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ABSTRACT

An important issue in the position control of elastic systems
is the correct on-line measurement of displacements. End-
Point Control of flexible manipulators, for example, requires
the measurement of the manipulator's tip displacement.
While this kind of measurement is relatively easy to carry out
in a laboratory setting, it can be problematic in a real world
environment.

A novel procedure for the real-time determination of
displacements at any point of a vibrating body is proposed.
The procedure calls for the use of strain gauges and the
knowledge of the modal properties of the structure.
Advantages of the proposed method are its simplicity and
low cost.

To verify the method a simple test structure (a clamped-
end beam) was instrumented and experimented upon under
different loading conditions. The displacements derived with
the proposed method show good agreement with
displacement measurements performed with a Laser
Doppler Vibrometer.

NOMENCLATURE

r position vector
t time variable
m mass per unit volume/area/length
c damping coefficient per unit volume/area/length
u displacement vector
x vector of coordinates
L linear differential operator in the spatial variables
x i coordinate along reference axis i = 1, 2, 3
E Young's modulus
D plate stiffness
I second moment of inertia of beam's cross section 

about its neutral axis
h plate thickness
ν Poisson's ratio
Ψ j j-th normal mode of the system for undamped free 

vibration
V volume/area/length
ω j j-th undamped natural frequency

δ ij Kronecker operator
y j modal coordinate for mode j
γ j modal bandwidth for mode j
Φj strain eigenvector tensor for mode j

y j
ε strain modal coordinate for mode j

ε strain tensor
ϕ jkl (k, l) component of strain eigenvector tensor for 

mode j
n number of modes taken into consideration
rm vector defining the position of strain gauge m
r vector defining the position of the point whose 

displacement is to be determined
e unit vector defining the direction of the 

displacement to be determined
U Fourier Transform of the displacement signal
E Fourier Transform of the strain signal
Y Fourier Transform of the modal coordinate
U/E transfer function between the displacement and the 

strain signal

1. INTRODUCTION

Real-time displacement measurement in vibrating bodies is
a very important issue in applications related to vibration
reduction in elastic structures [1] or to position control of
flexible manipulators [2]. End-Point Control, for instance,
requires on-line measurement of the manipulator's effective
tip position to be used in the feedback law. While there are
many transducers that can measure displacements, their
performance in this type of application is never fully
satisfactory, either due to range limitations of the
transducers themselves, especially with respect to the range
of motion of a typical manipulator, see for example [2] and
[3], or due to the complexity of the measuring apparatus, as
in the case of [4].

In order to overcome these problems other type of
transducers could be used. Piezoelectric accelerometers
provide displacement information by double integration of
the acceleration signal, but in addition to adding mass to the
system, their performance is not satisfactory at low



frequencies. Velocity transducers on the other hand suffer
from the same drawbacks as displacement transducers in
this type of application.

This paper presents a procedure for the determination of
displacements at any given point in a vibrating body which is
based on the use of strain gauges. Knowledge of the modal
properties of the body is necessary for the implementation of
the method. Experimental or numerical evaluation of strain
to displacement sensitivity is also needed. Simplicity of the
required experimental apparatus, computational efficiency,
and low cost are advantages of the proposed method.

To verify the method a clamped-end beam was
instrumented and experimented upon under different loading
conditions. The displacements derived with the proposed
method show good agreement with displacement
measurements performed with a Laser Doppler Vibrometer.

2. THEORETICAL DEVELOPMENT

Consider a general elastic, isotropic body. The problem we
want to address is the evaluation of the displacement at any
position r  in the body by means of few strain gauge
transducers. We assume a general equation of motion

m(r)
∂ 2u(r,t )

∂t 2 + c(r)
∂u(r,t )

∂t
+L (u(r, t)) = p(r,t ) , (1)

where r  is the position vector, m, c and p are the mass, the
damping coefficient and the load per unit domain
(volume/surface/length), respectively, u is the displacement
vector in the body at time t  and location r and L is a linear
differential operator in the spatial variables. For a uniform
beam, for example,

L = EI
∂ 4

∂x 4
, (2)

where E  is the modulus of elasticity and I  is the moment of
inertia of the cross section. For a thin plate
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where D  is the plate stiffness defined by

D =
Eh 3

12 (1 − ν 2 )
, (4)

h is the plate thickness and ν is Poisson's ratio.
We assume that we can find normal modes such that the

j-th normal mode of the system for undamped free vibration
is Ψ j r( )  and the modes are normalized so that

m(r)Ψ j
T r( )

V
∫ Ψk r( )dV = m jδ jk . (5)

Also we assume that the damping coefficient satisfies

c (r)Ψ j
T r( )

V
∫ Ψ k r( )dV = c j δ jk . (6)

This condition restricts the generality of the systems
considered, see for example [5]. Finally, we assume that the
solution to equation (1) can be given as

u(r,t ) = Ψ j
j =1

∞

∑ (r)y j (t ) . (7)

Substituting (7) into (1), multiplying both sides of the
resulting equation by Ψj

T r( ) , and integrating over the
domain of the body, we obtain

˙ ̇ y j + γ j
˙ y j + ω j

2 y j =
1

m
j

Ψ j
T r( )

V
∫ p(r,t )dV (8)

where ω j  is the j-th undamped natural frequency of the
body and γ j  is the modal bandwidth defined as

γ j =
c j

m
j

. (9)

Equation (8) is one of j uncoupled scalar linear
differential equations, one for each mode of the system,
which describe the motion in the j-th mode. Solution of these
equations leads to the functions y j(t )  which substituted in
(7) give the displacement field in the body.

Similar to eq. (7) (see [6]), the strain field in the body can
be expressed as

ε (r,t) = Φ j (r)
j =1

∞

∑ y j
ε(t )  , (10)

where in this case Φ j (r)  is the tensor  representing the j-th
normal mode of the system. The strain field in the body can
also be obtained from the displacement field by direct
differentiation, that is
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(11)
Comparing (10) with (11) it is possible to set

  y j
ε(t ) = y j (t ) j =1,K∞ (12)

and

  

Φj(r) =
1
2

∂Ψj(r)
∂x

+
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 j = 1,K∞ . (13)

From eqns. (10) and (12) we see that the strain gauge
signal can be utilized towards the calculation of the functions



y j(t ) . These in turn can be used in eq. (7) to calculate the
displacement at any point in the body.

To this end, suppose that we want to determine the
displacement at location r , that the strain component ε kl  at
locations   rm , m = 1,Kn,  are measured, and that the
response of the body can be approximated by a finite
number n  of modes. Then we can write eqn. (7) and eqn.
(10) as:

u(r , t) = Ψj
j=1

n

∑ (r )y j(t) (14)

and

ε kl (rm ,t ) = ϕ jkl
j =1

n

∑ (rm )y j (t ) , (15)

where ϕ jkl (rm )  is the (k, l) component of the tensor Φ j (rm ) .
Equation (15) is a linear algebraic equation in the n
unknowns y j(t ) . If the ϕ jkl (rm )  were known, using n  strain
gauges would allow to solve for these unknowns. The
ϕ jkl (rm )  could be calculated directly from (13) by numerical
differentiation, but this method is very sensitive to
measurement errors if the mode shapes Ψ j r( )  are
determined experimentally and then curve-fitted (see [7]).
Another option is to consider the transfer functions between
the displacement u = eTu  at location r , with e the direction
of the displacement which is to be determined, and the n
measured ε kl  at the rm  locations. Namely, taking the Fourier
Transforms of (14) and (15), considering only n  modes, we
have:

U (r , ω) = eT Ψ j
j =1

n

∑ (r )Y j (ω ) (16)

and

  
Εkl (rm , ω) = ϕ jkl

j =1

n

∑ (rm )Y j (ω) m =1,Kn , (17)

where the Y j (ω ) 's are the Fourier Transforms of the y j(t ) 's.
Thus we have:

  

U

E
kl

(r ,rm ,ω ) =
eT Ψ j

j =1

n

∑ (r )Y j (ω)

ϕ jkl
j =1

n

∑ (rm )Y j(ω)
m =1,Kn . (18)

Assuming that the modes of the structure are uncoupled,
that is at each one of the resonant frequencies ω j  only the
contribution of mode j is significant, (18) becomes

  

U

E
kl

(r ,rm ,ω j ) =
eT Ψ j(r )
ϕ

jkl
(r

m
)

m =1,Kn; j =1,Kn .

(19)

Therefore, with the mode shape functions Ψ j (r)  known and

the n  transfer functions 
U

E
kl

(r ,rm ,ω j)   measured, we can use

(19) to calculate the coefficients ϕ jkl (rm )  .
It is worth noting that, as an alternative to the

experimental procedure outlined above, the 
U

E
kl

(r ,rm ,ω j)

ratios could be calculated using the Finite Element method.
This could be important in applications where the
experimental analysis is difficult to carry out, an example
being a space structure that cannot support its own weight in
a 1 g gravity field.

3. PROPOSED METHOD

In order to obtain the displacement u at a generic location r 
of a structure, the following steps are proposed:

1. Assume the response of the structure under dynamic
loading to be accurately described by n  modes of vibration
only.

2. Perform a Modal Analysis to determine the n
displacement mode shapes Ψ j (r)  .

3. Apply at least n  strain gauges to the structure, each
at a different location rm , to measure the strain component
ε kl  at that location .

4. Determine the n  transfer function values
U

E
kl

(r ,rm , ω j ) . This requires the displacement u(r ,t )  to be

measured.
5.  Use the transfer function values to calculate the n 2

coefficients ϕ jkl (rm )  according to (19).
6. Finally use the strain signals under operating

conditions to solve (15) for the y j(t ) 's. Substitute these
values in (14) to get the desired displacement u(r ,t ) .

4. EXPERIMENTAL VERIFICATION

To verify the effectiveness of the proposed method two
strain gauge bridges were attached to a 350 mm long
clamped aluminum beam of rectangular cross section (50
mm x 3 mm), at distances 51 mm and 140 mm from the
clamped end, respectively. A Polytec Laser Doppler
Vibrometer was used to measure the displacement 335 mm
from the clamped end. The strain gauge signals were used



to reconstruct the measured displacements according to the
derived methodology, when the beam was vibrating freely or
when it was excited by the stinger of a Gearing & Watson
MKII shaker. A sketch of the experimental set-up is shown in
fig. 1.
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Figure 1. Experimental set-up.

Only the first two modes of vibration of the beam were
taken into consideration. With reference to fig. 2, the first two
natural frequencies of the beam are:

ω1 =18.5 Hz  and ω2 =113 Hz.

The mode shapes for a clamped beam are given by [8]:

ψ j (x ) = A j sin β jL − sinhβ jL( ) sinβ jx − sinhβ jx( ){
+ cosβ jL + coshβ jL( ) cosβ jx − coshβ jx( )} j =1, 2 ,..., ∞ ,

(20)

where x  is the coordinate along the axis of the beam, L is
the length of the beam and

β j

4 = m
ω j

2

EI
. (21)

Normalizing the mode shapes using the maximum unity
criterion, see [9], eqn. (20) gives

ψ1(x = 335mm) = 0.937

and

ψ 2 (x = 335mm) = −0.782  .

Thus, from eqn. (14)

u(x = 335mm, t) = 0.937 y1( t) − 0.782 y2 ( t) . (22)
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Figure 2. Power spectra for the displacement signal and the
strain gauge signals at location 1 and location 2.

Eqn. (15) for the given set-up becomes

ε (r
1
,t ) = ϕ

1
(r

1
)y

1
(t )+ ϕ

2
(r

1
)y

2
(t )

ε (r
2
,t ) = ϕ

1
(r

2
)y

1
(t )+ ϕ

2
(r

2
)y

2
(t )

. (23)

In order to use eqns. (23) to solve for y1( t)  and y2 ( t)  the
coefficients ϕ1(r1 ), ϕ2 (r1), ϕ1(r2 ), ϕ2 (r2 )  need to be known. For
this simple case these coefficients could be determined by
direct differentiation of equation (20). In a more general
situation, however, the displacement mode shapes functions
could be known only as the result of an experimental and
curve-fitting procedure and, as previously stated, the
differentiation process could lead to significant errors.



Furthermore, the scaling of the displacement functions
would remain undetermined. The procedure outlined in the
previous sections encompasses these problems. The
transfer functions U/E(ω) relating the displacement at point
r , measured with the laser doppler vibrometer, to the strains
at location r1 and r2, measured with the strain gauges, are
shown in figs. 3 and 4, respectively. Their values at the
resonant frequencies are

U

E
(r ,r1,ω1) = 22.1,

U

E
(r ,r1,ω2 ) =−10.9,

U

E
(r ,r2 ,ω1) = 41.6,

U

E
(r ,r2 ,ω2 ) = 3.86.

 (24)

Eqns. (19) was then used to calculate the coefficients
ϕ1(r1 ), ϕ2 (r1), ϕ1(r2 ), ϕ2 (r2 ) :

ϕ1(r1 ) = 4.24E− 2,
ϕ

2
(r

1
) = 7.17E − 2,

ϕ1(r2 ) = 2.30E− 2,

ϕ2 (r2 ) = −9.46E− 2.

(25)
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Figure 3. Transfer function between the displacement signal
and the strain gauge signal at location 1.
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Figure 4. Transfer function between the displacement signal
and the strain gauge signal at location 2.

These coefficients  were in turn used during motion of
the beam to solve eqns. (23) for y1( t)  and y2 ( t) . Finally,
y1( t)  and y2 ( t)  were substituted in eqn. (22) to reconstruct
the displacement signal.

Several loading conditions were considered. First, the
vibratory response of the beam to a hammer impact applied
55 mm from its fixed end was measured. Figure 4 shows the
measured and reconstructed displacement signals using
unfiltered strain gauge signals. Figure 5 shows the result of
an analogous experiment in which the strain gauge signals
were filtered to eliminate any frequency component above
200 Hz. Then, in a forced excitation experiment, the beam
was subjected to the double sinusoidal loading

F( t) = B1 sin(2πf1t) +B 2 sin(2πf2 t + φ ) . (26)

The frequency values of the two sinusoids were first set at
f1 = 25Hz  and f2 = 105Hz , see fig. 6, and then at f1 = 60Hz

and f2 = 90Hz , see fig. 7. Finally, the beam was excited
driving the shaker with a broad band signal, see fig. 8.

5. RESULTS

For the free vibration case, see fig. 4, the reconstructed
signal satisfactorily reproduces the measured displacement
signal after the high frequency components originally
present in the strain signals have died away. In fact, due to
the higher dynamic sensitivity of strain in comparison to



displacement, see [10], the strain signals contain frequency
components above the second natural frequency of the
beam which do not appear in the displacement signal.
Inclusion of a third mode in the analytical development and
use of a third strain gauge bridge station would allow to
improve the quality of the reconstructed signal in the initial
stages of the measurement also. Furthermore, as shown in
fig. 5, when the strain gauge signals are filtered to eliminate
all frequency components above 200 Hz, the reconstructed
signal reproduces the measured displacement signal very
well, even in the initial stages of the measurement. Only in
the very beginning, when the hammer impacts the beam, a
discrepancy can be noted.

With reference to fig. 6, which shows the measured and
reconstructed displacement signals for the case of forced
excitation with excitation frequencies close to the first two
resonant frequencies of the beam, we notice that the two
signals are almost identical. When the excitation frequencies
are far from the resonant frequencies, namely for the second
experiment using the forcing function described by eqn. (26),
a difference in amplitudes between the reconstructed and
the measured displacement signal can be noted, see fig. 7.
This difference is due to the fact that the response of a
structure in a frequency band which is not close to a
resonant frequency  is made up of contributions from several
modes [11]. In the present work, however, only the first two
modes were considered.

For the last case, see fig. 8, corresponding to random
excitation, the measured displacement signal is buried in the
reconstructed signal. Here again, the strain signals are
much richer in frequency than the displacement signal.
Disregarding these high frequency contributions, the
measured and reconstructed displacements agree very well.
As above, the addition of more strain gauge stations would
improve the reconstruction.
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Figure 4. Measured and reconstructed displacements under
free vibration of the beam, no filtering.
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Figure 5. Measured and reconstructed displacements under
free vibration of the beam, filtering  above 200 Hz.
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Figure 6. Measured and reconstructed displacements,
double sinusoidal loading, f1 = 25 Hz and  f2 = 105 Hz .
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Figure 7. Measured and reconstructed displacements,
double sinusoidal loading, f1 = 60 Hz and  f2 = 90 Hz .
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Figure 8. Measured and reconstructed displacements,
random excitation.

8. CONCLUSION

In order to respond to the need for on-line displacement
estimation in vibrating solids, to be applied for example in
control schemes for the position control of flexible
manipulators or for active vibration suppression in
structures, a novel procedure based on the use of strain
gauge measurements was developed. The procedure
requires knowledge of the modal model of the structure.
Assuming that the vibratory motion of the structure is
accurately described by n modes only, at least n strain
gauge stations are needed to reconstruct the displacement
signal. Furthermore, the ratio of the displacement signal to
the strain gauge signal at each resonant frequency of
interest needs to be determined, either experimentally or by
finite element techniques.

Some preliminary tests were performed on a clamped
beam to verify the effectiveness of the method under
different loading conditions. The results show good
agreement between directly measured and reconstructed
displacement signals. The discrepancies recorded for
certain loading conditions are well explained considering the
limitations introduced by using only two strain gauge
stations.

The advantages of the method are its low cost and its
computational simplicity which make it applicable to real-
time control strategies. Additional experimental testing is
needed to confirm the validity of the method when applied to
more complex structures. An important issue is the choice of
the strain gauge locations for optimal reconstruction and
signal to noise ratio reduction.
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