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SUMMARY

Many statisticians have had the experience of fitting a linear model with uncorrelated errors, then
adding a spatially-correlated error term (random effect) and finding that the estimates of the fixed-
effect coefficients have changed substantially. We show that adding a spatially-correlated random
effect to a linear model is equivalent to adding a saturated collection of canonical regressors, the
coefficients of which are shrunk toward zero, where the spatial map determines both the canonical
regressors and the relative extent of the coefficients’ shrinkage. Adding a spatially-correlated ran-
dom effect can also be seen as inflating the error variances associated with specific contrasts of the
data, where the spatial map determines the contrasts and the extent of error-variance inflation. We
show how to restrict the spatial random effect to the orthogonal complement of the fixed effects,
which we call restricted spatial regression. We mostly model spatial correlation using an improper
conditional auto-regression (ICAR), but briefly show that spatial confounding also arises with so-
called geostatistical models and penalized splines, and for the same reason as with the ICAR. We
consider five proposed interpretations of spatial confounding and draw implications about what, if
anything, one should do about it. For a given problem, the appropriate action depends on whether
the spatial random effect is merely as a formal device used to implement spatial smoothing, or a
random effect in the traditional sense of, say, Scheffé (1959). For spatial random effects with the
former interpretation, restricted spatial regression should be used, while for the latter interpretation
this is less clear. In the process, we debunk the common belief that adding a spatially-correlated
random effect adjusts fixed effect estimates for spatially-structured missing covariates.
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1 Stomach cancer in Slovenia: Where does the fixed effect go?

Dr. Vesna Zadnik, a Slovenian epidemiologist, collected data describing counts of stomach cancers
in the 194 municipalities that partition Slovenia, for the years 1995 to 2001 inclusive. She was
studying the possible association of stomach cancer with socioeconomic status, as measured by
a composite score calculated from 1999 data by Slovenia’s Institute of Macroeconomic Analysis
and Development. (Her findings were published in Zadnik & Reich 2006.) Figure 1a shows the
standardized incidence ratio (SIR) of stomach cancer for the 194 municipalities; for municipality
i = 1, . . . , 194, SIRi = Oi/Ei, where Oi is the observed count of stomach cancer cases and Ei is
the expected count using indirect standardization. Figure 1b shows the socioeconomic scores for
the municipalities, SEci, after centering and scaling, so the SEci have average 0 and finite-sample
variance 1. In both panels of Figure 1, dark colors indicate larger values. SIR and SEc have a
negative association: western municipalities generally have low SIR and high SEc while eastern
municipalities generally have high SIR and low SEc.

Following advice received in a spatial-statistics short course, Dr. Zadnik first did a non-spatial
analysis assuming the Oi were independent Poisson observations with log{E(Oi)} = log(Ei) + α +
βSEc, with flat priors on α and β. This analysis gave the obvious result: β had posterior median
-0.14 and 95% posterior interval (−0.17,−0.10), capturing Figure 1’s negative association.

Dr. Zadnik continued following the short course’s guidance by doing a spatial analysis using
the improper (or implicit) conditionally autoregressive (ICAR) model of Besag, York, & Mollié
(1991). Dr. Zadnik’s understanding was that ignoring spatial correlation would make β’s posterior
standard deviation (standard error) too small, while spatial analysis in effect discounts the sample
size with little effect on the estimate of β, just as generalized estimating equations (GEE) adjusts
standard errors for clustering but (in the authors’ experience) has little effect on point estimates
unless the working correlations are very large. As we will see, other people have different reasons
for introducing spatial correlation.

In the model of Besag, York, & Mollié (1991), the Oi are conditionally independent Poisson
random variables with mean

log{E(Oi)} = log(Ei) + βSEc + Si + Hi. (1)

The intercept is now the sum of two random effects, S = (S1, . . . , S194)′ capturing spatial clustering
and H = (H1, . . . , H194)′ capturing heterogeneity. The Hi are modeled as independent draws from
a normal distribution with mean zero and precision (reciprocal of variance) τh. The Si are modeled
using an L2-norm ICAR, also called a Gaussian Markov random field, which is discussed in detail
below. The ICAR represents the intuition that neighboring municipalities tend to be more similar
to each other than municipalities that are far apart, where similarity of neighbors is controlled by
an unknown parameter τs that is like a precision. This Bayesian analysis used independent gamma
priors for τh and τs with mean 1 and variance 100, and a flat prior for β.

In the spatial analysis, β had posterior mean -0.02 and 95% posterior interval (−0.10, 0.06).
Compared to the non-spatial analysis, the 95% interval was wider and the spatial model fit better,
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with deviance information criterion (DIC; Spiegelhalter et al 2002) decreasing from 1153 to 1082
even though the effective number of parameters (pD) increased sharply, from 2.0 to 62.3. These
changes were expected. The surprise was that the negative association, which is quite plain in the
maps and the non-spatial analysis, had disappeared. What happened?

This spatial confounding effect, which we reported in Reich, Hodges, & Zadnik (2006), has
been reported elsewhere but is not widely known. The earliest report we have found is Clayton,
Bernardinelli, & Montomoli (1993), who used the term “confounding due to location” for a less
dramatic but still striking effect in analyses of lung-cancer incidence in Sardinia; they and Wakefield
(2007) report a similar-sized effect in the long-suffering Scottish lip-cancer data. This effect is not
yet understood; we have seen five proposed interpretations. The interpretations depend on whether
the random effect S meets the traditional definition of “random effect” given in, for example, Scheffé
(1959, p. 238): the levels of a random effect are draws from a population, and the draws are not
of interest in themselves but only as samples from the larger population, which is of interest. For
reasons to be discussed later, we describe random effects not meeting this definition as formal
devices to implement a smoother. With this distinction, which Section 3 discusses in more detail,
the five interpretations are:

• The random effect S is a formal device to implement a smoother.

– (i) Spatially-correlated errors remove bias in estimating β and are generally conservative
(Clayton et al 1993).

– (ii) Spatially-correlated errors can introduce or remove bias in estimating β and are not
necessarily conservative (Wakefield 2007; implicit in Reich et al 2006).

• S is a Scheffé-style random effect.

– (iii) The spatial effect S is collinear with the fixed effect, but neither estimate of β is
biased (David B. Nelson, personal communication).

– (iv) Adding the spatial effect S creates information loss, but neither estimate of β is
biased (David B. Nelson, personal communication).

– (v) Because error is correlated with the regressor SEc in the sense commonly used in
econometrics, both estimates of β are biased (Paciorek 2009).

Except for (v), these interpretations treat SEc as measured without error and not drawn from a
probability distribution.

Our purpose is to examine these interpretations and determine which is appropriate under what
circumstances. Section 2 describes the mechanics of spatial confounding. We give derivations for
the normal-errors analog to (2); Reich et al (2006) gave some of these derivations and an extension
to generalized linear mixed models. Briefly, adding the ICAR-modeled effect S to the model is
equivalent to adding a saturated collection of canonical regressors that are determined solely by
the spatial map. The coefficients of these canonical regressors are shrunk toward zero; their relative
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degrees of shrinkage are also determined solely by the spatial map. Adding the random effect S can
also be seen as inflating the error variances associated with specific contrasts of the data, where the
spatial map determines the contrasts and the extent of error-variance inflation. These derivations
suggest a method to restrict spatial smoothing to the orthogonal complement of the fixed effects,
SEc for the Slovenian data, which we call restricted spatial regression. Spatial confounding is
also present for so-called geostatistical models and two-dimensional penalized splines which, like
ICAR, represent the intuition that observations taken near each other in space tend to be more
similar than observations taken far apart in space. Section 3 considers the five interpretations in
light of Section 2’s theory and draws implications about what, if anything, one should do about
spatial confounding. For a given problem, the appropriate action depends on whether the spatial
random effect is interpreted merely as a formal device used to implement spatial smoothing. If
so, restricted spatial regression should be the preferred analysis. In making this argument, we
debunk the common belief that introducing a spatially-correlated random effect adjusts fixed effect
estimates for spatially-structured missing covariates (e.g., Clayton et al 1993) and argue in addition
that from the linear-models perspective adopted throughout, it seems perverse to even try to use
an error term to adjust a coefficient estimate. For Scheffé-style random effects, on the other hand,
the preferred action is as yet unclear.

2 The mechanics of spatial confounding

This section relies heavily on the theory of linear models. Although our approach is Bayesian, most
of our results apply immediately to analyses based on maximizing the restricted likelihood.

2.1 The model with spatial correlation written as a linear model

For an n-dimensional observation vector y, write the normal-errors analog to model (1) as

y = Xβ + InS + ε (2)

where y, X, S, and ε are n × 1, β is scalar, In is the n-dimensional identity matrix, y and X are
known, and β, S, and ε are unknown. In the Slovenian data, n = 194 and X = SEc. X is centered
and scaled to have average 0 and finite-sample variance 1. The derivation below generalizes easily
to any full-rank X without an intercept column (Reich et al 2006); the intercept is implicit in S,
as shown below. The error term ε is n-dimensional normal with mean zero and precision matrix
τeI, τe being the reciprocal of the error variance. Our Bayesian analysis puts a flat prior on β, but
this is not necessary.

The L2-norm improper CAR model (or prior) on S can be represented as an improper n-variate
normal distribution specified by its precision matrix:

p(S|τs) ∝ τ (n−G)/2
s exp(−0.5τsS′QS) (3)

where G is the number of islands (disconnected groups of municipalities) in the spatial map (Hodges,
Carlin, & Fan 2003). The unknown τs controls the smoothness of S; larger τs force neighboring
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Si to be more similar to each other. Q encodes the neighbor pairs, with diagonal elements qii =
number of municipality i’s neighbors, and qij = -1 if municipalities i and j are neighbors and 0
otherwise. For the Slovenian data, G = 1 and we specify that municipalities i and j are neighbors if
they share a boundary. Other specifications of neighbor pairs are possible but this one is common.
Model (3) can be re-expressed in the pairwise-difference form

p(S|τs) ∝ τ (n−G)/2
s exp(−0.5τs

∑
(Si − Sj)2) (4)

where the sum is over unique neighbor pairs (i, j).
We have written model (2) with the random effect S having design matrix In to emphasize

that model (2) is over-parameterized and is identified only because S is smoothed or, alternatively,
constrained by the ICAR model (3). To clarify the identification issues, re-parameterize (2) as
follows. The neighbor-pair matrix Q has spectral decomposition Q = ZDZ′, where Z is n × n

orthogonal and D is diagonal with diagonal elements d1 ≥ . . . ≥ dn−G > 0 and dn−G+1 = . . . =
dn = 0 (Hodges et al 2003). Z’s columns are Q’s eigenvectors; D’s diagonal elements are the
corresponding eigenvalues. Re-parameterize (2) as

y = Xβ + Zb + ε, (5)

where b = Z′S is an n-vector with a normal distribution having mean zero and diagonal precision
matrix τsD = τsdiag(d1, . . . , dn−G, 0, . . . , 0).

The spatial random effect S thus corresponds to a saturated collection of canonical regressors,
the n columns of Z, whose coefficients b are shrunk toward zero to an extent determined by τsD.
The smoothing parameter τs controls shrinkage of all n components of b and the di control the
relative degrees of shrinkage of the bi for a given τs. Both the canonical regressors Z and the di are
determined solely by the spatial map through Q. The first canonical coefficient, b1, has the largest
di and is thus shrunk the most for any given τs; for the Slovenian map, d1 = 14.46. The last G bi,
bn−G+1, . . . , bn are not shrunk at all because their prior precisions τsdi are zero, so they are fixed
effects implicit in the spatial random effect. The bi with the smallest positive di, dn−G, is shrunk
least of all the shrunken coefficients. For the Slovenian map with G = 1, this is b193, with d193 =
0.03, so its prior precision is smaller than b1’s by a factor of about 500 for any τs.

To understand the differential shrinkage of the bi, we need to understand the columns of Z, which
the spatial map determines. Zn−G+1, . . . , Zn, whose coefficients bn−G+1, . . . , bn are not shrunk at
all, span the space of the means of (or intercepts for) the G islands in the spatial map. This is easily
seen from (4): the improper CAR distribution is flat (puts no constraint) on the G island means.
Also, Q1n = 0 for any map, so the overall intercept 1n always lies in the span of Zn−G+1, . . . , Zn

and is thus implicit in the ICAR specification. Thus without loss of generality, we set Zn = 1√
n
1n

so all other Zi are contrasts, i.e., 1′nZi = 0.
Based on examples, Zn−G, whose coefficient bn−G has the smallest positive prior precision

τsdn−G, can be interpreted loosely as the lowest frequency contrast in S among the shrunken
contrasts. Figure 2a is a plot of Zn−1 = Z193 for the Slovenian data, where darker and lighter
colors indicate higher and lower values respectively. Z193 is “low-frequency” in the sense that it

5



is a roughly linear trend along the long axis of Slovenia’s map. Again based on examples, as the
value of di increases, the frequency of the corresponding Zi increases as well. Figure 2b shows Z1

for the Slovenian data; it is roughly the difference between the two municipalities with the most
neighbors (the dark municipalities) and the average of their neighbors. For other spatial maps,
the interpretations are similar. For the counties of Minnesota (Reich & Hodges 2008, Fig. 6), the
contrast with the least-smoothed coefficient is the north-south gradient, while the contrast with the
most-smoothed coefficient is roughly the difference between the county having the most neighbors
and the average of those neighbors. For the spatial map representing periodontal measurement
sites, the contrast with the least-smoothed coefficient is nearly linear along a dental arch, while
the contrasts with the most-smoothed coefficients are the difference, on each tooth, between the
average of the interproximal sites and the average of the direct sites (Reich & Hodges 2008, Fig. 3,
which also shows other Zi). For the Scottish lip-cancer data, the contrast with the least-smoothed
coefficient is the north-south gradient, while the contrast with the second least-smoothed coefficient
is roughly quadratic along the north-south gradient, high at the northern and southern extremes
and low in the middle — just like the much-studied predictor of lip cancer, AFF , which measures
employment in agriculture, fisheries, and forestry.

2.2 Spatial confounding explained in linear-model terms

For the normal-errors model (2), it is straightforward to show (Reich et al 2006) that the posterior
mean of β conditional on the precisions τe and τs is

E(β|τe, τs,y) = (X′X)−1X′y− (X′X)−1X′ZE(b|τe, τs,y), (6)

where E(b|τe, τs,y) is not conditional on β, taking the value

E(b|τe, τs,y) = (Z′PcZ + rD)−1Z′Pcy, (7)

for r = τs/τe and Pc = I−X(X′X)−1X′, the familiar residual projection matrix from linear models.
These expressions are correct for full-rank X of any dimension.

In (6), the term (X′X)−1X′y is the ordinary least-squares estimate of β and also β’s posterior
mean in a fit without S, using a flat prior on β. Thus the second term −(X′X)−1X′ZE(b|τe, τs,y)
is the change in β’s posterior mean, conditional on (τe, τs), from adding S. Note that ZE(b|τe, τs,y)
is the fitted value of S given (τe, τs). Thus when S is added to the model, the change in β’s posterior
mean given (τe, τs) is -1 times the regression on X of the fitted values of S.

Because X is centered and scaled (so X′X = n− 1) and Z is orthogonal, the correlations ρi of
X and Zi, the ith column of Z, can be written as R = (ρ1, . . . , ρn−G, 0, . . . , 0)′ = (n − 1)−0.5X′Z.
Equation (6) can then be written as

E(β|τe, τs,y) = β̂OLS − (n− 1)1/2R′E(b|τe, τs,y). (8)

(Appendix C gives a more explicit expression.) From (8), adding S to the model induces a large
change in β’s posterior mean if ρi and E(bi|τe, τs,y) are large for the same i. This happens if four
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conditions hold: X is highly correlated with Zi; y has a substantial correlation with both X and
Zi; r = τs/τe is small; and di is small. The last two conditions ensure that bi is not shrunk much
toward zero. These necessary conditions are all present in the Slovenian data: Figure 1 shows the
strong association of y and X = SEc, ρ193 = correlation(SEc, Z193) = 0.72, d193 = 0.03, and S is
not smoothed much (the effective number of parameters in the fit is pD = 62.3).

This effect on β’s estimate is easily understood in linear-model terms as the effect of adding a
collinear regressor to a linear model. If S were not smoothed at all — if the coefficients b of the
saturated design matrix Z were not shrunk toward zero — then β would not be identified. This
corresponds to setting the smoothing precision τs to 0, so the smoothing ratio r = τs/τe = 0. If
the smoothing ratio r is small, β is identified but the coefficients of Zi with small di are shrunk
very little, so if these Zi are collinear with X, the estimate of β is subject to the same collinearity
effects as in linear models.

Consider also how β’s posterior variance changes when the ICAR-distributed S is added to the
model. Reich et al (2006) showed that conditional on τe and τs, adding S to the model multiplies
the conditional posterior variance of β by

[
1−

∑ ρ2
i

1 + rdi

]−1

, (9)

where the sum is over i with di > 0 and ρi is as above. Expression (9) holds only for single-column
X; Reich et al (2006) give an expression for general full-rank X. In general,

∑n
i=1 ρ2

i = 1. Because
Zn ∝ 1n and X is centered, ρn = (n − 1)−0.5X′Zn = 0, so if r = 0, i.e., S is not smoothed,
var(β|τe, τs,y) is infinite because

∑
ρ2

i /(1 + rdi) =
∑n−1

i=1 ρ2
i = 1. As r grows from zero, S is

smoothed more and var(β|τe, τs,y) decreases. For given r, the variance inflation factor (9) is large
if ρi is large for the smallest di, as in the Slovenian data. Again, this differs from the analogous
result in linear-model theory only because the bi are shrunk.

2.3 Spatial confounding explained in a more spatial-statistics style

The linear-models explanation above seems odd to many spatial-statistics mavens, who usually
think of the CAR as a model for the error covariance. We now give a derivation more in line with
this viewpoint.

Begin with the re-parameterized normal-errors model (5) but rewrite it in a more spatial-
statistics style as y = Xβ + ψ, where the elements of ψ = Zb + ε are not independent. S does not
have a proper covariance matrix under an ICAR model, so we must proceed indirectly. Partition
Z = (Z(1)|Z(2)), where Z(1) has n−G columns and Z(2) has G columns, and partition b conformably
as b = (b(1)|b(2))′, so b(1) is (n−G)× 1 and b(2) is G× 1. Pre-multiply (5) by Z′, so (5) becomes

Z(1)′y = Z(1)′Xβ + e1, precision(e1i) = τe(rdi)/(1 + rdi) < τe (10)

Z(2)′y = Z(2)′Xβ + b(2) + e2, precision(e2i) = τe

where e1 = b(1) + Z(1)′ε and e2 = Z(2)′ε, so the two rows of (10) are independent, and recall τe is
ε’s error precision in (5).
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Suppose G = 1 as in the Slovenian data; G > 1 is discussed below. Then Z(2) ∝ 1n and
Z(2)′X = 0 because X is centered, so all the information about β comes from the first row of (10).
Fix τs and τe. Without S in the model, β’s posterior precision (the reciprocal of β’s posterior
variance) is X′Xτe = (n − 1)τe, which is also β’s information matrix (a scalar, in this case). By
adding S to the model, the posterior precision of β decreases by (n− 1)τe

∑n−1
i=1 ρ2

i /(1+ rdi), where
as before ρi = correlation(X, Zi) = (n− 1)−1/2X′Zi and r = τs/τe. The information loss is large if
r is small (relatively little spatial smoothing) and ρi is large for i with small di, as in the Slovenian
data. Because the information about β in the different rows of (10) may not be entirely consistent,
if row i of (10) differs from the other rows and row i is effectively deleted by the combination of
large ρi and small di, β’s estimate can change markedly when S is added to the model.

If the spatial map has G > 1 islands, the ICAR model includes an implicit G − 1 degree of
freedom unsmoothed fixed effect for the island means, in addition to the overall intercept. This
island-mean fixed effect may be collinear with X in the usual manner of linear models even if S is
smoothed maximally within islands (i.e., τs is very large).

2.4 Avoiding spatial confounding: Restricted spatial regression

Spatial confounding can be interpreted in linear-model terms as a collinearity problem. This sug-
gests adapting a simple trick used as a remedy for collinearity in linear models.

In statistical practice, one is commonly asked to determine whether two variables X1 and X2

are independently associated with a third variable y. This vague question is often formalized as a
linear model with y as the dependent variable and X1 and X2 as independent variables. If X1 and
X2 are highly correlated with each other, it can happen that neither is anywhere near statistically
significant when both are included in the linear model, even though each is highly significant
when it alone is included. Many regression classes teach the following trick for this situation: To
test whether X1 is independently associated with y in the presence of X2, regress y on X2 and
X∗

1 = (I − X2(X′
2X2)−1X′

2)X1 and test whether X∗
1’s coefficient is zero. X∗

1 is the residuals of
X1 regressed on X2, so X∗

1 and X2 are orthogonal by construction and their coefficients’ standard
errors are therefore not inflated by collinearity.

The analog in our spatial problem is to restrict the spatial random effect S to the subspace of
n-dimensional space orthogonal to the fixed effect X, which we call “restricted spatial regression”.
We show how to do this for a 1-dimensional X, which is easily generalized to higher dimensions
(Reich et al 2006, Sec. 3; Sec. 4 extends the method to non-normal observables).

The simplest way to specify a restricted spatial regression is to replace model (2) with y =
Xβ +PcS+ε. The design matrix in front of S has changed from In to Pc = In−X(X′X)−1X′, the
residual projection matrix for a regression on X, but otherwise the model is unchanged. Written
this way, S has a superfluous dimension: one linear combination of S, (In − Pc)S, necessarily
contributes nothing to the fitted values of y and the data provide no information about it.

For the spatial models considered here, it is easy to reformulate the restricted spatial regression
so it has no superfluous dimensions. Let Pc have spectral decomposition Pc = (L|K)Φ(L|K)′,
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where Φ is a diagonal matrix with n− 1 eigenvalues of 1 and one 0 eigenvalue, L has n rows and
n− 1 columns, and K has n rows and 1 column, with K proportional to X and K′L = 0. Then fit
the following model:

y = Xβ + LS∗ + ε, (11)

where S∗ is (n−1)-dimensional normal with mean 0 and precision matrix τsL′QL, Q is the neighbor
matrix from S’s ICAR model, and ε is iid normal with mean 0 and precision τe.

Using this model in either form and conditioning on (τs, τe), β has the same conditional posterior
mean as in the analysis without the ICAR-distributed S, but has larger conditional posterior
variance (Reich et al 2006, Sec. 3). Thus, restricted spatial regression discounts the sample size to
account for spatial correlation without changing β’s point estimate conditional on τs and τe.

2.5 Spatial confounding is not an artifact of the ICAR model

Spatial confounding also occurs if, in model (2), S is given a proper multivariate normal distribution
with any of several covariance matrices capturing the intuition that near regions are more similar
than distant. Wakefield (2007), for example, found very similar spatial-confounding effects in
the Scottish lip-cancer data using the ICAR model and a so-called geostatistical model. For the
Slovenian data, we considered geostatistical models in which each municipality’s Xi and yi were
treated as being measured at one point in the municipality. For the analyses described below
and in Appendix A, each municipality’s point had east-west coordinate the average of the farthest
east and farthest west boundary points, and analogous north-south coordinate. An example of a
proper covariance matrix is cov(S) = σ2

s exp(−δij/θ), with δij being Euclidean distance between
the points representing municipalities i and j and θ controlling spatial correlation. Each such
covariance matrix that we considered had an unknown parameter like θ, which for now we treat
as fixed and known. Applying Section 2.2’s approach to such models for S requires only one
change, arising because the precision matrix cov(S)−1 now has no zero eigenvalues: we must add
an explicit intercept to model (5). Therefore, holding θ fixed, spatial confounding will occur by the
same mechanism as with the ICAR model for S. (For the Slovenian data, the smallest eigenvalue
of cov(S)−1 has eigenvector Z194 which, while not constant over the map as for the ICAR model,
nonetheless varies little. We have seen this in other geostatistical models; it explains why the
intercept can be poorly identified in such models, but the generality of this intercept confounding
is unknown.)

In the preceding paragraph, we treated as fixed the parameter θ in cov(S). In a non-Bayesian
analysis these parameters are typically estimated, while in a Bayesian analysis they are random
variables. Thus in applying Section 2.2’s analysis to geostatistical models for S, the canonical
regressors Z depend on the unknown parameter θ of cov(S). However, for at least four common
forms of cov(S) that we explored (Appendix A), as θ varied over a wide range the eigenvector
corresponding to the second-smallest eigenvalue of cov(S)−1 — the canonical regressor Zi most
likely to produce spatial confounding — was highly correlated with the analogous eigenvector of the
ICAR model’s precision matrix τsQ, the canonical regressor that did produce spatial confounding in
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this dataset. Thus, spatial confounding will occur in the Slovenian data for these four geostatistical
models.

Applying the spectral approximation to geostatistical models (Appendix B) is another way to
make the foregoing more concrete. For measurements taken on a regular square grid, the spectral
approximation is closely analogous to Section 2.1’s formulation of the ICAR model as a linear
model. For this special case, the canonical regressors with least- and most-shrunk coefficients are
literally trigonometric functions that are low- and high-frequency respectively.

Penalized splines are a quite different approach to spatial smoothing; Ruppert et al (2003, ch.
13) give a very accessible introduction. However, penalized splines produce the same confounding
effect in the Slovenian data. In a class project (Salkowski 2008), a student fit a two-dimensional
penalized spline to the Slovenian data, attributing each municipality’s counts to a point as described
above. He used the R package SemiPar (version 1.0-2; the package and documentation are at
http://www.uow.edu.au/∼mwand/webspr/rsplus.html) to fit a model in which municipality i’s
observed count of stomach cancers Oi was Poisson with log mean

log{Ei}+ β0 + βSEcSEci + βEEi + βNNi +
∑

k

ukbasiski, (12)

where Ei is municipality i’s east-west coordinate, Ni is its north-south coordinate (each coordinate
was centered and both were scaled by a single scaling constant to preserve the map’s shape), basiski

is the default basis in SemiPar (based on the Matérn covariance function), the uk were modeled
as iid normal, and the knots were SemiPar’s default knots. SemiPar’s default fitting method,
penalized quasi-likelihood, shrank the random effect term

∑
k ukbasiski to zero but the two fixed

effects implicit in the spline, Ei and Ni, remained in the model and produced a collinearity effect
as in an ordinary linear model. Without the spatial spline, a simple generalized linear model fit
gave an estimate for βSEc of -0.137 (standard error 0.020), essentially the same as in Zadnik’s
Bayesian analysis, while adding just the fixed effects Ei and Ni changed βSEc’s estimate to -0.052
(SE 0.028). As the spline fit was forced to be progressively less smooth, βSEc’s estimate increased
monotonically and eventually became positive. (Steinberg & Bursztyn 2004, p. 415, note in passing
a similar confounding effect in a different spline.)

Thus, spatial confounding is not an artifact of the ICAR model, but arises from other, perhaps
all, specifications of the intuition that measures taken at locations near to each other are more
similar than measures taken at distant locations.

3 Evaluating the five interpretations; implications for practice

Before we can discuss interpretations of spatial confounding, we need to distinguish two inter-
pretations of “random effect”. One is traditional, as in the definition from Scheffé (1959) noted
above: the levels of a random effect are draws from a population, and the draws are not of interest
in themselves but only as samples from the larger population, which is of interest. In recent years,
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“random effect” has come to be used in a second sense, to describe effects that have the mathe-
matical form of a Scheffé-style random effect but which are quite different. For these newer-style
random effects, the levels are the entire population; or the levels are themselves of interest; or the
levels are in no meaningful sense draws from a population, from which further draws could be made.
The Slovenian data is an example in which the levels (municipalities) are the entire population.
Hospital quality-of-care studies provide examples in which the levels (hospitals) may be consid-
ered draws from a population but are themselves of interest. The mixed-model representation of
penalized splines (Ruppert et al, 2003) is an example of random effects with levels that are not
draws from any conceivable population. In the simplest case of a one-dimensional penalized spline
with a truncated-line basis, the random effect is the changes in the fit’s slope at each knot, and its
distribution is simply a device for penalizing changes in the slope. The senselessness of imagining
further draws from such random effects is clearest for the examples in Ruppert et al (2003) in which
penalized splines are used to estimate smooth functions in the physical sciences.

A full discussion of random effect interpretations is beyond the present paper’s scope. We
note, however, that discussions of spatial random effects are generally either unclear about their
interpretation or seem to treat them as Scheffé-style random effects. Finally, it is both economical
and accurate to describe all non-Scheffé-style random effects as formal devices to implement a
smoother, interpreting shrinkage estimation as a kind of smoothing, so from now on we do so.

3.1 The random effect S is a formal device to implement a smoother

Consider situations in which S is not a Scheffé-style random effect. For these situations, we have
seen two interpretations of spatial confounding.

• (i) Spatially-correlated errors remove bias in estimating β and are generally conservative
(Clayton et al 1993).

• (ii) Spatially-correlated errors can introduce or remove bias in estimating β and are not
necessarily conservative (Wakefield 2007; implicit in Reich et al 2006).

It is commonly argued (e.g., Clayton et al 1993) that introducing spatially correlated errors
into a model, as with S+ ε, captures the effects of spatially-structured missing covariates and thus
adjusts the estimate of β for such missing covariates even if we have no idea what those covariates
might be. Interpretation (i) reflects this view. We have also heard a somewhat different statement
of this view, as in: “I know I am missing some confounders, in fact I have some specific confounders
in mind that I was unable to collect, but from experience I know they have a spatial pattern.
Therefore, I will add S to the model to try to recover them and let the data decide how much can
be recovered.” In some fields, it is nearly impossible to get a paper published unless a random effect
is included for this purpose.

We can now evaluate this view using the results of Section 2, which are a modest elaboration
of linear-model theory. Indeed, the only aspect of the present problem not present in linear-model
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theory is that most of the canonical coefficients bi are shrunk toward 0, although the bi that produce
spatial confounding are shrunk the least and thus deviate least from linear-model theory.

To make the discussion concrete, consider estimating β using the model y = 1nα + Xβ + ε,
where ε is iid normal error, then estimating β using a larger model, either y = 1nα+Xβ +Hγ + ε,
where H is a supposed missing covariate, or using model (2), which adds the ICAR-distributed
spatial random effect S. Appendix C gives explicit expressions for the adjustment in the estimate
of β under either of these larger models, and for the expected adjustment assuming the data were
generated by the model

y = 1nα + Xβ + Hγ + ε. (13)

We summarize Appendix C’s results here.
There is no necessary relationship between the adjustment to β’s estimate arising from adding

S to the model and the adjustment arising from adding the supposed missing covariate H. This is
most striking if we suppose that H is uncorrelated with X, so that adding H to the model would
not change the estimate of β. In this case, adding the spatial random effect S does adjust the
estimate of β, and in a manner that depends not on H but on the correlation of X and y and
on the spatial map. If the data are generated by (13), the expected adjustment in β’s estimate
from adding S to the model is not zero in general and can be biased in either direction. If there
are no missing covariates, adding S nonetheless adjusts β’s estimate in the manner just described
although the expected adjustment is zero. It is fair to describe such adjustments as haphazard.

Now suppose H is correlated with X, so that adding H to the model changes the estimate of β.
In this case, the adjustment to β’s estimate under the spatial model is again biased. The bias can
be large and either positive or negative, depending on the degree of smoothing (more smoothness
generally implies larger bias) and depending haphazardly on H and on the spatial map. The bias
can even be in the wrong direction, so that on average β’s estimate becomes larger when it would
become smaller if H were added to the model.

Therefore, adding spatially correlated errors is not conservative: a canonical regressor Zi that
is collinear with X can cause β’s estimate to increase in absolute value just as in ordinary linear
models. Further, in cases in which β’s estimate should not be adjusted, introducing spatially-
correlated errors will, nonetheless, adjust the estimate haphazardly.

From the perspective of linear-model theory, it seems perverse to use an error term to adjust
for the possibility of missing confounders. The analog in ordinary linear models would be to move
part of the fitted coefficients into error to allow for the possibility of as-yet-unconceived missing
confounders. In using an ordinary linear model, we know that if missing confounders are correlated
with included fixed effects, variation in y that would be attributed to the missing confounders is
instead attributed to the included fixed effects. We acknowledge that possibility in the standard
disclaimer that if we have omitted confounders, our coefficient estimates could be wrong. In spatial
modeling, the analogy to this practice would be to use restricted spatial regression, so that all
variation in y in the column space of included fixed effects is attributed to those included effects
instead of being haphazardly re-allocated to the spatial random effect.
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Therefore, interpretation (i) cannot be sustained and interpretation (ii) is correct, when the
random effect S is interpreted as a mere formal device to implement a smoother. Adding spatially-
correlated errors cannot be expected to capture the effect of a spatially-structured missing covariate,
but only to smooth fitted values and discount the sample size in computing standard errors or
posterior standard deviations for fixed effects. Therefore, in such cases you should always use
restricted spatial regression so the sample size can be discounted without distorting the fixed effect
estimate. If you are concerned about specific unmeasured confounders, you should add to the
model a suitable explicit fixed effect, not adjust haphazardly by means of a spatially-correlated
error. Finally, conclusions from such analyses should be qualified as in any other observational
study, e.g., we have estimated the association of our outcome with our regressors accounting for
measured confounders, and if we have omitted confounders, then our estimate could be wrong.

3.2 S is a Scheffé-style random effect

For these situations, we have seen three interpretations.

• (iii) The spatial effect S is collinear with the fixed effect, but neither estimate of β is biased
(David B. Nelson, personal communication).

• (iv) Adding the spatial effect S creates information loss, but neither estimate of β is biased
(David B. Nelson, personal communication).

• (v) Because error is correlated with the regressor X in the sense commonly used in econo-
metrics, both estimates of β are biased (Paciorek 2009).

Interpretations (iii) and (iv) treat the fixed effect X as measured without error and not oth-
erwise drawn from a probability distribution (“fixed and known”), while interpretation (v) treats
X as drawn from a probability distribution. Interpreting spatial confounding therefore depends on
whether X is interpreted as fixed and known or as a random variable. This is a messy business,
which seems to be determined in practice less by facts than by the department in which one was
trained. The present authors’ training inclines us to view X as fixed and known as a default, while
econometricians, for example, seem inclined to the opposite default.

To see the difficulty, consider an example in which the random effect is hospitals selected as
a random sample from a population of hospitals, and the fixed effect is an indicator of whether a
hospital is a teaching hospital. The present authors’ default is to treat teaching status as fixed and
known. However, if we have drawn 20 hospitals at random, then the teaching status of hospital
i is a random variable determined by the sample of hospitals we happen to draw, so X is drawn
from a probability distribution. But what if, as often happens, sampling is stratified by teaching
status to ensure that (say) 10 hospitals are teaching hospitals and 10 are not? Now teaching
status is fixed and known. But what if someone gives us the dataset and we don’t know whether
sampling was stratified by teaching status? One might argue that our ignorance disqualifies us from
analyzing these data, but that argument is not compelling to, for example, people who interpret
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the Likelihood Principle as meaning they can ignore the sampling mechanism, or to many people
who do not have a tenured, hard-money faculty position.

Again, a full discussion of this issue is beyond the present paper’s scope. It is also unnecessary
for the present purpose, because there are unarguable instances of each kind of fixed effect. An
example of a fixed and known X could arise in analyzing air pollution measured at many fixed
monitoring stations on each day in a year. The days could be interpreted as a Scheffé-style random
effect, and the elevation of each monitoring station as a fixed and known X. For an example of
X plainly drawn from a probability distribution, consider the hospitals example just above, where
the morbidity score for each hospital’s patients is a random variable for the period being studied.

So first assume X is fixed and known. It is then straightforward to show that both (iii) and
(iv) are correct and indeed arguably identical, though we think they are worth distinguishing.
Interpretation (iv) follows from Section 2.3 and the familiar fact that generalized least squares gives
unbiased estimates even when the covariance matrix is specified incorrectly. For interpretation (iii),
recall from equation (8) that the estimate of β in the spatial model (which, given τe and τs, is both
the posterior mean and the usual estimate following maximization of the restricted likelihood) is

E(β|τe, τs,y) = β̂OLS − (n− 1)−1/2R′E(b|τe, τs,y). (14)

By (7), (n−1)−1/2R′E(b|τe, τs,y) can be written as KPcy where K is an appropriate-sized known
square matrix. Recalling that Pc = I−X(X′X)−1X′, Pcy = Pc(Zb + ε), which has expectation 0
with respect to b and ε. Hence the spatial and OLS estimates of β have the same expectation and
are unbiased based on the aforementioned familiar fact about generalized least squares.

Now assume X is a random variable. Paciorek (2009) interprets model (5) as y = Xβ + ψ

where the error term ψ = Zb + ε has a non-diagonal covariance matrix. Because X′Z 6= 0, X is
correlated with ψ, so by the standard result in econometrics, both the OLS estimate of β and the
estimate of β using (5) are biased. Formulating the result this way is more precise than the common
statement that bias arises when “the random effect is correlated with the fixed effect”, because the
distribution of “the random effect” depends on the parameterization: the random effect b in model
(5) is independent of X, but the random effect S in model (2) is not.

The main point of Paciorek (2009), which presumes the spatial random effect S captures a
missing covariate, is that “bias [in estimating β] is reduced only when there is variation in the
covariate [X] at a scale smaller than the scale of the unmeasured covariate [supposedly captured
by S]”. We conjecture that this can be interpreted in Section 2.2’s terms as meaning that bias is
reduced if X is not too highly correlated with the low-frequency canonical regressors Zi that have
small di and hence little shrinkage in bi.

Paciorek (2009) concludes that restricted spatial regression is either irrelevant to the issue of
bias in estimating β or makes an overly strong assumption by attributing to X all of the disputed
variation in y. The latter appears to presume that the spatial random effect S captures an unspec-
ified missing covariate, which, we have argued, is difficult to sustain. However, this area of research
is just beginning and much remains to be developed.
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4 Conclusion

The preceding sections laid out the mechanics by which spatial confounding occurs, expanding on
Reich et al (2006); showed briefly that this is not an artifact of the ICAR model but is far more
general; gave an alternative analysis (restricted spatial regression) that removes spatial confounding;
and considered proposed interpretations of spatial confounding, concluding that restricted spatial
regression should be used routinely when S is a formal device to implement a smoother, a common
situation.

The literature on spatial confounding is small but it appears many people encounter this problem
in practice. Thus although the present paper is not the last word on the subject, it does bring
together the various approaches to this phenomenon, which should in time yield generally-accepted
advice for statistical practice.

Our understanding of the mechanics of spatial confounding is underdeveloped in certain respects.
In debunking the common belief that spatially-correlated errors adjust for unspecified missing
covariates, our derivation (Appendix C) took the smoothing ratio r = τs/τe as given. Although r’s
marginal posterior distribution is easily derived when τe has a gamma prior, it is harder to interpret
than the posterior mean of β so its implications are as yet unclear. However, it should be possible to
extract some generalizations which, with the expressions in Appendix C, will permit understanding
of the situations in which spatial confounding will and will not occur. We hypothesize this work
will show that whenever both y and X are highly correlated with Zn−G, the canonical regressor
with the least-smoothed coefficient, there will be little smoothing (r will be small) and β’s estimate
under the spatial model will be close to zero. In other words, we hypothesize that in any map, when
both y and X show a strong trend along the long axis of the map, adding a spatially-correlated
error will nullify the obvious association between y and X as it did in the Slovenian data.

The theory is particularly underdeveloped for the situation in which both S and X can be
interpreted as random in Scheffé’s sense; Paciorek (2009) is a first step in what should be a rich
area of research.

Appendix A: A small exploration of spatial confounding in some

common geostatistical models

In Section 2.5, each municipality i was assigned north-south and east-west coordinates. In the
computations below, each coordinate was centered so it averaged zero across the municipalities,
and both centered coordinates were divided by a common scaling constant. The symbols Ni and
Ei refer to the centered and scaled north-south and east-west coordinates respectively, which had
standard deviations 0.76 and 1.24 respectively.

We considered four forms of cov(S) determined by combinations of two distance measures and
two specifications of correlation between municipalities as a function of distance between them.
The measures describing distance between municipalities i and j, δij , were Euclidean distance
[(Ni−Nj)2 +(Ei−Ej)2]0.5 and maximum distance max(|Ni−Nj |, |Ei−Ej |), for which the largest
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Table 1: Correlation between eigenvectors corresponding to jth smallest eigenvalues of the ICAR’s
Q matrix and of cov(S)−1, for four specifications of cov(S) and various θ.

θ

distance function j 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Euclidean exponential 2 0.89 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96
3 0.79 0.87 0.88 0.88 0.88 0.87 0.87 0.86 0.86 0.85
4 0.42 0.20 0.21 0.23 0.24 0.25 0.25 0.26 0.26 0.26

Euclidean linear 2 0.34 0.61 0.88 0.92 0.94 0.95 0.96 0.96 0.96 0.96
3 0.44 0.60 0.80 0.87 0.88 0.85 0.66 0.28 0.18 0.19
4 0.25 0.33 0.10 0.15 0.21 0.27 0.28 0.20 0.15 0.13

maximum exponential 2 0.90 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
3 0.81 0.86 0.87 0.87 0.87 0.86 0.86 0.85 0.84 0.83
4 0.17 0.11 0.10 0.10 0.09 0.09 0.09 0.08 0.08 0.08

maximum linear 2 0.36 0.72 0.90 0.93 0.94 0.94 0.95 0.95 0.95 0.95
3 0.15 0.66 0.83 0.87 0.87 0.87 0.26 0.25 0.26 0.29
4 0.26 0.36 0.09 0.11 0.14 0.13 0.01 0.03 0.04 0.04

distances between two municipalities were 5.4 and 4.7 respectively. The forms specifying correlation
as a function of distance were exponential, exp(−δij/θ), and linear, max[(1− δij/θ), 0].

For each form of cov(S), Table 1 shows the correlation between the eigenvector corresponding
to the jth smallest eigenvalue of cov(S)−1 and the eigenvector corresponding to the jth smallest
eigenvalue of the ICAR model’s neighbor matrix Q, for a range of values of cov(S)’s tuning constant
θ. When this correlation is high for j = 2, the geostatistical specification for cov(S) will produce
the same spatial confounding as the ICAR model.

Table 1 shows that generally the correlations between eigenvectors of cov(S)−1 and Q are high
for j = 2 and j = 3, but fall off substantially for j = 4 and for j > 4 (not shown). Results for
the four cov(S) differ somewhat in details. The two distance measures behave similarly. However,
while the exponential function of distance gives high correlations for all values of θ shown here for
j = 2, 3, the linear function of distance shows smaller correlations for small values of θ, most likely
because the spatial correlation dies off so quickly for small θ, and for j = 3 for large θ as well.

Appendix B: Spatial confounding with spectral methods

Section 2.2’s results for a discrete spatial domain can be extended to Gaussian process models
defined on a continuous spatial domain. Let y(si) = x′iβ+S(si)+εi, where si ∈ R2, εi

iid∼ N(0, τe) is
pure error, and S is a spatial process with mean zero, precision τs, and stationary spatial correlation
function Cor(si, sj) = ρ(si − sj).
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The spectral representation theorem states that S(s) can be written

S(s) =
∫

R2
cos(ω′s)db1(ω) +

∫

R2
sin(ω′s)db2(ω), (15)

where ω = (ω1, ω2)′ ∈ R2 is a frequency and b1 and b2 are independent Gaussian processes with
mean zero, orthogonal increments, and E(|dbj(ω)|2) = F (ω)/τs. The spectral representation formu-
lates the spatial process as a convolution of trigonometric basis functions and stochastic processes
in the frequency domain with independent increments. The spatial correlation ρ is directly related
to the spectral density F :

ρ(si − sj) =
∫

R2
cos[ω′(si − sj)]dF (ω). (16)

The spectral density is often decreasing in ||ω||, for example, F (ω) ∝ exp(−||ω||2/(4φ)) corresponds
to the squared-exponential covariance ρ(si − sj) = exp(−φ||si − sj ||2).

Assuming the observations lie on a m × m square grid with distance one between neighbor-
ing sites, S’s density can be approximated (Whittle 1954) by a sum over a finite grid of Fourier
frequencies ωl ∈ {2πb−(m− 1)/2c/m, ..., 2π(n− bn/2c)/m}2,

S(s) =
2∑

j=1

m2∑

l=1

Zj(s, ωl)bjl (17)

bjl ∼ N(0, τsdl)

where bxc is the smallest integer greater than or equal to x, Z1(s,ω) = cos(ω′s), Z2(s, ω) =
sin(ω′s), and τsdl is a precision with dl = 1/F (ωl). In this special case, the Zj are orthogonal, i.e.,
∑m2

l=1 Zj(s,ωl)Zk(s′,ωl) = I(k = j)I(s = s′). This approximation may induce edge and aliasing
effects in the spatial covariance, especially for small grids, but the approximation is useful for
studying the fixed effects. This representation is directly analogous to the ICAR model as in (5),
so the rest of the analysis applied to the ICAR model follows directly.

Comparing the spectral representation (17) with the ICAR model (5), the trigonometric func-
tions Z1 and Z2 are analogous to Section 2.2’s eigenvectors Zj , and the inverse of the spectral
density 1/F (ω) is analogous to the eigenvalues dj in Section 2.2. Unlike the eigenvectors and eigen-
values of the ICAR model, Z1, Z2 and F have explicit forms, so the role of the covariate’s spatial
scale is more clear. High-frequency terms (large ||ω||) have small prior variance (small F (||ω||))
and are shrunk a great deal, while low-frequency terms (small ||ω||) have large prior variance (large
F (||ω||)) and are shrunk relatively little. In this parameterization, the correlations between a
covariate and the Zj clearly describe the covariate’s variation at different spatial scales.
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Appendix C: How β’s estimate changes when a supposed missing

covariate or the random effect S are added to the model

Consider these three models:

• Model 0: y = 1nα + Xβ + ε

• Model H: y = 1nα + Xβ + Hγ + ε

• Model S: y = Xβ + Zb + ε,

where Model S, the spatial model, is the same as (2) and (5). Assume, as before, that X is centered
and scaled so 1′nX = 0 and X′X = n − 1; assume H is centered and scaled the same way; and
assume y is centered but not scaled. Bayesian results below assume flat (improper) priors on α, β,
and γ.

Under Model 0, the estimate of β — the posterior mean or least-squares estimate — is

β̂(0) = (X′X)−1X′y = ρXY (y′y)0.5 (18)

where ρAB is Pearson’s correlation of the vectors A and B. Under Models H and S, the estimates
of β given τs and τe — the conditional posterior mean for both models; for Model H this is also
the least-squares estimate, while for Model S it is the customary estimate after maximizing the
restricted likelihood — are:

β̂(H) = β̂(0) − (X′X)−1X′H(H′PcH)−1H′Pcy (19)

β̂(S) = β̂(0) − (X′X)−1X′Z(Z′PcZ + rD)−1Z′Pcy, (20)

where, as before, r = τs/τe, Pc = I − X(X′X)−1X′, and D = diag(d1, . . . , dn−G, 0, . . . , 0) is the
diagonal matrix containing the eigenvalues di of the spatial-neighbor matrix Q. The estimate β̂(S)

was given in Section 2.2 and β̂(H) is derived by a similar argument.
Define BX = Z′X/(n−1)0.5; the entries in BX are the correlations between X and the columns

of Z (we called this R in Section 2.2). Define BH analogously as BH = Z′H/(n − 1)0.5. Finally,
define By = Z′y/[(n − 1)(y′y)]0.5; By’s entries are the correlations between y and the columns of
Z. Then the estimates of β under Models H and S, given τs and τe, can be shown to be

β̂(H) = β̂(0)


1−

ρ
XH

ρ
HY

ρ
XY

− ρ2
XH

1− ρ2
XH


 (21)

β̂(S) = β̂(0)


1−

ρ′
XY

ρ
XY

− q

1− q


 ,

where ρ′
XY

= B′
X(I + rD)−1By = X′(I + rQ)−1y/((n − 1)y′y)0.5 and q = B′

X(I + rD)−1BX =
X′(I + rQ)−1X/(n− 1).
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In (21), the expressions in square brackets for β̂(H) and for β̂(S) have no necessary relation
to each other. For example, if X and H are uncorrelated, so ρXH = 0, then β̂(H) = β̂(0) but
β̂(S) 6= β̂(0). In particular, β̂(S) can be larger or smaller than β̂(H) in absolute value; this depends
on how (I+rD)−1 differentially downweights specific coordinates of BX and By. When ρ′

XY
≈ ρXY ,

β̂(S) ≈ 0. This happens if the ith coordinate of BX , the correlation of X and Zi, is large; the ith

coordinate of By, the correlation of y and Zi, is large; and di and r are small, as in the Slovenian
data.

If the data are generated by Model H, we can treat β̂(H) and β̂(S) as functions of y, holding the
precisions τe and τs fixed, and compute the expected change in β’s estimate from adding either H
or S to Model 0. The expected changes are:

E(β̂(H) − β̂(0)|τe) = ρXH γ (22)

E(β̂(S) − β̂(0)|τe, τs) =




ρ′
XH

ρ
XH

− q

1− q


 ρXH γ if ρXH 6= 0 (23)

=
ρ′

XH

1− q
γ if ρXH = 0, (24)

where ρ′
XH

= B′
X(I + rD)−1BH = X′(I + rQ)−1H/(n − 1). If γ 6= 0, the expected adjustment

under Model S is biased, with the bias depending on how (I + rD)−1 differentially downweights
specific coordinates of BX and BH ; the bias can be positive or negative. If H = Zj , then ρ′

XH
=

ρXH /(1 + rdj), so (23) becomes

E(β̂(S) − β̂(0)|τe, τs) =

[
(1 + rdj)−1 − q

1− q

]
ρXH γ. (25)

The expression in square brackets is less than 1 when rdj > 0 and becomes negative if r or dj

is large enough, i.e., Model S adjusts β̂ in the wrong direction from β̂(0). If there is no missing
covariate, γ = 0, then the expected adjustment is zero under both Model H and Model S.
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Figure 1: For the Slovenian municipalities, panel (a): Observed standardized incidence ratio SIR =
Oi/Ei; panel (b): Centered and scaled socioeconomic status SEc.

(a) SIR (b) SEc
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Figure 2: Two canonical regressors, columns of the matrix Z; panel (a): Z193, with the smallest
positive eigenvalue d193 and thus the least-shrunk coefficient b193 among the shrunk coefficients;
panel (b): Z1, with the largest eigenvalue d193 and thus the most-shrunk coefficient b1.

(a) Z193 (b) Z1
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