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Expected Routing Overhead for Location Service in
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Richard J. La and Eunyoung Seo

Abstract—We study routing overhead due to location informa-
tion collection and retrieval in mobile ad-hoc networks employing
geographic routing with no hierarchy. We first provide a new
framework for quantifying overhead due to control messages
generated to exchange location information. Second, we compute
the minimum number of bits required on average to describe the
locations of a node, borrowing tools from information theory. This
result is then used to demonstrate that the expected overhead is
Ω(n1.5 log(n)), where n is the number of nodes, under both
proactive and reactive geographic routing, with the assumptions
that (i) nodes’ mobility is independent and (ii) nodes adjust their
transmission range to maintain network connectivity. Finally,
we prove that the minimum expected overhead under the same
assumptions is Θ(n log(n)).

Index Terms—Data communications, mobile communication
systems, network management, routing protocols.

I. INTRODUCTION

A mobile ad-hoc network (MANET) is a collection of
mobile nodes that construct and maintain a network without
a centralized authority. Unlike in a more traditional wired
network (e.g., the Internet), there are no dedicated routers
or switches responsible for forwarding packets; instead, every
node participates in relaying packets. In addition, since nodes
are assumed mobile, one-hop connectivity between nodes and
the network topology can change over time. Consequently,
underlying routing protocols are asked to cope with potentially
frequent changes in topology.

Recently there has been much research on understanding the
network transport throughput, or simply transport throughput,
of multi-hop wireless networks: In their seminal paper [12]
Gupta and Kumar investigated the transport throughput of
static multi-hop wireless networks and showed that the trans-
port throughput increases, at best, as

√
n with an increasing

number of nodes n, i.e., O(
√
n).1 This finding implies that

per-node throughput decreases to zero as n→∞. Grossglauer
and Tse [10] exploited the mobility of nodes and demonstrated
that, if unbounded delays can be tolerated, under some techni-
cal conditions per-node throughput of Θ(1) can be achieved.
To bridge the gap in the transport throughput between static
networks and mobile networks, Sharma et al. [30] examined
the trade-off between the transport throughput and delays that
must be tolerated in order to achieve certain level of transport
throughput. Other related work can be found in [6], [7], [19],
[21].
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1The notation we use throughout the paper is explained in subsection III-C.

A. Background

In most of these studies, however, authors do not explicitly
address the issue of routing overhead. To be more precise,
they do not explain how necessary routing information is
obtained and how much network resource (e.g., transport
throughput) is required to obtain needed routing information
in order to achieve claimed transport throughput. Therefore, in
order to better understand the scalability of MANETs with an
increasing number of nodes and to find out how to dimension
them properly (e.g., bandwidth), one should examine how
routing overhead scales in MANETs, in particular, in compar-
ison to network transport throughput. A good understanding
of routing overhead may also allow us to correctly identify
critical bottlenecks and to deal with them more effectively.

To the best of our knowledge, the first serious attempt
at an analytical study of protocol overhead was carried out
by Gallager in [8]. There are also several recent analytical
studies on routing overhead in MANETs, some of which we
summarize here: Zhou and Abouzeid [35], [36] applied the
tools from information theory to examine the overhead due to
the changes in network topology under two-tier hierarchical
routing. Their key idea is to model the time-varying network
topology as a stochastic process and to evaluate the overhead
required to describe the local network topology in subregions
to cluster heads and to distribute the global ownership infor-
mation to all cluster heads. Then, they studied the scaling laws
of the memory requirement and routing overhead under three
different physical scalings of the network.

In another study [3] Bisnik and Abouzeid formulated the
problem of characterizing the minimum routing overhead as a
rate-distortion problem. They considered geographic routing
with location servers that have known locations and store
location information of other mobile nodes, and investigated
the information rate required to satisfy a prescribed squared-
error distortion constraint. Viennot et al. [34] examined control
overhead under both proactive and reactive routing, and sug-
gested that control overhead is proportional to the square of
the number of nodes in the network.

B. Motivation

In this paper we take another step towards understanding
routing overhead in MANETs: We assume that nodes employ
flat geographic or position-based routing without designated
location servers that maintain the location information of
mobile nodes. In other words, unlike the settings studied
in [35], [36], there is no (two-tier) hierarchy in routing or
specialized location servers whose locations are known to
mobile nodes. Location servers with fixed locations may be
vulnerable to attacks. However, we will show that we can use
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existing nodes in the network to form virtual location servers
to provide similar location service to nodes.

The goal of our study is twofold: First, we aim to provide
a new framework for studying routing overhead, especially
for geographic routing, which can capture the differences
that arise from the specific schemes employed to disseminate
and acquire location information. To this end we develop a
new framework, borrowing tools from information theory to
compute the minimum average number of bits required to
describe approximated locations of mobile nodes. Secondly,
based on the proposed framework, we explore how routing
overhead scales with the network size under different routing
schemes. In particular, we focus on the routing overhead only
due to dissemination and acquisition of location information,
i.e,. location service.

Although information theoretic approach has been used to
study routing overhead in the past (e.g., [3], [35], [36]), our
approach is quite different from those employed by existing
studies. First, we focus on the scenario of practical interest
where the network is connected with a high probability.
To be more precise, we assume that the transmission range
of the nodes is selected so that the network is connected
with probability approaching one as the number of nodes
grows. This issue of network connectivity has been studied
extensively by various researchers (e.g., [11], [15], [24]), and
we summarize the results relevant to our study in subsection
II-B. With this assumption in place, we compute the minimum
average number of bits needed to describe the approximated
locations of the nodes to support geographic routing.

Second, rather than simply computing the “information
rate” required to describe the changes in network topology
or node locations subject to a constraint on distortion in
location information as done in [3], [35], we identify suitable
quantization levels for approximating the node locations for
the purpose of geographic routing. This is motivated by the
following viewpoint: When a network is entrusted to provide
timely exchange of information between nodes, inaccurate
location information of nodes should not prevent the network
from carrying out its task, regardless of the locations of the
nodes. Therefore, the location information used for routing
ought to be accurate enough to allow successful delivery of
packets to their respective destinations.

Another important difference from previous studies, in
particular the work by Bisnik and Abouzeid [3], is that, as
proposed by Gupta and Kumar [12], in order to be more
consistent with the measure of transport throughput and re-
quired resource consumption, we adopt the unit of bits×meters
per unit time for measuring overhead and explicitly take
into account the distances traveled by control messages when
computing the overhead. As we will demonstrate, this is
necessary for capturing a disparity in resource expenditure by
control messages under different geographic routing schemes.

C. Summary of main results

The main contributions of this paper can be summarized as
follows:
i. We show that, under the assumption that nodes employ the
critical transmission range (CTR) for network connectivity,

the minimum expected number of bits required on average to
describe the approximated locations of a node for successful
routing of packets based on provided location information
is asymptotically log(n) as the number of nodes n grows
[Section IV].2

ii. Making use of the first finding, we examine the expected
routing overhead due to location service under both proactive
and reactive geographic routing3 where the mobility of the
nodes is independent, and demonstrate that the expected
overhead under these schemes is Ω(n1.5 · log(n)) [Section V].
iii. Finally, we prove that, under the same mutually indepen-
dent mobility of the nodes, the minimum expected overhead
required for location service is Θ(n · log(n)) [Section VI].

Let us provide some intuition behind our findings. There are
three main sources of overhead under consideration: First, a
linear term n in the scaling law of expected routing overhead
in both Ω(n ·

√
n · log(n)) and Θ(n · log(n)) comes from the

assumption that there are n nodes (moving according to n
mutually independent mobility processes).

Secondly, log(n) term reflects the average number of bits
carried by control messages containing both the identity (ID)
and the location information of a node; if source-destination
pairs are selected randomly, at least log(n) bits (and at most
log(n)+1 bits) are needed to identify a node. In addition, our
first finding states that the expected number of bits required on
average to describe the approximated locations of a node for
geographic routing is asymptotically log(n). Therefore, this
tells us that the expected number of bits carried by a location
information message is on average Θ(log(n)), giving us Θ(n ·
log(n)) for the minimum expected routing overhead.

Thirdly, the additional
√
n term in Ω(n ·

√
n · log(n)) is

caused by costly flooding of control messages under both
proactive and reactive geographic routing schemes. It is im-
portant to note that capturing this key source of the discrep-
ancy in the scaling laws of routing overhead, hence resource
requirements, demands accounting for the distances traveled
by control messages. In other words, simply computing the
information rates needed to describe the changes in topology
or node locations would not disclose the disparity caused by
the details of employed routing schemes.

While we assumed that the transmission ranges of the nodes
are set to the CTRs to facilitate our analysis, we show that
this assumption is not necessary; our main findings still hold
under a mild technical condition even when the transmission
ranges of the nodes are of different orders (Sections V and VI).
Furthermore, we demonstrate that they are still true under a
quasi unit disk or cost based network connectivity model [20],
[29] (subsection VII-D).

Although our findings are based on simple models for
mathematical tractability, they already shed initial light on
major sources of overhead due to location service. They also
tell us how various assumptions, including those on nodes’
mobility and the selection of source-destination pairs, affect

2Throughout this paper log(·) = log2(·), i.e., logarithm to base 2.
3A geographic routing scheme is said to be proactive if every node tries

to maintain consistent, up-to-date location information of all other known
nodes. Likewise, a geographic routing scheme is called reactive if the location
information is provided only upon request.
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the overhead. Thus, our study hints at how the overhead may
change as some of these assumptions are relaxed or adjusted
to model more realistic scenarios, inviting further studies.
D. Organization

The rest of the paper is organized as follows: Section
II describes the problem we are interested in studying and
provides a short summary of the results on network con-
nectivity. Section III explains the mobility models, assump-
tions we introduce on mobility and the parametric scenario
used to study the scaling law of expected routing overhead
due to location service under different routing schemes. The
minimum expected number of bits required on average to
describe the approximated locations of a node is derived in
Section IV, followed by a discussion on how expected routing
overhead scales under proactive and reactive geographic rout-
ing schemes in Section V. We study the minimum expected
routing overhead and describe a scheme that achieves the
same scaling order as the minimum expected routing overhead
in Section VI. A discussion on our findings is provided in
Section VII.

II. SETUP

Throughout the paper we use a discrete-time model and
assume that time is divided into contiguous timeslots t ∈
Z+ := {0, 1, 2, . . .}, where the duration of a timeslot is taken
to be a unit time. Although the mobility of a node is continuous
in real life, we approximate it using a discrete-time stochastic
process and assume that the location of a node is fixed during
a timeslot. This may be a reasonable assumption when a node
is (quasi-)stationary much of the time and spends a relatively
small fraction of time in transition between locations or if
the duration of timeslot is small enough so that, with high
probability, the location of a node does not change significantly
over the duration of a single timeslot.4 A similar assumption
is often introduced in the literature (e.g., [10], [35], [36]).

In a multi-hop wireless network, one-hop connectivity be-
tween nodes is likely to be maintained through exchange
of control messages (e.g., HELLO messages) at the data
link layer. For our analysis we model the one-hop network
connectivity using a random geometric graph (RGG) [23]:
Each node i is aware of and can communicate with all
other nodes within its communication or transmission range γ
(according to the Euclidean distance), which we call immediate
neighbors, or simply neighbors, of node i. We say that there is
a bi-directional link, or simply a link, between two neighbors.

The RGG model has been used extensively in the literature
as an approximate model to one-hop connectivity of wireless
networks (e.g., [11], [14], [15], [16], [28]). The transmission
range γ in the RGG model is assumed to be determined by the
transmit power employed by the nodes, channel propagation
and the signal-to-noise ratio corresponding to a bit error rate
constraint [11]. Under a channel loss model often used in the
literature, the received power Prcv is related to the transmit
power Ptx and the distance d by

Prcv = Ptx ·Gtx ·Grcv · L · d−α, (1)

4However, with small probability, the location of a node may change
significantly from one timeslot to next.

where Gtx and Grcv are the transmitter and receiver antenna
gain, respectively, L accounts for system loss and other factors
that may depend on the wavelength, and α is the path loss
exponent [27]. If one requires that the received power Prcv ≥
Pmin for some threshold Pmin, we must have

d ≤
(
Ptx ·Gtx ·Grcv · L

Pmin

)1/α

(2)

and Ptx ∝ dα. While our analysis is carried out under the
RGG model, we will discuss how our results can be extended
to different network connectivity models such as quasi unit
disk model [20] and cost based model [29] in Section VII.

Throughout the paper we assume that every node knows its
immediate neighbors. In addition, when a packet reaches an
immediate neighbor of its destination, the neighbor can deliver
it to the destination in one-hop without any other information.

A. Geographic routing and overhead for location service

We assume that nodes are equipped with Global Positioning
System (GPS) devices and know their positions, which are
assumed accurate throughout. Each node is aware of exact
locations of its immediate neighbors.5 This can be done either
by exchanging the GPS location information between one-
hop neighbors (for example, by piggybacking it in HELLO
messages) or by observing the received signal strength and
angle in which signals arrive.

Nodes employ geographic (or position-based) routing; they
route packets using location information of the destinations
[32], [33]. It has been suggested [17], [22] that geographic
routing leads to better performance in large multi-hop wireless
networks than other routing schemes that do not exploit loca-
tion information (e.g., destination-sequenced distance vector
(DSDV) routing [25] or dynamic source routing (DSR) [18]).
A main reason for the performance gain is that, while routing
schemes such as DSDV require global topological information
that can change frequently, geographic routing allows nodes to
make local decisions based on the locations of their immediate
neighbors and the destination, without having to learn end-to-
end route information.

Obviously, for proper operation of geographic routing, the
location information of the destination contained in packets
must be accurate enough so that nodes can route them to their
destinations using the destination ID and location information.
However, more accurate location information requires more
bits, hence, larger overhead. We are interested in the case
where the provided location information of destinations is
accurate enough so that multi-hop packet routing can be
performed using the location information without having to
flood the neighborhoods of destinations with packets, while
minimizing the number of bits required to describe location
information.

Our study aims at (i) developing a new framework for
quantifying routing overhead in MANETs employing geo-
graphic routing and (ii) examining how the routing overhead

5In practice, for proper operation of geographic routing the location
information of neighbors needs to be accurate relative to the transmission
range of the nodes. However, for simplicity of exposition we assume that
nodes know the exact locations of their neighbors.
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(measured in the unit of bits×meters per unit time proposed in
[12]) required to disseminate and acquire location information
of the nodes, scales with the number of nodes. We do not,
however, concern ourselves with the delays experienced by
messages. More precisely, we assume: (i) nodes can deliver
their location information at timeslot t ∈ {1, 2, . . .} =: IN, to
any other nodes within the same timeslot (assuming network
connectivity discussed in the following subsection); and (ii)
assuming that nodes know where to access it, they can
retrieve the location information of other nodes during the
same timeslot. This implicitly assumes that the network has
sufficient bandwidth to handle all overhead, including routing
overhead, and to transport data in a timely manner. In practice,
however, the delays incurred during dissemination and/or
acquisition of location information can be non-negligible and
cause inconsistency or staleness of location information.

Exchange of control messages to discover neighbors and to
maintain links with them introduces additional overhead at the
data link layer. However, we do not consider this overhead at
the data link layer, including the overhead due to exchange
of location information with immediate neighbors, because it
does not depend on the adopted routing scheme. We refer
interested readers to a study by Bisnik and Abouzeid in [3].

B. Network connectivity and critical transmission range

A primary function of a communication network is to enable
exchange of information between nodes. When information is
time-sensitive or cannot tolerate large delays, timely delivery
of information demands that the underlying network be con-
nected. In other words, there must exist an end-to-end path
from a source to a destination (with a high probability) when
such a path is desired. This is the scenario of interest we
consider in this paper.

Recently there has been much work on connectivity of a
multi-hop wireless network (e.g., [11], [14], [15], [24], [28]).
We refer interested readers to a monograph by Penrose [23].
In particular, Penrose [24] (and later by Santi [28]) proved the
following result we will borrow: Suppose that n, n ≥ 1, nodes
are placed independently of each other, according to a common
spatial density function f with connected and compact support
D and smooth boundary ∂D. Let γ be a common transmission
range of the nodes. The network is said to be connected if,
for every pair of nodes (i, j), we can find a sequence of links
providing an end-to-end route between the two nodes.

Theorem 1 ([24], [28]): Define f? := infx∈D f(x) and
assume f? > 0. The minimum common transmission range
required for connectivity, denoted by γ?(n), satisfies

lim
n→∞

n π γ?(n)
2

log(n)
=

1

f?
with probability 1. (3)

A similar result in the case of a uniform spatial distribution
of nodes is obtained by Gupta and Kumar [11].

III. MOBILITY MODEL AND PARAMETRIC SCENARIO

This section first describes the node mobility processes we
consider, and then explains the parametric scenario we adopt to
study how the expected routing overhead for location service

increases with the network size. We define all the random
variables (rvs) and stochastic processes of interest on some
common probability space (Ω,F ,P).

A. Mobility model

Nodes move on a domain [0, D]2 =: D.6 As mentioned
earlier, we approximate the mobility of the nodes using
discrete-time processes; the mobility process or trajectory
of a node i is given by a discrete-time stochastic process
Li = {Li(t); t ∈ Z+}, where Li(t) = (Li,x(t), Li,y(t)) ∈ D
specifies the location or position of the node at time t, using
the Cartesian coordinate system. We assume that, at each
timeslot t ∈ IN, the transition from Li(t − 1) to Li(t) takes
place at the beginning of the timeslot.

The steady-state spatial distribution of the nodes is assumed
to yield a continuous density function f : D→ IR+ := [0,∞).
For each t ∈ Z+, f t denotes the joint density function of
(Li(0), . . . , Li(t)). We assume that there exist constants ξ1
and ξ2, 0 < ξ1 ≤ ξ2 < ∞, such that, for all t ∈ Z+ and for
all `t ∈ Dt+1,

0 < ξt+1
1 ≤ f t(`t) ≤ ξt+1

2 <∞ , (4)

i.e., for every finite t, the joint density function f t is non-
vanishing and is also upper bounded by ξt+1

2 over Dt+1.
This implies that node’s locations do not concentrate in some
parts of the domain D over time. For example, a two-
dimensional Brownian motion with reflection, starting with an
appropriate initial condition and sampled periodically, satisfies
this assumption. Removal of the assumption in (4) has a rather
serious consequence on network connectivity (see [13] for an
example). Its impact on expected routing overhead is discussed
in more detail in Section VII.

B. Parametric scenario

In order to study how the expected overhead scales with the
number of nodes in the network, we consider the following
parametric scenario with increasing n: For each fixed n ∈ IN,
there are n nodes moving on the domain D, and we denote
the set of nodes by N (n) = {1, 2, . . . , n}.7 We assume
homogeneous mobility of the nodes. The mobility process
of node i ∈ N (n), given by L

(n)
i := {L(n)

i (t); t ∈ Z+},
is assumed stationary and ergodic. Moreover, the mobility
processes L(n)

i , n ∈ N (n), are mutually independent.

1. Connection requests: For each i ∈ N (n) and t ∈ IN, let
A

(n)
i (t) denote the number of requests arriving at the other

nodes for a connection to node i at timeslot t. Without loss
of generality, we assume {A(n)

i (t); t ∈ IN} =: A
(n)
i , are

independent and identically distributed (i.i.d.) Bernoulli rvs
with parameter p(n) > 0. This implies that at most one other
node will generate a connection request to node i, which is
called the source of the connection, in each timeslot. We
assume that the source is equally likely to be any of the
remaining n − 1 nodes, independently of the past and the
sources of other connection requests.

6We assume a square region for convenience. However, similar results hold
with any arbitrary compact, convex domain.

7This is often called a dense network in the literature.
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Each connection request arriving at its source needs the
location information of its destination for geographic routing.
We assume that connection requests arrive at their sources at
the beginning of each timeslot t ∈ IN after nodes move to
their new locations L(n)

i (t), i ∈ N (n). The connection request
arrival processes A(n)

i , i ∈ N (n), are mutually independent
and also independent of mobility processes L(n)

i , i ∈ N (n).
Since we are interested in studying how the routing over-

head grows with the number of nodes, we assume that the
average number of connection requests to each node per
timeslot is fixed, i.e., E

[
A

(n)
i (t)

]
= p(n) = p > 0 for all

i ∈ N (n) and all n ∈ IN. Because the source of a connection
request to a node is equally likely to be any of the remaining
n−1 nodes, it is clear that, for each fixed n ∈ IN, the number
of connection requests that arrive at a node (as the source) in
a timeslot is a binomial(n− 1, p

n−1 ) rv.

2. Transmission range: We are interested in the case where
the nodes adjust their common transmission range to maintain
network connectivity as discussed in subsection II-B. There-
fore, the transmission range of the nodes should be at least
the CTR γ?(n) = c?

√
log(n)/n with c? = 1/

√
π f? [28].

In their seminal paper on transport throughput [12], Gupta
and Kumar showed that, in order to minimize interference to
other simultaneous transmissions and to maximize transport
throughput in a multi-hop wireless network, nodes should
employ the smallest transmission range while maintaining
network connectivity (i.e., the CTR γ?(n)).

In the subsequent sections we follow this finding by Gupta
and Kumar [12] and assume that nodes employ a common
transmission range of γ?(n) to maximize transport throughput
and keep the network connected with a high probability.8

Assumption 1: For each fixed n ∈ IN, the transmission
range of the nodes is given by γ?(n).

We will discuss how different choices of transmission
ranges affect our findings in Sections IV through VI.

C. Notation

In this subsection we describe the notation we will use
throughout the paper.
N1. A function a(n) is O(b(n)) if there exist 0 < c1 <∞ and
n?1 <∞ such that, for all n ≥ n?1, we have a(n) ≤ c1 · b(n).
N2. A function a(n) is Ω(b(n)) if there exist c2 > 0 and
n?2 <∞ such that, for all n ≥ n?2, we have c2 · b(n) ≤ a(n).
N3. A function a(n) is ω(b(n)) if for every c > 0, there exists
n?(c) such that, for all n ≥ n?(c), c · b(n) < a(n).
N4. A function a(n) is Θ(b(n)) if there exist 0 < c3 < c4 <
∞ and n?3 <∞ such that for all n ≥ n?3, we have c3 · b(n) ≤
a(n) ≤ c4 · b(n). Note that a(n) = Θ(b(n)) if and only if
a(n) = O(b(n)) and a(n) = Ω(b(n)).
N5. A function a(n) ∼ b(n) if limn→∞(a(n)/b(n)) = 1.

8To ensure network connectivity with high probability for finite n, the
transmission range should be set to β? · γ?(n), where β? > 1. However,
for notational simplicity we omit β? in the analysis. The omission of this
constant β? does not change our results.

IV. DESCRIPTION OF NODE LOCATIONS

First, note that the location L
(n)
i (t) ∈ D of node i at

time t is a two-dimensional continuous random vector for all
t ∈ Z+. Therefore, they cannot be described exactly with a
finite number of bits in general. Moreover, for the purpose
of routing packets using location information, exact locations
are not necessary and sufficiently accurate approximations of
locations suffice. Hence, we are interested in finding out how
accurate the location information contained in packets must
be so as to allow successful routing of packets based on the
provided location information.

The number of bits needed for approximated location infor-
mation carried by packets for geographic routing is governed
by the aforementioned required accuracy and the way location
information is encoded. The first determines the quantization
level to be selected for approximation. Bisnik and Abouzeid
[3] utilized the rate distortion theory to compute the nec-
essary information rate subject to a squared-error distortion
constraint. This approach, however, may require that different
quantization levels be used in different regions, depending on
the spatial distribution, and allows for the possibility that the
location information of nodes in an area of low spatial density
is not accurate enough for successful delivery of packets.

We argue that a communication network should be able
to deliver packets irrespective of nodes’ locations. This is
especially true when the spatial distribution of the nodes is not
correlated with their communication needs. In this case, non-
uniform approximation of location information demanded by
rate distortion theory, which does not consider the communi-
cation needs, may compromise the communication with nodes
in low spatial density areas and, hence, may be unsuitable.

In this section we investigate the minimum expected number
of bits required per timeslot to specify approximated locations
of a node to enable geographic routing. For the reason ex-
plained above, we assume that the selected quantization level
for approximating node locations does not depend on their
locations. Furthermore, as stated in subsection III-B, we focus
our study only on the case of practical interest where the
network is connected with probability approaching one, by
setting the common transmission range of the nodes to the
CTR γ?(n) = c?

√
log(n)/n.

Before stating our result, let us first briefly describe the class
of packet routing schemes we consider. Packets carry both
the destination ID and approximated location information. The
encoding and decoding rules for approximated locations are
assumed common knowledge.
1. The source of a packet encodes the location of its des-
tination, which is approximated with a selected quantization
level, using the common encoding rule and places the encoded
location information in the packet.
2. A relay node that receives a packet first checks if the
destination is an immediate neighbor. If so, it delivers the
packet to the destination. If not, it decodes the approximated
location of the destination using the common decoding rule.
It then selects an immediate neighbor that is closest to the
decoded approximated location as the next hop. Recall that
the nodes are assumed to know the precise locations of their
immediate neighbors.
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It has been observed that as the network becomes dense,
a greedy approach that either minimizes the distance or
maximizes the forward progress to the destination works well
[22]. However, when a greedy approach fails, other schemes,
such as Greedy-Face-Greedy (GFG) routing scheme [4], can
be used to guarantee the delivery.

The following lemma states that the minimum expected
number of bits needed on average to describe the approximated
locations of a node for geographic routing approaches log(n)
asymptotically as n→∞. This finding will be used to study
how the expected overhead scales under proactive or reactive
geographic routing (Section V) and to derive the scaling law
of minimum expected overhead (Section VI).

Lemma 1: The minimum expected number of bits required
per timeslot to describe approximated locations of a node
under Assumption 1, denoted by mloc(n), satisfies mloc(n) ∼
log(n).

Proof: We find lower and upper bounds for mloc(n) and
show that both bounds are asymptotically log(n).

1. Lower bound: In order to find a lower bound for mloc(n),
consider the following: Suppose that a quantization level
of 4γ?(n) is selected for approximating locations and the
domain D is divided into cells of length 4γ?(n), where
γ?(n) = c?

√
log(n)/n is the CTR introduced in subsection

II-B, as shown in Fig. 1.

*γ

γ

4

Destination

cell

Centroid

(n)

4

γ (n)

γ2

(n)

(n)

*

*

*

Fig. 1. Partition of D into cells of length 4γ?(n) on both sides.

Without loss of generality, we assume that the approximated
locations of the nodes in a cell with the assumed quantization
level are given by the centroid of the cell. This means that a
relay node forwarding a packet to the destination shown in the
figure will use the location of the centroid as the approximated
location of the destination (after decoding the location using
the common decoding rule). If none of relay nodes is an
immediate neighbor of the destination (which is more likely
than not), the packet will eventually enter the inner circle
centered at the centroid with radius γ?(n). Once this happens,
the packet cannot be delivered to any node outside the outer
(dotted) circle with radius 2γ?(n); the nodes inside the inner
circle do not know the precise locations of the nodes outside
the outer circle because they are not immediate neighbors.
This implies that, without knowing a more precise location of
the destination, the entire cell will need to be flooded with the
packet before it can reach its destination. This tells us that the
quantization level of 4γ?(n) is not accurate enough to prevent
flooding of the packet.

Let us compute the expected number of bits required
per timeslot to describe the locations using this insufficient
quantization level of 4γ?(n). Under the stated assumptions on
stationarity of the mobility processes and spatial density in (4)
in subsection III-A, the differential entropy rate of the mobility
process [5, p.416]

h? := lim
T→∞

h(L
(n)
i (0), L

(n)
i (1), . . . , L

(n)
i (T − 1))

T
(5)

exists and is bounded below (resp. above) by − log(ξ2) (resp.
− log(ξ1) <∞).

For each ∆ > 0, let L(n)
i,∆(t) be an approximation of L(n)

i (t)

with a quantization level ∆; L(n)
i,∆(t) = ((k1+ 1

2 )∆, (k2+ 1
2 )∆)

if L(n)
i (t) ∈ [k1 ·∆, (k1 +1)∆)× [k2 ·∆, (k2 +1)∆). Denote

the approximated mobility processes by L(n)
i,∆ = {L(n)

i,∆(t); t ∈
Z+}. From the inherited stationarity of the approximated
mobility processes, the entropy rate of L(n)

i,∆

H
(n)
∆ := lim

T→∞

H(L
(n)
i,∆(0), L

(n)
i,∆(1), . . . , L

(n)
i,∆(T − 1))

T
(6)

exists [5, Thms 4.2.1 and 4.2.2, p.75]. In addition, the follow-
ing equality holds [5, Thm 8.3.1, p.248]: For all T ≥ 1,

lim
∆↓0

(
H(L

(n)
i,∆(0), L

(n)
i,∆(1), . . . , L

(n)
i,∆(T − 1))

T
+ 2 log(∆)

)

=
h(L

(n)
i (0), L

(n)
i (1), . . . , L

(n)
i (T − 1))

T
. (7)

Equations (5) through (7) imply that, for every ν > 0, there
exist ∆∗(ν) > 0 and T ∗(ν) <∞ such that, for all ∆ ≤ ∆∗(ν)
and T ≥ T ∗(ν), we have

h? − 2 log(∆)− ν ≤
H(L

(n)
i,∆(0), . . . , L

(n)
i,∆(T − 1))

T
≤ h? − 2 log(∆) + ν . (8)

Substituting ∆(n) := 4γ?(n) in place of ∆ yields

h? − 2 log(∆(n))± ν

= h? − 2 log(4γ?(n))± ν = h? − 2 log

(
4 c?

√
log(n)

n

)
± ν

= log(n)− log(log(n)) + (h? ± ν − 4− 2 log(c?)) . (9)

Since h? ± ν − 4 − 2 log(c?) are fixed, it is clear from (9)
that h? − 2 log(∆(n))± ν ∼ log(n). Together with (8), this
proves that, for all sufficiently large T ,

H(L
(n)
i,∆(n)(0), . . . , L

(n)
i,∆(n)(T − 1))

T
∼ log(n) . (10)

The left hand side of (10) is equal to the minimum expected
number of bits we need per timeslot to jointly code the lo-
cations, L(n)

i,∆(n)(0), . . . , L
(n)
i,∆(n)(T − 1),9 using an insufficient

quantization level ∆(n). Hence, it serves as a lower bound to
the number of bits we need, and (10) tells us that this lower

9Joint coding of the locations of node i requires that, for each t ∈ Z+, the
sequence of the locations {L(n)

i,∆(n)
(0), . . . , L

(n)

i,∆(n)
(t)} be coded together,

using a different coding scheme. As a result, such joint coding of node’s
locations will be difficult to implement in practice.
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bound increases (asymptotically) as log(n).

2. Upper bound: We can obtain an upper bound for mloc(n)
following essentially the same argument used to find the lower
bound: Recall that, in order to route a packet to a node i,
it suffices to deliver the packet to any immediate neighbor
within the transmission range γ?(n) of node i. As in the
previous case of lower bound, suppose that the domain D is
divided into cells of length ς(n), where ς(n) :=

√
2γ?(n)/3.

The approximated location of a node in a cell is given by the
centroid of the cell. This is shown in Fig. 2.

A packet is relayed using the location of the centroid of
the cell in which its destination lies. If none of relay nodes
the packet traverses before it enters the cell is an immediate
neighbor of its destination, it will eventually be relayed to a
node in the same cell as the destination.10 It is clear from
Fig. 2 that, once a packet reaches any node in the same cell
as the destination, the node will be able to deliver the packet
directly to the destination because the distance between any
two nodes in the same cell is bounded by 2γ?(n)/3. Therefore,
approximating locations with a quantization level of ς(n) is
sufficient to ensure successful delivery of packets using the
approximated location information.

Destination

Centroid

γ (n)
ζ

ζ (n)

(n)

Fig. 2. Partition of D into cells with area of ς(n)2. (γ?(n) = 3 ς(n)/
√
2)

We proceed to compute the average number of bits needed
per timeslot to approximate the locations using the quanti-
zation level ς(n). From [5, Thm 8.3.1, p.248] and assumed
stationarity of the mobility processes, we have

lim
∆↓0

H(L
(n)
i,∆(t)) + 2 log(∆) = h(L

(n)
i (t)) for all t ∈ Z+ .

Thus, for every ν > 0, we can find ∆†(ν) > 0 such that, for
all ∆ ≤ ∆†(ν),

h(L
(n)
i (t))− 2 log(∆)− ν ≤ H(L

(n)
i,∆(t)) (11)

≤ h(L
(n)
i (t))− 2 log(∆) + ν .

Following the same steps in (9), after a little algebra

h(L
(n)
i (t))− 2 log(ς(n))± ν

= h(L
(n)
i (t))− 2 log

(√
2

3
c?
√

log(n)

n

)
± ν

10Here we assume that there is a node in the cell with a high probability.
We will revisit this issue in Section VI and show that the probability that
there is no node in the cell goes to zero as n→∞.

= log(n)− log(log(n))

+(h(L
(n)
i (t))± ν − 2 log(

√
2/3)− 2 log(c?))

∼ log(n) . (12)

Therefore, from (11) and (12) we find

H(L
(n)
i,ς(n)(0)) ∼ log(n) . (13)

Equation (13) suggests that, even when the locations of
a node are coded separately at each timeslot, from the as-
sumed ergodicity of mobility processes, the minimum average
number of bits needed per timeslot to approximate node i’s
locations with a sufficient quantization level ς(n) is (asymp-
totically) log(n). Thus, from the lower and upper bounds in
(10) and (13), respectively, one can conclude that the minimum
expected number of bits needed per timeslot to describe the
locations of a node satisfies mloc(n) ∼ log(n).

The above proof of Lemma 1 reveals the following interest-
ing observation: In the calculation of mloc(n), node i’s mobil-
ity determines the differential entropy of L(n)

i (t), t ∈ Z+, and
the differential entropy rate h? of the mobility process L(n)

i .
When the network size is small, the number of bits required
to describe node i’s locations is mostly governed by these
differential entropy and entropy rate that depend on the details
of the mobility processes. However, as the number of nodes n
grows, in a dense network11 mloc(n) is predominantly shaped
by the required quantization level for describing the locations
of nodes, which is in turn dictated by the CTR needed for
network connectivity. As a result, the details of nodes’ mobility
become less important in a large, dense network, as long
as the differential entropy of the locations of nodes and the
differential entropy rate of the mobility processes, h?, are
bounded, which is satisfied under the assumption in (4).

A similar result to Lemma 1 can be obtained for the cases
where nodes are allowed to use different transmission ranges
under the following assumption.

Assumption 2: Suppose that the nodes employ heteroge-
neous transmission ranges and that there exist constants
c1, c2 ∈ (0,∞) and 0 < a2 ≤ a1 < ∞ such that the
transmission ranges of the nodes can be lower and upper
bounded by c1 · n−a1 and c2 · n−a2 , respectively, for all
sufficiently large n ∈ IN.

Corollary 1: The minimum expected number of bits re-
quired per timeslot to describe approximated locations of a
node under Assumption 2, denoted by m?

loc(n), is Θ(log(n)).
The proof of the corollary is essentially the same as that

of Lemma 1; we can show that the quantization level of 4 ·
c2 · n−a2 is not accurate enough, whereas

√
2 · c1 · n−a1/3 is

a sufficient quantization level. These quantization levels give
us asymptotic lower and upper bounds of 2 · a2 · log(n) and
2 · a1 · log(n), respectively, for m?

loc(n). As we will see, this
important observation allows us to relax Assumption 1 without
voiding our findings in the following sections (Theorems 2
through 4).

11A similar result can be obtained for extended networks with increasing
domains.
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V. ROUTING OVERHEAD UNDER PROACTIVE AND
REACTIVE GEOGRAPHIC ROUTING

In this section we examine how the expected routing over-
head scales when proactive or reactive geographic routing is
employed and address the issue of how to measure the total
distance traveled by control messages. Recall from Section I
that a geographic routing scheme is called a proactive ge-
ographic routing scheme if each node attempts to maintain
consistent, up-to-date location information for every known
destination in the network by flooding the network with loca-
tion update messages. Similarly, a geographic routing scheme
is said to be a reactive geographic routing scheme if location
information is provided only when it is requested. When no
location information of a desired destination is available at
a source, the location information is discovered by flooding
the network with a location request message until another
node, possibly the destination itself, replies to the request
with location information. We point out that these proactive
or reactive geographic routing schemes are different from the
traditional proactive or reactive routing algorithms that use
topological information.
A. Routing overhead under proactive geographic routing

Suppose that location information of a node is forwarded
to and stored at all other nodes within distance ε > 0. If
ε ≥
√

2·D, the location information of every node is forwarded
to all nodes in the network. This is because the distance
between any two points in D is upper bounded by

√
2 · D,

i.e., supx,y∈D ||x− y|| =
√

2 · D, where ||x− y|| is the
Euclidean distance between x and y. First, it is clear that,
under our assumptions in subsection III-B, at least log(n) (and
at most log(n) + 1) bits are required to identify the source of
a message.

Fig. 3. Total distance traveled by a location message.

The total distance traveled by a location update message
from a node, say node i, to all its neighbors within distance
ε can be computed in different ways. In this paper, we
take the viewpoint that once a neighbor receives the location
information of node i, it can serve as a surrogate source of
the location information for other nodes. This is shown in
Figure 3. It is more consistent with the operation of a multi-
hop wireless network where each relay node is responsible for
delivering a packet to the next hop, and thus each transmitter-
receiver pair can be viewed as a source-destination pair for
the purpose of exchanging location information.

If we count only the first copy that arrives at each node,
the total distance traveled by a location update message to all

the nodes within distance ε is given by the total length of a
spanning tree constructed by the propagation of the message,
which connects all the nodes within ε. Obviously, this distance
is lower bounded by the total length of a minimum spanning
tree (MST). In fact, by the definition of an MST, the total
length of an MST is the minimum among all (reasonable)
measures of the total distance connecting all neighbors.

Theorem 2: The minimum expected overhead required per
timeslot under Assumption 1 for disseminating location infor-
mation in proactive geographic routing is Ω(n1.5 log(n)).

Proof: Let us first introduce a lemma that will be used in
the proof of the theorem. Suppose {Xn;n ∈ IN} is a sequence
of rvs, where Xn is a binomial(n, p) rv with 0 < p < 1.

Lemma 2: Define Zαn :=
(
Xn
n·p

)α
, where 0 < α ≤ 1. Then,

lim
n→∞

E [Zαn ] = 1 for all 0 < α ≤ 1 .

Proof: Let Yn := Z1
n = Xn

n·p . The strong law of large
numbers [9, p.326] tells us that Yn converges to 1 in mean
square, i.e., E

[
|Yn − 1|2

]
→ 0 as n→∞. Since |Zαn − 1| ≤

|Yn − 1| for all 0 < a ≤ 1, we have

E
[
|Zαn − 1|2

]
≤ E

[
|Yn − 1|2

]
→ 0 as n→∞,

which implies Zαn → 1 in mean square (clearly, E
[
(Zαn )2

]
≤

1 + E
[
(Yn)2 · 1 {Yn > 1}

]
<∞ for all n ∈ IN).

Recall that convergence in mean square implies convergence
in mean [9, p.310]. Hence,

E [|Zαn − 1|]→ 0 as n→∞.

Theorem 3 [9, p.351] tells us that Zαn → 1 in mean if and only
if E [Zαn ] → 1 as n → ∞ (and, equivalently, {Zαn ;n ≥ 1} is
uniformly integrable). This completes the proof of the lemma.

We now proceed with the proof of Theorem 2. Steele [31]
showed the following result on the total length of an MST with
an increasing number of nodes: Suppose that nodes are placed
independently of each other in accordance with distribution µ
with compact support S ⊂ IR2. Let M(n) denote the total
length of an MST connecting the first n nodes. Then, with
probability 1,

lim
n→∞

M(n)√
n

= e?
∫
x∈S

√
g(x) dx (14)

for some constant e?, where g is the density of the absolutely
continuous part of µ. In other words, the total length of an
MST is asymptotically proportional to

√
n.

From the assumed mutual independence and stationarity of
the mobility processes L(n)

i , i ∈ N (n), the number of nodes in
an area D̃ ⊂ D at timeslot t is a binomial rv with parameter
(n, pD̃), where pD̃ =

∫
D̃
f(y) dy. Let dε(x) denote the

intersection of the mobility domain D and the disk centered at
x ∈ D with radius ε. Then, for every x ∈ D, Area(dε(x)) ≥
π ε2/4, hence ξ1 π ε2/4 ≤

∫
dε(x)

f(y) dy ≤ ξ2 π ε2.
This observation, combined with the result by Steele in

(14) and Lemma 2 with α = 1/2, suggests that the expected
total length of an MST that connects all nodes in dε(x) is
asymptotically proportional to

√
n for all x ∈ D. Therefore,
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from the assumed ergodicity and mutual independence of the
mobility processes, the average total distance traveled by a
location update message of node i to its neighbors within a
fixed distance ε is ε2 · Ω(

√
n).

Since (i) there are n nodes that move according to mutually
independent mobility processes, (ii) each message requires
at least log(n) bits to identify the source of the message,
(iii) location information of the source needs asymptotically
log(n) bits from Lemma 1, and (iv) the average total dis-
tance traveled by a location message is Ω(

√
n), the expected

routing overhead (measured in bits×meters per unit time) for
disseminating location information to local neighborhoods per
timeslot under proactive geographic routing is Ω(n · log(n) ·√
n) = Ω(n1.5 log(n)).

B. Routing overhead under reactive geographic routing

As stated earlier we assume that, under reactive geographic
routing, if location information is not available at a source
when a connection request arrives, it generates a location
request message and floods the network. When a node with the
requested location information receives the request message, it
generates a location reply message with the location informa-
tion. In this subsection, we study the expected overhead due
to the location request messages and location reply messages
under reactive geographic routing.

In practice there may be additional overhead due to location
recovery when a destination moves while the connection is
active and the source does not know the new location of the
destination. However, we do not study the overhead due to the
recovery of location information while connections are still
active. We will discuss this issue in subsection VII-C.

In order to make progress, we introduce following simpli-
fying assumptions:

A1. Only the destination for which a location request is
generated responds with a reply message;
A2. Location request messages reach the nodes in the order
of increasing distance from their sources.

Assumption A2 implies that if a node that generates a reply
message is at distance d from the source, the request message
reaches all the nodes within distance d from the source.

Under our assumption in subsection III-B that A(n)
i (t) are

i.i.d. Bernoulli rvs, at most one request is generated for a
connection to node i in each timeslot. Thus, no other node
will have cached up-to-date location of node i. However, when
more than one node can generate a connection request to
node i in a timeslot, it is possible that some other nodes that
acquired node i’s location information may cache the location
information, and a reply can be generated by another node
with cached location information. In this case, we can replace
Assumption A1 with the following alternate assumption, with-
out modifying our findings below:
A1a. Suppose that the location of a source generating a
location request message is ` ∈ D. Then, the location of the
closest node that generates a reply message depends only on
` and has distribution M(·, `).

Assumption A1a means that the distance to the closest node
sending a reply does not depend on the number of nodes

in the network. This may be reasonable when the location
information of each node is available only at a limited number
of other nodes, in particular in a small neighborhood around
the node. When only the destination is allowed to generate
a reply message, Assumption A1a holds by virtue of mutual
independence of the mobility processes. Here, we assume that
Assumption A1 (instead of Assumption A1a) is in place.

Theorem 3: The minimum expected overhead required per
timeslot under Assumption 1 for location request and reply
messages in reactive geographic routing is Ω(n1.5 log(n)).

Proof: We examine the routing overhead that arises from
location requests and replies separately. We first show that the
expected overhead due to handling location requests is Ω(n1.5 ·
log(n)), and then demonstrate that the expected overhead from
location replies is Θ(n · log(n)).

First, each location request message must have the ID of
the destination, which requires at least log(n) bits. Second,
analogously to the proactive geographic routing case, the total
distance traveled by a location request message to all the nodes
within the distance to the destination is lower bounded by the
total length of an MST connecting the nodes. Under these
assumptions, by conditioning on the distance to the destination
and following the same argument used in the proof of Theorem
2, one can show that the expected total length of such an MST
is Ω(

√
n). Therefore, since location requests arrive at a rate of

p at each node, the expected overhead for handling the request
messages is Ω(n · log(n) ·

√
n) = Ω(n1.5 log(n)).

Unlike location requests, location replies need not be
flooded.12 Also, because (i) the source of a request for the
location information of node i is equally likely to be any of the
other n− 1 nodes, (ii) spatial density f does not vary with n,
(iii) connection request processes A(n)

i , i ∈ N (n), are indepen-
dent of the mobility processes, and (iv) the mobility processes
L

(n)
j , j ∈ N (n), are assumed stationary and ergodic and are

also mutually independent, the average distance between the
sources and the destinations (averaged over all timeslots and
all source-destination pairs) is equal to the expected distance
between a pair of randomly selected nodes. This expected
distance is given by13

davg ≡
∫
D

∫
D

||x− y|| f(x) f(y) dy dx > 0 . (15)

The inequality follows from the assumption infx∈D f(x) ≥
ξ1 > 0 in (4) with t = 0. Note that davg does not depend on
the number of nodes n. Since reply messages must carry the
ID of the source and the location information of the destination
(and the source), the overhead due to reply messages is davg ·
Θ(n · log(n)). Therefore, the overall routing overhead under
reactive geographic routing is Ω(n1.5 · log(n)).

It is clear from the proof of Theorems 2 and 3 that
the derived scaling laws for the expected overhead under

12Replies can be routed back either by using the location information of
the sources attached to the request messages or by maintaining a cache at
intermediate nodes which temporarily stores all request messages received
over a sliding time window along with the first nodes that forwarded them.

13When Assumption A1a is in place instead and node i is a node with
cached location information of the requested destination, (15) is replaced by
davg ≡

∫
D
(
∫
D
||x− y|| m(y,x) dy) f(x) dx > 0, where m(·,x) is the

derivative of M(·,x).
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proactive and reactive geographic routing do not change when
Assumption 1 is replaced by Assumption 2. This is because the
average number of bits in control messages remains Θ(log(n))
from Corollary 1.

In the following section, we will show that, compared to
the minimum expected routing overhead, both proactive and
reactive geographic routing suffers a penalty of at least

√
n

for flooding the network with either the location information
of nodes (proactive geographic routing) or location request
messages (reactive geographic routing). This also hints that if
we eliminate or reduce flooding of messages, we can alter the
way routing overhead scales with the increasing network size.

VI. MINIMUM EXPECTED ROUTING OVERHEAD

In this section we examine how the minimum expected
routing overhead from location service scales with the number
of nodes under the assumptions stated in Section III: For each
fixed n ∈ IN, let us denote the minimum expected overhead
required per timeslot for disseminating and acquiring location
information under Assumption 1 by Rmin(n). We prove that
Rmin(n) = Θ(n · log(n)) in two steps: First, we show that
Rmin(n) increases at least as α · n · log(n) for some constant
α, i.e., Rmin(n) = Ω(n · log(n)). Second, we demonstrate
that, for all sufficiently large n, the minimum expected routing
overhead is upper bounded by β ·n·log(n) for another constant
β, proving Rmin(n) = O(n · log(n)). These two findings yield
our claim that Rmin(n) = Θ(n · log(n)).

Lemma 3: The minimum expected overhead for location
service per timeslot under Assumption 1, Rmin(n), is Ω(n ·
log(n)).

Proof: Let us first focus on a single connection request
originating, say, at node k ∈ N (n), with node i, i 6= k, as
the destination. First, any location message of node i must
carry its ID and location. As mentioned earlier, a minimum of
log(n) bits are needed to identify node i in the message, and
from Lemma 1, the minimum expected number of bits required
on average to describe the locations of node i asymptotically
approaches log(n). Second, the expected distance the location
message of node i must travel from node i to node k is given
by davg in (15) and does not depend on n.

Summarizing these, (i) for the same reason provided before
(15) in the proof of Theorem 3, the average distance the
location messages have to travel from the destinations to the
sources of connection requests equals davg > 0, and (ii) the
expected number of bits in each location message required for
both the ID and the location of a destination is Θ(log(n)).
Since the average total number of connection requests in a
timeslot equals n · p, the minimum expected routing over-
head required on average (in bits×meters per unit time) for
delivering location information from the destinations to the
sources of connection requests is Θ(n · log(n)). Obviously,
the minimum expected routing overhead for location service
cannot be smaller than the overhead required for transporting
location information directly from the destinations to the
sources. Hence, Rmin(n) = Ω(n · log(n)).

Lemma 4: The minimum expected overhead for location
service per timeslot under Assumption 1, Rmin(n), is O(n ·
log(n)).

Proof: In order to prove the lemma, it suffices to find
a scheme under which the expected routing overhead per
timeslot is upper bounded by β · n · log(n) for all sufficiently
large n, for some finite constant β > 0. The scheme we
describe here combines the features of both proactive and
reactive geographic routing schemes in such a way we can
avoid expensive multi-hop flooding of messages, by forming
virtual location servers using the existing nodes. A similar idea
of using existing nodes as location servers without knowing
their identities was used by Li et al. [22].

A key idea is that we store the location information of each
node i in a small region (relative to the transmission range) so
that once a location request message for node i reaches some
node in the region, the node, if it does not have the location
information of node i, can find another node with the location
information without having to flood a multi-hop neighborhood.
In this sense, the set of nodes in the region, which varies with
time, collectively serve as a virtual location server on behalf of
node i. Hence, individual nodes participate not only in routing
packets, but also in providing location service for other nodes.

To this end, we choose a quantization level of ς(n) =√
2γ?(n)/3 for approximating node locations14, divide the

domain of mobility into cells of area A(n) = ς(n) × ς(n),
and store the location information of each node in a cell with
a known coordinate.15 The coordinate of the cell where the
location information of node i resides, is computed using a
hash function h(n) : N (n) → Sh(n) , where Sh(n) is the set of
coordinates of the cells that hold location information. This
allows us to skirt the problem of not having location servers
with known or fixed locations. In addition, the hash functions
can be designed to distribute the load of storing location
information among the nodes. The hash functions h(n) are
assumed common knowledge.

First, if we are to store location information in a cell, we
must ensure that there is at least one node in the cell (with
probability approaching 1 as n→∞) so that location informa-
tion can be stored in the cell and be accessible to other nodes.
It is obvious that A(n) = 2 c?2 log(n)/(9 n) = ω(1/n).
From the assumption on the spatial distribution in (4) and
mutual independence of the mobility processes, for the given
cell size A(n) the probability that there is no node in a cell
at timeslot t ∈ Z+ approaches zero as n→∞:

P [No node in a cell at timeslot t] ≤ (1− ξ1 · A(n))n

For A(n) = 2 c?2 log(n)/(9 n),

(1− ξ1 · A(n))n = exp (n · log(1− ξ1 · A(n)))

→ 0 as n→∞ .

In the rest of the proof we describe how the location infor-
mation is disseminated and retrieved by nodes and compute
the overhead due to these operations.

1. Dissemination of location information: As mentioned
earlier, under our scheme, we convey and store the location

14Recall from the proof of Lemma 1 that ς(n) is sufficient for enabling
geographic routing.

15By storing location information in a cell, we mean storing it at one or
more nodes in the cell.
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information of a node i in cell h(n)(i) that serves as a virtual
location server for node i. Intermediate nodes route a location
message of node i using the location of the cell h(n)(i)
computed using the common hash function.16 Unlike a unicast
data packet that is routed to a specified destination node,
however, a location update message of node i does not include
a specific destination ID in the message. This is because node i
is unlikely to know in advance which nodes are in cell h(n)(i).
Instead, since there is a node in cell h(n)(i) (with probability
approaching 1), when a location update message reaches some
node in cell h(n)(i), the node stores the location information of
node i and terminates the message without relaying it further.
Obviously, the distance traveled by a location message of node
i to any node in cell h(n)(i) is upper bounded by

√
2 ·D.

A location update message of a node carries the node’s
ID and location information. Combining with our finding in
(13) that the minimum average number of bits needed to
describe the locations of a node with quantization level ς(n) is
asymptotically log(n), we conclude that the routing overhead
due to transporting the location information of the nodes to
their respective cells that store their location information is
RT (n) = Θ(n · log(n)).
2. Retrieval of location information: In order for a node j
to access the location information of another node, say node i,
node j first generates a location request with (i) its own ID and
location information (with the same quantization level ς(n)),
and (ii) the ID of node i. The request message is then relayed
by intermediate nodes using the location of the cell h(n)(i)
computed from the ID of node i in the request message and
the common hash function, until it reaches some node in cell
h(n)(i).

When the request message arrives at a node in cell h(n)(i),
one of following two events occurs: (i) If the node has the
location information of node i, it generates a reply message,
or (ii) if it does not, it broadcasts the request message to
its neighbors in cell h(n)(i), all of which lie within its
transmission range. In the latter event, since there is at least
one node in the cell h(n)(i) with the location information
of node i (with probability approaching 1), another node in
cell h(n)(i) with the location information generates a reply
message. Again, the reply message is heard by all other nodes
in the cell because they are all within the transmission range,
hence only a single reply message is generated.

In the case of second event, compared to the first, one
additional broadcast transmission is required. However, there
is no need to flood a multi-hop neighborhood in search of
a node with location information (which is the case with
reactive geographic routing). The total distance traveled by
the broadcast request message over the last hop to all the
nodes in cell h(n)(i) can be computed as follows: From
the assumed mutual independence of the mobility processes,
the number of nodes in cell h(n)(i) is a binomial(n, p̃) rv,
where p̃ is the steady-state probability that a node is in
cell h(n)(i). Recall that (i) from the assumption on spatial
distribution in (4), p̃ is upper bounded by ξ2 × area of a cell

16The location of the cell is the same as the approximated location of a
node in the cell, i.e., the centroid of the cell, as explained in Section IV.

(= ξ2 × 2 c?2 log(n)/(9 · n)) and (ii) the distance from the
last relay node to any node in h(n)(i) that hears the message
is bounded by the transmission range γ?(n). Thus, the total
expected distance from the last relay node to all nodes in
h(n)(i) is upper bounded by

n · p̃ · γ?(n) ≤ 2 ξ2 c
?2 log(n)

9
× c?

√
log(n)

n

=
2 ξ2 c

?3 log1.5(n)

9
√
n

. (16)

It is clear that (16) decreases to zero as n → ∞. This tells
us that the contribution from the last hop to the total expected
distance traveled by a request message vanishes as n → ∞,
and that the total expected distance is Θ(1).

A reply message produced in response to a request message
contains the IDs and location information of both nodes j and
i. The reply message is then routed back to the source (i.e.,
node j), using the location information of node j copied from
the request message. It is obvious that the expected distance
traveled by a reply message is Θ(1).

Since a location request message generated by node j
contains the IDs of both nodes j and i and the location in-
formation of node j with quantization level ς(n), the required
expected number of bits in a location request is on average
breq(n) ∼ 3 log(n) from (13). Similarly, the expected number
of bits required in reply messages for the IDs and location
information of both nodes is on average bres(n) ∼ 4 log(n).
Hence, the expected number of bits needed for handling
a single location request under our scheme is on average
b(n) = breq(n) + bres(n) ∼ 7 log(n). Recall from Section III
that each node generates route request messages at a rate of
p requests per timeslot. Together with earlier findings on the
expected total distance traveled by request and reply messages
and their sizes, we conclude that the expected routing overhead
incurred per timeslot due to retrieval of location information
under our scheme is RA(n) = Θ(n · log(n)).

The minimum expected routing overhead Rmin(n) is obvi-
ously not greater than the expected routing overhead incurred
by our scheme, which is R?(n) ≡ RT (n) + RA(n). Since
R?(n) = Θ(n · log(n)), we have Rmin(n) = O(n · log(n)).

We note that nodes actively disseminate their location
information to parts of the network under both proactive
geographic routing (subsection V-A) and our scheme in the
proof of Lemma 4. However, there are some key differences
between our scheme and both proactive and reactive geo-
graphic routing: First, proactive geographic routing floods and
stores location information in the neighborhood around the
nodes, whereas in our scheme the location information of a
node is stored only in a small area (a cell) with a pre-assigned
location that can be computed using its ID, independently of
its actual location. Since nodes are mobile, unless sources are
always close to selected destinations, promulgating location
information to a small neighborhood around the nodes will
be of limited use. Secondly, we limit the area to be flooded
with a location request message to the same cell. In other
words, only the cell in which the location information of a
requested destination is stored, is flooded with the location
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request message. These simple features eliminate the need for
unnecessary and expensive flooding of control messages in the
network, resulting in lower overhead.

It is noteworthy that, in computing the routing overhead un-
der both our scheme and proactive/reactive geographic routing,
flooding of location information or request messages changes
only the distances traveled by them, while the number of bits
carried by them remains the same. Therefore, the disparity in
expected routing overhead is caused only by larger distances
traveled by control messages under proactive/reactive geo-
graphic routing (which demands higher resource expenditure
by their transmissions). Therefore, this highlights the impor-
tance of modeling and accounting for the traveled distances;
computing only the information rate required to model nodes’
mobility and uncertainty in their locations (e.g., [3]) would
not reveal this discrepancy in (the scaling law of) expected
routing overhead under these schemes.

Theorem 4: The minimum expected overhead for location
service per timeslot under Assumption 1, Rmin(n), is Θ(n ·
log(n)).

Proof: The theorem follows from Lemmas 3 and 4.
Corollary 2: The minimum expected overhead for location

service per timeslot under Assumption 2 is Θ(n · log(n)).
This corollary follows from the observation that the average

number of bits in control messages is still Θ(log(n)) under
Assumption 2 (as a consequence of Corollary 1) and a minor
modification of the proof of Lemma 4.

VII. DISCUSSION

Throughout this paper we assumed geographic routing and
a non-vanishing spatial density of the nodes while adopting the
RGG model for one-hop network connectivity. In this section
we first compare the expected overhead of geographic routing
schemes to that of topology-based routing schemes. Then, we
examine the effects of a vanishing spatial density and location
recovery procedures on routing overhead. Finally, we consider
a family of network connectivity models, which contains the
RGG model as a special case, and show that our results still
hold under the new models.

A. Geographic routing vs. topology-based routing: In
Section V we showed that the expected routing overhead under
proactive or reactive geographic routing is Ω(n1.5 · log(n)).
Here, we briefly discuss the same under a proactive or re-
active routing scheme that uses topological information of
the network (i.e., network connectivity) for routing decisions:
Each node maintains and uses the next-hop information, for
example, along a minimum-hop path, for each known desti-
nation through exchange of (local) topology information. We
call these routing schemes topological routing schemes.

Proactive topological routing: Suppose that, under a proac-
tive topological routing scheme, each node advertises the IDs
of its neighbors along with its own ID to all other nodes
within distance ε > 0, which we call an advertisement. The
information on immediate neighbors is the minimal amount of
information needed to reconstruct the network topology and
is the same information reported by regular nodes in [35],
[36]. Given the assumptions in Section III and the transmission

range γ?(n), the expected number of neighbors of a node is
Θ(log(n)). Thus, the average number of bits required for an
advertisement containing the list of neighbors is Θ(log(n)2)
because each ID requires on the average log(n) bits. From the
proof of Theorem 2, we know that the expected total distance
traveled by each advertisement is Ω(

√
n). Therefore, the

overall expected overhead due to advertisements per timeslot
is Ω(n ·

√
n · log(n)2) = Ω(n1.5 · log(n)2).

Zhou and Abouzeid [36] studied similar routing overhead
under two-tier hierarchical proactive routing where regular
nodes report the detailed local topology information to their
cluster heads that maintain global ownership information.
When the number of subregions M (with one cluster head
per subregion) is fixed, the overall routing overhead is Ω(n2 ·
log(n)) under all three different physical scalings of the
network they considered (Table IV in [36]). In particular,
under the second physical scaling in which the communication
range of the nodes is adjusted so that the expected number
of neighbors of a node is Θ(log(n)), the routing overhead is
Θ(n2.5). Furthermore, even when the number of subregions
M is allowed to depend on n, one can show that the overall
routing overhead is Ω(n1.5) under all three different physi-
cal scalings in [36] (and Θ(n2/

√
log(n)) under the second

physical scaling).
Reactive topological routing: Assume that routing infor-

mation is discovered by flooding the network with a route
request message under a reactive topological routing scheme,
and Assumptions A1 and A2 in subsection V-B hold (with
‘location request’ replaced by ‘route request’). Then, the
overhead stemming from flooding of route request messages
is Ω(n1.5 · log(n)) by a similar argument in the proof of
Theorem 3. As mentioned in the same proof, replies need
not be flooded. Instead, they can be routed back to the source
by maintaining a cache at intermediate nodes and temporarily
storing all request messages with the IDs of the sources
and the first nodes that forwarded them. Then, following a
similar reasoning, one can show that the overhead due to reply
messages is Θ(n · log(n)), giving the overall routing overhead
of Ω(n1.5 · log(n)).

We also note that introducing virtual servers with route
information to nodes (analogous to the virtual location server
in the proof of Lemma 4) will be problematic in topological
routing schemes. This is because, unlike in geographic routing
where the same location information for node i can be
provided to any node that wishes to communicate with node
i, the end-to-end route information to node i varies from one
node to another, depending on the position of the node in
the network topology relative to that of node i. Hence, it is
not obvious how one can reduce the routing overhead brought
about by costly flooding of control messages.
B. Vanishing spatial density: When the spatial density
of the nodes is non-vanishing, it is easy to see from (3)
that the CTR is proportional to 1/

√
f?, where f? is the

infimum of the density function. Thus, the uniform distribution
requires the smallest CTR among all distributions with non-
vanishing density. The intuition behind this finding is that the
transmission range must be increased to maintain a certain
level of degree (i.e., the number of immediate neighbors) of
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the nodes in lower density regions.
In [16] Han and Makowski used a simple example to illus-

trate the effects of vanishing density on network connectivity:
Suppose that n nodes are placed on a unit interval [0, 1]
according to a distribution Fp(x) = x1+p, x ∈ [0, 1], where
p > 0. The distribution yields a continuous density function
fp(x) = (1+p)xp, x ∈ [0, 1], which vanishes at x = 0. When
n nodes are distributed according to this density function, the
CTR is given by n−

1
1+p (as opposed to log(n)

n in the case of
uniform distribution [1]). This demonstrates not only that the
presence of vanishing point(s) significantly alters the way the
CTR decreases with an increasing number of nodes, but also
that how it decreases depends on how the density approaches
zero around the vanishing points. Moreover, the CTR n−

1
1+p

is of a larger order than the CTR of log(n)/n with the uniform
distribution, i.e., log(n)

n = o(n−
1

1+p ).
The findings by Han and Makowski and by Penrose suggest

that the order of the CTR may be the smallest when the spatial
distribution is uniform. This means that the average number of
bits required to describe the locations of a node is O(log(n)).
Therefore, since the number of bits needed to identify a node
is lower bounded by log(n) when source-destination pairs
are selected randomly, it is likely that the minimum expected
routing overhead is Θ(n · log(n)) under a large class of spatial
distributions (or mobility models) of nodes.

C. Overhead due to location recovery in reactive geo-
graphic routing: As discussed in subsection V-B, suppose
that a destination of a connection moves while it is still
active. In this case, unless the destination informs the source
of its new location, the location information at the source
will be outdated and the source will need to acquire the
new location of the destination through a recovery process.
If we assume that the recovery is performed by flooding
a control message similar to the original location request
message, then the additional overhead due to recovery will
be comparable to the overhead incurred during the original
location discovery process (through location request and reply
messages). Thus, if we assume that connections need, on
average, K recovery processes (per connection) while they are
active, the expected routing overhead will scale by a factor of
K, and the scaling law of the expected routing overhead will
remain Ω(n1.5 log(n)). In practice, however, the frequency
of location recovery will depend on the details of an adopted
routing scheme.

D. Different network connectivity models and choices
of transmission ranges: While we modeled the network
connectivity using an RGG model so far, our results can be
generalized to other connectivity models: Given n ∈ IN nodes
in the network, let γ(n) be a target transmission range selected
by the nodes. There exist constants 0 < σ1 ≤ 1 ≤ σ2 < ∞
so that, given γ(n), (i) nodes i and j have a link if their
distance d(i, j) ≤ σ1 · γ(n), and (ii) they do not have a link
if d(i, j) > σ2 · γ(n). When σ1 · γ(n) < d(i, j) ≤ σ2 · γ(n),
however, we do not specify whether or not there exists a link
between nodes i and j. Different rules, such as a probabilistic
rule, can be applied to this case. The RGG model is a special
case with σ1 = σ2. The interpretation of this family of models

is that once nodes select a target transmission range, they
should be able to communicate directly with other nodes that
are well within the target range, whereas other nodes that are
(much) farther away than the target range would not be directly
reachable. Connectivity between nodes roughly target range
away from each other, however, may depend on other factors,
and we do not provide a specific rule for this case.

From Theorem 1 and the above rules, the minimum target
transmission range required for network connectivity satisfies
γ?(n)/σ2 ≤ γ(n) ≤ γ?(n)/σ1. If this condition is met, fol-
lowing the proof of Lemma 1, one can show that the necessary
quantization level for approximating location information is
Θ(γ?(n)) and Lemma 1 still holds: When the target range
γ(n) = Θ(γ?(n)), the necessary quantization level changes
at most by a constant factor from the RGG case. Thus, as
mentioned in Sections IV and VI, this does not affect the
findings in Lemma 1 and, hence, Theorems 2 through 4.

Under a quasi unit disk graph (QUDG) model [20], pre-
sumably with fixed transmit power, there are two thresholds
– 0 ≤ γ1 ≤ γ2 < ∞, where γ1 = τ · γ2 for some τ ∈ [0, 1].
(i) If the distance d(i, j) between nodes i and j is at most γ1,
there is a link between i and j; (ii) if d(i, j) > γ2, no link
exists between them; and (iii) if γ1 < d(i, j) ≤ γ2, there may
or may not exist a link between them. It is obvious that, under
suitable scaling of γ1 and γ2 (through transmit power control)
as a function of n while maintaining network connectivity,
the QUDG model is similar to the above model. Hence, our
results are true under the QUDG model when τ > 0.

Under a cost-based model (e.g. [29]), there is a cost function
c : IR+ → IR+ such that, (i) the cost at distance d is given by
c(d) ∈ [ϕ1 ·d, ϕ2 ·d], where 0 < ϕ1 ≤ ϕ2 <∞, and (ii) nodes
i and j have a link if and only if c(d(i, j)) ≤ cth for some
threshold cth. The cost function c is not assumed monotonic in
distance. It is clear that, given a threshold cth, we can find an
upper and lower bound on the maximum distance between two
nodes that would permit a link between the nodes. Therefore,
by selecting appropriate thresholds cth(n) as a function of the
number of nodes n that would ensure network connectivity
and following a similar reasoning as above, we can show that
our results hold under this model as well.

VIII. CONCLUSION

We investigated the expected routing overhead in MANETs
employing geographic routing, with an emphasis on the
overhead rising from dissemination and retrieval of location
information. We focused on a scenario where packets can
be routed to their intended destinations using only the ID
and location information of the destinations without being
flooded. We showed that when nodes move independently
while employing a common transmission range to ensure
network connectivity (with a high probability), a minimum of
log(n) bits are needed on average to describe the approximated
locations of each node, where n is the number of the nodes.
Making use of this finding, we first proved that the expected
routing overhead is Ω(n1.5 log(n)) under both proactive and
reactive geographic routing. Then, we demonstrated that the
minimum expected routing overhead scales as Θ(n log(n)).
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Our study also revealed a main source of inefficiency of
proactive and reactive geographic routing as well as the major
contributors to routing overhead in MANETs.

It is clear from our findings that, when nodes’ mobility
is independent, the locations of destinations are mutually
independent and introduce the linear term n in the scaling law
(as pointed out in the introduction). When nodes’ mobility is
correlated, however, the expected routing overhead may grow
slower; the exact manner in which it will grow is likely to
depend on many factors, including the details of correlation
structure imposed on nodes’ mobility as well as the selection
of source-destination pairs.
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