the ergodic averages,

due to the label switching of the observations.

�
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Example 5.4.2 - (α-Stable Mixture with constant α and varying β)

In this experiment we keep α fixed over the mixture components. First we generate

1,000 observations from the following mixture 0.5S1.3(0.3, 1, 1) + 0.5S1.3(0.8, 30, 1).

Secondly we apply the Gibbs sampler for stable mixture and obtain the results

given in Table 5.4.3. The graphical description of the results is in Figg. 5.35-5.38 of

Appendix E and exhibits a more appreciable mixing of the chain associated to the

Gibbs sampler.

�

To conclude this section, we remark that in developing the Gibbs sampler for

α-Stable mixtures and also in previous Monte Carlo experiments the number of

components of the mixture is assumed to be known. Thus our research framework

can be extended in order to make inference on the number of components.

For example, Reversible Jump MCMC (RJMCMC) or Birth and Death MCMC

(BDMCMC) could be applied in this context.

5.5 Application to Financial Data

Introducing two level of auxiliary variables in the stable mixture model allows us

to infer all the parameters of mixture from the data. Gaussian distribution is

usually assumed in modelling financial time series, but it performs poorly when data

are heavy-tailed and skewed. Moreover the assumption of unimodal distribution

becomes too restrictive for some financial time series. In this section, we illustrate

how stable mixtures may result particularly useful in modelling different kind of

financial variables and present estimates obtained with the MCMC based inferential

technique proposed in the previous section.

Example 5.5.1 - (Stock Market)

In this example we analyse the return rate of the S&P500 composite index from

01/01/1990 to 27/01/2003. The return on the index is defined as: rt = (pt −
pt−1)/pt−1. Alternatively, logarithmic returns could be used. The number of

observations is 3410. Fig. 5.39 shows the data histogram and the best normal
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which is possible to estimate. The QQ-plot in Fig. 5.40 reveals that data are not

normally distributed. We apply the Gibbs sampler for α-Stable mixtures to this

dataset. The result is in Tab. 5.5. Parameter estimates are ergodic averages over

the last 10,000 values of the 15,000 Gibbs sampler realisations. Note that index

return distribution has tails heavier than Gaussian, because α̂ = 1.674.

�

Table 5.3: Parameter Estimates on S&P 500 Index daily returns.

Starting Value Estimate Std.Dev. Acc. Rate
α 1.8 1.674 0.005 0.2
β 0.2 0.159 0.004 0.1
σ 0.01 0.070 0.002 -
δ 0.0001 0.000091 0.0001 0.1

Example 5.5.2 - (Bond Market)

Our second dataset (source: DataStream) contains daily price returns on the J.P.

Morgan’s indexes concerning following countries: France, Germany, Italy, United

Kingdom, USA and Japan, between 01/01/1988 and 13/01/2003. Denoting with

pt the price index at time t. The return on the index is defined as: rt =

(pt − pt−1)/pt−1. Fig.5.41 in Appendix E exhibits jointly the histogram, the best

Gaussian approximation and the density line of the returns distribution. All time

series exhibit a certain degree of kurtosis and skewness. Estimation result on the

J.P. Morgan Great Britain index is in Tab. 5.5.2.

Table 5.4: Parameter Estimates on JP Morgan - Great Britain index daily returns.

Starting Value Estimate Std.Dev. Acc. Rate
α 1.5 1.95 0.004 0.2
β 0.02 0.013 0.001 0.2
σ 0.01 0.270 0.003 -
δ 0.005 0.0062 0.02 0.1

�
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Example 5.5.3 - (3 Months Euro-Deposits Interest Rate)

Our third dataset (source: DataStream) contains daily 3-Months Interest Rates

on Euro-Deposits concerning following countries: France, Germany, Italy, United

Kingdom, USA and Japan, between 01/01/1988 and 13/01/2003. Fig.5.43 in

Appendix E exhibits jointly the histogram, the best Gaussian approximation and

the density line of the returns distribution. Quite all time series of this dataset

exhibit multimodality.

Estimation result on the 3-month Interest Rate for France is in Tab. 5.5.3

Table 5.5: Parameter Estimates on Interest Rates - France. Two components α-
stable mixture.

Starting Value Estimate Std.Dev. Acc. Rate
α1, α2 1.5 1.2 0.003 0.15
β1 0.01 0.02 0.001 0.1
β2 0.01 0.04 0.001 0.1
σ1 1.5 0.307 0.002 -
σ2 1.5 0.873 0.001 -
δ1 4 3.012 0.02 0.1
δ2 10 7.301 0.03 0.1

�

5.6 Conclusion

In this work we propose a α-Stable mixture model. As result in the literature

from many empirical evidences, α-Stable distributions are particularly adapted for

modelling financial variables. Moreover some financial empirical studies evidence

that mixture models are needed in many cases, due to the presence of multi-modality

in the asset returns distribution. We chose Bayesian inference due to the flexibility of

the approach, that allows to simultaneously estimate all the parameters of the model.

Furthermore we introduce a suitable reparameterisation of the α-Stable mixture in

order to perform Bayesian inference. The proposed approach to α-Stable mixture

models estimation is quite general and worked well in our simulation analysis, but
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it needs much more evaluation, with a particular attention to the case of symmetric

stable mixtures. Furthermore the Bayesian approach used in this work allows to

perform goodness of fit tests and also to use RJMCMC and BDMCMC techniques

in order to make inference on the number of components of the mixture.
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Appendix A - Bayesian Inference for Stable

Distributions
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Figure 5.4: The density function of y for different values of x (0.04,...,0.14) and of
α (0.2,...,0.9).
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Figure 5.5: Simulated dataset, 1,000 values from S0.5(0.9, 0, 1).
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Figure 5.6: Gibbs sampler realisations, characteristic exponent α.

500 3000 5500 8000 10500 13000 15500

0.5

0.6

0.7

0.8

0.9

1.0

B
et

a:
 R

aw
 V

al
ue

s

Gibbs Sampler Iterations

Figure 5.7: Gibbs sampler realisations, asymmetry parameter β.
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Figure 5.8: Gibbs sampler, ergodic averages for the characteristic exponent α.
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Figure 5.9: Gibbs sampler, ergodic averages for the asymmetry parameter β.
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Figure 5.10: Gibbs sampler, acceptance rate of the M.-H. step, parameter α
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Figure 5.11: Gibbs sampler, acceptance rate of the M.-H. step, parameter β
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Figure 5.13: Gibbs sampler, histogram of the posterior π(β|x)
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Figure 5.14: Simulated dataset, 1,000 values from S1.5(0.9, 0, 1).
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Figure 5.15: Gibbs sampler realisations, characteristic exponent α.
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Figure 5.16: Gibbs sampler realisations, asymmetry parameter β.
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Figure 5.17: Gibbs sampler, ergodic averages for the characteristic exponent α.
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Figure 5.18: Gibbs sampler, ergodic averages for the asymmetry parameter β.
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Figure 5.19: Gibbs sampler, acceptance rate of the M.-H. step, parameter α
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Figure 5.20: Gibbs sampler, acceptance rate of the M.-H. step, parameter β
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Figure 5.21: Gibbs sampler, histogram of the posterior π(α|x)
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Figure 5.22: Gibbs sampler, histogram of the posterior π(β|x)
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Appendix B - Proposal Distributions for the

Metropolis-Hastings Algorithm

The shape of the stable distribution and the presence of skewness suggest us to use

a Beta distribution Be(a, b) as proposal for the Metropolis-Hastings algorithm

α|αk−1 ∼ Be(a, b) =
1

B(a, b)
αa−1(1 − α)b−1

I(α)(0,1). (5.46)

We assume that the mean of the distribution is equal to the (k − 1)-th value of the

M.-H. chain and set exogenously the variance equal to v. Through the parameter v it

is thus possible to control the acceptance rate of the Metropolis-Hastings algorithm.

When α ∈ (0, 1) the value of the parameters of the proposal is

{
a

a+b
= αk−1

ab
(a+b)2(1+a+b)

= v
⇔

{

a =
α2

k−1 (1−αk−1)−v αk−1

v

b = a1−αk−1

αk−1

where αk−1 is the (k − 1)-th value of the M.-H. chain and v is the variance. In

addition to the previous system of equations, also the positivity constraint on the

Beta’s parameters: a > 0 and b > 0 must hold. Thus at each iteration of the M.-H.

algorithm the following constraint must be satisfied

αk−1 ∈
(

3 − v

2
−

√
v2 − 8v + 1

2
,
3 − v

2
+

√
v2 − 8v + 1

2

)

. (5.47)

When α ∈ (1, 2] we use a translated Beta distribution

α|αk−1 ∼ Be(a, b) =
1

B(a, b)
(α− 1)a−1(2 − α)b−1

I(α)(1,2). (5.48)

By imposing the usual constraints on the mean and the variance we obtain the values

of the proposal’s parameters
{

2a+b
a+b

= αk−1

ab
(a+b)2(1+a+b)

= v
⇔

{

a = (αk−1−1)2 (2−αk−1)−v (αk−1−1)

v

b = a 2−αk−1

(αk−1−1)

Also in this case the positivity constraints on the Beta’s parameters must be

considered. We proceed in a similar way for the proposal distribution of the skewness

parameter β.
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Appendix C - Mixtures of Stable Distributions

C.1 Mixtures with varying α

Observe that in all dataset exhibited in the histograms, N=100,000 values from right

skewed (β = 1) standard stables have been simulated.
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Figure 5.23: Stables mixtures, with equally weighted components.
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Figure 5.24: Stables mixtures, with unequally weighted components.
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C.2 Mixtures with varying β

Simulated samples of N = 100, 000 stable values are exhibited in the following

histograms. In all the samples the location and the scale parameters of the mixture

are: δ1 = 1, δ2 = 40, σ1 = σ2 = 7.
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Figure 5.25: Stables mixtures, with equally weighted components.
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Figure 5.26: Stables mixtures, with unequally weighted components.
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C.3 Mixtures with varying σ

Simulated samples of N=100,000 stable values are exhibited in the following

histograms. In all the samples the location and the skewness parameters of the

mixture are: δ1 = 1, δ2 = 40, β1 = β2 = 1.
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Figure 5.27: Standard stables mixtures, with equally weighted components.
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Figure 5.28: Standard stables mixtures, with unequally weighted components.
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Appendix D - The Gibbs Sampler for a Stable

Distributions Mixture

Proof. (Allocation Probabilities Posterior Distribution)

The posterior distribution of probabilities (p1, . . . , pL), given in Eq. (5.43), is a

Dirichlet and is derived in the following

π(p1, . . . , pL|θ,x,y, ν) =
L(x,y, ν|θ, p)π(θ)π(p)

∫
L(x,y, ν|θ, p)π(θ)π(p)dp

=

=

∏n
i=1

∏L
l=1 (plf(xi, yi|θl))

νil π(θ)π(p)
∫ ∏n

i=1

∏L
l=1(plf(xi, yi|θl))νilπ(θ)π(p)dp

=

=

∏n
i=1

∏L
l=1 p

νil

l π(p)
∫ ∏n

i=1

∏L
l=1 p

νil

l
Γ(δ)···Γ(δ)

Γ(L δ)
pδ−1

1 , · · · , pδ−1
L dp1, · · · , dpL

=

=

∏n
i=1

∏L
l=1 p

νil

l π(p)
∫ ∏n

i=1
Γ(δ)···Γ(δ)

Γ(L δ)

∏L
l=1 p

νil+δ−1
l dp1 · · · dpL

= (5.49)

=

∏n
i=1

∏L
l=1 p

νil

l π(p)
∫ ∏L

l=1 p
∑n

i=1 νil+δ−1
l

Γ(δ)···Γ(δ)
Γ(L δ)

dp1, · · · , dpL

=

=
Γ (δ +

∑n
i=1 νi1) · · ·Γ (δ +

∑n
i=1 νiL)

Γ (δ L+
∑n

i=1(νi1 + . . .+ νiL))
p
∑n

i=1 νi1+δ−1
1 · · · p

∑n
i=1 νiL+δ−1

L =

= DL(
n∑

i=1

νi1 + δ, . . . ,
n∑

i=1

νiL + δ) =

= DL(n1(ν) + δ, . . . , nL(ν) + δ)

where nl(ν) =
∑n

i=1 νil, with l = 1, . . . , L.

�

Proof. (Allocation Variables Posterior Distribution)

The posterior distribution of the allocation variables given in Eq.(5.45) is a

Multinomial and follows from
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π(ν1, . . . , νn|θ, p,x,y) =
L(x,y, ν|θ, p)π(θ)π(p)

∫
L(x,y, ν|θ, p)π(θ)π(p)dν

=

=

∏n
i=1

{
∏L

l=1(f(xi, yi|θl))
νil
∏L

l=1 p
νil

l

}

π(θ)π(p)
∫ ∏n

i=1

∏L
l=1(f(xi, yi|θl))νil

∏L
l=1 p

νil

l π(θ)π(p)dν
=

=
n∏

i=1

∏L
l=1 (f(xi, yi|θl)pl)

νil

∫ ∏L
l=1 (f(xi, yi|θl)pl)

νil dνi

= (5.50)

=
n∏

i=1

L∏

l=1

(

f(xi, yi|θl)pl
∑L

l=1 f(xi, yi|θl)pl

)νil

=

=
n∏

i=1

ML(1, p∗1, . . . , p
∗
L)

where p∗l = f(xi,yi|θl)pl
∑L

l=1 f(xi,yi|θl)pl
, for l = 1, . . . , L.

�
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Appendix E - Bayesian Inference for Stable

Distributions Mixtures

E.1 Mixtures with varying α and β

-10 -4 2 8 14 20 26 32 38 44 50
V1

0

20

40

60

80

Figure 5.29: Simulated dataset, 1,000 values from 0.5S1.7(0.3, 1, 1)+0.5S1.3(0.5, 30, 1)
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Figure 5.30: Gibbs sampler realisations and ergodic averages for α1 and α2.
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Figure 5.31: Gibbs sampler realisations and ergodic averages for β1 and β2.
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Figure 5.32: Gibbs sampler realisations and ergodic averages for p1 and p2.
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Figure 5.33: Acceptance rates for α1, α2, β1 and β2
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E.2 Mixtures with fixed α and varying β
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Figure 5.34: Simulated dataset, 1,000 values from 0.7S1.3(0.3, 1, 1)+0.3S1.3(0.8, 30, 1)
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Figure 5.35: Gibbs sampler realisations and ergodic averages for α
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Figure 5.36: Gibbs sampler realisations and ergodic averages for β1 and β2.
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Figure 5.37: Gibbs sampler realisations and ergodic averages for p1 and p2.
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Figure 5.38: Acceptance rates for α, β1 and β2
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E.3 Stock price indexes
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Figure 5.39: Dataset of daily price returns
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Figure 5.40: QQ-plot of daily price returns distribution against a normal distribution
with the same mean and variance
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E.4 Bond Indexes

-2 -1 0 1 2 3

1

2
JP Morgan Index - Daily Returns

rJPM_GBP
N(s=0.346)

-1.5 -1 -.5 0 .5 1

1

2

3

4
rJPM_JPY
N(s=0.221)

-1 -.5 0 .5 1

1

2

3
rJPM_FRF
N(s=0.25)

-1 -.5 0 .5 1 1.5

2

4
rJPM_BEF
N(s=0.207)

-1.5 -1 -.5 0 .5 1

1

2

3

4
rJPM_GER
N(s=0.211)

-2 -1 0 1 2

1

2

3

4
rJPM_ITA
N(s=0.27)

Figure 5.41: Dataset of daily price returns
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Figure 5.42: QQ-plots of daily price returns distribution against a normal
distribution with the same mean and variance
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E.5 3-Months Interest Rates
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Figure 5.43: Dataset of daily interest rates
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Figure 5.44: QQ-plots of daily interest rates distribution against a normal
distribution with the same mean and variance
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Chapter 6

Bayesian Inference for Markov

Switching

Stochastic Volatility Models

6.1 Introduction

Stochastic volatility (SV) models find many financial applications, for example

option pricing, asset allocation and risk management. The first work on time series

with time changing volatility is due to Clark [12]. The most simple continuous SV

model has been proposed by Taylor [61], [62], while Hamilton [35] considers a simple

discrete SV model. Hull and White [39] introduce continuous time SV models in

the modern theory of finance. Other results in continuous time asset pricing under

the assumption of time varying stochastic volatility are due to Melino and Turnbull

[49] and Wiggins [66]. Barndorff-Nielsen and Shephard [6], [7] develop continuous

time stochastic volatility modelling through Lévy and α-stable stochastic processes.

Many extensions to the basic SV models have been proposed in the literature.

In particular Markov Switching Stochastic Volatility models (MSSV ), studied in

So, Lam and Li [59], are continuous SV models with a jump component in the

1Part of this work is in Casarin, R., (2004),”Bayesian Inference for Markov Switching Stochastic

Volatility Models”, forthcoming, Working Paper CEREMADE. Presented at the 4th International

Workshop on Objective Bayesian Methodology, CNRS, Aussois, 15-20 June 2003. It received the

Springer’s Award as best poster session.

195



196

mean of the volatility process. They result quite appealing because of the financial

interpretation of the hidden Markov process, which drives the volatility. Chib,

Nardari and Shephard [13] propose a Generalized Stochastic Volatility (GSV) models

characterized by heavy tail innovations of the observable process. Moreover they

study a GSV model with a jump process, which drives the mean of the observed

process. Following the suggestion of Chib, Nardari and Shephard [13], we extend

their jump GSV model by considering a Markov jump component in the mean of

the volatility process. The models proposed in our work represent also an extension

to the MSSV model of So, Lam and Li [59], because the observable process is

characterized by heavy tail innovations.

Estimation of SV is difficult due to the latent variable structure of the model. In

particular MSSV models are more difficult to estimate than simple continuous SV

models because there are two hidden levels in the latent structure. In the following

we briefly describe the current state of the art of SV estimation techniques. The

Method of Moments (MM) has been applied by Taylor [61], [62], [63], by Andersen

[1] and Andersen and Sørensen [2]. The MM and the Generalized MM (GMM) avoid

the integration problem associated to the evaluation of the likelihood function. But

MM reveals to be inefficient when compared with Maximum Likelihood method

(ML). In particular in SV models score function cannot be evaluated and the

choice of the moments is thus impossible. An alternative approach is the Quasi-

Maximum Likelihood method (QML). It is based on the maximization of the

approximated likelihood function. Nelson [51], Harvey and Shephard [37], Harvey,

Ruiz and Shephard [38] and So, Lam and Li [58] employ a linearized filtering method

(Extended Kalman Filter) to obtain QML estimation.

Simulation based methods are more time consuming, but represent a valid

alternative to GMM and to QML. In the literature we find the following approaches.

The indirect inference method (see Gourieroux, Monfort and Renault [34]) uses an

auxiliary model and a calibration procedure to simulate from the correctly specified

model. The Efficient Methods of Moments (see Gallant and Tauchen [28] and

Gallant, Hsieh and Tauchen [29]) uses the score of the auxiliary model to improve the

indirect inference method. Strictly related to the QML approach is the Simulated

Maximum Likelihood method (SML). The method approximates through Monte

Carlo simulation the likelihood function. Danielson [18], Danielson and Richard [19]
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and Durbin and Koopman [23] apply importance sampling to simulate the likelihood

function and then maximize the approximated function.

Our work is based on particle filter techniques and belongs to the more general

Bayesian framework for time series analysis. For an introduction to estimation

methods for dynamic Bayesian models see Harrison and West [36], moreover we

refer to Chapter 2 for a brief review on simulation based methods in a Bayesian

perspective. Bayesian inference represents an alternative framework to the above

cited estimation methods and in the following we discuss the main estimation

approaches within this framework.

A first approach is the Monte Carlo Markov Chain-Expectation Maximization

method (MCMC-EM). It uses MCMC simulation techniques to evaluate the

likelihood function and to calculate the expectation with respect the latent variables.

The resulting approximated expectation is then maximized to obtain the ML

estimator. Shephard [56], Geyer [30], [31] apply MCMC-EM to stochastic volatility

methods. Andrieu and Doucet [3] propose and compare different on-line MCMC-EM

algorithms, which allow to process data sequentially. On-line MCMC-EM reveals

efficient also for non-linear models if a set of sufficient statistics exists. As example,

they evaluate the efficiency of this estimation method also on a basic continuous SV

model.

A second approach, in a Bayesian framework, is the Monte Carlo Markov Chain

(MCMC) method. It is based on a data completion (or augmentation) principle. It

allows to obtain a simulated sample from the posterior distribution of parameters

and hidden states, given the available information. In Chapter 2 we show through

Example 2.3.1, how data augmentation principle and MCMC, i.e. single-move

Gibbs sampler, apply to the basic continuous SV model. Jacquier, Polson and

Rossi [40] develop a Bayesian approach to SV model estimation. Their method is

based on a hybrid MCMC algorithm and the superiority of the Bayes estimator is

exhibited through a comparison with QML and MM estimation methods. De Jong

and Shephard [20] apply MCMC approach to SV models and propose a simulation

smoother and a multi-move Gibbs sampler to simulate from the disturbances of a

time series rather than from the hidden states. The algorithm effectively improves

the efficiency of the MCMC method for time series. Shephard and Pitt [57] provide

estimation methods for non-Gaussian time series model with application to SV. They



198

analyse MCMC methods for simulation smoothing and parameters estimation and

compare them with maximum likelihood estimation. The likelihood function has

been approximated through importance sampling. Kim, Shephard and Chib [44]

compare continuous SV models with ARCH models and with GARCH t-Student

model. They provide also an analysis of MCMC method for parameters inference

and volatility filtering when applied to an approximated likelihood function. In

particular they linearized the measurement equation by taking the logarithm of the

square and by approximating the resulting innovation distribution with a mixture

of distribution. The same approximation technique is used in So, Lam and Li [59].

They generalize the usual continuous SV model by introducing a Markov jump

process in the volatility mean. Through this switching process the model accounts

for both persistence effects and tilts in volatility. They adopt MCMC approach

with a data augmentation principle and take into account the works of Harvey, Ruiz

and Shephard [38] and of De Jong and Shephard [20]. Recently, Chib, Nardari and

Shephard [13] introduce GSV models, with Student-t innovations and with a jump

process in the mean of the measurement equation. They use a MCMC approach for

estimating parameters and Particle Filter for approximating the likelihood function

in order to perform model diagnostic. Many recent papers focus on the use of

MCMC methods in financial models estimation. Johannes and Polson [41] review

financial applications of MCMC methods. They discretize the continuous time

diffusion process and apply MCMC for parameters estimation and hidden state

filtering. Particle filter are then used for model diagnostic. Eraker [24] follows the

same framework. See Johannes, Polson and Stroud [42] for a Bayesian approach to

state filtering and parameter estimation to jump and diffusion stochastic processes.

In this work, we follow a third Bayesian approach, which has been recently

developed and which reveals efficient for general dynamic models. This is sequential

simulation based filtering and is called Particle Filter. This filtering method is

particularly useful in financial applications, when processing data sequentially. As

a new observation becomes available, the hidden states and the parameters of the

dynamic model can be updated and a new prediction can be performed. Particle

filter allows also to perform model diagnostic and parameter inference. For a

review of the state of the art see Doucet, Freitas and Gordon [22]. Pitt and

Shephard [52] improve standard Sequential Importance Sampling filtering techniques
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by introducing the Auxiliary Particle Filter (APF). They apply APF to stochastic

volatility models and find that the method performs better than other simulation

based techniques and that it is particularly sensitive to outliers. Kim, Shephard and

Chib [44] and Chib, Nardari and Shephard [13] apply particle filter for stochastic

volatility extraction but not for parameter estimation. Polson, Stroud and Müller

[54] apply a practical filter for sequential parameter estimation and state filtering.

They show the superiority of their method when compared to the APF with the

sequential parameter learning algorithm due to Storvik [60]. Lopes and Marino [48]

and Lopes [47] apply APF to a MSSV model for sequential parameter learning and

state filtering.

The first aim of our work is to develop the idea of Chib, Nardari and Shephard

[13], which propose to extend their jump GSV model by introducing a Markov jump

process in the volatility.

The second aim is to develop the joint estimation of the states and the

parameters of Markov switching SV model. Recently Storvik [60] analyses this

problem and reviews main approaches in the literature. Our work refers to the

algorithm of Liu and West [46]. They suggest to combine the APF algorithm

with the kernel reconstruction of the parameters posterior distribution. Sequential

filtering techniques introduce approximation errors in estimation of the states

and parameters. Moreover these errors cumulate over time. Thus, for financial

applications of the dynamic Bayesian models and of the particle filtering, it is

necessary to take into account and to correct approximation errors.

In the following we apply particle filters techniques to both the Gaussian SV

models and the GSV models. The work is structured as follows. In section 6.2 we

state the SV models and discuss some useful reparameterisations. Section 6.3 focuses

on the particle filter for the joint estimation of states and parameters. Section 6.4

presents some simulation results. Section 6.5 concludes.

6.2 The Markov Switching Stochastic Volatility

Models

Financial time series are often characterised by heavy tails, asymmetry and time

varying volatility. In particular they may exhibit jumps in volatility, volatility
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persistence effects, also called volatility clustering and leverage effects. In this work

we focus on the joint modelling of heavy tails of the observable process and on the

clustering effects in volatility dynamic.

The hypothesis of Gaussian evolution of the observable process seems to be

quite restrictive in many financial applications. This is the reason why some

authors proposed generalised stochastic volatility models characterised by Student-t

innovations (see Harvey, Ruiz and Shephard [38], Shephard and Pitt [57] and Chib,

Nardari and Shephard [13]). In our work we consider MSSV heavy tails processes

and make a comparison between models with Student-t or α-stable innovations and

the usual Gaussian innovations model.

Another aspect of interest is volatility clustering. It is possible to capture

volatility persistence by introducing a jump component in the volatility dynamic.

So, Lam and Li [59] extend the simple continuous volatility model of Taylor [62],

by adding a Markov jump process to the drift of the stochastic volatility. Following

them, in our Markov switching stochastic volatility model (MSSV ), we assume that

the log-volatility ht is a continuous Markov process, conditionally to a discrete

homogeneous Markov process st. This process is called switching process and

determines the regime of volatility. Moreover we assume the switching process varies

in a finite and known set of states. See Chopin [14] for an application of particle

filters to switching model with a varying number of states. In the following we give

some examples of MSSV models under different assumptions on the distribution of

the observable process. We will consider both a Gaussian innovations process and

heavy tail processes like Student-t and α-stable innovations processes, with unknown

degrees of freedom and unknown characteristic exponent respectively.

6.2.1 The Gaussian MSSV Model

The assumption of Gaussian innovations is quite common in practice, thus in this

section, we define a basic MSSV model (M1), which is completely Gaussian

(yt|ht) ∼ N (0, eht) (6.1)

(ht|ht−1, st) ∼ N (ht|αst
+ φht−1, σ

2) (6.2)

for t = 1, . . . , T , where st is a homogeneous discrete Markov’s process, with
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Figure 6.1: Simulation of the Markov switching stochastic volatility model M1

(α1 = −2.5, α2 = −1, φ = 0.5, σ2 = 0.1, p11 = 0.99, p22 = 0.975). The left upper
graph exhibits the evolution of the hidden jump process, the right upper graph shows
the log-volatility of the observable process, which is represented in the third graph.

transition probabilities

P(st = j|st−1 = i, st−2 = i2..., s0 = it) = P(st = j|st−1 = i) = pij (6.3)

with i, j = 1, . . . , L, L denoting the number of unobservable states.

For the sake of simplicity we introduce the following notation: θ = ((α1, . . . , αL),

φ, σ2, (p1, . . . ,pL)), with pi = (pi1, . . . , piL), for the parameters and s0:t =

(s0, . . . , st) and h0:t = (h0, . . . , ht), for the two hidden Markov processes. For

estimation purposes, in order to impose the positivity constraint on σ2 and to

constrain pij to be in (0, 1), we adopt the following reparameterisation: log(σ2)

and log(
pij

1−pij
).

Fig. 6.1 exhibits a sample of T=1,000 values, simulated from the MSSV Gaussian

model M1, with parameters: α1 = −2.5, α2 = −1, φ = 0.5, σ2 = 0.1, p11 = 0.99,

p22 = 0.975. We use the parameters values estimated by So, Lam and Li [59]. Note

that the value of the transition probabilities induces in this simulation example a

high degree of persistence in the volatility regimes of the observed process.
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6.2.2 Heavy tails MSSV Models

Due to the high degree of heterogeneity of the time series, the assumption of

Gaussian observable process seems to be restrictive in many real contexts and for

this reason it has been removed by many recent studies. Moreover a common way

to model heterogeneous dynamics in time series is to include a stochastic latent

structure in the model. For example Chib, Nardari and Shephard [13] propose a

Student-t discrete time GSV model and a similar model with a jump component in

the mean of the observable process. In a continuous time setting Barndorff-Nielsen

and Shephard [6] study heavy tail processes.

Financial time series often exhibit volatility tilts and clustering behaviour. In

order to capture these features of the volatility dynamic, we study the following

non-Gaussian Markov switching stochastic volatility models. We assume that the

observable variable follows a heavy tail process, which will alternatively be a Student-

t process or a stable process. Note that both of them have the Gaussian model as

particular case.

The first GSV model (M2), is

(yt|ht) ∼ Tν(yt|0, eht) (6.4)

(ht|ht−1, st) ∼ N (ht|αst
+ φht−1, σ

2) (6.5)

(st|st−1) ∼ ML(st|1, pst−11, . . . , pst−1L) (6.6)

for t = 1, . . . , T , where ML is the multinomial distribution and Tν(y|δ, σ) represents

the density of a Student-t distribution

Tν(y|δ, σ) =
Γ((ν + 1)/2)Γ(ν/2)

(νπσ2)1/2

(

1 +
1

νσ2
(y − δ)2

)−(1+ν)/2

. (6.7)

The distribution is characterised by three parameters: ν the degrees of freedom

parameter, δ the location parameter and σ the scale parameter. Note that the

heaviness of the tails is controlled by the parameter ν and that when ν → ∞ the

distribution converges to a Gaussian distribution.

The second GSV model (M3) also is characterised by an heavy tail observable

process
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Figure 6.2: Simulation of the Markov switching stochastic volatility model M2

(α1 = −2.5, α2 = −1, φ = 0.5, σ2 = 0.1, p11 = 0.99, p22 = 0.975 and ν = 3, 5, 8).
The hidden jump process realisations are the same depicted in Fig. 6.1
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Figure 6.3: Simulation of the Markov switching stochastic volatility model M3

(α1 = −2.5, α2 = −1, φ = 0.5, σ2 = 0.1, p11 = 0.99, p22 = 0.975, β = 0 and
α = 1.5, 1.8, 1.99). The realisations of the hidden jump process are the same
depicted in Fig. 6.1
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(yt|ht) ∼ Sα(yt|0, 0, eht) (6.8)

(ht|ht−1, st) ∼ N (ht|αst
+ φht−1, σ

2) (6.9)

(st|st−1) ∼ ML(st|1, pst−11, . . . , pst−1L) (6.10)

for t = 1, . . . , T , where ML is the multinomial distribution and Sα(y|β, δ, σ)

represents the density of a stable distribution, which is completely characterised by

the following four parameters: the characteristic exponent α, the skewness parameter

β, the location parameter δ and finally the scale parameter σ. We assume for

simplicity that β = 0. Moreover we take α ∈ (1, 2] in order to have a finite first

order moment. Note that stable distributions have the Gaussian distribution as a

particular case, when α = 2.

The stable distribution density can not generally be written in an analytic form,

thus it is conveniently defined through its characteristic function. The most well

known parametrisation is defined in Samorodnitsky and Taqqu [55]

E
[
ei ϑ y

]
=

{

exp(−|σϑ|α)(1 − i β(sign(ϑ)) tan(πα/2) + iδϑ) if α 6= 1;

exp(−|σϑ|(1 + 2 i β ln |ϑ|sign(ϑ)/π) + iδϑ) if α = 1.
(6.11)

where ϑ ∈ R. In the parameter setting of our model the characteristic function

reduces to

E[exp(i ϑ y)] = e−|σ ϑ|α . (6.12)

In order to obtain an analytic representation of the density of a stable random

variable an auxiliary variable has to be introduced. The same strategy is used in

Buckle [10] for α-stable distributions and in Godsill [32] for inference on time series

with α-stable innovations.

For the sake of simplicity we introduce the following notations. The parameter

vector is θ = (ν, (α1, . . . , αL), φ, σ2, (p1, . . . ,pL)) for the model M2 and θ =

(α, (α1, . . . , αL), φ, σ2, (p1, . . . ,pL)) for the model M3. As usual pi = (pi1, . . . , piL),

s0:t = (s0, . . . , st) and h0:t = (h0, . . . , ht). For estimation purposes, in order to

constrain the parameter α to be into (1, 2] we consider the following invertible

transformation: log((α − 1)/(2 − α)). For the Student-t distribution we let ν



205

vary uniformly in the interval [2, 100], thus we use the transformation: log(((ν −
2)/98)/(1 + ((ν − 2)/98))).

Fig. 6.2 and 6.3 exhibit some samples of T=1,000 values, simulated respectively

from the MSSV models M2 and M3, with parameters: ν = 3, 5, 8, for the Student-

t model, α = 1.5, 1.8, 1.99, for the stable model and α1 = −2.5, α2 = −1, φ = 0.5,

σ2 = 0.1, p11 = 0.99, p22 = 0.975.

6.2.3 Stationarity Conditions for SV models

The standard continuous SV process is often assumed in order to model the excess

of kurtosis in the unconditional distribution of the observable process. Moreover

continuous SV is able to capture volatility clustering, but many financial time series

exhibit also a multi-modal unconditional distribution. This feature can be explained

by a volatility process with a mean changing over time. In MSSV models a hidden

jump process (i.e. Markov Switching process) is added to the mean parameter of the

log-volatility process. A first consequence of including a hidden Markov Switching

process in the log-volatility is to increase furthermore the degree of kurtosis of the

observable process. Moreover the MSSV model is able to capture both volatility

persistence and volatility tilts.

While stationarity of the continuous SV model is well discussed in the literature,

some considerations on the stationarity of the MSSV models are needed. Define the

following reparameterisation of the MSSV model

yt = eht/2εt , εt ∼ N (0, 1) (6.13)

ht = αst
+ φht−1 + σηηt , ηt ∼ N (0, 1) (6.14)

αst
= α + βst (6.15)

P(st = i|st−1 = j) = pij (6.16)

with pij ≤ 0, ∀ i, j ∈ E and
∑L

l=1 pil ≤ 1. Moreover {st}t∈N is a Markov jump

process, which takes value in the finite countable state space E = {0, . . . , L}. In

the following we assume that E = {0, 1}, the initial state s0 of the process has
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probability measure µ0 and finally that the transition matrix of st is

P =

(

p00 p01

p10 p11

)

(6.17)

Note that through the transition matrix and the initial probability measure, the

Markov jump process is well defined (see Theorem 6.5.1 in Appendix 6.5). As

stated in Theorem 6.5.2, the second order stationarity of the observable process yt

is guaranteed by the first order stationarity of the process ht.

In the following we focus on the stationarity conditions for the hidden Markov

process {ht, st}t∈N. Due to the causality relations between st and ht, it is possible

to study first the unconditional stationarity of {st}t∈N and secondly the stationarity

of {ht}t∈N conditionally on {st}t∈N.

Stationarity conditions for {st}t∈N follow from the properties of the n-times

composition of the transition matrix, which is given in Theorem 6.5.3 (see Appendix

6.5). When n→ +∞, the transition probability P
n tends to a finite quantity if and

only if 1 − p10 − p01 < 1.

Observe that the autoregressive structure of the log-volatility process, see the

equation (6.14), makes it dependent on the past history of the Markov jump process.

This feature becomes evident from the ergodic solution of the system of stochastic

difference equation (6.14), (6.15) and (6.16)

ht = α
+∞∑

i=0

φi + β
+∞∑

i=0

φist−i + ση

+∞∑

i=0

φiηt−i. (6.18)

which is derived in Theorem 6.5.4 under the assumption |φ| < 1.

In Appendix 6.5, we find that first and second order stationary moments of ht exist

if φ and |1 − p10 − p01| < 1.

For further details on the asymptotic second order stationarity and for the strictly

stationarity see Appendix A. We refer also to Francq and Roussignol [26] and Francq

and Zakoian [27] for a general discussion of the stationarity conditions for switching

non linear AR and switching ARMA models.
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6.3 Particle Filters

In Chapter 2 we reviewed the principal simulation based filtering techniques in

a Bayesian perspective. We defined the single-move and the multi-move Gibbs

samplers, the adaptive importance sampling and finally introduced particle filters.

Furthermore we applied them to some simple stochastic volatility models in order to

filter the hidden log-volatility. In this section we deal with particle filters, focusing

on the problems of parameter estimation and hidden state filtering. We recall that

particle filters are sequential Monte Carlo algorithms. They reveal quite useful

for dynamic models, like M1, M2 and M3, which have elements of non-linearity

and non-Gaussianity and provide a significant advantage over traditional filtering

techniques. In particular, in many real situations data are processed on-line. When

a new observation arrives, the estimate of the states and of the parameters has

to be updated. Recursive techniques, like sequential Monte Carlo filters, are well

appreciated. Moreover simulation based filtering allows to evaluate the likelihood

function of complex dynamic models and allows also to perform model diagnostics.

In the following we focus on Particle filters, also referred in the literature as

Bootstrap filters, Interacting particle filters, Condensation algorithms, Monte Carlo

filters and on the joint estimation of the states and the parameters of the dynamic

model.

We state a quite general formulation of the filtering problem in a Bayesian

perspective, which does not usually admit an analytical solution. Denote by

{xt; t ∈ N}, xt ∈ X , the hidden states of the system, by {yt; t ∈ N0}, yt ∈ Y
the observable variable and by θ ∈ Θ the parameters of the densities. In this section

we suppose that the parameters are known. The Bayesian state space representation

of a nonlinear, non-Gaussian dynamic model, is given by an initial distribution p(x0),

a measurement density p(yt|xt) and a transition density p(xt|xt−1; θ). Moreover, we

assume that the Bayesian dynamic model

(xt|xt−1) ∼ p(xt|xt−1; θ) (6.19)

(yt|xt) ∼ p(yt|xt; θ) (6.20)

x0 ∼ p(x0; θ) with t = 1, . . . , T. (6.21)

is Markovian, that is the transition density depends on the past, only through the
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Figure 6.4: Causality structure of a Markovian dynamic model with hidden states.
A box around the variable indicates the variable is known, while a circle indicates a
hidden variable.

last value of the hidden state. The measurement density is a function of the current

value of the hidden state. Fig. 6.4 shows the causality structure of the Bayesian

dynamic model given in equations (6.19), (6.20) and (6.21). Note that models M1,

M2 and M3 do exhibit this structure.

When processing data on-line, at each time t, two quantities of interest are the

estimate of the current hidden state of the system and the prediction on the state

of the system at time t + 1. In order to predict the future value of the state of the

system, given the information available at time t, we use the Chapman-Kolmogorov

equation, which characterises the hidden state evolution and gives us the following

prediction density

p(xt+1|y1:t; θ) =

∫

X

p(xt+1|xt,y1:t; θ)p(xt|y1:t; θ)dxt =

∫

X

p(xt+1|xt; θ)p(xt|y1:t; θ)dxt.

(6.22)

As the new observation yt+1 becomes available, it is possible using Bayes’ theorem

to update the prediction density and to filter the current state of the system. The

filtering density is

p(xt+1|y1:t+1; θ) =
p(yt+1|xt+1,y1:t; θ)p(xt+1|y1:t; θ)

p(yt+1|y1:t; θ)
(6.23)
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where the marginal density at denominator is obtained as follows

p(yt+1|y1:t; θ) =

∫

p(yt+1|xt+1,y1:t; θ)p(xt+1|y1:t; θ)dxt. (6.24)

Moreover the assumption of Markovian dynamic of the hidden states allows to

obtain a recursive relation, which is useful when solving a filtering problem and

sequentially processing data at the same time

p(x0:t+1|y1:t+1; θ) = p(x0:t|y1:t; θ)
p(yt+1|xt+1; θ)p(xt+1|xt; θ)

p(yt+1|y1:t; θ)
(6.25)

(for a proof see Appendix B). In the following we introduce some basic particle filter

algorithms, with a particular attention to the auxiliary particle filter. Moreover we

treat the problem of the joint estimation of the hidden states and of the parameters

of the model.

6.3.1 State Filtering

Assume the parameters θ of the dynamic model given in equations (6.19), (6.20)

and (6.21) are known. Different versions of the particle filter exist in the literature

and different simulation approaches like rejection sampling, MCMC and importance

sampling, can be used for the construction of a particle filter. To introduce particle

filters, we will apply importance sampling reasoning to the smoothing problem.

Define the smoothing density, p(x0:t+1|y1:t+1; θ), as the density function of the

hidden states of the system from 0 up to time (t+ 1), conditionally on the observed

variables from 1 up to time (t + 1). In order to solve the smoothing problem, the

first basic idea used in particle filters, is to approximate the smoothing density

p(x0:t|y1:t; θ) ≈
N∑

i=1

wi
tδ{xi

0:t}
(dx0:t) (6.26)

by simulating {xi
0:t}N

i=1 from a proposal distribution q(x0:t|y1:t, θ) and by correcting

the weights of the resulting empirical density. The correction step comes from an

importance sampling argument, thus the unnormalized particles weights 1 are defined

1Note that importance sampling requires to know the importance and the target distributions
up to a proportionality constant, thus the unnormalized weights may not sum to one. However
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as follows

wi
t

∆
=
p(xi

0:t|y1:t; θ)

q(xi
0:t|y1:t; θ)

. (6.28)

The second key idea used in particle filters, which makes them particulary

appealing for on-line applications, consists in finding a recursive relation for the

weights updating. Assume that the dynamic model of interest is the one described

by equations (6.19), (6.20) and (6.21) and choose the importance density to factorise

as follows: q(x0:t+1|y1:t+1; θ) = q(x0:t|y1:t; θ)q(xt+1|x0:t,y1:t+1; θ), then the weights

can be rewritten in a recursive form

wi
t+1 = wi

t

p(yt+1|xi
t+1; θ)p(x

i
t+1|xi

t; θ)

q(xi
t+1|xi

t+1,yt+1; θ)
(6.29)

(see Appendix B for a proof). For a discussion on the optimal choice of the

importance density see Doucet [21]. However note that the most convenient choice

of the importance density is the prior density: q(xi
t+1|xi

t+1,yt+1; θ) = p(xi
t+1|xi

t; θ).

The resulting recursive relation then reduces to

wi
t+1 = wi

t p(yt+1|xi
t+1; θ). (6.30)

At each time step t we may be interested not only in solving a smoothing

problem, but also in filtering the current hidden state. In that case we search how to

approximate the filtering density (Eq. (6.23)). Using the same importance sampling

argument, the generic particle filter approximates equation (6.22) as follows

p̂(xt|y1:t; θ) =
N∑

i=1

p(xt+1|xi
t; θ)w

i
tδ{xi

t}
(dxt) (6.31)

which is called empirical prediction density. Thus by propagating the weights

through the Chapman-Kolmogorov equation, it is possible to obtain the empirical

normalized importance sampling weights can be easily obtained as follows

w̃i
t =

wi
t

∑N

j=1
w

j
t

i = 1, . . . , N and t = 1, . . . , T. (6.27)

The normalization procedure causes the loss of the unbiasness property.
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filtering density, which approximates the filtering density given in Eq. (6.23)

p̂(xt+1|y1:t+1; θ) =
N∑

i=1

p(yt+1|xt+1; θ)p(xt+1|xi
t; θ)w

i
tδ{xi

t}
(dxt). (6.32)

Assume now that the quantity E(f(xt+1)|y1:t+1) is of interest. It can be evaluated

numerically by a Monte Carlo sample {xi
t+1, w

i
t+1}N

i=1, simulated from the empirical

filtering distribution (6.32) through importance sampling

E(f(xt+1)|y1:t+1) ≈
∑N

i=1 f(xi
t+1)w

i
t+1

∑N
i=1w

i
t+1

. (6.33)

The generic particle filter developed through previous equations is called

Sequential Importance Sampling (SIS) (see Appendix C for a pseudo-code

representation). See also Doucet, Freitas and Gordon [22] for an updated review

on the particle filter techniques and on the main convergence results for this kind of

algorithms. It is well known in the literature (see for example Arulampalam, Maskell,

Gordon and Clapp [4]), that basic SIS algorithms have a degeneracy problem.

After some iterations the empirical distribution degenerates into a single particle,

because the variance of the importance weights is non-decreasing over time (see

Doucet [21]). In order to solve the degeneracy problem, the Sampling Importance

Resampling (SIR) algorithm has been introduced by Gordon, Salmond and Smith

[33]. This algorithm (see Appendix C for a pseudo-code representation) belongs

to a wider class of bootstrap filters, which use a re-sampling step to generate a

new set of particles with uniform weights. This step introduces diversity in particle

set, avoiding degeneracy. Note however that the basic SIR algorithm produces a

progressive impoverishment of the information contained in the particle set, because

of the resampling step and of the fact that particles does not change over filter

iterations. Many solutions have been proposed in literature. We recall here the

Regularised Particle Filter proposed by Musso, Oudjane and LeGland [50], which is

based on a discretisation of the continuous state space. Moreover Gilks and Berzuini

[8] propose the SIR-Move algorithm, which moves particles after the re-sampling

step. Thus particles value changes and impoverishment is partially avoided. Finally

Pitt and Shephard [52] introduce the Auxiliary Particle Filter (APF) and applied

it to a Gaussian ARCH-type stochastic volatility model. They find the filter works
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well, although it is highly sensible to outliers. In the following we focus on the APF

algorithm.

In order to avoid re-sampling, APF algorithm uses an auxiliary variable to select

most representative particles and to mutate them through a simulation step. Then

weights of the regenerated particles are updated through an importance sampling

argument. In this way particles with low probability do not survive to the selection

and the information contained in particles set is not wasted. In particular the

auxiliary variable is a random particle index, which is used in the selection step

to sample new particles. The random index is simulated from a distribution which

contains and resumes the information on previous particle set. This feature is due to

the use of µi
t in the measurement density. Note that the empirical filtering density

given in Eq. (6.32) is a mixture of distributions, which can be reparameterised by

introducing the allocation variable i ∈ {1, . . . , N}. The joint distribution of the

hidden state and the index i is

p(xt+1, i|y1:t+1; θ) =
p(yt+1|y1:t,xt+1, i)

p(yt+1|y1:t; θ)
p(xt+1, i|y1:t; θ) = (6.34)

=
p(yt+1|xt+1; θ)

p(yt+1|y1:t; θ)
p(xt+1|i,y1:t; θ)p(i|y1:t; θ) =

=
p(yt+1|xt+1; θ)

p(yt+1|y1:t; θ)
p(xt+1|xi

t; θ)w
i
t.

The basic idea of the APF is to refresh the particle set while reducing the loss

of information due to this operation. Thus the algorithm generates a new set of

particles by jointly simulating the particle index i (selection step) and the selected

particle value xt+1 (mutation step) from the reparameterised empirical filtering

density and according to the following importance density

q(xj
t+1, i

j|y1:t+1; θ) = q(xj
t+1|y1:t+1; θ)q(i

j|y1:t+1; θ)

= p(xj
t+1|xij ; θ)(p(yt+1|µij

t+1; θ)w
ij

t ) (6.35)

for j = 1, . . . , N . By following the usual importance sampling argument, the

updating relation for the particle weights is
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wj
t+1

∆
=

p(xj
t+1, i

j|y1:t+1; θ)

q(xj
t+1, i

j|y1:t+1; θ)

=
p(xj

t+1|xij ; θ)p(yt+1|xj
t+1; θ)w

ij

t

p(xj
t+1|xij ; θ)p(yt+1|µij

t+1; θ)w
ij
t

(6.36)

=
p(yt+1|xj

t+1; θ)

p(yt+1|µij
t+1; θ)

In many applications of the particle filter techniques, parameters are treated as

known and MCMC parameter estimates are used instead of the true values. MCMC

is typically a off-line approach, it does not allow to sequentially update parameter

estimates as new observations arrive. Moreover, when applied sequentially, MCMC

estimation method is more time consuming than particle filter algorithms. Thus in

the next section we will consider the filtering problem in presence of unknown static

parameters, in a Bayesian perspective.

6.3.2 Parameter Estimation

When processing sequentially data, both the problems of hidden state filtering and of

the parameters estimation arise. In engineering, a common way to solve this problem

is to treat parameters as hidden states of the system. Berzuini et al. [9] develop this

approach in a Bayesian framework. Thus standard particle filtering techniques apply

here to estimate the joint posterior density p(x0:t, θ|y1:t). Approximated posterior

p(θ|y0:t) is then obtained by marginalisation.

Observe that the parameters are fixed over time, thus particles relative to the

parameter posterior distribution do not change, while the particles approximating

hidden states are allowed to vary over filter iterations. As pointed out by Storvik [60],

the degeneracy of the parameters weights produces a negative effect on the whole

posterior distribution, which degenerates to a Dirac mass. Different solutions to the

degeneracy problem have been proposed in the literature. For example Kitagawa [43]

explicitly assumes an artificial evolution of the parameters, which are still considered

as hidden states of the dynamic model. The assumption of time varying parameters

introduces diversity in particles set avoiding the degeneracy problem, but produces

higher variability in parameter estimates. Liu and West [46] use a kernel density

estimation of the parameter posterior distribution as importance density to refresh
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the particle set. This method produces slowly time-varying parameters and thus

adds noise to the parameter estimates. In order to reduce the effect of the artificial

variability, the authors adopt a kernel shrinkage technique.

An alternative approach can be founded in Storvik [60], which proposes a

quite general particle filter for joint estimation of hidden states and non-dynamic

parameters. The algorithm requires to know a set of sufficient statistics for the

posterior distribution. Note however that the existence of sufficient statistic for the

parameter θ is not necessary in principle, because the posterior distribution of the

parameters p(θ|x0:t,y0:t) can be always evaluated at each time step. A sequential

algorithm, called practical filter, is proposed by Polson, Stroud and Müller [53].

The parameter and state joint filtering distribution is represented as a mixture of

fixed lag-filtering distributions. They simulate from the joint filtering distribution

by simulating sequentially from the parameter posterior and from the fixed-lag

smoothing distribution. The method is particularly useful when a set of sufficient

statistic for the posterior is known. A comparison (see Polson, Stroud and Müller

[54]) with Storvik’s [60] algorithm proves the superiority of the practical filter when

apply to the basic continuous SV model.

Sequential methods, alternative to particle filters, can be founded in Andrieu and

Doucet [3], who propose online Expectation-Maximization type algorithms, which

do not degenerate, but require the knowledge of the hidden Markov process ergodic

distribution and of a set of sufficient statistics for the posterior distribution.

In the following we refer to the algorithm due to Liu and West [46] and to the

works of Lopes [47] and Lopes and Marigno [48], for some applications of the particle

filter algorithms to MSSV models.

The problem of the joint estimation of parameters and states of a dynamic system

can be stated in a Bayesian framework as follows. Define a Bayesian dynamic model

with unknown parameters

(xt|xt−1) ∼ p(xt|xt−1, θ) (6.37)

(yt|xt) ∼ p(yt|xt, θ) (6.38)

x0 ∼ p(x0|θ) (6.39)

θ ∼ p(θ) , with t = 1, . . . , T. (6.40)
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Note that unknown parameters are treated as random quantities, thus we denote

the conditional density by p(· | ·, θ), and assume a prior distribution p(θ). The state

and parameters joint posterior distribution associated to this model is (smoothing

problem)

p(x0:t+1, θ|y1:t+1) =
p(yt+1|x0:t+1,y1:t, θ)p(xt+1|x0:t,y1:t, θ)

p(yt+1|y1:t)
p(x0:t, θ|y1:t)(6.41)

=
p(yt+1|xt+1, θ)p(xt+1|xt, θ)p(x0:t|y1:t)

p(yt+1|y1:t)
p(θ|x0:t,y1:t)

The posterior distribution is written as the product of two components. The first

is the filtering distribution and the second is the full posterior distribution of the

parameters given hidden states and the observations. The completed posterior of the

parameters is proportional to a function which can always be written in a recursive

form

p(θ|x0:t,y1:t) ∝ p(θ)p(x0|θ)
t∏

k=1

p(xk|xk−1, θ)p(yk|xk, θ) (6.42)

that can be evaluated in the simulated hidden states as a by product of the particle

filter algorithm.

In the same way as for the smoothing problem, the joint filtering density of the

current state xt and of the parameter θ can be written as the product of two

quantities (filtering problem)

p(xt+1, θ|y1:t+1) =
p(yt+1|xt+1,y1:t, θ)p(xt+1, θ|y1:t)

p(yt+1|y1:t)
(6.43)

=
p(yt+1|xt+1, θ)p(xt+1|θ,y1:t)

p(yt+1|y1:t)
p(θ|y1:t)

The filtering problem can thus be treated conditionally to the parameters value. It

is possible for example to use the Kalman Filter or the HMM filtering algorithms to

filter the states and the particle filter to estimate the parameters (see for example

Chopin [14]). In MSSV model both the Kalman Filter and the HMM can not be

used, thus Monte Carlo filter must be used for the joint estimation of parameters and

states of the dynamic system. However, in a full simulation based approach, treating

the parameters as fixed causes the degeneracy of the filter. To solve this problem
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Liu and West [46] propose to approximate the posterior distribution p(θ|y1:t) with

a particle set {xi
t, θ

i
t, w

i
t} and to reconstruct the parameter posterior distribution at

time (t+ 1) through a Gaussian kernel density estimation

p(xt+1, θt+1|y1:t+1) ∝
∝ p(yt+1|xt+1, θt+1)p(xt+1|θt+1,y1:t)p(θt+1|y1:t) =

= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ

p(xt+1|xt, θt+1)p(xt|y1:t, θt)p(θt|y1:t)δθt
(θt+1)dθtdxt ≈

Particle≈
N∑

i=1

p(yt+1|xt+1, θt+1)p(xt+1|xt, θt+1)δθt
(θt+1)w

i
tδ{(xi

t,θ
i
t)}

(dxt, dθt) ≈ (6.44)

Kernel≈
N∑

i=1

p(yt+1|xt+1, θt+1)p(xt+1|xi
t, θt+1)w

i
tN (θt+1|mi

t, b Vt)

In this context, index t for parameters means that they are updated sequentially.

Note that after particle approximation, another approximation has been introduced.

The kernel reconstruction of the posterior, implies the substitution of the parameter

transition density, δθi
t
(θt+1), by a Gaussian transition density N (θt+1|mi

t, b Vt). After

the kernel reconstruction of the posterior density, a new set of particles can be

generated by applying the APF algorithm to the states and to the parameters

using the kernel posterior density estimate as parameters importance density.

The reconstruction of the posterior distribution through Gaussian kernel density

estimation is a technique introduced by West [64], [65] in order to obtain an Adaptive

Importance Sampling algorithm. The use of an adapting importance function is

particulary useful in the dynamic models, where the probability density function of

the system can change over time.

Note that the posterior distribution is a mixture of distributions, that can be

reparameterised, using an allocation variable i to indicate the mixture component

p(xt, θt, i) = p(yt+1|xt+1, θt+1)p(xt+1|xi
t, θt+1)w

i
tN (θt+1|mi

t, b Vt) (6.45)

The main idea of APF applies here and the particle selection step is obtained

by sampling the mixture index i together with states xt+1 and parameters θt+1.

Sampling from the joint density (6.45) is obtained through importance sampling
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with proposal density

q(xt+1, θt+1, i|y1:t+1) = p(xt+1|θt+1,x
i
t)N (θt+1|mi

t, b
2 Vt)q(i|y1:t+1) (6.46)

where the instrumental density, used to sample the random index, is q(i|y1:t+1) =

p(yt+1|µi
t+1,m

i
t)w

i
t. From previous assumptions on the proposal distribution, the

weights updating equation is

wj
t+1 ∝ p(yt+1|xj

t+1, θ
j
t+1)p(x

j
t+1|xij

t , θ
j
t+1)N (θj

t+1|mij

t , b
2 Vt)w

ij

t

p(yt+1|µij
t+1,m

ij
t )p(xj

t+1|xij
t , θ

j
t+1)N (θj

t+1|mij
t , b

2 Vt)wij
t

= (6.47)

=
p(yt+1|xj

t+1, θ
j
t+1)

p(yt+1|µij
t+1,m

ij
t )
.

with j = 1, . . . , N . The algorithm avoids degeneracy by introducing diversity in

particles. It is known that diversity produces the impoverishment of the information

contained in particles. Thus Liu and West [46] propose a kernel shrinkage technique

in order to reduce the effect of the artificial variability. The kernel density at time

t + 1 depends on the density at time t through the constraint on the conditional

variance: Vt(θt+1) = Vt(θt)
∆
= Vt. It results that each component of the kernel

density estimation of the posterior distribution is not centered on the particles,θi
t ,

but on the linear combination between particles and the empirical average of the

particles value at the previous step

mi
t = aθi

t + (1 − a)θ̄t (6.48)

In Appendix D, we give a proof of the kernel shrinkage relations given in equation

(6.48), using standard theorems on the conditional normal distribution.

The resulting APF algorithm for states and parameters estimation is

Algorithm 6.3.1. (see Liu and West [46])

Given the initial set of particles {xj
t , θ

j
t , w

j
t}N

j=1, for j = 1, . . . , N

1. Calculate µj
t+1 = E(xt+1|xj

t , θ
j
t ) and mj

t = aθj
t + (1 − a)θ̄t

2. Simulate ij ∼ q(i|y1:t+1) ∝ wi
t p(yt+1|µi

t+1,m
i
t) with i ∈ {1, . . . , N}

3. Simulate θj
t+1 ∼ p(θt+1|θij

t ) = N (θt+1;m
ij

t , (1 − a2)Vt)
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4. Simulate xj
t+1 ∼ p(xt+1|xij

t , θ
j
t+1)

5. Update particles weights: wj
t+1 ∝

p(yt+1|x
j
t+1,θj

t+1)

p(yt+1|µij

t+1,mij

t )
.

In Appendix D we give a proof of the weights updating relation. Although this

filtering approach does not explicitly assume that parameters vary over time, the

dynamic nature of the parameters results implicitly from the structure of the filtering

algorithm. It is possible to show (see Appendix D), that the proposed filtering

approach assumes time varying parameters with a Gaussian transition density. Note

however that the particle filter algorithm uses an approximation of the parameter

posterior distribution and maintains this approximation both in the importance

density and also in the weight updating relation. In principle an exact weight

updating relation must be determined and the approximation errors must be taken

into account, before they accumulate and produce poor parameter estimates. Thus

a weight correction step would be needed, which can be considered a variant of the

Rao-Blackwellization argument (Casella and Robert [11]). In particular, consider the

true parameter posterior distribution and look at the kernel density approximation

as a way to obtain an adapting importance function, then the exact weights updating

can be determined as follows

wj
t+1 ∝ p(yt+1|xj

t+1, θ
j
t+1)p(x

j
t+1|xij

t , θ
j
t+1)w

ij

t p(θt+1|y1:t)

p(yt+1|µij
t+1,m

ij
t )p(xj

t+1|xij
t , θ

j
t+1)N (θj

t+1|mij
t , b

2 Vt)wij
t

. (6.49)

where the parameter posterior distribution is known from relation (6.42) and can

be approximated through particle filter

p(θt+1|y1:t) =

∫

t⊗

k=1
Xk

p(θ|x0:t,y1:t)dx0:t (6.50)

≈
N∑

i=1

π(θ)π(x0)
t∏

k=1

p(yk|xi
k, θ)p(x

i
k|xi

k−1, θ)w
i
k

This approximated weight updating is computationally unfeasible because of the

high number of times (t × N) the transition and the measurement equations must

be evaluated.
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6.3.3 A Particle Filter Algorithm for MSSV Models

The general algorithm exhibited in the previous section applies both to the Gaussian

model M1 and to heavy tail models M2 and M3. Lopes [47] gives a version of the

algorithm for the gaussian model M1. In the following we exhibit the algorithm for

a Student-t model. Remember that θ = (α1, α2, φ, ν, p12, p22, σ
2), then APF is

Algorithm 6.3.2. (APF for Student-t MSSV model)

Given an initial set of particles {xi
t, θ

i
t, w

i
t}N

i=1:

1. Compute Vt =
∑N

j=1(θ
j
t − θ̄t)(θ

j
t − θ̄t)

′wj
t and θ̄t =

∑N
j=1 θ

j
tw

j
t

2. For j = 1, . . . , N , update the following variables:

(a) s̃j
t+1 = arg max

l∈1,...,k
P(st+1 = l|st = sj

t)

(b) µj
t+1 = αj

s̃j
t+1

+ φj
th

j
t

(c) mj
t = aθj

t + (1 − a)θ̄t

3. For j = 1, . . . , N :

(a) Simulate kj ∈ {1, . . . , N} with P(kj = l) ∝ p(yt+1|µl
t+1,m

l
t)w

l
t

(b) Simulate θj
t+1 from N (mkj

t , b
2Vt)

(c) Simulate sj
t+1 ∈ {1, . . . , k} from P(sj

t+1 = j|skj

t )

(d) Simulate hj
t+1 from N (αj

sj
t+1

+ φj
t+1h

j
t , (σ

2)j
t+1)

4. Update weights wj
t+1 ∝ p(yt+1|hj

t+1, ν
j
t+1)/p(yt+1|µkj

t+1, ν
kj

t+1)

Note that the model M2 is more difficult to estimate because the degrees of

freedom ν determine the tail heaviness of the observable process. This element makes

the weight updating relation more sensitive to the evolution of the parameters.

For the model M3 we propose the following adaptation of the algorithm of Liu and

West [46]. In order to obtain an integral representation of the α-stable density, we

introduce an auxiliary (or completing) variable zt. Then we suggest to approximate

the integral by simulating zt from its conditional distribution.

Algorithm 6.3.3. - (APF for stable MSSV model)

Given an initial set of particles {xi
t, θ

i
t, w

i
t}N

i=1:
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1. Compute Vt =
∑N

j=1(θ
j
t − θ̄t)(θ

j
t − θ̄t)

′wj
t and θ̄t =

∑N
j=1 θ

j
tw

j
t

2. For j = 1, . . . , N , update the following variables:

(a) s̃j
t+1 = arg max

l∈1,...,k
P(st+1 = l|st = sj

t)

(b) µj
t+1 = αj

s̃j
t+1

+ φj
th

j
t

and mj
t = aθj

t + (1 − a)θ̄t

3. For j = 1, . . . , N :

(a) Simulate kj ∈ {1, . . . , N} with P(kj = l) ∝∑R
r=1 p(yt+1, z

l,r
t |µl

t+1,m
l
t)w

l
t

(b) Simulate θj
t+1 from N (mkj

t , b
2Vt)

(c) Simulate sj
t+1 ∈ {1, . . . , k} with P(sj

t+1 = j|skj

t )

(d) Simulate hj
t+1 from N (αj

sj
t+1

+ φj
t+1h

j
t , (σ

2)j
t+1)

(e) Simulate zj,r
t+1 from f(z|yt+1, h

j
t+1,m

j
t) for r = 1, . . . , R

4. Update weights wj
t+1 ∝

∑R
r=1 p(yt+1,zj,r

t+1|h
j
t+1,θj

t+1)
∑R

r=1 p(yt+1,zkj,r
t+1 |hkj

t+1,µkj

t+1)

Note however that the numerical approximation of the stable density introduces

further errors in the algorithm and the parameter estimation becomes difficult.

6.3.4 Convergence of the Particle Filter Algorithms

If we assume the parameter vector is a stochastic process with a Markovian transition

kernel, then the particle filters developed for joint state filtering and parameter

estimation converge a.s.. In fact, the dynamic models and particle filters studied in

previous sections, satisfy the assumptions required for the a.s. convergence of the

empirical posterior density to the true posterior

p̂(x0:t, θ0:t|y1:t)
a.s.→ p(x0:t, θ0:t|y1:t) (6.51)

The necessary assumptions for the a.s. convergence of quite general sequential

Monte Carlo algorithms are in Crisan and Doucet [16]. The proofs of these

convergence results are based on the rigourous mathematical analysis of the

convergence of empirical densities, produced by Crisan [15]. See also Crisan and

Doucet [17] for a useful survey on the convergence results on particle filters.
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6.4 Simulation Study

In the following we verify the efficiency of the Auxiliary Particle Filter algorithm

exhibited in the previous section through some applications on synthetic data. In the

Tab. 6.1 we show the effect of the number of particles on the parameter estimates.

An higher number of particles improves the precision of the estimates, overall for

the parameters α1, α2 and φ. For all the experiments we use as prior a multivariate

Gaussian distribution centered near the true parameters value. We try other initial

values and find that for quite all starting value the APF estimates are close to the

true parameters value. The result is not robust with respect all parameter setting.

In that case the choice of the parameter δ related to the kernel shrinkage becomes

important. There is a tradeoff between the high level of artificial noise (controlled

by the parameter δ) which allows to explore the parameters space and the efficiency

of the parameter estimates.

Table 6.1: Gaussian model M1. APF parameter estimates for an increasing number,
M , of particles. Estimates on T=1,000 observations.

θ True θ̂APF

M=100 M=250 M=1000 M=5000
α1 -2.5 -3.271 -2.395 -2.242 -2.133
α2 -1.0 -0.745 -1.011 -0.914 -0.923
φ 0.5 0.373 0.614 0.573 0.524
σ2 0.1 0.006 0.255 0.376 0.354
p12 0.010 0.197 0.249 0.014 0.126
p22 0.975 0.832 0.862 0.974 0.877

In Appendix E we represent the result for the Gaussian model M1 on a sample

of T = 1, 000 observations and with a M = 5, 000 constant size particle set. In Fig.

6.9 we exhibit the updating of the parameter estimate. In the same figure we report

the quantiles at 2.75% and 97.5% of the parameter posterior distribution. Quantiles

do not diverge and in some cases approach progressively to the parameter estimate

indicating good estimates convergence over the filtering iterations. Results on the

time evolution of the approximated posterior distribution for the parameters are

represented in Fig. 6.10 to Fig. 6.15. The filtered hidden states are represented in

Fig. 6.8.
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The absence of degeneracy has been verified by estimating both the survival rate

(see Fig. 6.6) and the effective sample size indicator (see Fig. 6.7). Survival rate

measures the fraction of particles survived to the selection step with respect to the

total number of particles in the set (see Appendix E). The survival rate reveals

particle degeneracy when exhibiting a persistent high number of dead particles from

a generation to the subsequent one.

The Fig. 6.6 exhibits the evolution over time of the survival rate of a set of

N = 5, 000 particles. Although for some filter iterations the rate falls under the

30% level, it does not remain persistently under that level. We can conclude that

the filter does not show degeneracy problems.

The effective sample size is a function of the variance of the particle weight (see

Appendix E). This degeneracy measure is less than or equal to N . It is equal to

N when the importance function is exactly equal to the filtering density and tends

to zero when the variance of the importance weights tends to infinity, this is when

particle filter degenerates. Fig. 6.7 shows the estimated ESS relative to the particle

filter applied to the gaussian model. Observe that the effective sample size varies

over time, but it never stabilizes at zero. Thus we conclude again in favour of a

non-degeneracy of our particle filter for the Gaussian model.

We apply particle filter to estimate the Student-t model M2. Estimation results

for an increasing number of particles are represented in Tab. 6.2.

Table 6.2: Student-tmodel M2. APF parameter estimates for an increasing number,
M , of particles. Estimates on T=1,000 observations.

θ True θ̂APF

M=100 M=250 M=1000 M=5000
ν 8 7.563 8.851 9.534 7.927
α1 -2.5 -1.437 -2.133 -2.051 -2.236
α2 -1.0 -0.599 -0.662 -0.577 -0.973
φ 0.5 0.714 0.685 0.709 0.603
σ2 0.1 0.080 0.039 0.038 0.083
p12 0.010 0.107 0.024 0.210 0.101
p22 0.975 0.890 0.881 0.877 0.890

We conclude that the algorithm need of an higher number of particles to produce

better parameter estimates. Moreover the results obtained for both the Gaussian and



223

the Student-t models need further evaluation studies. In particular the sensitivity

of the parameter estimates to the value of the transition probabilities p11 and p00

need to be studied.

6.5 Conclusion

Following some suggestions present in the literature on the SV models, in this work

we develop heavy tail Markov switching stochastic volatility models. We discuss

stationary conditions of MSSV models and in order to make inference we follow

a recent literature on the simulation based approach. In particular we focus on

the parameters and states sequential learning problem. We assume time varying

parameters and apply the auxiliary particle filter algorithm. We test the efficiency

of such algorithm on Student-t MSSV model, through some simulation studies.
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Appendix A - Stationarity Conditions

In this appendix we derive some stationarity conditions for the stochastic volatility

process with jumps. In particular we assume that the log-volatility depends on a

Markov jump process {st}t∈N, which takes value in the finite countable state space

E = {0, . . . , L}. Moreover define the following MSSV model

yt = eht/2εt (6.52)

ht = αst
+ φht−1 + σηηt (6.53)

αst
= α + βst (6.54)

P(st = i|st−1 = j) = pij (6.55)

with pij ≤ 0, ∀ i, j ∈ E and
∑L

l=1 pil ≤ 1. In the following we assume that E = {0, 1}
and the initial state s0 of the process has probability measure µ0. The transition

probabilities {pij}i,j∈E define the following transition matrix:

P =

(

p00 p01

p10 p11

)

(6.56)

Note that through the transition matrix and the initial probability measure, the

Markov jump process is well defined due to the following theorem.

Theorem 6.5.1. (Existence and uniqueness of the jump Markov process)

Given the transition matrix P and the initial probability measure µ0, there exists a

unique probability measure P defined on the canonical space:

Ω = EN, ω = (ωt)t≥0, st(ω) = ωt (6.57)

Ft = σ(sk, k ≤ t), F = σ(sk, k ≥ 0)

such that the process ((F ), (Ft)t≥0, (st)t≥0,P) verifies:

P(s0 = a0, . . . , st = at) = µ0(a0)P(a0, a1) . . .P(at−1, at). (6.58)

Such a process is the Markov process defined by the initial measure µ0 and by the

transition matrix P.
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Proof. For a proof see for example Baldi et al.[5]).

�

A sufficient condition for the stationarity of the observable process with stochastic

volatility is the stationarity of the hidden stochastic log-volatility process.

Theorem 6.5.2. (Second order stationarity conditions)

Given the MSSV process defined in equations (6.52)-(6.55), if the innovation process

εt and the hidden process ht are first order stationary then yt is second order

stationary.

Proof. By Jensen’s inequality and under the independence assumption between ht

and εt:

ln(Eπ(y2
t )) ≤ Eπ(ln(y2

t )) = Eπ(ln(eht)) + Eπ(ε2
t )

and if Eπ(h2
t ) and Eπ(ε2

t ) are finite when t→ ∞, then the previous quantity is finite.

We conclude that Eπ(y2
t ) is finite when t→ ∞.

�

The stationarity analysis is based on some basic properties of transition matrix

of the jump Markov process and on more general conditions for the existence and

the uniqueness of the ergodic distribution of the Markov chain {ht, st}t∈N. In

particular we are interested in the evaluation of the n-times composition of the

transition matrix and in the ergodic probability of the Markov process {st}t∈N.

In the next sections we find also first and second order moments of the hidden

log-volatility process with switching and show the existence and uniqueness of the

ergodic distribution.
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Appendix A.1 - Transition Matrix Properties

Theorem 6.5.3. (Transition matrix composition)

Given the transition matrix P, the n-time composition is denoted by P
n =

n−times
︷ ︸︸ ︷

P ◦ P ◦ . . . ◦ P and is defined by the following equation:

P
n =

1

p01 + p11

(

p10 p01

p10 p01

)

+
(1 − p01 − p10)

n

p10 + p01

(

p01 −p01

−p10 p10

)

(6.59)

Proof. In order to calculate the n-times composition of the transition matrix, we

find the eigenvalues and the eigenvectors of P. The eigenvalues are the roots of the

characteristic polynomial associated to the transition matrix. The correspondent

characteristic equation is:

|λ I − P| =

∣
∣
∣
∣
∣

λ− p00 p01

p10 λ− p11

∣
∣
∣
∣
∣
= 0 ⇒ (λ− p11)(λ− p00) − p01p10 = 0. (6.60)

The characteristic equation is of second order and has the following solutions:

λ1 = 1, λ2 = 1 − p01 − p10. (6.61)

To find the eigenvectors, consider that one eigenvector is the unit vector: e1 = (1, 1).

The second eigenvector e2 is defined by:

(

p00 p01

p10 p11

)(

x

y

)

= (1 − p01 − p10)

(

x

y

)

⇒ x p10 + y p01 = 0 (6.62)

which is satisfied by the vector e2 = (−p01, p10). Through the eigenvalues and

the eigenvector the transition matrix can be diagonalised: P = RΛR−1, where

R = (e1 e2) is the eigenvector matrix and Λ = diag{λ1, λ2} is a diagonal matrix of

eigenvalues. Thus the n-times composition of the transition matrix can be written

as: P
n = RΛnR−1 and more explicitly:
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P
n = RΛnR−1 =

=
1

p01 + p10

(

1 −p01

1 p10

)(

1 0

0 (1 − p10 − p01)
n

)(

p10 p01

−1 1

)

=

=
1

p01 + p10

(

1 −p01(1 − p10 − p01)
n

1 p10(1 − p10 − p01)
n

)(

p10 p01

−1 1

)

= (6.63)

=
1

p01 + p10

(

p10 + p01(1 − p10 − p01)
n p01 − p01(1 − p10 − p01)

n

p10 − p10(1 − p10 − p01)
n p01 + p10(1 − p10 − p01)

n

)

=

=
1

p01 + p10

(

p10 p01

p10 p01)

)

+
(1 − p10 − p01)

n

p01 + p10

(

p01 −p01

−p10 p10

)

and this concludes the proof.

�

Another quantity which is useful in stationarity analysis is the ergodic

distribution πT = (π0 π1) of the jump Markov process. The stationary distribution

is defined by the stationarity vectorial equation:

πP = π ⇒
(

π0

π1

)(

p00 p01

p10 p11

)

=

(

π0

π1

)

(6.64)

and by the constraint π0 + π1 = 1. The resulting stationary probability is:

π0 =
p10

p01 + p10

(6.65)

π1 =
p01

p01 + p10

.

Appendix A.2 - First order moment

Observe that the autoregressive structure of the log-volatility process, see the

equation (6.53), makes it dependent on the past history of the Markov jump process.

This feature becomes evident after some recursive substitutions
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ht = α + βst + φht−1 + σηηt = (6.66)

= α + βst + φ(α + βst−1 + φht−2 + σηηt−1) + σηηt =

= . . .

= α
t−1∑

i=0

φi + β
t−1∑

i=0

φist−i + ση

t−1∑

i=0

φiηt−i + φth0.

The system of stochastic difference equations (6.53), (6.54) and (6.55) admits an

ergodic solution. In particular it is possible to find the ergodic solution for the

process ht.

Theorem 6.5.4. (Ergodic solution)

Assume that h0 = 0 and |φ| < 1, then the system of equations (6.53), (6.54) and

(6.55), has the following ergodic solution ht

ht = α
+∞∑

i=0

φi + β
+∞∑

i=0

φist−i + ση

+∞∑

i=0

φiηt−i. (6.67)

Proof. Consider the process ht

ht = α

+∞∑

i=0

φi + β

+∞∑

i=0

φist−i + ση

+∞∑

i=0

φiηt−i. (6.68)

and suppose it is a solution of the system (6.53)-(6.55), then we show that it is still

a solution of the system at time t+ 1

ht+1 = α + βyt + φ

[

α

1 − φ
+ β

+∞∑

i=0

φist−1−i + ση

+∞∑

i=0

φiηt−1−i

]

+ σηηt =

=
−φα + α + φα

1 − φ
+ βst + β

+∞∑

i=1

φist−i−1 + βst−1 + ση

+∞∑

i=1

φiηt−1−i + σηηt =

=
α

1 − φ
+ βst + φβ

+∞∑

i=0

φist−i−1 + φση

+∞∑

i=0

φiηt−i−1 + σηηt = (6.69)

=
α

1 − φ
+ β

+∞∑

i=0

φist−i + ση

+∞∑

i=0

φiηt−i
∆
= ht

�
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We evaluate the asymptotic stationarity of the ergodic solution by calculating

the moments of the process and by taking. Take the expectation of the process

defined in (6.66) with respect to the ergodic probability π and consider the limit

when t→ +∞

lim
t→+∞

Eπ(ht) = lim
t→+∞

(

α
t−1∑

i=0

φi + β
t−1∑

i=0

φi
Eπ(st−i) + φth0

)

=

= lim
t→+∞

(

α
t−1∑

i=0

φi + β
t−1∑

i=0

φi p01

p01 + p10

+ φth0

)

= (6.70)

=
α

1 − φ
+

β

1 − φ

p01

p01 + p10

.

where the expected value of the jump process is calculated with respect to the

ergodic probability given in (6.65) Eπ(st−i) = 0π0 + 1π1 = p01/(p01 + p10).

Appendix A.3 - Second order moment

In order to evaluate the second order asymptotic stationarity of the log-volatility

process, consider the variance of the process under the ergodic probability and take

the limit when t→ +∞

lim
t→+∞

Vπ(ht) =

= lim
t→+∞

(

Vπ(β
t−1∑

i=0

φist−i) + ση

t−1∑

i=0

φ2i

)

= (6.71)

= lim
t→+∞

(

β2

t−1∑

i=0

φ2i
Vπ(st−i) + 2β2

∑

i<j

φiφj
Cov(st−i, st−j) + ση

t−1∑

i=0

φ2i

)

Under the assumption that |φ| < 1, the first and third terms of the sum have finite

limits and reduce respectively to

lim
t→+∞

(

β2

t−1∑

i=0

φ2i
Vπ(st−i)

)

=
β2

1 − φ2

p01

p01 + p10

(1 − p01

p01 + p10

) (6.72)

and

lim
t→+∞

σ2
η

t−1∑

i=0

φ2i = σ2
η

1

1 − φ2
(6.73)
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The covariance term becomes

lim
t→+∞

2β2
∑

i<j

φiφj
Cov(st−i, st−j) =

= lim
t→+∞

2β2
∑

i<j

φiφj p01p10

(p10 + p01)2
(1 − p01 − p10)

(j−i) =

= lim
t→+∞

(

2β2

t−1∑

i=0

t−1∑

j=i+1

φiφj p01p10

(p10 + p01)2
(1 − p01 − p10)

(j−i)

)

=

= lim
t→+∞

(

2β2 p01p10

(p10 + p01)2

t−1∑

i=0

t−1−i∑

j=1

φ2iφj(1 − p01 − p10)
j

)

= (6.74)

= lim
t→+∞

(

2β2 p01p10

(p10 + p01)2

t−1∑

i=0

φ2i 1 − [φ(1 − p01 − p10)]
t−1−i

1 − φ(1 − p01 − p10)
φ(1 − p01 − p10)

)

=

= lim
t→+∞

(

2β2p01p10

(p10 + p01)2

φ(1 − p01 − p10)

1 − φ(1 − p01 − p10)

{
t−1∑

i=0

φ2i −
t−1∑

i=0

φ2i[φ(1 − p01 − p10)]
t−i−1

})

=

= lim
t→+∞

(
2β2p01p10

(p10 + p01)2

φ(1 − p01 − p10)

1 − φ(1 − p01 − p10)

{
1 − φ2t

1 − φ2
− [φ(1 − p01 − p10)]

t − φ2t

φ(1 − p01 − p10) − φ2

})

=

=
2β2

1 − φ2

p01p10

(p10 + p01)2

φ(1 − p01 − p10)

1 − φ(1 − p01 − p10)
.

The last equation has been obtained under the following stationarity conditions:

|φ| < 1 and |φ(1−p01−p10)| < 1. The first condition is required for the stationarity

of the variance term. The second condition is satisfied due to the existence of the

ergodic probability of the jump process. Note that the auto-covariance of the jump

Markov process has been calculated through the equation (6.59)

Covπ(st−i, st−j) = Eπ(st−ist−j) − Eπ(st−i)Eπ(st−i) =

= Pπ(st−i = 1)Pπ(st−j = 1) − Eπ(st−i)Eπ(st−i) = (6.75)

= Pπ(st−i = 1)Pj−i(1, 1) − (
p01

p01 + p10

)2 =

=
p01

p01 + p10

(p01 + p10(1 − p01 − p10)
j−i) − (

p01

p01 + p10

)2 =

=
p01p10

p01 + p10

(1 − p01 − p10)
j−i.

with i ≤ j.
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Finally we check the stationarity of the autocovariance function of the process.

Assume that τ ≤ t− 1, then

Covπ(ht, ht+τ ) =

= Covπ(β
t−1∑

i=0

φist−i + ση

t−1∑

i=0

φiηt−i, β

t+τ−1∑

i=0

φist+τ−i + ση

t+τ−1∑

i=0

φiηt+τ−i) = (6.76)

= Covπ(β
t−1∑

i=0

φist−i, β

t+τ−1∑

i=0

φist+τ−i) + Covπ(ση

t−1∑

i=0

φiηt−i, ση

t+τ−1∑

i=0

φiηt+τ−i) =

= Covπ(β
t−1∑

i=0

φist−i, β
t+τ−1∑

i=0

φist+τ−i) + σ2
ηφ

τ 1 − φ2t

1 − φ2
=

= β2

t−1∑

i=0

t+τ−1∑

j=0

φiφj
Covπ(st−i, st+τ−j) + σ2

ηφ
2 1 − φ2t

1 − φ2
= (6.77)

= β2

t−1∑

i=0

t−1∑

j=τ

φiφj−τ
Covπ(st−i, st−j) + σ2

ηφ
2 1 − φ2t

1 − φ2
=

= β2

t−1∑

i=0

t−1∑

j=τ

φiφj−τ p01p10

p01 + p10

(1 − p01 − p10)
|j−i| + σ2

ηφ
2 1 − φ2t

1 − φ2

Previous quantity depends on t, thus we process is not second order stationary.

Moreover the limit when t → +∞ is finite and depends only on τ , under the

assumption that |φ(1 − p01 − p10)| < 1

p01p10

p01 + p10

β2

+∞∑

i=0

+∞∑

j=τ

φiφj−τ (1 − p01 − p10)
|j−i| +

σ2
ηφ

2

1 − φ2
= (6.78)

=
p01p10

p01 + p10

β2

+∞∑

i=0

+∞∑

j=0

φiφj(1 − p01 − p10)
|j+τ−i| +

σ2
ηφ

2

1 − φ2
≤

≤ p01p10

p01 + p10

β2

+∞∑

i=0

+∞∑

j=0

φiφj(1 − p01 − p10)
|j+τ |+|i| +

σ2
ηφ

2

1 − φ2
=

=
p01p10

p01 + p10

β2 (1 − p01 − p10)
τ

(1 − φ(1 − p01 − p10))2
+

σ2
ηφ

2

1 − φ2
< +∞

It is possible to prove that the covariance is finite also in the case τ > t − 1.
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After previous considerations, we conclude that the jump log-volatility process is

asymptotically stationary of second order.

Appendix A.4 - Ergodic Distribution

In this part of the appendix we show that the second order stationarity conditions

obtained in previous sections are necessary conditions for the existence and

uniqueness of the ergodic distribution of the hidden Markov process {ht, st}t∈N.

On the stationarity conditions of a Markov switching functional autoregressive

process, the only available results are due to Francq and Roussognol [26]. Francq

and Zakoian [27] analyse stationarity conditions of a Markov-switching multivariate

autoregressive moving average process.

In the following we will refer mainly to the work of Francq and Roussignol [26].

Introduce the following multivariate functional autoregressive process with values in

R
S

ht = F (ht−1, st, θ) +G(ηt, st, θ) ∀t ≥ 1 (6.79)

where {ηt}t∈N is a sequence of i.i.d. random processes, θ ∈ Θ the parameters of the

model and {st}t∈N a discrete Markov chain independent of {ηt}t∈N, with values in

the finite state space E = {1, 2, . . . , L} and with stationary transition probabilities

P(st = j|st = i) = pij. Then the following theorem holds.

Theorem 6.5.5. (Existence and uniqueness of the ergodic probability of {xt, st}t∈N)

Suppose the following conditions

(i) The Markov chain {st}t is irreducible and aperiodic;

(ii) For all i ∈ E the random vector G(ηt, i) has density fi(·) with respect to the

Lebesgue measure of R
S and E(||G(ηt, i)||) < ∞ where || · || is the Euclidean

norm;

(iii) There exist a1, a2, . . . , aL such that ∀ (x, y) ∈ R
S, ||F (x, i) − F (y, i)|| ≤
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ai||x− y|| and such that the matrix

Q =










p1,1a1 p2,1a1 · · · pL,1a1

p1,2a2 p2,1a2 · · · pL,2a2

...
...

...
...

p1,LaL p2,LaL · · · pL,LaL










(6.80)

has spectral radius strictly less than 1;

are satisfied. Then The Markov chain defined by Eq. (6.79) admits a unique

invariant probability µ. The second marginal of µ is equal to the invariant probability

of {st}t∈N. A stationarity Markov process {ht, st}t∈N satisfying (6.79) with µ as

initial distribution is an aperiodic ergodic Harris process. Moreover, for all process

{ht, st}t∈N satisfying (6.79) and all µ-integrable function g from R
S × E to R we

have

lim
n→∞

1

n

n∑

i=1

g(xk, sk) = µ(g) a.s. (6.81)

Proof. For a proof see Francq and Roussignol [26]

�

The theorem applies to the hidden log-volatility process. In particular the

assumption (ii) is satisfied because the random variable G(ηt, s) has normal density

with mean zero and finite variance ση.

The third assumption is also satisfied because

||F (x, s) − F (y, s)|| = ||α + βs+ φy − (α + βs+ φx)|| = |φ| ||y − x|| (6.82)

thus a1 = a2 = |φ| and the spectral radius of

Q =

(

p0,0|φ| p1,0|φ|
p0,1|φ| p1,0|φ|

)

(6.83)

is λ1 = |φ| and λ2 = |φ||(1 − p01 − p10)|. The assumption (iii) requires that |φ| < 1

and |(1 − p01 − p10)| < 1. These conditions are satisfied if we require the second

order stationarity of the process {st}, (see Appendix A.3).
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Appendix B - Particles Weights when Parameters

are Known

Recursive formulas are quite useful when processing data sequentially. In this

appendix we give a proof of two recursive relations which are important for sequential

Monte Carlo algorithms. We assume that parameters are known and denote with

p( · | · ; θ) a generic parametric density function with known parameters.

The recursive filtering formula given in equation (6.25) is obtained by applying

Bayes’ theorem and using the Markov property of the dynamic system (6.19), (6.20)

and (6.21).

Proof. (Recursive filtering relation)

Consider the filtering density

p(x0:t+1|y1:t+1; θ) =
p(x0:t+1,yt+1|y1:t; θ)

p(yt+1|y1:t; θ)
=

= p(x0:t|y1:t; θ)
p(xt+1,yt+1|y1:t,x0:t; θ)

p(yt+1|y1:t; θ)
=

= p(x0:t|y1:t; θ)
p(yt+1|y1:t,x0:t+1; θ)

p(yt+1|y1:t; θ)
p(xt+1|x0:t,y1:t; θ) =

= p(x0:t|y1:t; θ)
p(yt+1|xt+1; θ)p(xt+1|xt; θ)

p(yt+1|y1:t; θ)

�

In the following we derive the recursive relations given in equations (6.29) and (6.30),

which is used to update sequentially the weights of the particles.

Proof. (Recursive weight updating relation)
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Starting from the definition of importance weights

wt+1
∆
=

p(x0:t+1|y1:t+1; θ)

q(x0:t+1|y1:t+1; θ)
=

Bayes
=

p(x0:t+1,yt+1|y1:t; θ)

q(x0:t+1|y1:t+1; θ)p(yt+1|y1:t; θ)
=

=
p(x0:t|y1:t; θ)p(xt+1,yt+1|y1:t,x0:t; θ)

q(x0:t+1|y1:t+1; θ)p(yt+1|y1:t; θ)
=

=
p(x0:t|y1:t; θ)

q(x0:t+1|y1:t+1; θ)

p(yt+1|x0:t+1,y1:t; θ)

p(yt+1|y1:t; θ)
p(xt+1|x0:t,y1:t; θ) =(6.84)

Markov
=

p(x0:t|y1:t; θ)

q(x0:t+1|y1:t+1; θ)

p(yt+1|xt+1; θ)

p(yt+1|y1:t; θ)
p(xt+1|xt; θ) =

=
p(x0:t|y1:t; θ)

q(x0:t|y1:t; θ)

p(yt+1|xt+1; θ)p(xt+1|xt; θ)

p(yt+1|y1:t; θ)q(xt+1|x0:t,y1:t+1; θ)
=

= wt
p(yt+1|xt+1; θ)p(xt+1|xt; θ)

p(yt+1|y1:t; θ)q(xt+1|x0:t,y1:t+1; θ)
.

Thus particle weights updating recursive relation is

wt+1 ∝ wt
p(yt+1|xt+1; θ)p(xt+1|xt; θ)

q(xt+1|xt,yt+1; θ)
. (6.85)

Moreover, if we assume that the importance density is the prior on the hidden states,

then q(xt+1|xt,yt+1; θ) = p(xt+1|xt; θ), equation (6.85) simplifies to

wt+1 ∝ wt p(yt+1|xt+1; θ). (6.86)

�
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Appendix C - Particle Filter Algorithms

In the following we give a pseudo-code representation of two basic particle filter

algorithms, i.e. the SIS, SIR and refer to Chapter 2 for further details on such

algorithms and for the presentation of APF algorithm.

Algorithm 6.5.1. - SIS Particle Filter

Given the initial set of particles {xi
t, w

i
t}N

i=1, for i = 1, . . . , N :

1. Simulate xi
t+1 ∼ q(xt+1|xi

t,yt+1; θ)

2. Update the weights: wi
t+1 ∝ wi

t

p(yt+1|xi
t+1;θ) p(xt+1|xi

t;θ)

q(xt+1|xi
t,yt+1;θ)

Note that if the instrumental distribution q(xt+1|xi
t,yt+1; θ) is set equal to

p(xt+1|xi
t; θ) then the weights updating relation becomes: wi

t+1 ∝ wi
t p(yt+1|xi

t+1; θ).

This is the natural choice, because this density represents a sort of prior at time t

for the state xt+1. However, as underlined in Pitt and Shephard [52] this strategy is

sensitive to outliers. Crisan and Doucet [16] analyse the choice of that importance

distributions, which satisfy the assumptions necessary to the a.s. convergence of the

sequential Monte Carlo algorithm.

Algorithm 6.5.2. - SIR Particle Filter

Given the initial set of particles {xi
t, w

i
t}N

i=1, for i = 1, . . . , N :

1. Simulate xi
t+1 ∼ q(xt+1|xi

t,yt+1; θ)

2. Update the weights: w̃i
t+1 ∝ p(yt+1|xi

t+1; θ)

3. Normalize the weights: w̄i
t+1 = w̃i

t+1 (
∑N

j=1 w̃
j
t+1)

−1, for i = 1, . . . , N .

4. Simulate {xi
t+1}N

i=1 from the empirical density {xi
t, w̄

i
t}N

i=1

5. Assign wi
t+1 = 1/N , for i = 1, . . . , N .

Note that in the SIR particle filter, we assumed: q(xt+1|xi
t,yt+1; θ) =

p(xt+1|xi
t; θ). Moreover, due to the resampling step, the weights are uniformly

distributed over the particle set: wi
t = 1/N , thus the weights updating relation

becomes: w̃i
t+1 ∝ wi

t p(yt+1|xi
t+1; θ) ∝ p(yt+1|xi

t+1; θ).
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Appendix D - Joint Estimation of States and

Parameters

We show some analytical aspects of the joint estimation of the parameters and

the states of the Bayesian dynamic model given in equations (6.37), (6.38), (6.39)

and (6.40). Introduce the following notation for the conditional moments Vt(·) =

V ar(·|y1:t), Ct(·, ·) = Cov(·, ·|y1:t) and Et(·) = E(·|y1:t). Denote with I the identity

matrix.

Appendix D.1 - Parameters Transition Density

Assume that parameters evolve over time

θt+1 = θt + ξt+1, with ξt+1 ∼ N(0,Wt+1). (6.87)

Note that the noise component produces artificial variability in the posterior

distribution of the parameters. In order to reduce the variability Liu and West

[46] suggest to impose the following constraint on the variance-covariance matrix of

the parameter Vt(θt+1) = Vt(θt) = Vt. It follows that

Vt(θt+1) = Vt(θt) + Vt(ξt+1) + 2Ct(ξt+1, θt) ⇔ (6.88)

Ct(ξt+1, θt) = −Vt(ξt+1)

2
= −Wt+1

2
,

In order to control the transition of the parameters between time t and (t+ 1) they

use a technique of shrinkage between gaussian kernels. The resulting parameters

transition density is a Gaussian. The shrinkage technique has already been used by

West [65] in order to reconstruct the posterior distribution in an adaptive importance

sampling scheme.

In the following we prove the result given in Eq. (6.48).

Proof. The joint density of θt+1 and θt is a Gaussian density, characterised by the

following moments
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Et(θt)
∆
= θ̄t (6.89)

Et(θt+1) = Et(ξt+1) + Et(θt) = Et(θt)
∆
= θ̄t (6.90)

Vt(θt) = Vt(θt+1) = Vt (6.91)

Ct(θt+1, θt) = Ct(θt + ξt+1, θt) = Vt + Ct(ξt+1, θt) = Vt −
Wt+1

2
(6.92)

and by straightforward calculations, the distribution of θt+1 conditional to θt is

Gaussian, with following conditional mean and variance

Et(θt+1|θt) = θ̄t + (Vt −
Wt+1

2
)V −1

t (θt − θ̄t) (6.93)

= θ̄t + (I − Wt+1

2
V −1

t )θt − (I − Wt+1

2
V −1

t )θ̄t

= At+1θt + (I − At+1)θ̄t

where At+1 = (I − Wt+1

2
V −1

t ).

Vt(θt+1|θt) = Vθt
(θt+1) − Ct(θt+1, θt)V

−1
t (θt)Ct(θt+1, θt) (6.94)

= Vt − (Vt −
Wt+1

2
)V −1

t (Vt −
Wt+1

2
)

= Vt − (I − Wt+1

2
V −1

t )(I − Wt+1

2
V −1

t )Vt

= (I − A2
t+1)Vt.

Conclude that

p(θt+1|θt) = N(At+1θt + (I − At+1)θ̄t, (I − A2
t+1)Vt) (6.95)

�

In order to simplify the estimation problem Liu and West [46] assume that the

variance-covariance matrix of the noise is proportional to Vt and to a discount factor

δ

Wt+1 = Vt(
1

δ
− 1) (6.96)
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Thus previous quantities become: At+1 = I 3δ−1
2δ

, Vt(θt+1|θt) = (1 − (3δ−1
2δ

)2) and

Et(θt+1|θt) = 3δ−1
2δ
θt + (1−δ

2δ
)θ̄t. Denote a = 3δ−1

2δ
, then the distribution in equation

(6.95) simplifies to:

p(θt+1|θt) = N(θt+1; aθt + (1 − a)θ̄t, (1 − a2)Vt) = N(θt+1;mt, (1 − a2)Vt) (6.97)
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Appendix D.2 - SIS Algorithm for State and Parameter Joint

Estimation

The sequential importance sampling (SIS) particle filter is the starting point to

understand and to develop other particle filters like the auxiliary particle filter.

Thus, in the following we exhibit a basic SIS algorithm for the joint estimation of

states {xt, t ∈ N}, xt ∈ X and parameters {θt, t ∈ N}, θt ∈ Θ. In the Bayesian

model, given in equations (6.37)-(6.40), the parameters are fixed over time, but for

estimation purposes we let parameters vary over time. In particular the proof in

this appendix is based on the hypothesis that parameters evolution is described by

a Gaussian random walk: θt+1 = θt +εt. We use the Liu and West’s kernel shrinkage

technique in order to reduce the effects on the parameters estimates of the artificial

diversity introduced in the particle filter. We show also why the algorithm of Liu

and West [46] can be view as a reinterpretation of a dynamic model with time

varying parameters. In the following we give the pseudo-code representation of the

algorithm and the proof of the weights updating relation.

Algorithm 6.5.3. - SIS for state and parameter estimation

Given the initial set of particles {xi
t, θ

i
t, w

i
t}N

i=1, for i = 1, . . . , N

1. Simulate θi
t+1 ∼ p(θt+1|θi

t)

2. Simulate xi
t+1 ∼ p(xt+1|xi

t, θ
i
t+1)

3. Update the weights: wi
t+1 ∝ wi

t p(yt+1|xi
t+1, θ

i
t+1)

Proof. (Recursive Weights Updating Relation)

Consider the joint posterior density of the parameters and the hidden states

p(xt+1, θt+1|y1:t+1)
Bayes
=

p(yt+1|xt+1, θt+1,y1:t)p(xt+1, θt+1|y1:t)

p(yt+1|y1:t)
=

Markov
=

p(yt+1|xt+1, θt+1)p(xt+1, θt+1|y1:t)

p(yt+1|y1:t)
∝ (6.98)

∝ p(yt+1|xt+1, θt+1)p(xt+1, θt+1|y1:t) =
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Kolmog.
= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ

p(xt+1, θt+1|xt, θt,y1:t)p(xt, θt|y1:t)dθtdxt =

= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ

p(xt+1|xt, θt+1, θt,y1:t)p(θt+1|xt, θt,y1:t)p(dxt, dθt|y1:t) =

= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ

Joint transition density
︷ ︸︸ ︷

p(xt+1|xt, θt+1)p(θt+1|θt)p(xt, θt|y1:t)dθtdxt

Observe that the joint transition density is expressed as the product of the state

transition density, conditional to the parameters, and the parameters transition

density. At time t the parameters transition density can be chosen to be a normal

distribution centered on the previous value of the particle: θi
t, but this choice

produces higher variability in parameter estimates. In order to solve the problem,

Liu and West [46] use a Gaussian kernel shrinkage technique, which leads to more

stable estimate. The resulting transition density is the Gaussian distribution in

equations (6.95) and (6.97), with mean and variance estimated on the simulated

posterior distribution.

Assume to have, at time t, a set of particles {xi
t, θ

i
t, w

i
t}N

i=1, which approximates the

prior distribution p(xt, θt|y1:t). The resulting empirical distribution is

p(xt, θt|y1:t) ≈
N∑

i=1

wi
tδ{xi

t,θ
i
t}

(dxt, dθt) (6.99)

and the last equation in (6.98) can be approximated as follows

N∑

i=1

p(yt+1|xt+1, θt+1)p(xt+1|xi
t, θt+1)p(θt+1|θi

t)w
i
tδ{xi

t,θ
i
t}

(dxt, dθt) (6.100)

In SIS particle filter, the new set of particles {xi
t+1, θ

i
t+1, w

i
t+1}N

i=1 is generated by

simulating each pair {xi
t+1, θ

i
t+1} from the instrumental density q(xt+1, θt+1|y1:t+1).

The weights updating equation is determined by an importance sampling argument.

Choose the instrumental density to be the product of the priors of θt+1 and xt+1:

q(xt+1, θt+1|y1:t+1) = p(xt+1|xt, θt+1)p(θt+1|θt) (6.101)
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1+txtx1−tx

1−ty ty 1+ty

1−tθ tθ 1+tθ

Figure 6.5: Causality structure of a Markovian dynamic model with hidden states
and time varying parameter. A box around the variable indicates the variable is
known, while a circle indicates a hidden variable.

then the weights updating equation is given by the following correction step

wi
t+1 ∝ p(yt+1|xi

t+1, θ
i
t+1)p(x

i
t+1|xi

t, θ
i
t+1)p(θ

i
t+1|θi

t)w
i
t

p(xi
t+1|xi

t, θ
i
t+1)p(θ

i
t+1|θi

t)
= (6.102)

= wi
t p(yt+1|xi

t+1, θ
i
t+1).

�
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Appendix D.3 - APF Algorithm for States and Parameters

Joint Estimation

Auxiliary Particle Filter can be derived from the basic SIS algorithm, exhibited

in the previous appendix. APF uses the auxiliary variable j to select randomly

particles and to mutate selected particles. The auxiliary variable is simulated from a

distribution, which summarizes and conserves the information contained in previous

particle set. This feature is obtained also by using the variable µt. In this way the

re-sampling step does not cause the impoverishment of the information contained

in the actual particle set.

Algorithm 6.5.4. - APF for states and parameters estimation (see Liu

and West [46])

Given the initial set of particles {xj
t , θ

j
t , w

j
t}N

j=1, for j = 1, . . . , N

1. Calculate µj
t+1 = E(xt+1|xj

t , θ
j
t ) and mj

t = aθj
t + (1 − a)θ̄t

2. Simulate ij ∼ q(i|y1:t+1) ∝ wi
t p(yt+1|µi

t+1,m
i
t) with i ∈ {1, . . . , N}

3. Simulate θj
t+1 ∼ p(θt+1|θij

t ) = N (θt+1;m
ij

t , (1 − a2)Vt)

4. Simulate xj
t+1 ∼ p(xt+1|xij

t , θ
j
t+1)

5. Update particles weights: wj
t+1 ∝

p(yt+1|x
j
t+1,θj

t+1)

p(yt+1|µij

t+1,mij

t )
.

Proof. (Recursive Weights Updating Relation)

Consider the filtering density or joint posterior density for the parameters and the

states

p(xt+1, θt+1|y1:t+1) =

Bayes
=

p(yt+1|xt+1, θt+1,y1:t)p(xt+1, θt+1|y1:t)

p(yt+1|y1:t)
=

Markov
=

p(yt+1|xt+1, θt+1)p(xt+1, θt+1|y1:t)

p(yt+1|y1:t)
∝ (6.103)



244

∝ p(yt+1|xt+1, θt+1)p(xt+1, θt+1|y1:t) =

Kolmog.
= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ

p(xt+1, θt+1|xt, θt,y1:t)p(xt, θt|y1:t)dθtdxt =

= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ

p(xt+1|xt, θt+1)p(θt+1|θt)p(xt, θt|y1:t)dθtdxt =

= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ

Joint transition density
︷ ︸︸ ︷

p(xt+1|xt, θt+1)p(θt+1|θt)p(xt, θt|y1:t)dθtdxt.

Observe that the joint transition density is decomposed in the product of the

state transition density conditional to the parameters and the parameters transition

density. Liu and West [46] use a Gaussian kernel shrinkage technique, which provides

more stable estimates. The resulting parameter transition density is the Gaussian

distribution exhibited in equations (6.95) and (6.97).

Assume to have, at time t, a set of particles {xj
t , θ

j
t , w

j
t}N

j=1, which approximates the

prior distribution p(xt, θt|y1:t). The resulting empirical distribution is:

p(xt, θt|y1:t) ≈
N∑

j=1

wj
t δ{xj

t ,θj
t }

(dxt, dθt) (6.104)

and the last equation in (6.103) can be approximated as follows

N∑

j=1

p(yt+1|xt+1, θt+1)p(xt+1|xj
t , θt+1)p(θt+1|θj

t )w
j
t δ{xj

t ,θj
t }

(dxt, dθt) (6.105)

Note that the previous density is a mixture of distribution and in APF particle

filter, it is reparameterised through the allocation variable i as follows: p(xt, θt, i) =

p(yt+1|xt+1, θt+1)p(xt+1|xi
t, θt+1)p(θt+1|θi

t)w
i
t. The index i represents the auxiliary

variable and is sampled together with the new set of particles, according to the

instrumental probability: q(i|y1:t+1) = p(yt+1|µi
t+1,m

i
t)w

i
t, where µi

t+1 is a variable

which resumes the information contained in the particle set {xj
t , θ

j
t , w

j
t}N

j=1, and

mt = Et(θt+1|θt) is the mean of the parameters transition density. Given the index

i, the new set of particles {xj
t+1, θ

j
t+1, w

j
t+1}N

j=1 is generated by simulating (xj
t+1, θ

j
t+1)

from the instrumental density q(xt+1, θt+1|i,y1:t+1). The weights updating equation
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is determined by an importance sampling argument. Choose the conditional

instrumental density to be the product of the priors of θt+1 and xt+1, given i, with

i = 1, . . . , N

q(xt+1, θt+1|i,y1:t+1) = p(xt+1, θt+1|xi
t, θ

i
t) = p(xt+1|xi

t, θt+1)p(θt+1|θi
t) (6.106)

then the weights updating equation is given by the following correction step

wj
t+1 ∝ p(yt+1|xj

t+1, θ
j
t+1)p(x

j
t+1|xij

t , θ
j
t+1)p(θ

j
t+1|θij

t )wij

t

p(yt+1|µij
t+1,m

ij
t )p(xj

t+1|xij
t , θ

j
t+1)p(θ

j
t+1|θij

t )wij
t

= (6.107)

=
p(yt+1|xj

t+1, θ
j
t+1)

p(yt+1|µij
t+1,m

ij
t )
.

with j = 1, . . . , N .

�
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Appendix E - Simulation Results

In the appendix we analyse the results of particle filter techniques when applied to

the Gaussian MSSV model M1 and to the heavy tails models M2 and M3. We

show how to detect the degeneracy problem and to check for the convergence of the

parameters estimation.

Appendix E.1 - Gaussian MSSV model

The results of the particle filtering algorithm consist in the parameter estimates and

in the log-volatility and Markov-switching state filtering. Fig. 6.9 shows parameter

estimates for the Gaussian model M1 on a sample of T = 1, 000 observations and

with a M = 5, 000 constant size particle set. In the same figure we report the

quantiles at 2.75% and 97.5% of the parameter posterior distribution. Quantiles

do not diverge and in some cases approach progressively to the parameter estimate

indicating good estimates convergence over the filtering iterations.

To validate the estimation results a more accurate analysis of the particle filter

outputs must be performed. It is well known that degeneracy is a very common

problem in particle filtering, thus we monitor the time evolution of the particles set.
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Figure 6.6: Survival rate of the particle set at each time step.

In particular we employ the Survival Rate, which evaluates the number of particles

survived to the selection step with respect to the total number of particles in the
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Figure 6.7: Time evolution of the estimated Effective Sample Size.

set. The survival rate reveals particles set degeneracy when exhibiting a persistent

high number of dead particles from a generation to the subsequent one. Survival

rate has been calculated as follow

SRt =
N −∑N

i=1 I{0}(Card(Ii,t))

N
(6.108)

where Ii,t = {j ∈ {1, . . . , N}|ijt = i} is the set of all random index values, which

are selecting, at time t, the i − th particle. Note that if at time t the particle

k does not survive to the selection step then the set Ik,t becomes empty. Fig.6.6

exhibits the evolution over time of the survival rate of a set of N = 5, 000 particles.

Although for some filter iterations the rate falls under the 30% level, it does not

remain persistently under that level. We can conclude that the filter does not show

degeneracy problems.

In order to complete the degeneracy analysis we evaluate the Effective Sample Size

indicator. This degeneracy measure has been introduced by Liu and Chen [45] and

for the general dynamic system of equations (6.19)-(6.21) is defined as

ESSt
∆
=

N

1 + V ar(w∗i
k )

(6.109)

where the weights w∗i
k = p(xi

k|y1:k; θ)/q(x
i
k|xi

k−1; θ) cannot be calculated explicitly.
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Thus the following estimator has been used

ˆESSt =
1

∑N
i=1(w̃

i
t)

2
(6.110)

where the weights w̃i
t have been defined in equation (6.27). Observe that this

degeneracy measure is less than or equal to N . It is equal to N when the importance

function is exactly equal to the filtering density and tends to zero when the variance

of the importance weights tends to infinity, this is when particle filter degenerates.

Fig. 6.7 shows the estimated ESS relative to the particle filter applied to the gaussian

model. Observe that the effective sample size varies over time, but it never stabilizes

at zero. Thus we conclude again in favour of a non-degeneracy of our particle filter

for the gaussian model.
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Figure 6.8: Filtered log-volatility and Markov switching states.
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Figure 6.9: Parameter estimates for the Gaussian MSSV model. Graphs exhibit also
the posterior mean and quantiles at 0.275 and 0.975 level.
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Figure 6.10: Time evolution of the α1’s density function for the Gaussian MSSV
model.
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Figure 6.11: Time evolution of the α2’s density function for the Gaussian MSSV
model.
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Figure 6.12: Time evolution of the p12’s density function for the Gaussian MSSV
model.
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Figure 6.13: Time evolution of the p22’s density function for the Gaussian MSSV
model.
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Figure 6.14: Time evolution of the φ’s density function for the Gaussian MSSV
model.
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Figure 6.15: Time evolution of the σ2’s density function for the Gaussian MSSV
model.
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