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Abstract: Round-trip engineering is a challenging task that will become an 
important enabler for many Model-Driven Software Development approaches. 
Model round-trip engineering involves synchronizing models by keeping them 
consistent, thus enabling the software engineer to freely move between different 
representations. The vision of model round-trip engineering (MRTE) is only 
realized to a limited degree in Integrated Development Environments (IDE) 
nowadays, and it proves to be a very difficult problem to solve in general. In 
this paper, our goal is to clarify some of the issues in automating MRTE and 
point out some of the high-level qualities that are desirable for MRTE 
approaches to possess. Clarifying this domain is an important first step towards 
being able to automate round-trip engineering of models. 

1. Introduction 

Many software-intensive systems are sufficiently complex that it is necessary to make 
use of abstraction, projection, and decomposition to understand, communicate, and/or 
maintain them. Software modeling practices offer a means to exploit the benefits of 
these techniques in coping with complexity and size, not only for capturing solutions 
but also the problems that are being addressed. OMG’s Model-Driven Architecture 
(MDA) initiative [Omg03a, KWB03] proposes a three-layer architecture, where each 
layer contains possibly many models, and models are related within and between 
layers. 

The use and benefit of multiple models is motivated by the principle of separation 
of concerns: there should be a close correlation between the kinds of models used to 
specify the system and the kinds of concerns of the stakeholders (problem and 
solution related) and their ability to identify, express and validate their concerns with 
respect to one or more models. Under this scheme, most modern-day software 
systems are likely to require and benefit from many interrelated models. 

Making use of multiple models in software development activities requires that, at 
least, the inconsistencies between models are understood, and ideally, that each non-
disjoint model is kept consistent with the others at important checkpoints. The ability 
to automatically maintain the consistency of multiple, changing software artifacts in 
software development environments/tools is commonly referred to as round-trip 
engineering. Changes made to one model can be propagated and reflected in another 
model using model transformation technologies [SK03, CH03]. 

In this paper, our goal is to clarify some of the issues in automating model round-
trip engineering (MRTE) and point out some of the qualities that are desirable for 
MRTE to possess. In section 2, we present an example that illustrates a challenging 
situation that can arise in MRTE but does not occur in single isolated transformations, 
such as is typically performed in forward and reverse engineering. In section 3, we 
describe the problem domain of MRTE and explain the different aspects of the 
problem that need to be addressed to better automate it. In section 4, we propose a set 
of high-level qualities that are desirable for MRTE approaches to possess. In section 
5, we review the current state-of-the-art in round-trip engineering. In section 6, we 
summarize the paper and propose future work. 
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2. Round-Trip Engineering � Forward + Reverse Engineering 

In this section, we give some background on MRTE and describe a situation that can 
arise in MRTE but does not occur in either forward or reverse engineering in 
isolation.  

A large number of software development environments/tools offer support for 
graphical models, which are typically a subset of the models possible with the Unified 
Modeling Language (UML) [Omg03b] (see [OD04] for a list of tools that support 
UML). Many of these tools provide automated support for generating programming 
language code from UML class diagrams and also generating UML class diagrams 
from programming language code (see [Xde04, Bor04, Gen04], for example). The 
first task is referred to as forward engineering and the second one, as reverse 
engineering.  

More generally, forward engineering involves generating one or more software 
artifacts that are closer in form and level of detail to the final deployable system 
compared to the input artifacts, and reverse engineering involves generating one or 
more software artifacts that abstract certain details of, and possibly present in a 
different form, the input artifacts, with the goal of recovering any information lost in 
the forward step. Some tools also support MRTE, which is similar to the combination 
of both forward and reverse engineering steps such that software artifacts, such as, 
programming language code and UML class diagrams, become synchronized at 
certain points in time. MRTE may also involve synchronizing models at the same 
level (i.e., horizontal synchronization). 

Most development tools only offer very limited support for MRTE. This is most 
probably a consequence of the difficulty in keeping multiple changing artifacts 
consistent. It is important to note that it may not be necessary to allow multiple 
artifacts to be changed over the same period, and it certainly simplifies the problem if 
only one artifact is allowed to change and the other ones are simply (read-only) views. 
For example, MRTE is typically not required between programming language code 
and binary code because it is assumed that the binary code will not be changed (which 
may not always be a valid assumption1). In this situation, forward engineering is the 
compilation process, which produces the binary, and reverse engineering, which is 
typically used when the original source code is no longer available, produces source 
code similar (but usually not the same, due to information loss in the optimization 
activities of compilation) to the original source code. 

Both forward and reverse engineering steps involve transforming one or more 
artifacts into one or more other artifacts. This task is typically a single, isolated 
transformation, where any information in the target artifact is not considered, and 
typically a new artifact is created, possibly replacing the previous version, if one 
exists. In some cases, forward and reverse engineering may be optimized so that only 
incremental transformation is performed, i.e., only the changed modules are 
transformed, rather than all artifacts, e.g., incremental compilation.  

In contrast, MRTE requires that information in the target artifact is preserved and 
not “clobbered” on the return trip. This also indicates that the intention behind MRTE 
is to reconcile models, rather than just transform them in a given direction. For 
example, in round-tripping UML class diagrams and Java, it would usually be 
undesirable for the names and form of the associations to be changed in the class 
diagram if an unrelated change is made to the Java code. Such a scenario is 
conceivable if only reverse engineering is applied, as associations are not first-class in 

                                                           
1 As compilers have become better at producing code, there is less of a tenancy to change the 

binary code. However, this was not the case in the early days of compiler technology. 
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Java and thus would need to be generated without knowing their original property 
values. This kind of situation arises whenever there is not sufficient information in the 
source artifacts to reconstruct the target artifacts to their previous form [KW03].  

To illustrate such a situation, Figure 1a shows two models that are related by a 
transformation, called “SquashClassHierarchyTrans”, that maps the class hierarchy 
defined in the LHS model to a single “squashed” class in the RHS models, i.e., all of 
the most specialized methods and attributes of the class hierarchy are mapped into the 
single RHS class. Now, considering the return trip, Figure 1b.i shows that the 
transformation from RHS to LHS may result in any number of solutions that will 
form a consistent state.  

If reverse engineering is applied to generate the LHS model, it does not consider 
the existing form of the LHS class hierarchy, and as such, it would typically just use 
some form of default configuration or let the user decide, e.g., it creates two classes 
with an inheritance relationship between them. Note that the information about the 
class hierarchy was lost in the forward engineering step, i.e., the mapping from left-
to-right. In the MRTE case, it is necessary to be able to trace back the original classes: 
A, B, C, on the return trip (see Figure 1b.ii) and apply the necessary changes to these 
classes in accordance with the changes made to class X. It is also interesting to note 
that if X was deleted and replaced by a class Y, then the round-trip would be nothing 
more than a reverse engineering step, because this information would not be 
applicable. From hereon in, we refer to the information recorded to track the 
relationships established between elements as trace information.  
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LHS Model RHS Model
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… BB
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Figure 1: Mapping a class hierarchy to a single “compact” class: (a) mapping a 

class hierarchy to a single class; (b.i) the inverse mapping from a single class to a 
class hierarchy (any number of solutions are possible for LHS); (b.ii) tracing back to 

the class hierarchy from class in the RHS Model. 

In this paper, we concentrate on round-trip engineering of models, where we 
(artificially) define a model to be any software development artifact that has, and 
complies to, a corresponding metamodel, for example, specified using OMG’s Meta 
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Object Facility (MOF) [Omg02b]. This bias also points to our focus on model 
transformations that make use of metamodel definitions in accessing metadata 
[Sen03a, Sen03b].  

For the sake of restricting the scope of this paper, we do not address the issues that 
surround concurrent updating of models by assuming that each change is only made 
to a model if it is in a stable state, and we do not describe the additional complexities 
that surround optimistic version control with respect to MRTE. Furthermore, we do 
not address performance issues in propagating and applying highly frequent changes, 
although we do propose an incremental approach, which alleviates some problems 
with scalability. As such, these areas are out of the scope of this paper.  

3. The Problem Domain of Model Round-Trip Engineering  

In this section, we briefly describe the problem domain of MRTE and explain some of 
the issues involved in composing MRTE activities. 

Given a set of models (possibly at varying levels of abstraction), MRTE is a 
technique that allows the software developer to move freely between these models 
and change them as seen fit, where changes made to each one are reflected in the 
other ones, keeping each one consistent with the others. 

MRTE can be divided into four general steps:  
1) defining under what circumstances the models in question are consistent and 

inconsistent 
2) deciding when inconsistent models should be made consistent again 
3) devising a plan for reconciling the models according to the intent and 

expectation of the user  
4) applying the devised plan by reconciling the models 

  
Step 1 requires a definition of consistency and step 2 requires a means to evaluate 

whether it is satisfied or not by the model states. This point is further elaborated in 
section 3.1. In considering step 3, the challenge is to find an appropriate approach for 
working out which changes are possible to reconcile the models and present them in a 
form that is accessible to the user. This point and step 4 is elaborated in section 3.2. 

3.1. Defining Consistency and Deciding When Models Are Inconsistent 

To be able to decide whether a set of models is consistent or not, it is necessary to 
first understand what makes the models consistent and inconsistent with respect to 
each other. This requires an understanding of the semantics of each model and a 
definition of the relationships between them. Theoretically, the relationships between 
the elements of each model can be formally understood if the semantics of each 
model are translated into a common semantic domain, where 
equivalences/refinements can be mathematically verified or reasoned about [EK+01, 
FEL+98]. However, in practice, this step is usually performed informally, which is 
probably due to the significant overhead of performing such a task formally and a 
lack of tool support. In both cases, it is necessary to clarify in which states models are 
consistent and in which states they are inconsistent. We refer to this (informal or 
formal) clarification as a consistency definition. This definition is the basis for a 
function that can be used to decide whether the models are consistent or not in a given 
(stable) system state. 
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Informally clarifying the consistency relationships between models can be 
performed in a number of ways and can also depend on the intention of the models’ 
architect(s). For example, in some cases, models may simply contain a subset of 
common information, e.g., a UML interaction diagram contains message instances 
that correspond to the method names of the respective classes in a UML class 
diagram. In other cases, a correspondence has a less direct similarity, e.g., the 
presence of an account in one model means there must be three corresponding 
contracts in another model. Furthermore, in other cases, it may be easier to define 
consistency in terms of negative conditions, e.g., the presence of a loan in one model 
means there must be no checking accounts in another model. 

3.2. Devising a Plan for Reconciliation and Realizing It 

Once inconsistencies are detected, the necessary changes to the models need to be 
made to make them consistent again, if possible. This problem has been well studied 
in the field of software engineering and information systems and is often referred to 
as inconsistency management [SZ01]. In general, since elements can be added, 
modified, and deleted in various models, different strategies can exist for reconciling 
models, according to the consistency definition; such strategies are also known as 
inconsistency handling policies. 

The main challenge that is faced is in understanding the intent and expectation of 
the user with respect to reconciliation. Clearly, the expectation may be different for 
different users and for different contexts. Once the user’s intention is known, e.g., 
given a list of possible reconciliation schemes to choice from, the chosen scheme 
must be performed to reconcile the models, which should ensure that the effect of 
updating models in each case leads to a stable and consistent state.  

To illustrate this problem, Figure 2 revisits the SquashClassHierarchyTrans 
transformation, which is used as the context for round-tripping between a class 
hierarchy and a single compact class.  

Figure 2a shows the initial state (before reconciliation is attempted): the LHS 
model has 3 classes, each with one attribute, and the RHS model is empty. Figure 2b 
shows the desired result of reconciling the two models. Note that the strategy of 
reconciliation used here implies that adding new elements is preferred over deleting 
existing elements for reconciling the models. In this case, it makes no sense to delete 
elements that have just been created to find a consistent state, even if two empty 
models are nevertheless consistent. Figure 2c shows the result of the reconciliation 
activity, which was triggered by the deletion of the attribute b from the RHS model. It 
also highlights how reconciliation makes use of the trace information to ensure that no 
information is “clobbered” on the return trip. Figure 2d shows the result of the 
reconciliation activity, which was triggered by the addition of the attribute d to the 
RHS model. In this case, no assistance can be derived from the trace information, so 
the attribute d is added to the root class of the hierarchy. We suppose that this type of 
decision is usually based on some default behavior or user input. Note that the 
decision of where to place it has no impact on the consistency of the two models. In 
other words, it would have been equally valid to place the attribute in class B or C and 
the models would still be consistent. Finally, Figure 2e shows the result of the 
reconciliation activity, which was triggered by the addition of the attribute e to the 
LHS model, where the new attribute e has been added to class C. 
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Figure 2: Mapping a class hierarchy to a single “compact” class.  

(a) shows the initial state of LHS and RHS models (before they are reconciled);  
(b) shows the result of reconciling the LHS model to an empty RHS model;  

(c) shows the result of reconciling the models after attribute b has been removed from 
RHS model;  

(d) shows the result of reconciling the models after adding attribute d to RHS model;  
(e) shows the result of reconciling the models after adding attribute e to LHS model.  

3.3. Composing MRTE Activities  

MRTE activities may not be isolated; different MRTE activities may have 
overlapping domains. In fact, it is likely that given a set of models that need to be kept 
consistent, it is easier to establish multiple MRTE activities between subsets of the 
models, rather than a single MRTE activity over all models. For instance, it may be 
easier to express, and more intuitive to understand, bi-directional relationships, 
compared to multi-directional ones, i.e., with a cardinality greater than two. This 
notion of composition requires that MRTE activities that share domains do not have 
conflicting agendas. In other words, it is necessary to ensure that the combined 
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constraints on each shared domain are satisfiable. In some cases, constraints on shared 
domains may not be contradictory per se, but they may nevertheless lead to 
unexpected or undesired behavior.  

To illustrate such a situation, Figure 3 revisits the earlier 
SquashClassHierarchyTrans example of MRTE and introduces another MRTE 
activity (relating Model2 and Model3), where the two activities have Model2 in 
common. Consistency between Model2 and Model3 is defined in terms of a one-to-
one correspondence between attributes of classes in Model2 and attributes in a class 
composition hierarchy in Model3. In addition, a constraint is defined that asserts that 
any class in Model3 cannot contain a public attribute (public visibility is 
diagrammatically shown with a prefixed ‘+’; ‘-‘ means private visibility). This 
constraint poses a problem for the scenario given in Figure 3, which we now describe.  

Figure 3 shows the result of public attribute e being added to Model1 and the 
update made by MRTE activity 1 to reconcile Model2 to Model1. Up until this point, 
all attributes have private visibility. A problem arises, however, for MRTE activity 2 
because it cannot reconcile Model3 to Model2 by simply adding the attribute to one of 
the classes Model3, due to the constraint stated earlier. Hence, MRTE activity 2 
would need to delete attribute e from class X in Model2 to make the models consistent 
again. So if MRTE activity 2 does delete public attribute e from class X, the question 
arises as to how MRTE activity 1 will react. MRTE activity 1 has two possible paths, 
either it can reconcile Model1 and Model2 by deleting attribute e from Model1, or it 
can add attribute e back to Model2. The first scenario will lead to a stable state, but 
probably a confused developer, because after s/he adds attribute e to Model1, it will 
be subsequently removed (hence the confusion for the developer). The second 
scenario may lead to an infinitely changing state where MRTE activity 1 and 2 play 
against each other by continually adding and removing attribute e to Model2—the 
state will only become stable if attribute e is removed from Model1. Clearly, this 
problem can be addressed by asking the user which reconciliation scheme should be 
taken, but it nevertheless points out the possibility for different MRTE activities to 
have conflicting agendas.   

In general, it is important to note that inconsistencies between models may be 
necessary, if a number of intermediate steps may be required to reach the desired, 
consistent state — this can often be the case in requirements-related activities. In such 
cases, the boundary of a stable state needs to be defined, together with a loose 
synchronization policy. 
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Figure 3: Two MRTE activities that have a common domain (Model2): it shows the 
result of reconciliation according to MRTE activity 1, after an attribute was added to 

Model1, which breaks the consistency relationship between Model2 and Model3 
according to MRTE activity 2. 

In the context of UML with all its nine diagram types, it would seem that there is 
quite some scope for MRTE between the different diagram types. However, because 
UML is defined by a single metamodel, the problem of keeping each view consistent 
with all the others can be moved to the problem of round-tripping each view to an 
amalgamated model, which is an instance of the whole UML metamodel. This 
situation is illustrated in Figure 4, where each view (e.g., Class View1) takes its 
diagram type’s perspective of the current system, and the amalgamated system model 
is the composite of all the views. Having the amalgamated model also means that 
there need only be a single MRTE relationship with other artifacts, e.g., programming 
language code. As an aside, the internal consistency of the amalgamated model will 
still need to be checked and reconciled to be well-formed, which in itself is an 
exercise in inconsistency management; this is represented by the validation arrow in 
Figure 4. The validation activity would preferably allow inconsistent intermediate 
states, until a final consistent state is reached, at which time it would resolve the 
inconsistencies. 
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Figure 4: Round-trip engineering UML models. 

 

4. Desirable Qualities of MRTE Approaches 

In this section, we present and motivate a number of qualities that we believe are 
desirable for MRTE approaches to posses, drawing some conclusions from earlier 
sections. We also discuss each point, highlighting some approaches/techniques that 
could be used to address them. 

4.1. Ability to Manage Trace Information 

In section 2, we motivated the need for keeping trace information in MRTE, and 
highlighted that the ability to trace back to existing model elements is one of its main 
differences to forward and reverse engineering (see Figure 1). Trace information is 
needed if information is lost in the transformation from one model to the other. In 
other words, trace information is needed whenever the relationship between elements 
in the respective models is not bijective (i.e., not one-to-one and onto). As such, 
obtaining and managing trace information could be seen as a requirement for MRTE, 
and not just a desirable quality. 

Two approaches are commonly used in capturing trace information: 1) augment the 
models with the additional information needed for the return trip using auxiliary 
features [LB03], such as, comments; or 2) store the trace information externally so 
that the inverse transformation can use it on the return trip (called a reconstruction 
model in [Kue04a]). Option 1 is a common approach in round-tripping UML class 
diagrams to programming language code, where information about associations, etc. 
are stored in code comments. One problem that arises with using code comments is 
that as soon as the comments are changed/removed, the trace information becomes 
corrupted and the return trip can no longer make use of it. Also, adding extra 
information to artifacts can make them less aesthetically pleasing.  
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Option 2 remedies both these problems, so long as the trace information is kept up-
to-date with any changes made to the models; this is because the trace information 
cannot be indirectly changed, i.e., by changing the artifacts, and the artifacts do not 
contain the trace information themselves, respectively. However, one problem that 
can still arise with both options is that different tools could define their own 
proprietary trace structures and hence interoperability between tools would not be 
possible. OMG’s emerging MOF 2.0 standard will include a 
Query/View/Transformation (QVT) specification [Omg02a, QMG04]. This upcoming 
specification is moving towards standardizing trace information for model 
transformation, which is an important step forward for IDEs that will support MRTE. 

4.2. Intuitive and Concise Approach 

When specifying MRTE activities, there are a number of capabilities that must be 
taken into consideration in judging the intuitiveness and conciseness of the approach: 

• the ability to precisely define the meaning of consistency between models; 
• the ability to correctly decide when models become inconsistent and when it 

is necessary to reconcile them; 
• the ability to reconcile models, according to the consistency definition and to 

the intention and expectation of the user; and 
• the ability to connect the above three abilities in a seamless and useable way. 

Ideally, a single specification could be used for all three tasks, i.e., consistency 
definition, deciding consistency, and model reconciliation. The underlying 
implication of such a specification is that it be declarative in form. However, care 
needs to be taken that the three different usage requirements do not result in 
idiosyncrasies of the language, which could lead to difficulties in comprehension and 
expression for users. 

With the task of model reconciliation, it is important that each case of model 
evolution can be clearly specified and understood in terms of the way that the 
reconciliation activity will react (see section 3). For example, how should the 
reconciliation activity react to the creation of new elements, modification and deletion 
of existing elements that are under trace relationships and not, etc. 

4.3. Understanding the Intention and Expectation of Users 

In Figure 2d, we saw an example where a number of solutions are possible, which all 
correctly reestablish the consistency between models. In such cases, it often makes 
sense to prompt the user for a decision, or use a default setting that the user is aware 
of and happy with, e.g., place attribute in top-most class of hierarchy. Thus, 
depending on the situation and the number of possible ways to reconcile models, it 
should be possible to offer three different modes of reconciliation schemes: 
interactive, default, and heuristic-driven. Interactive mode involves the user, and 
default and heuristic-driven are fully automated. 

4.4. Assistance with Detecting Conflicts between MRTE Activities 

As we described in section 3, it may be more straightforward to break up the MRTE 
of a set of models into a set of MRTE activities between subsets of the models in the 
original set. Figure 3 however illustrated a problem that can arise when composing 
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MRTE activities. The problem comes about because different reconciliation activities 
that share domains can have conflicting agendas. Thus, it would be valuable to be 
able to detect such conflicts so that they can be found before the system is deployed. 
The ability to decide if there are conflicts between the agendas of reconciliation 
activities will depend on the language used to express the agendas. In many cases, it 
may not be decidable, requiring some form of heuristic-driven approach instead. 

5. Related Work 

In this section, we survey some of the work that is related to round-trip engineering 
and inconsistency management. 

As round-trip engineering integrates technology from different areas of software 
engineering, there exists a large amount of related work. As already mentioned, 
inconsistency management [SZ03] is a technique for making models consistent again. 
Inconsistency management has been studied for viewpoint-oriented approaches within 
software engineering, giving rise to a number of different approaches. In particular, 
approaches studying consistency management for UML models (see e. g. [Kue04b] 
and [EK+01]) can be seen as one foundation for a solid definition of round-trip 
engineering. We already pointed out that a basis of round-trip engineering is a clear 
definition of required consistency between the models which is usually one purpose 
of consistency management. Concerning UML models, this task is complicated by the 
absence of a formal semantics and a common development process. The methodology 
presented in [EK+01] and elaborated in [Kue04b] can be applied to define 
consistency for a given set of UML models. On the basis of that, round-trip 
engineering can then provide the necessary technology for enabling the modeler to 
move freely between different models. 

Another set of related techniques to round-trip engineering can be seen in 
approaches that deal with forward engineering, e.g., generating Java programs from 
UML models. Whereas current tool support is mainly restricted to structural models, 
there exist also approaches for including behavioral models. Engels et al. describe an 
approach for generating Java code from UML collaboration diagrams. Already there, 
it could be seen that complete forward engineering is a challenging problem, mainly 
due to the same reasons we already discussed above (lack of consistency definition 
and development process).   

Concerning round-trip engineering in particular, there are several existing 
approaches. Assmann [Ass03] introduces mathematical definitions for round-trip 
engineering and requires for a so-called automatic round-trip engineering system, 
where the inverse function can be computed automatically. The Fujaba System 
[NNW+00] supports round-tripping for class diagrams and realizes this by extracting 
a syntax graph from the Java program. This syntax graph is then annotated for the 
generation of associations in class diagrams and also control flows in so-called story 
diagrams. This system is a good example of how round-tripping is currently realized 
in case tools and why it also involves a certain overhead: Without a technology to 
specify model transformations at a higher level of abstraction, the realization of 
round-trip engineering depends on encoding many different transformations directly 
on the syntax tree.  

The CODEX system [LB03] aims at keeping a model consistent with a set of views 
on the model. Transformations from the model to the views must be specified 
manually (by graph transformation rules) but the CODEX system then automatically 
computes the required inverse transformations. One key idea in the system is to 
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introduce so-called tags to remember where transformation rules have been applied 
and then use these tags for the inverse transformation rules. One restriction of the 
CODEX approach is that models can only be updated in a syntax-directed way which 
is induced by the transformation rules. 

6. Summary and Future Work 

Model round-trip engineering will be a key factor for many next generation Model-
Driven Software Development approaches, because it will enable modelers to move 
freely between different representations of the system under discussion. In this paper, 
we have clarified a number of the issues that need to be addressed in automating 
MRTE. We first explained that there is a difference between MRTE, on one side, and 
forward and reverse engineering, on the other side, pointing out that MRTE is even 
more challenging. We then clarified that MRTE must be based on a clear definition of 
consistency of models, which is used to locate potential inconsistencies. Once these 
have been detected, MRTE could make use of different model reconciliation 
strategies to make the model consistent, possibly interacting with users. We further 
addressed composing MRTE activities, highlighting the problem of conflicting 
agendas. 
   On the basis of this discussion, we proposed a number of qualities that we believe 
are desirable for MRTE approaches to posses, and we suggested, in some cases, 
possible directions toward solutions. Clarifying this domain is an important first step 
towards being able to systematically automate round-trip engineering of models, at 
least in specific cases. 

As part of future work, we are interested in better understanding and enumerating 
different reconciliation strategies and understanding the kind of questions that we can 
ask users (in interactive mode) and understanding which situations suit which 
reconciliation strategies and schemes. We also plan on looking into improving current 
model transformation approaches for expressing model reconciliation. Furthermore, 
we intend to investigate how we could integrate the tasks of defining consistency, 
decide consistency, and resolve consistency into a single homogenous, but accessible 
approach.  
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