
Lower-Bounded Facility Location

Zoya Svitkina∗

Abstract

We study the lower-bounded facility location problem,
which generalizes the classical uncapacitated facility lo-
cation problem in that it comes with lower bound con-
straints for the number of clients assigned to a facility in
the case that this facility is opened. This problem was
introduced independently in the papers by Karger and
Minkoff [12] and by Guha, Meyerson, and Munagala [7],
both of which give bicriteria approximation algorithms
for it. These bicriteria algorithms come within a con-
stant factor of the optimal solution cost, but they also
violate the lower bound constraints by a constant factor.
Our result in this paper is the first true approximation
algorithm for the lower-bounded facility location prob-
lem, which respects the lower bound constraints and
achieves a constant approximation ratio for the objec-
tive function. The main technical idea for the design
of the algorithm is a reduction to the capacitated facil-
ity location problem, which has known constant-factor
approximation algorithms.

1 Introduction

In the uncapacitated facility location (FL) problem, we
are given a set of clients and a set of facilities, as well as
a metric specifying the distances between the clients and
the facilities. The goal is to choose a subset of facilities
to open, and to assign each client to an open facility,
in such a way as to minimize the sum of the facility
opening costs and the connection costs. A facility
opening cost for each facility is specified as part of the
input, and it has to be paid if the facility is opened.
A connection cost for each client is its distance to the
facility to which it is assigned. The facility location
problem has been studied extensively. It is NP-hard,
but a number of good constant-factor approximation
algorithms are known for it, using several techniques
such as linear program rounding, primal-dual method
and local search. Facility location has been used to
model practical scenarios, such as the location of stores
or warehouses in a geographical area, or of servers on a
network. It is also used as a subroutine to solve more
complex optimization problems.

∗Department of Computer Science, Dartmouth College,

Hanover, NH. Supported by NSF ITR grant CCR-0325453.

The lower-bounded facility location (LBFL) prob-
lem that we consider in this paper is an extension of
the uncapacitated facility location, as it includes an ex-
tra set of constraints. In particular, in addition to all
the elements of a regular facility location instance, an
instance of the lower-bounded version specifies a lower
bound B, which is the minimum number of clients that
can be assigned to a facility if it is opened. Obviously,
if B is equal to zero, then the problem reduces to the
original facility location. The LBFL problem was intro-
duced simultaneously and independently by Karger and
Minkoff [12], who use it as a subroutine for solving the
maybecast network design problem, and by Guha, Mey-
erson and Munagala [7], who use it as a subroutine for
solving the access network design problem. Both papers
propose bicriteria approximation algorithms for LBFL,
which violate both the lower bound constraints and the
optimality of the objective function by constant factors,
but are sufficient for their purposes.

As demonstrated by the algorithms of [12] and [7],
as well as [8], LBFL can be a useful subroutine for
solving various network design problems. Undoubtedly,
the problems presented in those papers are not the
only ones for which the solution of LBFL would be
useful. In addition, the LBFL problem formulation
has direct applications. For example, Lim, Wang, and
Xu [14] present a transportation problem faced by a
real-world company that has to decide on allocation of
cargo from customers (‘clients’) to carriers (‘facilities’),
who then ship it overseas. There is a transportation
cost per unit demand assigned from each customer to
each carrier, which can be modeled by the connection
cost. But the main difficulty arises from the fact that
there is a regulation enforcing a “minimum quantity
commitment”, i.e. a rule that the total amount of cargo
delivered by each carrier, if any, must be at least a
certain minimum quantity. So the problem becomes
exactly LBFL, but without facility costs (which seems
to be as hard as the general LBFL). Other example
applications of LBFL include the location of stores, with
the requirement that each individual store serve a given
minimum number of customers to remain profitable [7],
and a clustering problem in which each cluster has to
be at least a certain size, while the average distance of
data points to cluster centers is minimized [12].

Related work There has been much work on de-
signing approximation algorithms for the uncapacitated
facility location problem. The first constant-factor ap-
proximation algorithm was proposed by Shmoys, Tar-
dos, and Aardal [19], and is based on linear program
rounding. Subsequently, other constant-factor approx-
imation algorithms were designed, based on various
techniques, including the primal-dual method and lo-
cal search (e.g. [1, 2, 4, 11, 13, 20]). Currently the best
approximation guarantee is 1.52 [16].

Lower-bounded facility location problem was in-
troduced by Guha, Meyerson, and Munagala [7], who
call it the load-balanced facility location and use it for
solving the access network design problem, which is
a special case of the single-sink buy-at-bulk problem.
Simultaneously, LBFL was also introduced by Karger
and Minkoff [12], who call it the r-gathering problem
and use it to solve the maybecast problem, which mod-
els network design under uncertainty about demands.
Both papers present essentially the same bicriteria ap-
proximation algorithm for LBFL, which, for any given
constant α ∈ [0, 1), finds a solution which assigns at
least α · B clients to each open facility (where B is the
lower bound on the number of clients) and costs at most
1+α
1−α

ρ ·OPT , where ρ is the approximation ratio for the
FL problem, which is used as a subroutine, and OPT is
the cost of the optimal solution to LBFL that respects
the lower bound constraints. Thus, this algorithm pro-
vides a trade-off between the cost of the solution and
the amount by which the lower-bound constraints are
violated, but it is unable to find a truly feasible solu-
tion with a non-trivial guarantee on the cost. The LBFL
problem is also considered by Lim et al. [14], who for-
mulate it as a mixed-integer program and solve it using
a branch-and-cut scheme. They also analyze a greedy
heuristic for LBFL without facility costs and show that
it is a 2B-approximation.

An extension of the facility location problem which
in some sense is the opposite of LBFL is the capacitated
facility location (CFL) problem. In CFL, each facility
has a capacity, which is the maximum number of clients
that can be assigned to it. This problem is significantly
harder than the uncapacitated version. For example, all
known LP relaxations for it have unbounded integrality
gaps. However, there are several known constant-factor
approximation algorithms for CFL, all of which are
based on the local search technique. Korupolu, Plax-
ton and Rajaraman [13] gave a constant-factor approxi-
mation for the special case of uniform capacities, which
was later improved by Chudak and Williamson [5]. The
first constant-factor algorithm for non-uniform capaci-
ties, providing a (8.53+ε)-approximation, was given by
Pál, Tardos and Wexler [18]. Currently the best bound

is 3 + 2
√

2 + ε ≤ 5.83 + ε [21]. A variant of the capac-
itated problem is facility location with soft capacities,
in which facilities can be opened multiple times for ex-
tra cost, thus serving more clients than their capacity.
This version of the problem is generally easier to solve
than CFL, as it does not suffer from large integrality
gaps, and can be reduced to the regular FL problem.
A number of constant-factor approximation algorithms
have been proposed for it [1, 3, 10, 11, 17].

A formulation that generalizes CFL with either
hard or soft capacities, as well as a number of other
problems, is known as the universal facility location
problem. In it, instead of capacities, each facility has a
cost function which depends on the number of clients
that are assigned to it. For example, CFL can be
modeled by a cost function that starts out as constant,
but then goes to infinity when the number of clients
exceeds the capacity. This formulation was introduced
by Hajiaghayi, Mahdian and Mirrokni [9], who focus
on the special case of concave functions and give a
constant approximation based on a reduction to the
uncapacitated problem. Subsequently, Mahdian and
Pál [15] gave an algorithm that works for arbitrary
monotone non-decreasing facility cost functions. Their
algorithm is an extension of the local search technique
of [18] for CFL, and gives a 7.88 + ε approximation. It
was later improved by Garg, Khandekar and Pandit [6],
who achieve a 3+2

√
2+ε approximation ratio, bridging

the gap between known guarantees for universal facility
location and CFL.

Our results and techniques In this paper, we
present the first constant-factor true approximation al-
gorithm for the lower-bounded facility location prob-
lem, thus resolving an open question of Karger and
Minkoff [12]. Our algorithm is a true approximation
in the sense that the produced solution is feasible for
the original problem, satisfying the lower-bound con-
straints exactly. This is in contrast to bicriteria al-
gorithms, which violate these constraints by constant
factors. Whether or not a bicriteria approximation al-
gorithm is an acceptable solution depends on the spe-
cific application. For example, in the contexts in which
LBFL was originally introduced [7, 12], the bicriteria
algorithms are sufficient for their purposes, and their
violation of the constraints does not present major dif-
ficulties. However, in other cases, either in real-world
applications or in reductions for other problems, a true
approximation for the problem may be needed. For
example, in the transportation application mentioned
above, a bicriteria solution would not be satisfactory.

The main technical idea that we use for solving
LBFL is to create an instance of the capacitated facility
location problem by reversing the roles played by the

clients and the facilities. To give a rough description
lacking many details, we can say that a group of clients
at a given location becomes a facility whose capacity is
the number of those clients. Conversely, a facility that
has not yet been filled to the bound B becomes a client
whose demand is the number of “slots” that still have
to be filled in order for this facility to reach B. Then
the task becomes to make an assignment which would
use the clients to fill the “slots” in such a way that each
open facility has at least B clients assigned to it. We use
a CFL subroutine to make such an assignment, taking
advantage of the known constant-factor approximation
algorithms for it. Our actual algorithm for LBFL also
involves a pre-processing step, in which we compute a
bicriteria solution to our input instance, as well as a
post-processing step, in which we assign some remaining
left-over clients.

Overview Our algorithm consists of three main
stages: first, we find a bicriteria-approximate solution
and use it to transform the instance, taking care that
the value of the optimal solution does not increase too
much; then we use this modified instance to define a
CFL problem, and solve it using one of the known
algorithms; finally, based on the solution to the CFL
instance, we transfer clients between facilities in a
way that transforms the bicriteria solution into an
approximate solution that does not violate the lower
bound constraints. In the following sections, we begin
with the formal problem definition and a review of the
bicriteria algorithm in Section 2; then Sections 3, 4 and
5 describe the three stages of the algorithm respectively.

2 Problem definition and bicriteria algorithm

We begin with a precise statement of the problem.

Definition 2.1. An instance I of the lower-bounded
facility location problem consists of a set of clients D,

a set of facilities F , a non-negative facility cost f(i) for

each facility i ∈ F , a distance metric c(i, j) on the set

D∪F , and a bound B. A feasible solution consists of a

subset O ⊆ F of facilities to open, and an assignment

of each client to an open facility, so that each open

facility has at least B clients assigned to it. For a given

solution, we use j → i to denote the fact that client

j ∈ D is assigned to facility i ∈ F , and i(j) to denote

the facility to which j ∈ D is assigned. The objective

then is to minimize
∑

i∈O

f(i) +
∑

j

c(j, i(j)),

subject to |{j : j → i}| ≥ B for all i ∈ O.

Let OPT(I), or just OPT, denote the value of the
optimal solution to I, with C∗ =

∑

j c(j, i(j)) being its

connection cost and F ∗ =
∑

i∈O
f(i) being its facility

cost. Let j →∗ i and i∗(j) represent the assignments
made by the optimal solution.

Our algorithm for LBFL uses the bicriteria approx-
imation algorithm of [7, 12] as a first step, as described
in more detail in the next section. Here, for the sake of
completeness, let us review this algorithm and its anal-
ysis. The algorithm takes a parameter α ∈ [0, 1) and
returns a solution which assigns at least αB clients to
each open facility.

For each facility i ∈ F , let D(i) ⊆ D be the set of
the closest B clients to i. We now construct an instance
I ′ of the FL problem by dropping the lower bounds from
I and setting facility costs to

f ′(i) = f(i) + λ
∑

j∈D(i)

c(i, j).

Here λ = 2α
1−α

is just a constant used for scaling. The
idea behind the term

∑

j∈D(i) c(i, j) is that if a facility i
is opened in a solution to LBFL, then, since it serves at
least B clients, the connection cost of its clients will be
at least this much. Once the instance I ′ is constructed,
we solve it using a ρ-approximation algorithm, ensuring
that each client is assigned to its nearest open facility
(this only improves the objective). Call the resulting
solution S′.

The second step of the bicriteria algorithm is to
perform a reassignment of clients from open facilities
that are serving less than αB clients in S′. For each such
facility i, in arbitrary order, and each client j assigned
to it, do the following: find the nearest to j open facility
i′ 6= i and reassign j from i to i′. When all clients from
facility i are reassigned, close i. Note that the invariant
that each client is assigned to its nearest open facility is
maintained. Clearly, at the end of this procedure, each
open facility is serving at least αB clients.

To analyze the algorithm, we make the following
observations.

Lemma 2.1. OPT (I ′) ≤ (λ + 1)OPT (I).

Proof. Suppose the optimal solution to the LBFL in-
stance I opens a set of facilities O, has facility cost F ∗

and connection cost C∗. This same solution is feasible
for the FL instance I ′. Its connection cost for I ′ is the
same as it is for I, C∗. Its facility cost for I ′ is

∑

i∈O

f ′(i) =
∑

i∈O

f(i) + λ
∑

j∈D(i)

c(i, j)

 ≤ F ∗ + λC∗.

So the overall cost of this solution, which serves as an
upper bound on OPT (I ′), is at most F ∗ + (λ + 1)C∗ ≤
(λ + 1)OPT . �

Since the FL instance was solved using a ρ-
approximation, we get the following corollary.

Corollary 2.1. The cost of the solution S′ is at most

(λ + 1)ρ · OPT (I).

Now we analyze the additional cost incurred by the
second step of the algorithm.

Lemma 2.2. The additional connection cost incurred by

transferring clients from any facility i in the second step

of the algorithm is at most f ′(i), the facility cost of i in

I ′.

Proof. To bound this cost, we observe that for any
facility i with less than αB clients assigned to it by S′,
there must be at least (1−α)B clients that are included
in the set D(i) but are not assigned to i. Since the total
distance of all clients in D(i) to i is

∑

j∈D(i) c(i, j), the

average distance of those (1 − α)B clients is at most
∑

j∈D(i) c(i,j)

(1−α)B , and so is the minimum distance between i

and one of these clients, say j′ (see Figure 1). Because

j j′

i i′

Figure 1: Use of triangle inequality in Lemma 2.2.

j′ is assigned to its nearest open facility i′ 6= i, we have
that c(j′, i′) ≤ c(j′, i). This means that there must
be another open facility (namely i′) at a distance of

at most 2 ·
∑

j∈D(i) c(i,j)

(1−α)B from i (by using the triangle

inequality on the distances from i to j′ and from j′ to
i′). So when a client j is reassigned from facility i to
its nearest open facility, the increase in distance for it is

at most 2 ·
∑

j∈D(i) c(i,j)

(1−α)B . As there are at most αB such

clients, the total additional connection cost that we pay
for reassigning them from i is at most

2
αB

(1 − α)B

∑

j∈D(i)

c(i, j) = λ
∑

j∈D(i)

c(i, j) ≤ f ′(i).

�

Overall, we get the following approximation guar-
antee.

Theorem 2.1. The solution found by the bicriteria

algorithm for the LBFL instance I has cost at most
1+α
1−α

ρ · OPT (I).

Proof. The cost of the final solution consists of the
following parts: the original connection cost, which is
equal to the connection cost of S′; the facility cost
of facilities that remain open, which is at most the
facility cost of these facilities in S′; and the additional
connection cost for reassignments, which is at most the
facility cost of the facilities that were closed. So the
total cost is at most that of S′, and substituting the
definition of λ into Corollary 2.1, we get the result. �

3 Transforming the instance

In order to apply the main step of our algorithm, which
uses a CFL subroutine, we simplify the problem in a
few ways, ensuring that the new instance has some
useful properties. In particular, it does not have facility
costs, and has clients clustered in relatively large groups
(a constant fraction of B) at each location. To do
this, we employ the bicriteria approximation algorithm
described in the previous section. We consider two
modified instances of the LBFL problem, instance I1

obtained by modifying the original problem according
to the bicriteria solution, and instance I2 obtained by
further modifying I1 (see Figure 2). In this section we
define these instances and bound the values of their
optimal solutions in terms of the optimum for the
original problem.

The bicriteria algorithm is applied to the original
problem instance I, with a parameter α > 1

2 to be
specified later. Let j →b i and ib(j) denote the
assignments made by the obtained solution. Also, let
Cb and F b denote its connection and facility costs,
respectively. We now define the first modified instance,
I1.

Definition 3.1. Let I1 be an instance of LBFL, whose

elements D, F , and B are the same as in I, but the

metric of distances and the facility costs are different.

The distances are modified as follows. Intuitively, ev-

ery client is “moved” to the location of the facility to

which it is assigned by the bicriteria solution. For-

mally, for any two clients j, j′ ∈ D and two facilities

i, i′ ∈ F , the distances become: c1(j, i) = c(ib(j), i);
c1(j, j

′) = c(ib(j), ib(j′)); and the distance between fa-

cilities remains the same, c1(i, i
′) = c(i, i′). The facil-

ity costs are modified so that all the facilities that are

opened by the bicriteria solution become free, and the

costs of others remain the same: f1(i) = 0 if there ex-

ists j ∈ D such that j →b i, and f1(i) = f(i) otherwise.

It’s not hard to see that the new distances c1 also
form a metric. The cost of the optimal solution to I1

can be bounded as follows.

Lemma 3.1. OPT (I1) ≤ 1+α
1−α

· ρ · OPT + OPT .

I: I1: I2:

Figure 2: An example of defining the instances I1 and I2. The black circles represent the clients, and the large
rectangles represent the facilities, whose lower bound is B = 6. The dotted lines show the assignment of clients
to facilities made by the bicriteria algorithm for the original instance, with αB = 4.

Proof. One feasible solution to I1 is to assign each
client j to its optimal facility i∗(j). The facility costs
of this solution are at most those in OPT, F ∗, and
the connection cost for a client j is c1(j, i

∗(j)) =
c(ib(j), i∗(j)) ≤ c(ib(j), j) + c(j, i∗(j)) by the triangle
inequality. Intuitively, j can be first moved back to
its original location, and then moved from there to its
optimal facility. Summing the connection costs over all
clients, we get that the connection cost of this solution
is

∑

j∈D
c1(j, i

∗(j)) ≤ Cb+C∗. Since Cb ≤ 1+α
1−α

·ρ·OPT
by the guarantee of the bicriteria algorithm, we get the
result. �

The second transformation that we make is to pro-
duce a LBFL instance I2 out of instance I1 by removing
the facilities which are not used by the bicriteria solu-
tion that we found (see Figure 2).

Definition 3.2. Let I2 be the same as I1, except for

the set of facilities, which becomes

F2 = {i ∈ F : j →b i for some j ∈ D}.

Next we bound the cost of the optimal solution to
I2 in terms of OPT (I1).

Lemma 3.2. OPT (I2) ≤ 2 · OPT (I1)

Proof. Consider the optimal solution to I1, and suppose
it uses some facility i /∈ F2. Then, instead, transfer all
clients from i to its closest facility i′ ∈ F2. This is
a feasible solution, since i′ now has at least B clients.
The facility cost did not increase, because i′ has cost 0
(by the definition of facility costs in I1). To bound the
possible increase in connection costs, observe that in I1,
each client is co-located with (i.e., is at distance 0 from)
some facility in F2. Now for the facility i /∈ F2, let j
be the closest client assigned to i. It must therefore be

that c1(i, i
′) ≤ c1(i, j). As a result, the total increase in

cost from transferring clients from i to i′ is at most
∑

j′→i

c1(i, i
′) ≤

∑

j′→i

c1(i, j) ≤
∑

j′→i

c1(i, j
′),

where the second inequality follows because j was de-
fined as the closest client assigned to i. Since the ad-
ditional connection cost incurred for transferring clients
from facility i is at most their original connection cost,
the overall connection cost at most doubles, implying
the result of the lemma. �

In the following sections we show how to obtain a
constant-factor approximation to I2. The next lemma
summarizes its relation to the original problem.

Lemma 3.3. Let S be a solution to I that makes the

same assignments as a β-approximate solution to I2.

Then its cost is at most
[

(2β + 1)
1 + α

1 − α
· ρ + 2β

]

· OPT (I).

Proof. If a solution to I2 with total cost β · OPT (I2)
assigns client j to facility i, it pays a connection cost of
c1(j, i) = c(ib(j), i). If S makes the same assignment,
then it has to pay a connection cost of c(j, i), covering
the distance from j’s original location. Since c(j, i) ≤
c(j, ib(j))+ c(ib(j), i), the total connection cost of S for
all clients is at most Cb + β ·OPT (I2). As the solution
to I2 uses only the facilities in F2, the facility cost of S
is at most F b. So the total cost of S is bounded by

C
b + F

b + β · OPT (I2) ≤
1 + α

1 − α
ρ · OPT + 2β · OPT (I1)

≤
1 + α

1 − α
· ρ · OPT + 2β ·

(

1 + α

1 − α
· ρ · OPT + OPT

)

=

[

(2β + 1)
1 + α

1 − α
· ρ + 2β

]

· OPT,

using Theorem 2.1 and Lemmas 3.2 and 3.1. �

4 Reduction to capacitated facility location

At this point, we have an instance I2 of the LBFL
problem which has special structure. It consists of a set
of facilities, each of which with at least αB clients at
distance 0 from it. Let us say that these clients, whose
number is ni ≥ αB, are at this facility i. The instance
does not have facility costs, so its solution requires that
the clients be somehow reassigned, possibly closing some
of the facilities, so that the remaining facilities have at
least B clients each, while minimizing the connection
cost of the reassignments. Since with α > 1

2 , the number
of clients from any two facilities is sufficient to reach the
bound of B, an initial idea of how to solve this problem
might be to find some kind of a matching on the set of
facilities. However, a simple example shows that this
can be far from optimum. Consider a set of B facilities,
each with B − 1 clients, located in a uniform metric
space (with all distances equal to 1). Then the optimal
solution is to close one of the facilities, reassigning one
client from it to each of the other facilities, which costs
B − 1 in connection cost. However, if the facilities
are paired up by a matching, then the connection cost
incurred is B

2 (B − 1).
The way we solve the special case of the LBFL

problem presented by the instance I2 is by using a
reduction to the capacitated facility location problem.
The general idea is that the clients from those locations
that should be closed would correspond to facilities that
have an amount of supply to give out. On the other
hand, the empty slots from those facilities that should
be opened but do not have enough clients to reach B
would correspond to clients in CFL, which have to be
satisfied by the supply from other facilities. Of course,
we do not know in advance which facilities should be
opened and which should be closed, but the reduction
does not require this knowledge. In order to avoid a
confusion of terminology arising from the reversal of the
client-facility roles, we say that the instance of CFL has
supply points (facilities), each with some total supply

(capacity), and demand points (clients), each with some
amount of demand. The goal is to select (open) some
supply points, paying a selection cost (facility opening
cost), and to assign each demand point to a selected
supply point, paying a connection cost, so that each
supply point serves at most the amount of demand equal
to its total supply.

The CFL instance Icap that we create is defined as
follows (see Figure 3). For each facility i ∈ F2 that
has ni ≤ B clients, create a supply point at its location
with total supply B and selection cost δ ·ni · l(i), where
l(i) is the distance between i and its closest other facility
i′ ∈ F2, i′ 6= i, and δ is a constant to be optimized later.
In addition, create a demand point at this location, with

demand B−ni. This is the additional number of clients
that this facility would need in order to reach B. If a
facility i has more than B clients, ni > B, then Icap

will have two supply points at this location, and no
demand points. The first supply point has cost 0 and
total supply ni − B, and the second supply point has
total supply B and cost δ · B · l(i), analogously to the
previous case. The distances of Icap are the same as in
I2.

I2 Icap

in
s
t
a
n
c
e

s
o
lu

t
io

n

facility

closed

supply

point

selected

i

li

i

Figure 3: The top row shows the correspondence be-
tween the instance I2 of LBFL (with B = 6) and the
constructed instance of CFL, Icap. The circles represent
the clients in the LBFL problem. The black triangles
represent the amount of supply at a supply point, and
the white triangles represent the amount of demand.
The bottom row shows the correspondence between the
solutions to these instances. The location i which is
closed in the solution to I2 is selected in the solution
to Icap. Three units of its supply satisfy the demand
of other locations, and two units of supply satisfy the
demand of the same location.

We now bound the cost of the optimal solution to
Icap in terms of the optimal solution to I2.

Lemma 4.1. OPT (Icap) ≤ (1 + δ) · OPT (I2)

Proof. Let us examine the form of the optimal LBFL
solution to I2, and then use it to construct a specific
solution for Icap, whose cost is then an upper bound on
OPT (Icap). We can assume without loss of generality,
by using the triangle inequality, that in the solution
to I2, there is no facility i such that some clients are
assigned from another facility to i, and other clients are
assigned from i to another facility.

The solution that we propose for the CFL instance
Icap corresponds to this LBFL solution in the following
way (see Figure 3). We select the supply points
corresponding to the facilities which are closed in the
LBFL solution, and let them satisfy all the demand at
their own locations. The supply points with cost 0 at the
locations with ni > B are selected as well. Whenever
k clients are assigned from facility i to facility i′ by
the LBFL solution, we say that k amount of supply
is sent from the supply point i to the demand point
i′. The resulting solution may send more supply to a
location than this location’s demand, but this can be
easily corrected without increasing the cost.

To see that a feasible solution to the CFL instance
Icap is obtained, we make two observations. First, all
the demand of Icap is satisfied: if a location i with
demand B − ni is opened by the LBFL solution (like
the top two facilities in Figure 3), then there must be at
least B − ni additional clients assigned to it in order to
satisfy the lower bound requirement, which means that
in the corresponding solution to Icap, all the demand
of i is satisfied by supply from other locations; if i is
closed (like the bottom facility in Figure 3), then it will
be selected, and will be able to satisfy its own demand of
B − ni using part of its total supply of B. The second
observation is that the selected supply points do not
exceed their total supply when satisfying the demands
assigned to them by this solution. A selected supply
point i sends out the amount of supply at most equal to
the number of clients leaving the corresponding facility
in the solution to LBFL. But if this facility is closed,
then it is sending ni clients elsewhere, which is equal
to the total supply of i in the case that ni > B, or
otherwise is equal to its total supply, B, minus the B−ni

amount that it uses to satisfy its own demand. If the
facility is open, then the only case in which it is sending
out clients is if it started with ni > B, and is sending
out at most ni − B, which is equal to the total supply
of its corresponding supply point of cost 0.

Now we bound the cost of the constructed solution
to Icap. Its connection cost is at most OPT (I2), since
we only moved supply that corresponds to clients that
are reassigned in the solution to I2. The solution’s
selection cost is at most δ times the connection cost
of I2, because the selection cost of δ · l(i) · min(ni, B)
is paid for each supply point i that corresponds to a
closed facility, and the LBFL solution has to pay at
least ni · l(i) in connection cost in order to move the ni

clients from the closed facility i to other facilities, whose
distance from i is at least l(i). Thus the total cost of
our solution is at most (1 + δ) · OPT (I2). �

The next step of the algorithm is to solve the CFL
instance Icap, obtaining a solution Scap, by using one

of the known constant-factor approximation algorithms
for it (e.g. [21]). Say that the approximation ratio for
this algorithm is γ. Then we get the following corollary
to Lemma 4.1.

Corollary 4.1. The cost of the solution Scap found

for the instance Icap is at most (1 + δ)γ · OPT (I2).

5 Reassignment of clients

Once the CFL instance Icap is solved, we reassign clients
from their locations in I2 according to the obtained
solution Scap, in a way that we explain and analyze in
this section. We assume without loss of generality that
in Scap, if a location is selected, then it satisfies its own
demand.

The first type of reassignment of clients that we
perform is exactly as proposed by the solution Scap:
if the demand at some location i′ is satisfied by the
supply from another location i in Scap, then we move
the number of clients equal to this supply from i to i′. It
is always possible to perform this reassignment because
the amount of supply exported from i is never more
than its number of clients, ni. This is true because
either ni ≥ B, in which case the total supply of i is
equal to its number of clients, or else ni < B, in which
case B − ni amount of supply is used to satisfy i’s own
demand, and only ni amount remains for export.

The reason that we do not yet have a feasible
solution to the LBFL problem is the following. The
specification of the CFL problem requires that any
feasible solution satisfy all of the clients (demands);
however, it does not require that an opened facility
(selected supply point) use all of its capacity (supply).
As a result, we may now have facilities, whose supply
points are selected, but not all of whose clients are
reassigned elsewhere. For example, if reassignment is
performed based on the CFL solution in the bottom-
right section of Figure 3, then out of four clients at
facility i, three would be moved to other facilities, but
one would be left. The rest of this section explains how
our algorithm deals with these clients that remain at
the selected facilities. Let us summarize the two types
of facilities that result after the first reassignment.

• There are some facilities, call this set A ⊆ F2,
which now have at least B clients. This set includes
all facilities whose corresponding supply points are
not selected by Scap (and therefore whose demand
amount of B − ni, if positive, is fulfilled by supply
from other locations).

• There are other facilities, A = F2 \ A, which now
have less than B clients. The way this happens is
that their corresponding supply points are selected

by Scap, and (possibly) some of their clients are
reassigned to other locations. Note that for each
such facility i ∈ A, a selection cost of δ · l(i) ·
min(ni, B) is paid by the solution Scap.

Facilities in the set A constitute the easy case,
as we just open them and let them serve the clients
currently assigned to them, satisfying the lower bound
requirement. For the other facilities, however, we have
to do a little more work.

Let us construct a directed graph G whose nodes
are the facilities of F2. For each facility i ∈ A, include
an edge (i, i′), where i′ ∈ F2 is the nearest neighbor of
i (remember that the distance between i and i′ is l(i)).
When constructing this graph, we use some ordering on
the facilities to break ties and avoid cycles in the graph.
As a result, G will consist of two types of connected
components:

1. A tree, whose root is in A, and whose edges are
directed toward the root.

2. A tree containing exactly one double edge (i.e. the
pair of closest nodes with edges in both directions
between them), with other edges of the tree di-
rected toward this double edge.

Note that the facilities from A are always roots of
type-1 trees, or singletons (which is a special case), as
they do not have out-edges. Facilities from A make up
the non-root nodes of type-1 trees and the type-2 trees
entirely. In particular, they are always in components of
size at least two, which is important for our algorithm.

We now use the graph G to make some more
reassignments of clients, to make sure that the lower
bound constraints are satisfied. For each component of
type 1, we do the following procedure on each facility i
in this component, bottom-up (see Figure 4). If i has
at least B clients, then open facility i and cut the tree
edge going up from i. If i has less than B clients, then
send all of these clients from i to its parent facility in the
tree. Since the root is in A, it will always have at least
B clients, and already be open. Thus at the end of this
procedure, each facility in the processed component will
have either 0 or at least B clients, satisfying the lower
bound constraints. Also notice that during this process,
we send strictly less than B clients on each edge of the
component.

For the second type of component, we perform the
same bottom-up procedure on the parts of the tree
directed toward the double edge. The only difference
is in what to do with the double edge itself, whose
endpoints we call i1 and i2. Here we consider several
cases. If each of i1 and i2 has at least B clients, then
open both of them. If one of them, say i1, has at

least B clients, and i2 has less than B, then transfer
all clients from i2 to i1 and open i1. If each of them
has less than B, but in total the two of them have at
least B, then we transfer all clients from i2 to i1 and
open i1. In the case that the total number of clients
at i1 and i2 is less than B, we find the closest facility
i ∈ A to either one of the two endpoints (i.e., one
minimizing min(c(i, i1), c(i, i2))). Let us say without
loss of generality that i is closer to i1. Then we send
clients from i2 to i1, and then all of them from i1 to i.
Since i ∈ A, it already has at least B clients and is open,
so the procedure overall produces a feasible solution to
LBFL, which is the final solution that we output.

What remains to be done is to bound the cost
incurred by all the transfers of clients that are performed
after the solution of Icap. We bound it in terms of the
connection cost, Ccap, and the selection cost, F cap, of
our CFL solution Scap.

Lemma 5.1. The cost of the solution found by our

algorithm for I2 is at most

2α

2α − 1
·Ccap+

1

δα
·F cap ≤ max(

2α

2α − 1
,

1

δα
)·cost(Scap).

Proof. After solving Icap, the algorithm makes three
types of client reassignments, for which we bound the
costs separately:

1. Reassign clients according to the supply and de-
mand assignments of the solution Scap.

2. Reassign at most B clients for each edge of the
graph G.

3. In case that facilities i1 and i2 forming a double
edge in G don’t have a total of B clients, reassign
at most B clients from i1 to the nearest facility
i ∈ A.

Reassignment of type 1 costs at most Ccap, as connec-
tion costs of Icap are the same as those of I2.

For the second type of reassignment, we notice that
for each edge in G which starts at a facility i and has
length l(i), the solution Scap has paid δ · l(i) ·min(ni, B)
as a selection cost for the supply point i. But since I2

came from a bicriteria solution with parameter α, we
know that ni ≥ αB. So for each edge in G, the selection
cost F cap includes an amount of at least δ · l(i) · αB,
whereas we pay at most l(i) · B for transferring clients
on this edge. Thus, the total cost of reassignments of
type 2 is at most F cap/δα.

For the third type of reassignment, we bound its
cost against the connection cost of Scap. In particular,
we make the following observation about the facilities i1
and i2 forming the double edge in G. As a result of the

Figure 4: The outcome of the bottom-up procedure of client reassignment, with B = 6, on a connected component
of type 1.

bicriteria algorithm, each of them has at least αB clients
in I2, and so together they have at least 2αB > B
clients (since α > 1

2). However, after the solution of
the CFL and reassignments of type 1 and 2, they have
less than B. Since the bottom-up reassignment on the
edges of G could have only added clients to i1 and i2, it
must be that at least (2α − 1)B clients were moved to
facilities in A (which are all at least as far as i) by the
first kind of reassignment. Therefore, for each such pair
i1 and i2 that sends clients to its nearest facility i ∈ A,
the solution Scap to our CFL instance must have paid at
least (2α− 1)B · c(i1, i) in connection cost. So the total
cost of type-3 reassignments is at most Ccap/(2α − 1).
Adding the bounds, we get the result. �

By combining Lemma 5.1, Corollary 4.1, and
Lemma 3.3, we get the following final result.

Theorem 5.1. There is a constant-factor approxima-

tion algorithm for the lower-bounded facility location

problem.

Proof. Setting δ = 2α−1
2α2 and using it in Lemma 5.1

shows that our solution costs at most 2α
2α−1 times the

solution to the CFL instance Icap. Then applying
Corollary 4.1 we get that it is a β = 2α

2α−1 (1 + 2α−1
2α2)γ

factor approximation for the instance I2, which can then
be used in Lemma 3.3. Using the value of α = 0.68,
the ρ = 1.52 approximation algorithm for FL [16], and
γ = (5.83 + ε) approximation algorithm for CFL [21],
the overall approximation ratio becomes 558 + ε. �

6 Extensions and conclusions

In this paper we have presented the first constant-factor
true approximation algorithm for the lower-bounded fa-
cility location problem. The constant in the approxi-
mation guarantee that we obtain is of course not prac-
tical, so the main contribution of our work is a theo-
retical demonstration that there exist polynomial-time
constant-factor approximation algorithms which solve

the LBFL problem without violating the constraints. It
would be interesting to find algorithms with much bet-
ter guarantees, which may be useful in practice, and we
leave it for future work. The running time of our algo-
rithm is dominated by the single call to the capacitated
facility location subroutine, since both the initial bicri-
teria solution and the final client reassignments can be
found efficiently. The known algorithms for CFL, on the
other hand, use local search, which tends to have rather
high theoretical bounds for the worst-case running time.

Our algorithm can be extended to work for the
case of clients with non-unit demands, in which each
client has a non-negative demand d(j), the connection
cost for client j becomes scaled by d(j), and the lower-
bound constraints now require that the total demand

served by a facility is at least B. However, the known
solutions for capacitated facility location all allow the
splitting of a client’s demand, with parts of it being
assigned to different facilities. So because we make
use of the algorithms for CFL, our algorithm would
also have to allow this kind of splitting of demand.
We note that for the case of CFL, it is reasonable to
allow splittable demand because otherwise it is NP-hard
to even determine the existence of a feasible solution.
Although this is not true for LBFL, and the feasibility
question is easy even with unsplittable demands, one
can show that this problem is not approximable to any
factor that is independent of the demand values, unless
P = NP .

Unfortunately, the algorithm presented in this pa-
per does not extend to the generalization of the LBFL
problem in which each facility i has its own lower bound
Bi for the number of clients that it has to serve if
opened. The only step that fails to extend to such non-
uniform bounds is the proof of Lemma 3.2, transform-
ing the original instance to I2: the clients now cannot
just be moved to the closest facility i′ ∈ F2, because
that may violate its bound Bi′ . We leave the solu-
tion of LBFL with non-uniform bounds to future work.

In fact, we have a simple reduction that shows how to
use the solution to the non-uniform LBFL in order to
solve a variant of the universal facility location problem
with monotone non-increasing facility costs (as opposed
to the monotone non-decreasing costs which have been
considered so far), without any loss in the approxima-
tion guarantee. This version of universal facility loca-
tion generalizes LBFL. The reduction just involves cre-
ating multiple facilities in place of each original facility,
with appropriate costs and lower bounds, but requires
that the LBFL problem be solved with a true approx-
imation, and not in the bicriteria sense. Another in-
teresting related open problem is the universal facility
location with non-monotone costs.

7 Acknowledgements

I thank Elliot Anshelevich for suggesting this problem
to me, Éva Tardos and David Shmoys for helpful
discussions, and Yogi Sharma for discussions of the
problem and a critical reading of the manuscript. I also
thank the anonymous referees for their comments and
suggestions.

References

[1] V. Arya, N. Garg, R. Khandekar, K. Munagala, and
V. Pandit. Local search heuristic for k-median and
facility location problems. In Proc. 33rd ACM Symp.

on Theory of Computing, pages 21–29, 2001.
[2] M. Charikar and S. Guha. Improved combinatorial al-

gorithms for the facility location and k-median prob-
lems. In Proc. 40th IEEE Symp. on Foundations of

Computer Science, pages 378–388, 1999.
[3] F. Chudak and D. Shmoys. Improved approximation

algorithms for a capacitated facility location problem.
In Proc. 10th ACM Symp. on Discrete Algorithms,
pages 875–876, 1999.

[4] F. A. Chudak and D. B. Shmoys. Improved approxima-
tion algorithms for the uncapacitated facility location
problem. SIAM J. Comput., 33(1):1–25, 2003.

[5] F. A. Chudak and D. P. Williamson. Improved ap-
proximation algorithms for capacitated facility location
problems. In IPCO, pages 99–113, 1999.

[6] N. Garg, R. Khandekar, and V. Pandit. Improved
approximation for universal facility location. In Proc.

16th ACM Symp. on Discrete Algorithms, pages 959–
960, 2005.

[7] S. Guha, A. Meyerson, and K. Munagala. Hierarchical
placement and network design problems. In Proc.

41st IEEE Symp. on Foundations of Computer Science,
page 603, 2000.

[8] S. Guha, A. Meyerson, and K. Munagala. A constant
factor approximation for the single sink edge installa-
tion problems. In Proc. 33rd ACM Symp. on Theory

of Computing, pages 383–388, 2001.

[9] M. T. Hajiaghayi, M. Mahdian, and V. S. Mirrokni.
The facility location problem with general cost func-
tions. Networks, 42:42–47, 2003.

[10] K. Jain, M. Mahdian, and A. Saberi. A new greedy
approach for facility location problems. In Proc. 34th

ACM Symp. on Theory of Computing, pages 731–740,
2002.

[11] K. Jain and V. V. Vazirani. Approximation algorithms
for metric facility location and k-median problems us-
ing the primal-dual schema and lagrangian relaxation.
J. ACM, 48(2):274–296, 2001.

[12] D. R. Karger and M. Minkoff. Building steiner trees
with incomplete global knowledge. In Proc. 41st IEEE

Symp. on Foundations of Computer Science, page 613,
2000.

[13] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman.
Analysis of a local search heuristic for facility location
problems. J. Algorithms, 37(1):146–188, 2000.

[14] A. Lim, F. Wang, and Z. Xu. A transportation problem
with minimum quantity commitment. Transportation

Science, 40(1):117–129, 2006.
[15] M. Mahdian and M. Pál. Universal facility location.

In European Symposium on Algorithms, pages 409–421,
2003.

[16] M. Mahdian, Y. Ye, and J. Zhang. Improved approxi-
mation algorithms for metric facility location problems.
In Proc. 5th APPROX, pages 229–242, 2002.

[17] M. Mahdian, Y. Ye, and J. Zhang. A 2-approximation
algorithm for the soft-capacitated facility location
problem. In Proc. 6th APPROX, pages 129–140, 2003.

[18] M. Pal, E. Tardos, and T. Wexler. Facility location
with nonuniform hard capacities. In Proc. 42nd IEEE

Symp. on Foundations of Computer Science, page 329,
2001.

[19] D. B. Shmoys, E. Tardos, and K. Aardal. Approxima-
tion algorithms for facility location problems. In Proc.

29th ACM Symp. on Theory of Computing, pages 265–
274, 1997.

[20] M. Sviridenko. An improved approximation algorithm
for the metric uncapacitated facility location problem.
In IPCO, pages 240–257, 2002.

[21] J. Zhang, B. Chen, and Y. Ye. A multiexchange local
search algorithm for the capacitated facility location
problem. Math. Oper. Res., 30(2):389–403, 2005.

