
Taming Model Round-Trip Engineering

Shane Sendall and Jochen Küster

Computer Science Department
IBM Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland

{sse, jku}@zurich.ibm.com

Abstract: Round-trip engineering is a challenging task that will become an
important enabler for many Model-Driven Software Development approaches.
Model round-trip engineering involves synchronizing models by keeping them
consistent, thus enabling the software engineer to freely move between different
representations. The vision of model round-trip engineering (MRTE) is only
realized to a limited degree in Integrated Development Environments (IDE)
nowadays, and it proves to be a very difficult problem to solve in general. In
this paper, our goal is to clarify some of the issues in automating MRTE and
point out some of the high-level qualities that are desirable for MRTE
approaches to possess. Clarifying this domain is an important first step towards
being able to automate round-trip engineering of models.

1. Introduction

Many software-intensive systems are sufficiently complex that it is necessary to make
use of abstraction, projection, and decomposition to understand, communicate, and/or
maintain them. Software modeling practices offer a means to exploit the benefits of
these techniques in coping with complexity and size, not only for capturing solutions
but also the problems that are being addressed. OMG’s Model-Driven Architecture
(MDA) initiative [Omg03a, KWB03] proposes a three-layer architecture, where each
layer contains possibly many models, and models are related within and between
layers.

The use and benefit of multiple models is motivated by the principle of separation
of concerns: there should be a close correlation between the kinds of models used to
specify the system and the kinds of concerns of the stakeholders (problem and
solution related) and their ability to identify, express and validate their concerns with
respect to one or more models. Under this scheme, most modern-day software
systems are likely to require and benefit from many interrelated models.

Making use of multiple models in software development activities requires that, at
least, the inconsistencies between models are understood, and ideally, that each non-
disjoint model is kept consistent with the others at important checkpoints. The ability
to automatically maintain the consistency of multiple, changing software artifacts in
software development environments/tools is commonly referred to as round-trip
engineering. Changes made to one model can be propagated and reflected in another
model using model transformation technologies [SK03, CH03].

In this paper, our goal is to clarify some of the issues in automating model round-
trip engineering (MRTE) and point out some of the qualities that are desirable for
MRTE to possess. In section 2, we present an example that illustrates a challenging
situation that can arise in MRTE but does not occur in single isolated transformations,
such as is typically performed in forward and reverse engineering. In section 3, we
describe the problem domain of MRTE and explain the different aspects of the
problem that need to be addressed to better automate it. In section 4, we propose a set
of high-level qualities that are desirable for MRTE approaches to possess. In section
5, we review the current state-of-the-art in round-trip engineering. In section 6, we
summarize the paper and propose future work.

2 Shane Sendall and Jochen Küster

2. Round-Trip Engineering � Forward + Reverse Engineering

In this section, we give some background on MRTE and describe a situation that can
arise in MRTE but does not occur in either forward or reverse engineering in
isolation.

A large number of software development environments/tools offer support for
graphical models, which are typically a subset of the models possible with the Unified
Modeling Language (UML) [Omg03b] (see [OD04] for a list of tools that support
UML). Many of these tools provide automated support for generating programming
language code from UML class diagrams and also generating UML class diagrams
from programming language code (see [Xde04, Bor04, Gen04], for example). The
first task is referred to as forward engineering and the second one, as reverse
engineering.

More generally, forward engineering involves generating one or more software
artifacts that are closer in form and level of detail to the final deployable system
compared to the input artifacts, and reverse engineering involves generating one or
more software artifacts that abstract certain details of, and possibly present in a
different form, the input artifacts, with the goal of recovering any information lost in
the forward step. Some tools also support MRTE, which is similar to the combination
of both forward and reverse engineering steps such that software artifacts, such as,
programming language code and UML class diagrams, become synchronized at
certain points in time. MRTE may also involve synchronizing models at the same
level (i.e., horizontal synchronization).

Most development tools only offer very limited support for MRTE. This is most
probably a consequence of the difficulty in keeping multiple changing artifacts
consistent. It is important to note that it may not be necessary to allow multiple
artifacts to be changed over the same period, and it certainly simplifies the problem if
only one artifact is allowed to change and the other ones are simply (read-only) views.
For example, MRTE is typically not required between programming language code
and binary code because it is assumed that the binary code will not be changed (which
may not always be a valid assumption1). In this situation, forward engineering is the
compilation process, which produces the binary, and reverse engineering, which is
typically used when the original source code is no longer available, produces source
code similar (but usually not the same, due to information loss in the optimization
activities of compilation) to the original source code.

Both forward and reverse engineering steps involve transforming one or more
artifacts into one or more other artifacts. This task is typically a single, isolated
transformation, where any information in the target artifact is not considered, and
typically a new artifact is created, possibly replacing the previous version, if one
exists. In some cases, forward and reverse engineering may be optimized so that only
incremental transformation is performed, i.e., only the changed modules are
transformed, rather than all artifacts, e.g., incremental compilation.

In contrast, MRTE requires that information in the target artifact is preserved and
not “clobbered” on the return trip. This also indicates that the intention behind MRTE
is to reconcile models, rather than just transform them in a given direction. For
example, in round-tripping UML class diagrams and Java, it would usually be
undesirable for the names and form of the associations to be changed in the class
diagram if an unrelated change is made to the Java code. Such a scenario is
conceivable if only reverse engineering is applied, as associations are not first-class in

1 As compilers have become better at producing code, there is less of a tenancy to change the

binary code. However, this was not the case in the early days of compiler technology.

Taming Model Round-Trip Engineering 3

Java and thus would need to be generated without knowing their original property
values. This kind of situation arises whenever there is not sufficient information in the
source artifacts to reconstruct the target artifacts to their previous form [KW03].

To illustrate such a situation, Figure 1a shows two models that are related by a
transformation, called “SquashClassHierarchyTrans”, that maps the class hierarchy
defined in the LHS model to a single “squashed” class in the RHS models, i.e., all of
the most specialized methods and attributes of the class hierarchy are mapped into the
single RHS class. Now, considering the return trip, Figure 1b.i shows that the
transformation from RHS to LHS may result in any number of solutions that will
form a consistent state.

If reverse engineering is applied to generate the LHS model, it does not consider
the existing form of the LHS class hierarchy, and as such, it would typically just use
some form of default configuration or let the user decide, e.g., it creates two classes
with an inheritance relationship between them. Note that the information about the
class hierarchy was lost in the forward engineering step, i.e., the mapping from left-
to-right. In the MRTE case, it is necessary to be able to trace back the original classes:
A, B, C, on the return trip (see Figure 1b.ii) and apply the necessary changes to these
classes in accordance with the changes made to class X. It is also interesting to note
that if X was deleted and replaced by a class Y, then the round-trip would be nothing
more than a reverse engineering step, because this information would not be
applicable. From hereon in, we refer to the information recorded to track the
relationships established between elements as trace information.

(a)

BB

CC

AA

XX

SquashClassHierarchyTrans

LHS Model RHS Model

(b.ii)(b.i)

… BB

CC

AA

XXXX

SquashClassHierarchyTrans-1SquashClassHierarchyTrans-1

LHS Model RHS ModelLHS Model RHS Model

Figure 1: Mapping a class hierarchy to a single “compact” class: (a) mapping a

class hierarchy to a single class; (b.i) the inverse mapping from a single class to a
class hierarchy (any number of solutions are possible for LHS); (b.ii) tracing back to

the class hierarchy from class in the RHS Model.

In this paper, we concentrate on round-trip engineering of models, where we
(artificially) define a model to be any software development artifact that has, and
complies to, a corresponding metamodel, for example, specified using OMG’s Meta

4 Shane Sendall and Jochen Küster

Object Facility (MOF) [Omg02b]. This bias also points to our focus on model
transformations that make use of metamodel definitions in accessing metadata
[Sen03a, Sen03b].

For the sake of restricting the scope of this paper, we do not address the issues that
surround concurrent updating of models by assuming that each change is only made
to a model if it is in a stable state, and we do not describe the additional complexities
that surround optimistic version control with respect to MRTE. Furthermore, we do
not address performance issues in propagating and applying highly frequent changes,
although we do propose an incremental approach, which alleviates some problems
with scalability. As such, these areas are out of the scope of this paper.

3. The Problem Domain of Model Round-Trip Engineering

In this section, we briefly describe the problem domain of MRTE and explain some of
the issues involved in composing MRTE activities.

Given a set of models (possibly at varying levels of abstraction), MRTE is a
technique that allows the software developer to move freely between these models
and change them as seen fit, where changes made to each one are reflected in the
other ones, keeping each one consistent with the others.

MRTE can be divided into four general steps:
1) defining under what circumstances the models in question are consistent and

inconsistent
2) deciding when inconsistent models should be made consistent again
3) devising a plan for reconciling the models according to the intent and

expectation of the user
4) applying the devised plan by reconciling the models

Step 1 requires a definition of consistency and step 2 requires a means to evaluate

whether it is satisfied or not by the model states. This point is further elaborated in
section 3.1. In considering step 3, the challenge is to find an appropriate approach for
working out which changes are possible to reconcile the models and present them in a
form that is accessible to the user. This point and step 4 is elaborated in section 3.2.

3.1. Defining Consistency and Deciding When Models Are Inconsistent

To be able to decide whether a set of models is consistent or not, it is necessary to
first understand what makes the models consistent and inconsistent with respect to
each other. This requires an understanding of the semantics of each model and a
definition of the relationships between them. Theoretically, the relationships between
the elements of each model can be formally understood if the semantics of each
model are translated into a common semantic domain, where
equivalences/refinements can be mathematically verified or reasoned about [EK+01,
FEL+98]. However, in practice, this step is usually performed informally, which is
probably due to the significant overhead of performing such a task formally and a
lack of tool support. In both cases, it is necessary to clarify in which states models are
consistent and in which states they are inconsistent. We refer to this (informal or
formal) clarification as a consistency definition. This definition is the basis for a
function that can be used to decide whether the models are consistent or not in a given
(stable) system state.

Taming Model Round-Trip Engineering 5

Informally clarifying the consistency relationships between models can be
performed in a number of ways and can also depend on the intention of the models’
architect(s). For example, in some cases, models may simply contain a subset of
common information, e.g., a UML interaction diagram contains message instances
that correspond to the method names of the respective classes in a UML class
diagram. In other cases, a correspondence has a less direct similarity, e.g., the
presence of an account in one model means there must be three corresponding
contracts in another model. Furthermore, in other cases, it may be easier to define
consistency in terms of negative conditions, e.g., the presence of a loan in one model
means there must be no checking accounts in another model.

3.2. Devising a Plan for Reconciliation and Realizing It

Once inconsistencies are detected, the necessary changes to the models need to be
made to make them consistent again, if possible. This problem has been well studied
in the field of software engineering and information systems and is often referred to
as inconsistency management [SZ01]. In general, since elements can be added,
modified, and deleted in various models, different strategies can exist for reconciling
models, according to the consistency definition; such strategies are also known as
inconsistency handling policies.

The main challenge that is faced is in understanding the intent and expectation of
the user with respect to reconciliation. Clearly, the expectation may be different for
different users and for different contexts. Once the user’s intention is known, e.g.,
given a list of possible reconciliation schemes to choice from, the chosen scheme
must be performed to reconcile the models, which should ensure that the effect of
updating models in each case leads to a stable and consistent state.

To illustrate this problem, Figure 2 revisits the SquashClassHierarchyTrans
transformation, which is used as the context for round-tripping between a class
hierarchy and a single compact class.

Figure 2a shows the initial state (before reconciliation is attempted): the LHS
model has 3 classes, each with one attribute, and the RHS model is empty. Figure 2b
shows the desired result of reconciling the two models. Note that the strategy of
reconciliation used here implies that adding new elements is preferred over deleting
existing elements for reconciling the models. In this case, it makes no sense to delete
elements that have just been created to find a consistent state, even if two empty
models are nevertheless consistent. Figure 2c shows the result of the reconciliation
activity, which was triggered by the deletion of the attribute b from the RHS model. It
also highlights how reconciliation makes use of the trace information to ensure that no
information is “clobbered” on the return trip. Figure 2d shows the result of the
reconciliation activity, which was triggered by the addition of the attribute d to the
RHS model. In this case, no assistance can be derived from the trace information, so
the attribute d is added to the root class of the hierarchy. We suppose that this type of
decision is usually based on some default behavior or user input. Note that the
decision of where to place it has no impact on the consistency of the two models. In
other words, it would have been equally valid to place the attribute in class B or C and
the models would still be consistent. Finally, Figure 2e shows the result of the
reconciliation activity, which was triggered by the addition of the attribute e to the
LHS model, where the new attribute e has been added to class C.

6 Shane Sendall and Jochen Küster

(a)

LHS Model RHS Model

BB

CC

AA
-a

-b

-c

BB

CC

AA

X

SquashClassHierarchyTrans

LHS Model RHS Model

-a

-b

-c

-a
-b
-c

(b)

(c)

BB

CC

AA

X

SquashClassHierarchyTrans-1

LHS Model RHS Model

-a

-c

-a
-c

BB

CC

AA

X

SquashClassHierarchyTrans-1

LHS Model RHS Model

-a
-d

-c

-a
-c
-d

(d)

BB

CC

AA

X

SquashClassHierarchyTrans

LHS Model RHS Model

-a
-d

-c
-e

-a
-c
-d
-e

(e)

Figure 2: Mapping a class hierarchy to a single “compact” class.

(a) shows the initial state of LHS and RHS models (before they are reconciled);
(b) shows the result of reconciling the LHS model to an empty RHS model;

(c) shows the result of reconciling the models after attribute b has been removed from
RHS model;

(d) shows the result of reconciling the models after adding attribute d to RHS model;
(e) shows the result of reconciling the models after adding attribute e to LHS model.

3.3. Composing MRTE Activities

MRTE activities may not be isolated; different MRTE activities may have
overlapping domains. In fact, it is likely that given a set of models that need to be kept
consistent, it is easier to establish multiple MRTE activities between subsets of the
models, rather than a single MRTE activity over all models. For instance, it may be
easier to express, and more intuitive to understand, bi-directional relationships,
compared to multi-directional ones, i.e., with a cardinality greater than two. This
notion of composition requires that MRTE activities that share domains do not have
conflicting agendas. In other words, it is necessary to ensure that the combined

Taming Model Round-Trip Engineering 7

constraints on each shared domain are satisfiable. In some cases, constraints on shared
domains may not be contradictory per se, but they may nevertheless lead to
unexpected or undesired behavior.

To illustrate such a situation, Figure 3 revisits the earlier
SquashClassHierarchyTrans example of MRTE and introduces another MRTE
activity (relating Model2 and Model3), where the two activities have Model2 in
common. Consistency between Model2 and Model3 is defined in terms of a one-to-
one correspondence between attributes of classes in Model2 and attributes in a class
composition hierarchy in Model3. In addition, a constraint is defined that asserts that
any class in Model3 cannot contain a public attribute (public visibility is
diagrammatically shown with a prefixed ‘+’; ‘-‘ means private visibility). This
constraint poses a problem for the scenario given in Figure 3, which we now describe.

Figure 3 shows the result of public attribute e being added to Model1 and the
update made by MRTE activity 1 to reconcile Model2 to Model1. Up until this point,
all attributes have private visibility. A problem arises, however, for MRTE activity 2
because it cannot reconcile Model3 to Model2 by simply adding the attribute to one of
the classes Model3, due to the constraint stated earlier. Hence, MRTE activity 2
would need to delete attribute e from class X in Model2 to make the models consistent
again. So if MRTE activity 2 does delete public attribute e from class X, the question
arises as to how MRTE activity 1 will react. MRTE activity 1 has two possible paths,
either it can reconcile Model1 and Model2 by deleting attribute e from Model1, or it
can add attribute e back to Model2. The first scenario will lead to a stable state, but
probably a confused developer, because after s/he adds attribute e to Model1, it will
be subsequently removed (hence the confusion for the developer). The second
scenario may lead to an infinitely changing state where MRTE activity 1 and 2 play
against each other by continually adding and removing attribute e to Model2—the
state will only become stable if attribute e is removed from Model1. Clearly, this
problem can be addressed by asking the user which reconciliation scheme should be
taken, but it nevertheless points out the possibility for different MRTE activities to
have conflicting agendas.

In general, it is important to note that inconsistencies between models may be
necessary, if a number of intermediate steps may be required to reach the desired,
consistent state — this can often be the case in requirements-related activities. In such
cases, the boundary of a stable state needs to be defined, together with a loose
synchronization policy.

8 Shane Sendall and Jochen Küster

BB

CC

AA

X

Model1 Model2

-a
-d

-c
+e

-a
-c
-d
+e

Model3

Round-Trip 1 Round-Trip 2

?
SS

RR
-a
-c

-d

Figure 3: Two MRTE activities that have a common domain (Model2): it shows the
result of reconciliation according to MRTE activity 1, after an attribute was added to

Model1, which breaks the consistency relationship between Model2 and Model3
according to MRTE activity 2.

In the context of UML with all its nine diagram types, it would seem that there is
quite some scope for MRTE between the different diagram types. However, because
UML is defined by a single metamodel, the problem of keeping each view consistent
with all the others can be moved to the problem of round-tripping each view to an
amalgamated model, which is an instance of the whole UML metamodel. This
situation is illustrated in Figure 4, where each view (e.g., Class View1) takes its
diagram type’s perspective of the current system, and the amalgamated system model
is the composite of all the views. Having the amalgamated model also means that
there need only be a single MRTE relationship with other artifacts, e.g., programming
language code. As an aside, the internal consistency of the amalgamated model will
still need to be checked and reconciled to be well-formed, which in itself is an
exercise in inconsistency management; this is represented by the validation arrow in
Figure 4. The validation activity would preferably allow inconsistent intermediate
states, until a final consistent state is reached, at which time it would resolve the
inconsistencies.

Taming Model Round-Trip Engineering 9

Statemachine
View1

Class
View1

Use Case
View1

Sequence
View1

Amalgamated
System Model

(UML)

Programming
Language

Model

…

Validation

… … …

Figure 4: Round-trip engineering UML models.

4. Desirable Qualities of MRTE Approaches

In this section, we present and motivate a number of qualities that we believe are
desirable for MRTE approaches to posses, drawing some conclusions from earlier
sections. We also discuss each point, highlighting some approaches/techniques that
could be used to address them.

4.1. Ability to Manage Trace Information

In section 2, we motivated the need for keeping trace information in MRTE, and
highlighted that the ability to trace back to existing model elements is one of its main
differences to forward and reverse engineering (see Figure 1). Trace information is
needed if information is lost in the transformation from one model to the other. In
other words, trace information is needed whenever the relationship between elements
in the respective models is not bijective (i.e., not one-to-one and onto). As such,
obtaining and managing trace information could be seen as a requirement for MRTE,
and not just a desirable quality.

Two approaches are commonly used in capturing trace information: 1) augment the
models with the additional information needed for the return trip using auxiliary
features [LB03], such as, comments; or 2) store the trace information externally so
that the inverse transformation can use it on the return trip (called a reconstruction
model in [Kue04a]). Option 1 is a common approach in round-tripping UML class
diagrams to programming language code, where information about associations, etc.
are stored in code comments. One problem that arises with using code comments is
that as soon as the comments are changed/removed, the trace information becomes
corrupted and the return trip can no longer make use of it. Also, adding extra
information to artifacts can make them less aesthetically pleasing.

10 Shane Sendall and Jochen Küster

Option 2 remedies both these problems, so long as the trace information is kept up-
to-date with any changes made to the models; this is because the trace information
cannot be indirectly changed, i.e., by changing the artifacts, and the artifacts do not
contain the trace information themselves, respectively. However, one problem that
can still arise with both options is that different tools could define their own
proprietary trace structures and hence interoperability between tools would not be
possible. OMG’s emerging MOF 2.0 standard will include a
Query/View/Transformation (QVT) specification [Omg02a, QMG04]. This upcoming
specification is moving towards standardizing trace information for model
transformation, which is an important step forward for IDEs that will support MRTE.

4.2. Intuitive and Concise Approach

When specifying MRTE activities, there are a number of capabilities that must be
taken into consideration in judging the intuitiveness and conciseness of the approach:

• the ability to precisely define the meaning of consistency between models;
• the ability to correctly decide when models become inconsistent and when it

is necessary to reconcile them;
• the ability to reconcile models, according to the consistency definition and to

the intention and expectation of the user; and
• the ability to connect the above three abilities in a seamless and useable way.

Ideally, a single specification could be used for all three tasks, i.e., consistency
definition, deciding consistency, and model reconciliation. The underlying
implication of such a specification is that it be declarative in form. However, care
needs to be taken that the three different usage requirements do not result in
idiosyncrasies of the language, which could lead to difficulties in comprehension and
expression for users.

With the task of model reconciliation, it is important that each case of model
evolution can be clearly specified and understood in terms of the way that the
reconciliation activity will react (see section 3). For example, how should the
reconciliation activity react to the creation of new elements, modification and deletion
of existing elements that are under trace relationships and not, etc.

4.3. Understanding the Intention and Expectation of Users

In Figure 2d, we saw an example where a number of solutions are possible, which all
correctly reestablish the consistency between models. In such cases, it often makes
sense to prompt the user for a decision, or use a default setting that the user is aware
of and happy with, e.g., place attribute in top-most class of hierarchy. Thus,
depending on the situation and the number of possible ways to reconcile models, it
should be possible to offer three different modes of reconciliation schemes:
interactive, default, and heuristic-driven. Interactive mode involves the user, and
default and heuristic-driven are fully automated.

4.4. Assistance with Detecting Conflicts between MRTE Activities

As we described in section 3, it may be more straightforward to break up the MRTE
of a set of models into a set of MRTE activities between subsets of the models in the
original set. Figure 3 however illustrated a problem that can arise when composing

Taming Model Round-Trip Engineering 11

MRTE activities. The problem comes about because different reconciliation activities
that share domains can have conflicting agendas. Thus, it would be valuable to be
able to detect such conflicts so that they can be found before the system is deployed.
The ability to decide if there are conflicts between the agendas of reconciliation
activities will depend on the language used to express the agendas. In many cases, it
may not be decidable, requiring some form of heuristic-driven approach instead.

5. Related Work

In this section, we survey some of the work that is related to round-trip engineering
and inconsistency management.

As round-trip engineering integrates technology from different areas of software
engineering, there exists a large amount of related work. As already mentioned,
inconsistency management [SZ03] is a technique for making models consistent again.
Inconsistency management has been studied for viewpoint-oriented approaches within
software engineering, giving rise to a number of different approaches. In particular,
approaches studying consistency management for UML models (see e. g. [Kue04b]
and [EK+01]) can be seen as one foundation for a solid definition of round-trip
engineering. We already pointed out that a basis of round-trip engineering is a clear
definition of required consistency between the models which is usually one purpose
of consistency management. Concerning UML models, this task is complicated by the
absence of a formal semantics and a common development process. The methodology
presented in [EK+01] and elaborated in [Kue04b] can be applied to define
consistency for a given set of UML models. On the basis of that, round-trip
engineering can then provide the necessary technology for enabling the modeler to
move freely between different models.

Another set of related techniques to round-trip engineering can be seen in
approaches that deal with forward engineering, e.g., generating Java programs from
UML models. Whereas current tool support is mainly restricted to structural models,
there exist also approaches for including behavioral models. Engels et al. describe an
approach for generating Java code from UML collaboration diagrams. Already there,
it could be seen that complete forward engineering is a challenging problem, mainly
due to the same reasons we already discussed above (lack of consistency definition
and development process).

Concerning round-trip engineering in particular, there are several existing
approaches. Assmann [Ass03] introduces mathematical definitions for round-trip
engineering and requires for a so-called automatic round-trip engineering system,
where the inverse function can be computed automatically. The Fujaba System
[NNW+00] supports round-tripping for class diagrams and realizes this by extracting
a syntax graph from the Java program. This syntax graph is then annotated for the
generation of associations in class diagrams and also control flows in so-called story
diagrams. This system is a good example of how round-tripping is currently realized
in case tools and why it also involves a certain overhead: Without a technology to
specify model transformations at a higher level of abstraction, the realization of
round-trip engineering depends on encoding many different transformations directly
on the syntax tree.

The CODEX system [LB03] aims at keeping a model consistent with a set of views
on the model. Transformations from the model to the views must be specified
manually (by graph transformation rules) but the CODEX system then automatically
computes the required inverse transformations. One key idea in the system is to

12 Shane Sendall and Jochen Küster

introduce so-called tags to remember where transformation rules have been applied
and then use these tags for the inverse transformation rules. One restriction of the
CODEX approach is that models can only be updated in a syntax-directed way which
is induced by the transformation rules.

6. Summary and Future Work

Model round-trip engineering will be a key factor for many next generation Model-
Driven Software Development approaches, because it will enable modelers to move
freely between different representations of the system under discussion. In this paper,
we have clarified a number of the issues that need to be addressed in automating
MRTE. We first explained that there is a difference between MRTE, on one side, and
forward and reverse engineering, on the other side, pointing out that MRTE is even
more challenging. We then clarified that MRTE must be based on a clear definition of
consistency of models, which is used to locate potential inconsistencies. Once these
have been detected, MRTE could make use of different model reconciliation
strategies to make the model consistent, possibly interacting with users. We further
addressed composing MRTE activities, highlighting the problem of conflicting
agendas.
 On the basis of this discussion, we proposed a number of qualities that we believe
are desirable for MRTE approaches to posses, and we suggested, in some cases,
possible directions toward solutions. Clarifying this domain is an important first step
towards being able to systematically automate round-trip engineering of models, at
least in specific cases.

As part of future work, we are interested in better understanding and enumerating
different reconciliation strategies and understanding the kind of questions that we can
ask users (in interactive mode) and understanding which situations suit which
reconciliation strategies and schemes. We also plan on looking into improving current
model transformation approaches for expressing model reconciliation. Furthermore,
we intend to investigate how we could integrate the tasks of defining consistency,
decide consistency, and resolve consistency into a single homogenous, but accessible
approach.

Acknowledgements

The authors would like to thank Rainer Hauser and, in particularly, James Rumbaugh
for their very helpful comments and suggestions for this paper.

References

[Ass03] U. Assmann; “Automatic Roundtrip Engineering”. ENTCS 82, No. 5, 2003.
[Bor04] Borland; “Together Control Center”, 2004.

http://www.borland.com/together/controlcenter/index.html
[BSM+03] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. Grose; “Eclipse Modeling

Framework”. Addison-Wesley Professional, 2003.
[CH03] K. Czarnecki, S. Helsen; “Classification of Model Transformation Approaches”.

Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of
the Model Driven Architecture, USA, 2003.

Taming Model Round-Trip Engineering 13

[EK+01] G. Engels, J. Kuester, L. Groenewegen, R. Heckel; “A Methodology for Specifying and
Analyzing Consistency of Object-Oriented Behavioral Models”. V. Gruhn (ed.):
Proceedings of the 8th European Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-9), ACM Press,
Vienna, Austria, September 2001, pp.186-195.

[FEL+98] R. France, A. Evans, K. Lano, B. Rumpe; “Developing the UML as a formal modeling
notation”. Computer Standards and Interfaces: Special Issues on Formal Development
Techniques, 1998.

[Gen04] Gentleware; “Poseidon Professional Edition”, 2004.
http://www.gentleware.com/products/descriptions/pe.php4

[Kue04a] J. Kuester; “Towards Inconsistency Handling of Object-Oriented Behavioral Models”.
Proceedings International Workshop on Graph Transformation (GT-VMT'04), Barcelona,
Spain, March 2004.

[Kue04b] J. Kuester; “Consistency Management of Object-Oriented Behavioral Models”. PhD
Thesis, University of Paderborn, March 2004.

[KW03] A. Kleppe, J. Warmer; “Do MDA Transformations Preserve Meaning? An investigation
into preserving semantics”. MDA Workshop, York, UK, November 2003.

[KWB03] A. Kleppe, J. Warmer, W. Bast; “MDA Explained: The Model Driven Architecture–
Practice and Promise”. Addison-Wesley, 2003.

[LB03] H. Larrson, K. Burbeck; “CODEX – An Automatic Model View Controller Engineering
System”. Proceedings of Workshop Model Driven Architecture, Foundations and
Applications, CTIT Technical Report TR-CTIT—03-27, University of Twente, 2003.

[NNW+00] U. Nickel, J. Niere, J. Wadsack, A. Zündorf; “Roundtrip Engineering with FUJABA”.
Proceedings of 2nd Workshop on Software-Reengineering (WSR), Bad Honnef, Germany
(J. Ebert, B. Kullbach, and F. Lehner, eds.), Fachberichte Informatik, Universität Koblenz-
Landau, August 2000.

[OD04] Objects by Design; “UML Modeling Tools”, 2004.
http://www.objectsbydesign.com/tools/umltools_byCompany.html

[Omg02a] Object Management Group; “Request for Proposal: MOF 2.0 Query / Views /
Transformations”, 2002. http://www.omg.org/docs/ad/02-04-10.pdf

[Omg02b] Object Management Group; “Meta-Object Facility Specification”. Version 1.4.
http://www.omg.org/cgi-bin/doc?formal/2002-04-03

[Omg03a] Object Management Group; “MDA Guide Version 1.0.1”. 2003.
[Omg03b] Object Management Group; Unified Modeling Language Superstructure Specification,

version 2.0. Final Adopted Specification ptc/03-08-02, 2003.
[QMG04] QVT Merge Group; Revised submission for MOF 2.0 query / views / transformations

RFP. OMG document ad/04-04-01, 2004.
[Sen03a] S. Sendall; “Combining Generative and Graph Transformation Techniques for Model

Transformation: An Effective Alliance?” OOPSLA ’03 Workshop “Generative techniques
in the context of MDA”, 2003.

[Sen03b] S. Sendall”; “Source Element Selection in Model Transformation”. UML ’03 Workshop in
Software Model Engineering (WiSME). Proceedings published in Technical Report,
University of Bremen, 2003.

[SK03] S. Sendall, W. Kozaczynski; “Model Transformation - the Heart and Soul of Model-
Driven Software Development”. IEEE Software, vol. 20, no. 5, September/October 2003,
pp. 42-45.

[SZ01] G. Spanoudakis, A. Zisman. “Inconsistency Management in Software Engineering: Survey
and Open Research Issues”. Handbook of Software Engineering and Knowledge
Engineering, (eds.) S.K. Chang, World Scientific Publishing Co., 2001.

[Xde04] IBM Rational; “Rational Rose XDE Developer”, 2004.
http://www-306.ibm.com/software/awdtools/developer/rosexde/

