
 

 

  
Abstract—In this paper, we introduce a robust state feedback 

controller design using Linear Matrix Inequalities (LMIs) and 
guaranteed cost approach for Takagi-Sugeno fuzzy systems. The 
purpose on this work is to establish a systematic method to design 
controllers for a class of uncertain linear and non linear systems. Our 
approach utilizes a certain type of fuzzy systems that are based on 
Takagi-Sugeno (T-S) fuzzy models to approximate nonlinear 
systems. We use a robust control methodology to design controllers. 
This method not only guarantees stability, but also minimizes an 
upper bound on a linear quadratic performance measure. A 
simulation example is presented to show the effectiveness of this 
method. 
 

Keywords—Takagi-Sugeno fuzzy model, State feedback, Linear 
Matrix Inequalities, Robust stability. 

I. INTRODUCTION 
LL recently there has been  a great deal of interest in 
using dynamic Takagi-Sugeno fuzzy models to 

approximate nonlinear systems. This interest relies on the fact 
that dynamic T-S models are easily obtained by linearization 
of the nonlinear plant around different operating points. Once 
the T-S fuzzy models are obtained, linear control methodology 
can be used to design local state feedback controllers for each 
linear model. Aggregation of the fuzzy rules results in a 
generally nonlinear model, but in a very special form, which is 
exactly the same as a time varying and nonlinear system 
described by a set of Polytopic Linear Inclusions [1], [2]. 

Since powerful convex optimization algorithms exist for 
dealing for these kinds of systems, it is natural to use these 
algorithms for design of stabilizing T-S fuzzy controllers [3] 
and [4]. Sufficient conditions for the stability of T-S systems 
were first proposed in [5]. These sufficient conditions required 
the existence of a common positive definite matrix P which 
would satisfy a set of Lyapunov inequalities. Although 
looking for a common positive definite solution of the LMI 
which can be efficiently solved in polynomial time using the 
recently developed interior point method [6]. The stability of 
these systems has been discussed in detail in [3], [7] and [14] 
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but there have been few results that have gone beyond 
stability, and have considered performance. Authors in [4] 
have added the degree of stability, and have shown that 
controller  design with guaranteed degree of stability can be 
transformed into Generalized Eigen Value Problem (GEVP) 
[1], [2]. The authors in [3], [8] have added an LMI condition 
that guarantees the control action is norm-bounded, and 
therefore would not exceed a certain pre-defined limit.  

In this paper, we generalize these results to the problem of 
minimizing the expected value of a quadratic performance 
measure with respect to randomized initial conditions, with 
zero mean and a covariance equal to the identity. Using the 
guaranteed cost approach [9], [10], we minimize an upper 
bound on an LQ measure representing the control effort and 
the regulation error. We show that this problem can be 
transformed into a trace minimization problem, which can be 
solved using any of the available convex optimization 
software package (for example the Matlab  LMI Control 
Toolbox[11] ). 

The structure of this paper is as follows: In section 2, we 
present an overview of dynamic Takagi Sugeno systems and 
their LMI formulation. Section 3 deals with the robust 
guaranteed cost performance problem and upper bound on the 
performance measure and it’s formulation as LMIs. 
Simulation example is presented in section 4. Finally 
conclusions and some future work are discussed in section 5.  

II. TAKAGI-SUGENO FUZZY MODEL 
A dynamic T-S fuzzy model is described by a set of fuzzy 

“IF … THEN” rules with fuzzy sets in the antecedents and 
dynamic linear time-invariant systems in the consequents. A 
generic T-S plant rule can be written as follows [12]: 

ith Plant Rule:  
IF 1 1( ) , ( )i n inx t is M and x t is MK THEN i ix A x B u= +&  

where 1nx ×∈ ¡  is the state vector, r  is the number of rules, 

ijM  are input fuzzy sets, 1mu ×∈ ¡  is the input and n n
iA ×∈ ¡ , 

n m
iB ×∈ ¡  are state matrix and input matrix respectively. 
Using singleton fuzzifier, max-product inference and center 

average defuzzifier, we can write the aggregated fuzzy model 
as: 
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where ijµ  is the membership function of the jth fuzzy set in 

the ith rule. Defining the coefficients iα  as: 
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we can write (1) as:  
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where 0iα >  and 

1
1r
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α

=
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Using the same method for generating T-S fuzzy rules for 
the controller, we have: 

ith Controller Rule:   

IF 1 1( ) ( )i n inx t is M and x t is MK  THEN iu K x= −  

The over all controller would be  
 

1
( )

r

i i
i

u x K xα
=

= −∑  (5) 

 
Replacing (5) in (4), we obtain the following equation for the 
closed loop system: 
 

1 1

( ) ( )( )
r r

i j i i i
i j

x x x A B K xα α
= =

= −∑∑&  (6) 

 
For the stability of the closed loop system, we have the 
following theorem: 
Theorem 1 [3]: The closed fuzzy system (6) is globally 
asymptotically stable if there exists a common positive 
definite matrix P  which satisfies the following Lyapunov 
inequalities: 
 

( ) ( ) 0 1, ,
0                             

T
i i i i i i
T
ij ij

A B K P P A B K i r
G P PG i j r

⎧ − + − < =⎪
⎨ + < < ≤⎪⎩

K
 (7) 

 
where ijG  is defined as: 
 

ij i i j j j iG A B K A B K= − + −  (8) 

 
Pre-multiplying and post-multiplying both sides of 
inequalities in (7) by 1P− and using the following change of 
variables: 
 

1

i i

Y P
X K Y

−⎧ =⎪
⎨

=⎪⎩
 (9) 

 
we obtain the following LMIs [1]: 
 

0        1, ,
( ) ( ) ( )    

( ) 0                         

T T T
i i i i i i

T
i j i j i j j i

T
i j j i

YA AY B X X B i r
Y A A A A Y B X B X
B X B X i j r

⎧ + − − < =
⎪ + + + − +⎨
⎪− + < < ≤⎩

K
 (10) 

 
If the above LMIs have a common positive definite 

solution, stability is guaranteed, but in most practical 
problems stability by itself in not enough, and the controller 
needs to satisfy certain design objectives. This will be 
discussed in the next section. 

III. ROBUST PERFORMANCE 
In this section we try to achieve a certain level of 

performance for the uncertain system (6) using a guaranteed-
cost approach [9]. It is a well known result from LQR theory 
that the problem of minimizing the cost function, 

 

0
( )T TJ x Qx u Ru dt

∞
= +∫  (11) 

 
Subject to 
 

;x Ax Bu u Kx= + = −&  (12) 
 

reduces to finding a positive definite solution P > 0 of  the 
following Lyapunov equation: 
 
( ) ( ) 0T TA BK P P A BK Q K RK− + − + + =  (13) 

 
where 0Q ≥  and 0R > . We can write the minimum cost of 

J, [9], as: min{ } (0) (0)TJ x Px=   
If we write the Lyapunov equation (13) as a matrix 

inequality instead of an equality, the solution of the inequality 
will be an upper bound on the performance measure J, and we 
can reach  min{ }J  by minimizing that upper bound. While 
this result holds for a single LTI system, we can extend it to 
the case of equation (6). To avoid the dependency of the cost 
function  J  on initial conditions, we assume the initial 
conditions randomized with zero mean and identity 
covariance, i.e., 

 
{ (0)} 0        
{ (0) (0) }T

x
x x I

Ε =⎧
⎨Ε =⎩

 (14) 
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where Ε  is the expectation operator. 

Our objective is to minimize the expected value of the 
performance index J with respect to all possible initial 
conditions with zero mean and identity covariance.  
Lemma 1: For random initial conditions with zero mean and 
covariance equal the identity, we have: 

 
(0){ (0) (0)} ( )T

x x Px tr PΕ =  (15) 
 
where (.)tr denotes the trace of the matrix. Using the above 
lemma, we can state the following theorem: 

Theorem 2: Consider the closed loop fuzzy system (6). The 
following bound on the performance objective J , 

 

(0) 0
( ) ( )T T

xJ x Qx u Ru dt tr P
∞

= Ε + <∫  (16) 

 
where P  is the solution of the following inequalities: 
 

1
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A B K P P A B K Q K RK
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=

=

⎧ − + − + + <⎪⎪
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∑ K
 (17) 

 
and the control law u is defined as in equation (5). 
 
Proof: We already know that ( )J tr P<  where P  satisfies the 
following inequalities: 
 

1
( ) ( ) 0

r
T T

i i i i i i i i
i

A B K P P A B K Q K RK
=

− + − + + <∑  
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We just need to show that: 
 

1 1 1
( ) ( )

r r r
T T

i i i i i i
i i i

K R K K RKα α
= = =

<∑ ∑ ∑  (18) 

 
For simplicity, we will show that the above inequality is 

true for the case where we only have two rules for the 
controller, the extension to more than two rules can be done 
via induction. We need to show that: 

 

1 1 2 2 1 1 2 2 1 1 2 2( ) ( )T T TK K R K K K RK K RKα α α α+ + < +  (19) 
 
To illustrate this, we rewrite the left hand side of the above 

equation as the following quadratic form: 
 

2
1/ 2 1/ 2 1/ 2 1/ 21 1 2

1 2 1 22
1 2 2

T TK R K R R K R K
α α α

α α α
⎡ ⎤

⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦
⎣ ⎦

 (20) 

 
The right hand side of the equation can be written as: 
 

1/ 2 1/ 2 1/ 2 1/ 2
1 2 1 2

1 0
0 1

T TK R K R R K R K
⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (21) 

 
To prove the theorem we have to show that: 
 

2
1 1 2

2
1 2 2

1 0
0 1

α α α
α α α

⎡ ⎤ ⎡ ⎤
<⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (22) 

 
This is already satisfied since the difference of the two 
matrices is positive definite, i.e., we have the following 
 

2
1 1 2

2
1 2 2

1
0

1
α α α

α α α
⎡ ⎤−

>⎢ ⎥−⎣ ⎦
 (23) 

 
Now, using the same change of variables as in (9), and 

multiplying both sides of equation (17) by 1P−  and also using 
theorem 1, we can write (17) as the following inequalities:  

 

1

1
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T
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where  
         T T T

i i i i i i iN YA AY B X X B= + − −  (25) 
 
         ij i j j iS B X B X= +  (26) 
 
         ( ) ( )T T

ij i j i j ij ijT Y A A A A Y S S= + + + − −  (27) 
 
Using the LMI lemma [9], we can write the above 

inequalities as follows: 
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To obtain the least possible upper bound using a quadratic 

Lyapunov function, we have the following optimization 
problem: 

1( )                    
 LMIs in (28)

tr Y −⎧
⎨
⎩

Min
Subject to

 (29) 

 
This is a convex optimization problem which can be solved in 
polynomial time [6] using one of the available LMI toolboxes. 
To make it possible to use Matlab LMI Toolbox [11], we 
introduce an artificial variable Z as an upper bound on 1Y − , 
and minimize ( )tr Z  instead, i.e, we recast the problem in the 
following form: 
 

( )                         
LMIs in (28)

 
0n

n

tr Z

Z I
I Y

⎧
⎪

⎧⎪
⎨ ⎪

⎡ ⎤⎨⎪ >⎢ ⎥⎪⎪ ⎣ ⎦⎩⎩

Min

Subject to
 (1) 

 
If the above LMIs are feasible, we can calculate the controller 
gains as: 
 

1
i iK X Y −=  (31) 
 

and u as in (5), i.e., we can write u as any convex combination 
of controller gains , 1, ,iK i n= K .  

IV. SIMULATION AND RESULTS 
To illustrate this design approach, consider the problem of  

balancing an inverted pendulum on a cart. We use the same 
model as in [3], [13]. The equations for the motion of the 
pendulum  are: 

 
1 2

2
1 2 1 1

2 2
1

sin( ) sin(2 ) / 2 cos( )
4 / 3 cos ( )

x x

g x amlx x a x ux
l aml x

=⎧
⎪

− −⎨ =⎪ −⎩

&

&
  

 

where 1x  denotes the angle of the pendulum (in radians) from 
the vertical axis, and 2x  is the angular velocity of the 

pendulum, 29.8 /g m s=  is the gravity constant, m is the mass 
of the pendulum, M is the mass of the cart, 2l is the length of 
the pendulum, u is the force (in Newton) applied to the cart, 
and 1/( )a m M= + . The simulations values are 2m kg= , 

8M kg=  and 2 1l m= . We approximate the nonlinear plant 
by two Takagi-Sugeno fuzzy rules. Note that the plant is not 
controllable for 1 / 2x π= ± , therefore we linearize the system 

around 80°  instead. The plant rules are: 

Plant rule (1):  If 1x  is close to zero  Then 1 1x A x B u= +&   

Plant rule (2):  If 1x  is close to 
2
π

±  Then 2 2x A x B u= +&  

where close to zero and close to / 2π±  are the input fuzzy 

sets defined by the membership functions 1 1 1
2( ) 1x xµ
π

= −  

and 2 1 1
2( )x xµ
π

=  respectively, depicted in Fig. 1, and 1A , 

1B  , 2A , 2B  are given as follows: 

1 1

0 1 0
     ,     B

17.30 0 0.177
A

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 

2 2

0 1 0
    ,     B  

10.58 0 0.030
A ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Membership functions µi(x1)
 

The controller rules are defined by:  

Controller rule (1):  If 1x  is close to zero Then 1u K x= −  

Controller rule (2):  If 1x  is close to
2
π

± Then  2u K x= −  

We also assume the following values of Q  and R : 
3 0
0 0

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 , 2R =  

Close to ± π/2 

Close to zero 

µi(x1) 
 
1

-π/2 π/2 
x1 

World Academy of Science, Engineering and Technology 18 2008

1161



 

 

Solving the LMI optimization problem in the previous 
section using the Matlab LMI Control Toolbox [11], we 
obtain the following values :  

5 1.9821 0.6199
10

0.6199 0.1949
P

⎡ ⎤
= × ⎢ ⎥

⎣ ⎦
,  

[ ]1 - 429.6222 - 122.8607K =  , 

[ ]2 - 913.7748 - 284.1638K =  

The resulting global controller is:  

( )1 1 1 2 1 2( ) ( )u x K x K xµ µ= − + . 

Simulations indicate the above control law can balance the 
pendulum for initial conditions between [-80°, 80°]. Results 
are depicted in Figs. 2-4. As it is evident from the simulation 
results, the controller gains are much smaller than the ones 
given in [3]. 

 
Fig. 2 Response of the pendulum angle 

 

 
Fig. 3 Response of the pendulum angular velocity  

 
Fig. 4 Applied control 

 

V. CONCLUSION 
The purpose of this paper is was to present a simple design 

of Takagi-Sugeno fuzzy controllers. We presented a controller 
which minimizes an upper bound of a linear quadratic 
performance measure using the guarantees cost approach. The 
results obtained here can be extended to LQG scheme, using 
the observer strategy. Using the separation principle, we can 
design the observer and controller separately, and we still end 
up with LMIs. 
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MATLAB  PROPGRAM 
 
%  Model parameters 
 
A1=[0 1;17.3 0];  B1=[0;-0.177]; 
A2=[0 1;9.45 0];  B2=[0;-0.03]; 
Q=[3 0;0 0];  SQ=sqrt(Q); 
R=2; SR=sqrt(R); 
A3=A1+A2; 
 
%   Calculus of  P, K1, K2 
 
setlmis([ ]); 
X1=lmivar(2,[1 2]) ; 
X2=lmivar(2,[1 2]) ; 
Y=lmivar(1,[2 1]) ; 
Z=lmivar(1,[2 1]); 
lmiterm([1 1 1],1,A1','s');  
lmiterm([1 1 1 X1],B1,-1,'s');  
lmiterm([1 2 1 Y],SQ,1);  
lmiterm([1 2 2 0],-1);  
lmiterm([1 3 1 X1],SR,1);  
lmiterm([1 3 3 0],-1);  
lmiterm([1 4 1 X2],SR,1);  
lmiterm([1 4 4 0],-1);  
lmiterm([2 1 1 Y],1,A2','s');  
lmiterm([2 1 1 X2],B2,-1,'s');  
lmiterm([2 2 1 Y],SQ,1);                          
lmiterm([2 2 2 0],-1);                            
lmiterm([2 3 1 X1],SR,1);                        
lmiterm([2 3 3 0],-1);                            
lmiterm([2 4 1 X2],SR,1);                        
lmiterm([2 4 4 0],-1);        

 
lmiterm([3 1 1 Y],1,A3','s');  
lmiterm([3 1 1 X1],B2,-1,'s');  
lmiterm([3 1 1 X2],B1,-1,'s');  
lmiterm([3 2 1 Y],SQ,1);  
lmiterm([2 2 2 0],-1);                    
lmiterm([2 3 1 X1],SR,1);             
lmiterm([2 3 3 0],-1);                    
lmiterm([2 4 1 X2],SR,1);             
lmiterm([2 4 4 0],-1);        
lmiterm([3 1 1 Y],1,A3','s');  
lmiterm([3 1 1 X1],B2,-1,'s');  
lmiterm([3 1 1 X2],B1,-1,'s');  
lmiterm([3 2 1 Y],SQ,1);  
lmiterm([3 2 2 0],-1);  
lmiterm([3 3 1 X1],SR,1);  
lmiterm([3 3 3 0],-1);  
lmiterm([3 4 1 X2],SR,1);  
lmiterm([3 4 4 0],-1);  
lmiterm([-4 1 1 Z],1,1);  
lmiterm([-4 2 1 0],1);  
lmiterm([-4 2 2 Y],1,1);  
lmiterm([-5 1 1 Y],1,1);  
lmis=getlmis;                     
[tmin,xfeas]=feasp(lmis); 
x1=dec2mat(lmis,xfeas,X1); 
x2=dec2mat(lmis,xfeas,X2); 
y=dec2mat(lmis,xfeas,Y); 
z=dec2mat(lmis,xfeas,Z); 
P=inv(y) ; 
K1=x1*P; 
K2=x2*P; 
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