Integrating Novel Class Detection with
Classification for Concept-Drifting Data Streams

Mohammad M. Masud!, Jing Gao?,
Latifur Khan!, Jiawei Han?, and Bhavani Thuraisingham®

! University of Texas, Dallas
2 University of Illinois, Urbana Champaign
mehedy@utdallas.edu, jinggao3@uiuc.edu,
lkhan@utdallas.edu, hanj@cs.uiuc.edu, bhavani.thuraisingham@utdallas.edu

Abstract. In a typical data stream classification task, it is assumed that
the total number of classes are fixed. This assumption may not be valid
in a real streaming environment, where new classes may evolve. Tradi-
tional data stream classification techniques are not capable of recognizing
novel class instances until the appearance of the novel class is manu-
ally identified, and labeled instances of that class are presented to the
learning algorithm for training. The problem becomes more challenging
in the presence of concept-drift, when the underlying data distribution
changes over time. We propose a novel and efficient technique that can
automatically detect the emergence of a novel class in the presence of
concept-drift by quantifying cohesion among unlabeled test instances,
and separation of the test instances from training instances. Our ap-
proach is non-parametric, meaning, it does not assume any underlying
distributions of data. Comparison with the state-of-the-art stream clas-
sification techniques prove the superiority of our approach.

1 Introduction

It is a major challenge to data mining community to mine the ever-growing
streaming data. There are three major problems related to stream data clas-
sification. First, it is impractical to store and use all the historical data for
training, since it would require infinite storage and running time. Second, there
may be concept-drift in the data, meaning, the underlying concept of the data
may change over time. Third, novel classes may evolve in the stream. There
are many existing solutions in literature that solve the first two problems, such
as single model incremental learning algorithms [II2/TT], and ensemble classi-
fiers [3U59]. However, most of the existing techniques are not capable of detect-
ing novel classes in the stream. On the other hand, our approach can handle
both concept-drift, and detect novel classes at the same time.

Traditional classifiers can only correctly classify instances of those classes
with which they have been trained. When a new class appears in the stream,
all instances belonging to that class will be misclassified until the new class

W. Buntine et al. (Eds.): ECML PKDD 2009, Part 11, LNAI 5782, pp. 79-004] 2009.
© Springer-Verlag Berlin Heidelberg 2009

80 M.M. Masud et al.

has been manually identified by some experts and a new model is trained with
the labeled instances of that class. Our approach provides a solution to this
problem by incorporating a novel class detector within a traditional classifier
so that the emergence of a novel class can be identified without any manual
intervention. The proposed novel class detection technique can benefit many
applications in various domains, such as network intrusion detection and credit
card fraud detection. For example, in the problem of intrusion detection, when
a new kind of intrusion occurs, we should not only be able to detect that it
is an intrusion, but also that it is a new kind of intrusion. With the intrusion
type information, human experts would be able to analyze the intrusion more
intensely, find a cure, set an alarm in advance and make the system more secure.

We propose an innovative approach to detect novel classes. It is different
from traditional novelty (or anomaly/outlier) detection techniques in several
ways. First, traditional novelty detection techniques [4[6/T0] work by assuming
or building a model of normal data, and simply identifying data points as out-
liers/anomalies that deviate from the “normal” points. But our goal is not only
to detect whether a single data point deviates from the normality, but also to
discover whether a group of outliers have any strong bond among themselves.
Second, traditional novelty detectors can be considered as a “one-classs” model,
which simply distinguish between normal and anomalous data, but cannot dis-
tinguish between two different kinds of anomalies. But our model is a “multi-
class” model, meaning, it can distinguish among different classes of data and
at the same time can detect presence of a novel class data, which is a unique
combination of a traditional classifier with a novelty detector.

Our technique handles concept-drift by adapting an ensemble classification
approach, which maintains an ensemble of M classifiers for classifying unlabeled
data. The data stream is divided into equal-sized chunks, so that each chunk
can be accommodated in memory and processed online. We train a classification
model from each chunk as soon as it is labeled. The newly trained model replaces
one of the existing models in the ensemble, if necessary. Thus, the ensemble
evolves, reflecting the most up-to-date concept in the stream.

The central concept of our novel class detection technique is that each class
must have an important property: the data points belonging to the same class
should be closer to each other (cohesion) and should be far apart from the data
points belonging to other classes (separation). Every time a new data chunk ap-
pears, we first detect the test instances that are well-separated from the training
data (i.e. outliers). Then filtering is applied to remove the outliers that possibly
appear as a result of concept-drift. Finally, if we find strong cohesion among
those filtered outliers, we declare a novel class. When the true labels of the novel
class(es) arrive and a new model is trained with the labeled instances, the exist-
ing ensemble is updated with that model. Therefore, the ensemble of models is
continuously enriched with new classes.

We have several contributions. First, we provide a detailed understanding
of the characteristic of a novel class, and propose a new technique that can
detect novel classes in the presence of concept-drift in data streams. Second, we

Integrating Novel Class Detection 81

establish a framework for incorporating novel class detection mechanism into
a traditional classifier. Finally, we apply our technique on both synthetic and
real-world data and obtain much better results than state-of the art stream
classification algorithms.

The rest of the paper is organized as follows. Section 2] discusses related work.
Section [3] provides an overview of our approach and Section [discusses our
approach in detail. Section [0l then describes the datasets and experimental eval-
uation of our technique. Section [6] concludes with discussion and suggestions for
future work.

2 Related Work

Our work is related to both stream classification and novelty detection. There
have been many works in stream data classification. There are two main ap-
proaches - single model classification, and ensemble classification. Some single-
model techniques have been proposed to accommodate concept drift [TI2UTT].
However, Our technique follows the ensemble approach. Several ensemble tech-
niques for stream data mining have been proposed [3/59]. These ensemble ap-
proaches require simple operations to update the current concept, and they are
found to be robust in handling concept-drift. Although these techniques can
efficiently handle concept-drift, none of them can detect novel classes in the
data stream. On the other hand, our technique is not only capable of handling
concept-drift, but also able to detect novel classes in data streams. In this light,
our technique is also related to novelty detection techniques.

A comprehensive study on novelty detection has been discussed in [4]. The au-
thors categorize novelty detection techniques into two categories: statistical and
neural network based. Our technique is related to the statistical approach. Sta-
tistical approaches are of two types: parametric, and non-parametric. Parametric
approaches assume that data distributions are known (e.g. Gaussian), and try to
estimate the parameters (e.g. mean and variance) of the distribution. If any test
data falls outside the normal parameters of the model, it is declared as novel [6].
Our technique is a non-parametric approach. Non-parametric approaches like
parzen window method [I0] estimate the density of training data and reject pat-
terns whose density is beyond a certain threshold. K-nearest neighbor (K-NN)
based approaches for novelty detection are also non-parametric [12]. All of these
techniques for novelty detection only consider whether a test instance is suffi-
ciently close (or far) from the training data based on some appropriate metric
(e.g., distance, density etc.). Our approach is different from these approaches
in that we not only consider separation from normal data but also consider co-
hesion among the outliers. Besides, our model assimilates a novel class into the
existing model, which enables it to distinguish future instances of that class from
other classes. On the other hand, novelty detection techniques just remember the
“normal” trend, and do not care about the similarities or dissimilarities among
the anomalous instances.

A recent work in data stream mining domain [7] describes a clustering ap-
proach that can detect both concept-drift and novel class. This approach

82 M.M. Masud et al.

assumes that there is only one ‘normal’ class and all other classes are novel.
Thus, it may not work well if more than one classes are to be considered as
‘normal’ or ‘non-novel’, but our approach can handle any number of existing
classes. This makes our approach more effective in detecting novel classes than
[7], which is justified by the experimental results.

3 Overview

Algorithm [outlines a summary of our technique. The data stream is divided
into equal sized chunks. The latest chunk, which is unlabeled, is provided to the
algorithm as input. At first it detects if there is any novel class in the chunk
(line 1). The term “novel class” will be defined shortly. If a novel class is found,
we detect the instances that belong to the class(es) (line 2). Then we use the
ensemble L = {Lq,..., Ly} to classify the instances that do not belong to the
novel class(es). When the data chunk becomes labeled, a new classifier L’ trained
using the chunk. Then the existing ensemble is updated by choosing the best
M classifiers from the M + 1 classifiers L U {L’} based on their accuracies on
the latest labeled data chunk. Our algorithm will be mentioned henceforth as

Algorithm 1. MineClass
Input: D,: the latest data chunk
L: Current ensemble of best M classifiers

Output: Updated ensemble L

1: found <« DetectNovelClass(D,,L) (algorithm 2] section [4.3))
if found then Y «— Novel instances(D»), X «— D, —Y else X «— D,
for each instance x € X do Classify(L,z)
/*Assuming that D,, is now labeled*/
L’ «+ Train-and-create-inventory(D,,) (section T
L «— Update(L,L',D,,)

“MineClass”, which stands for Mining novel Classes in data streams. MineClass
should be applicable to any base learner. The only operation that is specific
to a learning algorithm is Train-and-create-inventory. We will illustrate this
operation for two base learners.

3.1 Classifiers Used

We apply our novelty detection technique on two different classifiers: decision
tree, and K-NN. We keep M classification models in the ensemble. For decision
tree classifier, each model is a decision tree. For K-NN, each model is usually
the set of training data itself. However, storing all the raw training data is
memory-inefficient and using them to classify unlabeled data is time-inefficient.
We reduce both the time and memory requirement by building K clusters with
the training data, saving the cluster summaries as classification models, and

Integrating Novel Class Detection 83

discarding the raw data. This process is explained in details in [5]. The cluster
summaries are mentioned henceforth as “pseudopoint”s. Since we store and use
only K pseudopoints, both the time and memory requirements become functions
of K (a constant number). The clustering approach followed here is a constraint-
based K-means clustering where the constraint is to minimize cluster impurity
while minimizing the intra-cluster dispersion. A cluster is considered pure if it
contains instances from only one class. The summary of each cluster consists
of the centroid, and the frequencies of data points of each class in the cluster.
Classification is done by finding the nearest cluster centroid from the test point,
and assigning the class, that has the highest frequency, to the test point.

3.2 Assumptions
We begin with the definition of “novel” and “existing” class.

Definition 1 (Existing class and Novel class). Let L be the current ensem-
ble of classification models. A class ¢ is an existing class if at least one of the
models L; € L has been trained with the instances of class c. Otherwise, ¢ is a
novel class.

We assume that any class has the following essential property:

Property 1. A data point should be closer to the data points of its own class
(cohesion) and farther apart from the data points of other classes (separation).

Our main assumption is that the instances belonging to a class ¢ is generated
by a an underlying generative model 6., and the instances in each class are
independently identically distributed. With this assumption, we can reasonably
argue that the instances which are close together are supposed to be generated

Used space
A P Unused space Movel class
X ONEMNX
HExFHnX x
MW ALNH
HARKHa
Y
HHHEH
N
F3la) xR K
++++ ++++
+4+4 +++
++ ++
++++ 4+
+++++++ +++++++
+4++t ++++t++++
+++++H++ +H+++++++
+H+++ +++++

0.0
(a) {s)] (c)
Fig.1. (a) A decision tree and (b) corresponding feature space partitioning. FS(X)

denotes the feature space defined by a leaf node X. The shaded areas show the used
spaces of each partition. (¢) A Novel class (denoted by x) arrives in the unused space.

84 M.M. Masud et al.

by the same model, i.e., belong to the same class. We now show the basic idea
of novel class detection using decision tree in figure [Il We introduce the notion
of used space to denote a feature space occupied by any instance, and unused
space to denote a feature space unused by an instance. According to property
[i(separation), a novel class must arrive in the unused spaces. Besides, there must
be strong cohesion (e.g. closeness) among the instances of the novel class. Thus,
the two basic principles followed by our approach are: keeping track of the used
spaces of each leaf node in a decision tree, and finding strong cohesion among
the test instances that fall into the unused spaces.

4 Novel Class Detection

We follow two basic steps for novel class detection. First, the classifier is trained
such that an inventory of the used spaces (described in section B.2) is created
and saved. This is done by clustering and and saving the cluster summary as
“pseudopoint” (to be explained shortly). Secondly, these pseudopoints are used
to detect outliers in the test data, and declare a novel class if there is strong
cohesion among the outliers.

4.1 Saving the Inventory of Used Spaces During Training

The general idea of creating the inventory is to cluster the training data, and save
the cluster centroids and other useful information as pseudopoints. These pseudo-
points keep track of the use spaces. The way how this clustering is done may be
specific to each base learner. For example, for decision tree, clustering is done at
each leaf node of the tree, since we need to keep track of the used spaces for each leaf
node separately. For the K-NN classifier discussed in section 3.1l already existing
pseudopoints are utilized to store the inventory.

It should be noted here that K-means clustering appears to be the best choice
for saving the decision boundary and computing the outliers. Density-based clus-
tering could also be used to detect outliers but it has several problems. First,
we would have to save all the raw data points at the leaf nodes to apply the
clustering. Second, the clustering process would take quadratic time, compared
to linear time for K-means. Finally, we would have to run the clustering algo-
rithm for every data chunk to be tested. However, the choice of parameter K in
K-means algorithm has some impact on the overall outcome, which is discussed
in the experimental results.

Clustering: We build total K clusters per chunk. For K-NN, we utilize the
existing clusters that were created globally using the approach discussed in
section Bl For decision tree, clustering is done locally at each leaf node as
follows. Suppose S is the chunk-size. During decision tree training, when we
reach a leaf node l;, we build k; = (¢;/5) * K clusters in that leaf, where ¢;
denotes the number of training instances that ended up in leaf node ;.

Storing the cluster summary information: For each cluster, we store the
following summary information in memory: i) Weight, w: Defined as the

Integrating Novel Class Detection 85

total number of points in the cluster. ii) Centroid, (. iii) Radius, R: Defined
as the maximum distance between the centroid and the data points belonging
to the cluster. iv) Mean distance, pg: The mean distance from each point
to the cluster centroid. The cluster summary of a cluster H; will be referred to
henceforth as a “pseudopoint” ;. So, w(w);) denotes the weight of pseudopoint
;. After computing the cluster summaries, the raw data are discarded. Let ¥;
be the set of all pseudopoints stored in memory for a classifier L;.

4.2 OQOutlier Detection and Filtering

Each pseudopoint ; corresponds to a hypersphere in the feature space hav-
ing center ((+;) and radius R(%;). Thus, the pseudopoints ‘memorize’ the used
spaces. Let us denote the portion of feature space covered by a pseudopoint 1;
as the “region” of ¥; or RE(1;). So, the union of the regions covered by all the
pseudopoints is the union of all the used spaces, which forms a decision boundary
B(Lj) = Uy,ew, RE(1);), for a classifier L;. Now, we are ready to define outliers.

Definition 2 (Routlier). Let © be a test point and Y, be the pseudopoint
whose centroid is nearest to x. Then x is an Routlier (i.e., raw outlier) if it is
outside RE(Vmin), i.e., its distance from ((Ymin) is greater than R(¢Ymin)-

In other words, any point = outside the decision boundary B(L;) is an Routlier
for the classifier L;. For K-NN, Routliers are detected globally by testing x
against all the psuedopoints. For decision tree, x is tested against only the
psueodpoints stored at the leaf node where x belongs.

Filtering: According to definition [2| a test instance may be erroneously con-
sidered as an Routlier because of one or more of the following reasons: i) The
test instance belongs to an existing class but it is a noise. ii) There has been
a concept-drift and as a result, the decision boundary of an existing class has
been shifted. iii) The decision tree has been trained with insufficient data. So,
the predicted decision boundary is not the same as the actual one.

Due to these reasons, the outliers are filtered to ensure that any outlier that
belongs to the existing classes does not end up in being declared as a new class
instance. The filtering is done as follows: if a test instance is an Routlier to all
the classifiers in the ensemble, then it is considered as a filtered outlier. All other
Routliers are filtered out.

Definition 3 (Foutlier). A test instance is an Foutlier (i.e., filtered outlier) if
it is an Routlier to all the classifiers L; in the ensemble L.

Intiuitively, being an Foutlier is a necessary condition for being in a new class.
Because, suppose an instance x is not an Routlier to some classifier L; in the
ensemble. Then x must be inside the decision boundary B(L;). So, it violates
property [Il (separation), and therefore, it cannot belong to a new class. Although
being an Foutlier is a necessary condition, it is not sufficient for being in a new
class, since it does not guarantee the property [l (cohesion). So, we proceed to the
next step to verify whether the Foutliers satisfy both cohesion and separation.

86 M.M. Masud et al.

4.3 Detecting Novel Class

We perform several computations on the Foutliers to detect the arrival of a new
class. First, we discuss the general concepts of these computations and later we
describe how these computations are carried out efficiently. For every Foutlier,
we define a A.-neighborhood as follows:

Definition 4 (A.-neighborhood). The A.-neighborhood of an Foutlier x is the
set of N'-nearest neighbors of x belonging to class c.

Here NV is a user defined parameter. For brevity, we denote the A.-neighborhood
of an Foutlier z as A.(z). Thus, A\ (z) of an Foutlier z is the set of A in-
stances of class ¢, that are closest to the outlier . Similarly, A, (z) refers to the
set of N' Foutliers that are closest to x. This is illustrated in figure 2 where the
Foutliers are shown as black dots, and the instances of class c; and class c_
are shown with the corresponding symbols. Ay (x) of the Foutlier x is the set of
N (= 3) instances belonging to class ¢, that are nearest to z (inside the circle),
and so on. Next, we define the A -neighborhood silhouette coefficient, (N-NSC).

oAx)
A = o AX)

Fig. 2. \.-neighborhood with N'=3

Definition 5 (N-NSC). Let a(x) be the average distance from an Foutlier
x to the instances in A\,(x), and b.(x) be the average distance from x to the
instances in A.(x) (where c is an existing class). Let by,in(z) be the minimum
among all b.(x). Then N'-NSC of x is given by:

bmm(x) - a(x)
max(bmin ('T)v a(:r))

N-NSC(z) = (1)
According to the definition, the value of N-NSC is between -1 and +1. It is
actually a unified measure of cohesion and separation. A negative value indicates
that z is closer to the other classes (less separation) and farther away from its
own class (less cohesion). We declare a new class if there are at least N’ (> N)
Foutliers, whose N-NSC is positive. In fact, we prove that this is a necessary
and sufficient condition for a new class. This proof is omitted here due to space
limitation, but can be obtained from [g].

It should be noted that the larger the value of N, the greater the confidence
with which we can decide whether a novel class has arrived. However, if A is

Integrating Novel Class Detection 87

too large, then we may also fail to detect a new class if the total number of
instances belonging to the novel class in the corresponding data chunk is < N.
We experimentally find an optimal value of A/, which is explained in section

Computing the set of novel class instances: Once we detect the presence
of a novel class, the next step is to find those instances, and separate them from
the existing class data. According to the necessary and sufficient condition, a
set of Foutlier instances belong to a novel class if following three conditions
satisfy: i) all the Foutliers in the set have positive N-NSC, ii) all the Foutliers
in the set have \,(x) within the set, and iii) cardinality of the set > N. Let G
be such a set. Note that finding the exact set G is computationally expensive, so
we follow an approximation. Let G’ be the set of all Foutliers that have positive
N-NSC. If |G’'| > N, then G’ is an approximation of G. It is possible that some
of the data points in G’ may not actually be a novel class instance or vice versa.
However, in our experiments, we found that this approximation works well.

Speeding up the computation: Computing N-NSC for every Foutlier in-
stance = takes quadratic time in the number of Foutliers. In order to make
the computation faster, we also create K, pseudopoints from Foutliers using
K-means clustering and perform the computations on the pseudopoints (re-
ferred to as Fpseudopoints), where K, = (N,/S) * K. Here S is the chunk size
and N, is the number of Foutliers. Thus, the time complexity to compute the
N-NSC of all of the Fpseudopoints is O(K, * (K, + K)), which is constant,
since both K, and K are independent of the input size. Note that N-NSC of a
Fpseudopoint is actually an approximate average of the A'-NSC of each Foutlier
in that Fpseudopoint. By using this approximation, although we gain speed, we
also lose some precision. However, this drop in precision is negligible when we
keep sufficient number of pseudopoints, as shown in the exprimental results. The
novel class detection process is summarized in algorithm 2 (DetectNovelClass).

This algorithm can detect one or more novel classes concurrently (i.e., in
the same chunk) as long as each novel class follows property [l and contains
at least A instances. This is true even if the class distributions are skewed.
However, if more than one such novel classes appear concurrently, our algorithm
will identify the instances belonging to those classes as novel, without imposing
any distinction among dissimilar novel class instances (i.e., it will treat them
simply as “novel”). But the distinction will be learned by our model as soon
those instances are labeled, and a classifier is trained with them.

Time complexity: Lines 1-3 of algorithm 2 requires O(KSL) time where S is
the chunk size. Line 4 (clustering) requires O(KS) time, and the last for loop
(5-10) requires O(K2L) time. Thus, the overall time complexity of algorithm
is O(KS + KSL + K2L) = O(K(S + SL + KL)). Assuming that S >> KL,
the complexity becomes O(K.S), which is linear in S. Thus, the overall time
complexity (per chunk) of MineClass algorithm (algorithm[l) is O(K S+ f.(LS)+
f+(S)), where fc(n) is the time required to classify n instances and fi(n) is the
time required to train a classifier with n training instances.

88 M.M. Masud et al.

Algorithm 2. DetectNovelClass(D,L)

Input: D: An unlabeled data chunk
L: Current ensemble of best M classifiers
Output: true, if novel class is found; false, otherwise
1: for each instance x € D do
2: if = is an Routlier to all classifiers L; € L
then FList — FList U {z} /* x is an Foutlier*/
3: end for
Make Ko=(K # |F List|/|D|) clusters with the instances in F List using K-means
clustering, and create F'pseudopoints
for each classifier L; € L do
Compute N-NSC(1);,) for each Fpseudopoint);
W, « the set of Fpseudopoints having positive N-NSC(.).
w(¥p) «— sum of w(.) of all Fpseudopoints in ¥p.
if w(¥,) > N then NewClassVote++
: end for
: return NewClassVote > M - NewClassVote /*Majority voting™/

>

_
=T

Impact of evolving class labels on ensemble classification: As the reader
might have realized already, arrival of novel classes in the stream causes the
classifiers in the ensemble to have different sets of class labels. For example,
suppose an older (earlier) classifier L; in the ensemble has been trained with
classes ¢g and c1, and a newer (later) classifier L; has been trained with classes
c1, and co, where co is a new class that appeared after L; had been trained. This
puts a negative effect on voting decision, since the older classifier mis-classifies
instances of co. So, rather than counting votes from each classifier, we selectively
count their votes as follows: if a newer classifier L; classifies a test instance x as
class ¢, but an older classifier L; does not have the class label ¢ in its model, then
the vote of L; will be ignored if = is found to be an outlier for L;. An opposite
scenario occurs when the oldest classifier L; is trained with some class ¢/, but
none of the later classifiers are trained with that class. This means class ¢ has
been outdated, and, in that case, we remove L; from the ensemble. In this way
we ensure that older classifiers have less impact in the voting process. If class ¢’
later re-appears in the stream, it will be automatically detected again as a novel
class (see definition [I).

5 Experiments

We evaluate our proposed method on a number of synthetic and real datasets,
but due to space limitations, we report results on four datasets.

5.1 Data Sets

Specific details of the data sets can be obtained from [g].

Integrating Novel Class Detection 89

Synthetic data generation: There are two types of synthetic data: synthetic
data with only concept-drift (SynC) and synthetic data with concept-drift and
novel-class (SynCN). SynC is generated using moving hyperplane, which con-
tains 2 classes and 10 numeric attributes. SynCN is generated using Gaussian
distribution, which contains 10 classes and 20 numeric attributes.

Real datasets: The two real datasets used in the experiments are the 10%
version of the KDDCup 99 network intrusion detection, and Forest Cover dataset
from UCI repository. We have used the 10% version of the KDDcup dataset,
where novel classes appear more frequently than the full version, hence it is more
challenging. KDDcup dataset contains around 490,000 instances, 23 classes, and
34 numeric attributes. Forest Cover dataset contains 7 classes, 54 attributes and
around 581,000 instances. We arrange the Forest Cover dataset so that in any
chunk at most 3 and at least 2 classes co-occur, and new classes appear randomly.
All datasets are normalized to have attribute values within [0,1].

5.2 Experimental Setup

We implement our algorithm in Java. The code for decision tree has been
adapted from the Weka machine learning open source repository |(http://www.
cs.waikato.ac.nz/ml/weka/) .| The experiments were run on an Intel P-IV ma-
chine with 2GB memory and 3GHz dual processor CPU. Our parameter settings
are as follows, unless mentioned otherwise: i) K (number of pseudopoints per
chunk) = 50, ii) A" = 50, iii) M (ensemble size) = 6, iv) Chunk-size = 1,000 for
synthetic datasets, and 4,000 for real datasets. These values of parameters are
tuned to achieve an overall satisfactory performance.

Baseline method: To the best of our knowledge, there is no approach that can
classify data streams and detect novel class. So, we compare MineClass with a
combination of two baseline techniques: OLINDDA [1], and Weighted Classifier
Ensemble (WCE) [9], where the former works as novel class detector, and the
latter performs classification. For each chunk, we first detect the novel class
instances using OLIN DDA. All other instances in the chunk are assumed to be
in the existing classes, and they are classified using WCE. We use OLINDDA
as the novelty detector, since it is a recently proposed algorithm that is shown
to have outperformed other novelty detection techniques in data streams [7].
However, OLIN DDA assumes that there is only one “normal” class, and all
other classes are “novel”. So, it is not directly applicable to the multi-class nov-
elty detection problem, where any combination of classes can be considered as the
“existing” classes. We propose two alternative solutions. First, we build parallel
OLIN DD A models, one for each class, which evolve simultaneously. Whenever
the instances of a novel class appear, we create a new OLINDDA model for
that class. A test instance is declared as novel, if all the existing class models
identify this instance as novel. We will refer to this baseline method as WCE-
OLINDDA PARALLEL. Second, we initially build an OLIN DDA model with
all the available classes. Whenever a novel class is found, the class is absorbed into
the existing OLIN DDA model. Thus, only one “normal” model is maintained

(http://www.cs.waikato.ac.nz/ml/weka/).
(http://www.cs.waikato.ac.nz/ml/weka/).

90 M.M. Masud et al.

throughout the stream. This will be referred to as WCE-OLINDDA SINGLE.
In all experiments, the ensemble size and chunk-size are kept the same for both
these techniques. Besides, the same base learner is used for WCFE and MC.
The parameter settings for OLINDDA are: i) number of data points per clus-
ter (Nezer) = 15, ii) least number of normal instances needed to update the
existing model = 100, iii) least number of instances needed to build the initial
model = 30. These parameters are chosen either according to the default values
used in [7] or by trial and error to get an overall satisfactory performance. We
will henceforth use the acronyms MC' for MineClass, W-OP for WCE-
OLINDDA PARALLEL and W-OS for WCE-OLINDDA SINGLE.

5.3 Performance Study

Evaluation approach: We use the following performance metrics for evalua-
tion: M,,c, = % of novel class instances Misclassified as existing class, Fje, = %
of existing class instances Falsely identified as novel class, ERR = Total misclas-
sification error (%)(including M,e,, and Fjey). We build the initial models in
each method with the first M chunks. From the M+1% chunk onward, we first
evaluate the performances of each method on that chunk, then use that chunk
to update the existing model. The performance metrics for each chunk for each
method are saved and averaged for producing the summary result.

Results: Figures [Bl(a)-(d) show the ERR for decision tree classifier of each ap-
proach up to a certain point in the stream in different datasets. K-NN classifier
also has similar results. For example, at X axis = 100, the Y values show the
average ERR of each approach from the beginning of the stream to chunk 100.
At this point, the ERR of MC, W-OP, and W-OS are 1.7%, 11.6% and 8.7%,
respectively, for the KDD dataset (figure Bl(c)). The arrival of novel a class in
each dataset is marked by a cross (x) on the top border in each graph at the
corresponding chunk. For example, on the SynCN dataset (figure Bla)), W-OP
and W-OS misses most of the novel class instances, which results in the spikes
in their curves at the respective chunks (e.g. at chunks 12, 24, 37 etc.). W-OS
misses almost 99% of the novel class instances. Similar spikes are observed for
both W-OP and W-OS at the chunks where novel classes appear for KDD and
Forest Cover datasets. For example, many novel classes appear between chunks
9-14 in KDD, most of which are missed by both W-OP and W-OS. Note that
there is no novel class for SynC dataset. MC correctly detects most of these
novel classes. Thus, MC outperforms both W-OP and W-0OS in all datasets.
Tabledlsummarizes the error metrics for each of the techniques in each dataset
for decision tree, and K-NN. The columns headed by ERR, Myew and Fpeq
report the average of the corresponding metric on an entire dataset. For example,
while using decision tree in the SynC dataset, MC, W-OP and W-OS have almost
the same ERR, which are 11.6%, 13.0%, and 12.5%, respectively. This is because
SynC simulates only concept-drift, and both MC and WCE handle concept-drift
in a similar manner. In SynCN dataset with decision tree, MC, W-OP, and W-OS
have 0%, 89.4%, and 99.7% M., respectively. Thus, W-OS misses almost all of
the novel class instances, whereas W-OP detects only 11% of them. MC correctly

Integrating Novel Class Detection 91

a c
18 18 MR
MC —=— MC ——
15 4 W-OP 15 4 W-OP
W-0S —— W-0S ——
v 121 12
&
w2 9
-
< 6 6
3 A 3 A
0 ; T T T 0 T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Chunk no Chunk no
b d
35 35
MC —— MC —=—
30 W-OP 30 A W-OP
W-0S —— s W-0S ——
25 A 25 A kA e
&
= 20 A 20
£ 15 4 15
<
10 A 10
5 A 5
0 : : . : 0 : : . .
0 20 40 60 80 100 0 20 40 60 80 100
Chunk no Chunk no

Fig. 3. Error comparison on (a) SynCN, (b) SynC, (¢) KDD and (d) Forest Cover

detects all of the novel class instances. It is interesting that all approaches have
lower error rates in SynCN than SynC. This is because SynCN is generated
using Gaussian distribution, which is naturally easier for the classifiers to learn.
W-0OS miss-predicts almost all of the novel class instances in all datasets. The
comparatively better ERR rate for W-OS over W-OP can be attributed to the
lower false positive rate of W-OS, which occurs since almost all instances are
identified as “normal” by W-OS. Again, the overall error (ERR) of MC is much
lower than other methods in all datasets and for all classifiers. K-NN also has
similar results for all datasets.

Figures Ml(a)-(d) illustrate how the error rates of MC change for different
parameter settings on KDD dataset and decision tree classifier. These parameters
have similar effects on other datasets, and K-NN classifier. Figure @l(a) shows
the effect of chunk size on ERR, Fjew, and M., rates for default values of
other parameters. M., reduces when chunk size is increased. This is desirable,
because larger chunks reduce the risk of missing a novel class. But F),., rate
slightly increases since the risk of identifying an existing class instance as novel
also rises a little. These changes stabilizes from chunk size 4,000 (for Synthetic
dataset, it is 1,000). That is why we use these values in our experiments. Figure
Ei(b) shows the effect of number of clusters (K) on error. Increasing K generally

92 M.M. Masud et al.

Table 1. Performance comparison

Classifier Dataset ERR Mnew Frew
MC W-OP W-0OS MC W-OP W-0OS MC W-OP W-0OS
SynC 11.6 13.0 125 0.0 0.0 00 0.0 1.0 0.6
Decision tree SynCN 0.6 6.1 5.2 0.0 894 99.7 0.0 0.6 0.0
KDD 1.7 11.6 87 0.7 267 994 15 7.0 0.0
Forest Cover 7.3 21.8 8.7 9.8 185 994 1.7 150 0.0
SynC 11.7 13.1 12,6 0.0 0.0 0.0 0.0 1.0 0.6
K-NN SynCN 0.8 58 56 0 90.1 99.7 09 06 0.0
KDD 2.3 10.0 7.0 2.7 290 994 22 7.1 0.0

Forest Cover 5.4 192 89 1.0 185 940 45 150 0.3

reduces error rates, because outliers are more correctly detected, and as a result,
M, rate decreases. However, Fj,.,, rate also starts increasing slowly, since more
test instances are becoming outliers (although they are not). The combined effect
is that overall error keeps decreasing up to a certain value (e.g. K=50), and
then becomes almost flat. This is why we use K=50 in our experiments. Figure
Hi(c) shows the effect of ensemble size (M) on error rates. We observe that the
error rates decrease up to a certain size (=6), and become stable since then.
This is because when M is increased from a low value (e.g., 2), classification
error naturally decreases up to a certain point because of the reduction of error
variance [9]. Figured(d) shows the effect of A on error rates. The x-axis in this
chart is drawn in a logarithmic scale. Naturally, increasing N up to a certain
point (e.g. 20) helps reducing error, since we know that a higher value of A/ gives
us a greater confidence in declaring a new class (see section[4.3]). But a too large
value of A increases M., and ERR rates, since a new class is missed by the
algorithm if it has less than A instances in a data chunk. We have found that
any value between 20 to 100 is the best choice for V.

Running time: Table 2l compares the running times of MC, W-OP, and W-0OS
on each dataset for decision tree. K-NN also shows similar performances. The
columns headed by “Time (sec)/chunk ” show the average running times (train
and test) in seconds per chunk, the columns headed by “Points/sec” show how
many points have been processed (train and test) per second on average, and the
columns headed by “speed gain” shows the ratio of the speed of MC to that of
W-OP and W-OS, respectively. For example, MC is 2,095, and 105 times faster
than W-OP on KDD dataset, and Forest Cover dataset, respectively. Also, MC
is 203 and 27 times faster than W-OP and W-OS, respectively, on the SynCN
dataset. W-OP and W-0OS are slower on SynCN than on SynC dataset because
SynCN dataset has more attributes (20 vs 10) and classes (10 vs 2). W-OP is
relatively slower than W-OS since W-OP maintains C' parallel models, where
C is the number of existing classes, whereas W-OS maintains only one model.
Both W-OP and W-OS are relatively faster on Forest Cover than KDD since
Forest Cover has less number of classes, and relatively less evolution than KDD.
The main reason for this extremely slow processing of W-OP and W-OS is that
the number of clusters for each OLINDDA model keeps increasing linearly with

Integrating Novel Class Detection 93

6 6
ERR —=—
new —
—_ Mnew -
s 4 4
g
5 2 2 4
0 i ; ; ; 0
05 1 2 3 4 5 2 4 6 8 10 12
Chunk size (in thousands) Ensemble size (M)
b d
10 10
ERR ——
g | 8 | Fnew —
— Mnew —
S
z 6 61
g
5 4 4
o
2 4 2 4
0 T i 0 ; T . .
2 20 50 100 20 100 500 2000
Number of clusters (K) Min-points (N)
Fig. 4. Sensitivity to different parameters
Table 2. Running time comparison in all datasets
Datasot Time(sec)/chunk Points/sec Speed gain
MC W-OP W-OS MC W-OP W-0OS MC over W-OP MC over W-OS
SynC 0.18 0.81 0.19 5,446 1,227 5,102 4 1
SynCN 0.27 529 7.34 3,656 18 135 203 27
KDD 0.95 1369.5 222.8 4,190 2 17 2,095 246
Forest Cover 2.11 213.1 10.79 1,899 18 370 105 5

the size of the data stream, causing both the memory requirement and running
time to increases linearly. But the running time and memory requirement of MC
remains the same over the entire length of the stream.

6 Conclusion

We have presented a novel technique to detect new classes in concept-drifting
data streams. Most of the novelty detection techniques either assume that there
is no concept-drift, or build a model for a single “normal” class and consider
all other classes as novel. But our approach is capable of detecting novel classes

94 M.M. Masud et al.

in the presence of concept-drift, and even when the model consists of multiple
“existing” classes. Besides, our novel class detection technique is non-parametric,
meaning, it does not assume any specific distribution of data. We also show
empirically that our approach outperforms the state-of-the art data stream based
novelty detection techniques in both classification accuracy and processing speed.

It might appear to readers that in order to detect novel classes we are in fact
examining whether new clusters are being formed, and therefore, the detection
process could go on without supervision. But supervision is necessary for classifi-
cation. Without external supervision, two separate clusters could be regarded as
two different classes, although they are not. Conversely, if more than one novel
classes appear in a chunk, all of them could be regarded as a single novel class
if the labels of those instances are never revealed. In future, we would like to
apply our technique in the domain of multiple-label instances.

Acknowledgment

This research was funded in part by NASA grant NNX08AC35A.

References

1. Chen, S., Wang, H., Zhou, S., Yu, P.: Stop chasing trends: Discovering high order
models in evolving data. In: Proc. ICDE, pp. 923-932 (2008)

2. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proc. ACM SIGKDD, pp. 97-106 (2001)

3. Kolter, J., Maloof, M.: Using additive expert ensembles to cope with concept drift.
In: Proc. ICML, pp. 449-456 (2005)

4. Markou, M., Singh, S.: Novelty detection: A review-part 1: Statistical approaches,
part 2: Neural network based approaches. Signal Processing 83 (2003)

5. Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B.: A practical approach
to classify evolving data streams: Training with limited amount of labeled data.
In: Proc. ICDM, pp. 929-934 (2008)

6. Roberts, S.J.: Extreme value statistics for novelty detection in biomedical signal
processing. In: Proc. Int. Conf. on Advances in Medical Signal and Information
Processing, pp. 166-172 (2000)

7. Spinosa, E.J., de Leon, A.P., de Carvalho, F., Gama, J.: Olindda: a cluster-based
approach for detecting novelty and concept drift in data streams. In: Proc. 2007
ACM symposium on Applied computing, pp. 448452 (2007)

8. University of Texas at Dallas Technical report UTDCS-13-09 (June 2009),
http://www.utdallas.edu/~mmm058000/reports/UTDCS-13-09. pdf

9. Wang, H., Fan, W., Yu, P., Han, J.: Mining concept-drifting data streams using
ensemble classifiers. In: Proc. ACM SIGKDD, pp. 226-235 (2003)

10. yan Yeung, D., Chow, C.: Parzen-window network intrusion detectors. In: Proc.
International Conference on Pattern Recognition, pp. 385-388 (2002)

11. Yang, Y., Wu, X., Zhu, X.: Combining proactive and reactive predictions for data
streams. In: Proc. ACM SIGKDD, pp. 710-715 (2005)

12. Yang, Y., Zhang, J., Carbonell, J., Jin, C.: Topic-conditioned novelty detection.
In: Proc. ACM SIGKDD, pp. 688-693 (2002)

http://www.utdallas.edu/~mmm058000/reports/UTDCS-13-09.pdf

	Integrating Novel Class Detection with Classification for Concept-Drifting Data Streams
	Introduction
	Related Work
	Overview
	Classifiers Used
	Assumptions

	Novel Class Detection
	Saving the Inventory of Used Spaces During Training
	Outlier Detection and Filtering
	Detecting Novel Class

	Experiments
	Data Sets
	Experimental Setup
	Performance Study

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

