
Color Angular IndexingGraham D. Finlayson1, Subho S. Chatterjee2 and Brian V. Funt21 Department of Computer Science, University of York, York YO1 5DD, UK2 School of Computing Science, Simon Fraser University, Vancouver, CanadaAbstract. A fast color-based algorithm for recognizing colorful objectsand colored textures is presented. Objects and textures are representedby just six numbers. Let r, g and b denote the 3 color bands of theimage of an object (stretched out as vectors) then the color angularindex comprises the 3 inter-band angles (one per pair of image vectors).The color edge angular index is calculated from the image's color edgemap (the Laplacian of the color bands) in a similar way. These anglescapture important low-order statistical information about the color andedge distributions and invariant to the spectral power distribution ofthe scene illuminant. The 6 illumination-invariant angles provide thebasis for angular indexing into a database of objects or textures andhas been tested on both Swain's database of color objects which wereall taken under the same illuminant and Healey and Wang's databaseof color textures which were taken under several di�erent illuminants.Color angular indexing yields excellent recognition rates for both datasets.1 IntroductionVarious authors[13, 12, 10] (beginning with Swain and Ballard[13]) have foundthat the color distributions of multi-colored objects provide a good basis forobject recognition. A color distribution, in the discrete case, is simply a three-dimensional histogram of the pixel values using one dimension for each colorchannel. For recognition, the color histogram of a test image is matched in someway (the matching strategy distinguishes the methods) against model histogramsstored in the database. The closest model de�nes the identity of the image. Swainhas shown that excellent recognition is possible so long as objects are alwayspresented in the same pose and the illumination color is held �xed. Varyingeither the pose or illumination color can cause the color distribution to shift soas to prevent recognition.Our goal is to develop a color-distribution-based descriptor that is concise, ex-pressive and illuminant invariant. Swain and Ballard's histogram descriptors areexpressive|they provide good recognition rates so long as the illuminant coloris held �xed. However, they are not concise since each histogram is representedby the counts in 4096 bins. A descriptor requiring only a few parameters shouldspeed up indexing performance and be useful in other more computationallyintensive recognition algorithms (e.g. Murase and Nayar's [9] manifold method).Of course, we would prefer to decrease the match time without decreasing thematch success.



Healey and Slater[4] have proposed a representation based on a small set ofmoments of color histograms[14]. They show that when illumination change iswell described by a linear model (i.e., image colors change by a linear transformwhen the illumination changes) certain high-order distribution moments are illu-minant invariant. Unfortunately, in the presence of noise (even in small amounts)this high-order information is not very stable and as such their representationmay not be very expressive.Requiring a full 3-by-3 linear model of illuminant change limits the kind ofilluminant-invariant information that can be extracted from a color distribu-tion. However, the linear model is in fact over general since only a small subsetof the possible linear transforms correspond to physically plausible illuminantchanges[2]. In particular if, as is usually the case, the sensitivities of our cameraare relatively narrow-band then the images of the same scene viewed under twodi�erent illuminants are related (without error) by 3 simple scale factors. Eachcolor pixel value (ri; gi; bi) in the �rst color image becomes (�ri; �gi; 
bi) in thesecond (where ri, gi and bi denote the ith pixel in the red, green and blue im-age bands respectively and �, � and 
 are scalars). This means that the imagesdi�ering only in terms of the scene illuminant are always related by a simple3-parameter diagonal matrix.Under a diagonal model of illuminant change, the 3 angles between the di�er-ent bands of a color image provide a simple illuminant independent invariant. Tosee this think of each image band as a vector in a high-dimensional space. Whenthe illumination changes each vector becomes longer or shorter but its orient-ation remains unchanged. As well as being invariant to illumination change weshow that the color angles encode important low-order statistical information.Of course the camera sensors are not necessarily narrow-band and as suchcolor angles might not be stable across a change in the illuminant. Nonetheless,good invariance can be attained if the angles are calculated with respect to aspecial sharpened color image. The sharpened color image, which exists for allsensor sets[2, 1], is created by taking linear combinations of the original colorbands.Angular indexing using just the 3 color angles su�ce if the object database issmall but performance breaks down for larger databases. To bolster recognitionwe develop a second angle invariant called the color-edge angle. Each band ofthe input color image is �ltered by a Laplacian of Gaussian mask to generate acolor edge map. The inter-band angles calculated with respect to this edge mapare once again illuminant invariant and encode important information about thecolor edge distribution which when combined with the original 3 color anglesleads to excellent recognition rates. Swain and Ballard demonstrated the rich-ness of the color histogram representation for objects; and indexing on the 4096histogram bins, they achieved almost 
awless recognition for a database of 66objects. Using color angular indexing, we attain very similar recognition ratesindexing on only 6 angles.As a second comparison, we evaluated recognition using Healey and Wang'scolor texture data set. It consists of 10 colored textures viewed under 4 illumin-



ants, but we added images of the same textures viewed under 5 more orientationsgiving a grand total of 240 images. Indexing with the 6 combined angles deliversalmost perfect recognition for the texture dataset.2 Background2.1 Color Image FormationThe light re
ected from a surface depends on the spectral properties of the sur-face re
ectance and of the illumination incident on the surface. In the case ofLambertian surfaces, this light is simply the product of the spectral power distri-bution of the light source with the percent spectral re
ectance of the surface. Forthe theoretical development, we henceforth assume that most surfaces are Lam-bertian. Illumination, surface re
ection and sensor function, combine togetherin forming a sensor response:�xk = Zw Sx0(�)Ex0 (�)Rk(�)d� (1)where � is the wavelength, Rk is the response function of the kth sensor class(r, g or b), Ex0 is the incident illumination and Sx0 is the surface re
ectancefunction at location x0 on the surface which is projected onto location x on thesensor array. We assume the illumination does not vary spectrally over the scene,so the index x0 from E(�) can be dropped.In the sections which follow we denote an image by I . The content of the jthcolor pixel in I is denoted (rIj ; gIj ; bIj ). we will assume that there are M pixels inan image.2.2 Color HistogramsLet H(I1) and H(I2) be color histograms of the images I1 and I2. Hi;j;k(I1) isan integer recording the number of colors in I1 which fall in the ijkth bin. Themapping of color to bin is usually not 1-to-1 but rather color space is split intodiscrete regions. For example, Swain and Ballard[13] split each color channel into16 intervals giving 16� 16� 16 = 4096 bins in each histogram.To compare histograms H(I1) and H(I2) a similarity measure is computed.Swain calculates similarity of a pair of histograms as their common intersection:NXi=1 NXj=1 NXk=1min(Hi;j;k(I1); Hi;j;k(I2)) (2)where N is the number of bins in each color dimension. While other methods ofcomparing histograms have been suggested, e.g. [10], they are all similar in thesense that they consist of many bin-wise operations. There are several problemswith similarity calculated in this way. First, each distribution is represented bya feature vector of N3 dimensions (the number of bins in a histogram), and this



is quite large. The larger the feature space the slower the match. Secondly, it isunlikely that all the information in a distribution will be useful in calculatinga match. Lastly the color histogram depends on the color of the light. Movingfrom red to blue illumination causes the color distributions to shift and resultsin poor match success[3].2.3 Statistical MomentsIf color distributions are described well by a small number of statistical featuresthen comparing these features should su�ce for determining distribution simil-arity. Suppose we must characterize the color distribution in an image I by onesingle color. A good candidate (and the obvious one) is the mean image color,�(I) = 1M MXj=1(rIj ; gIj ; bIj )T (3)where M is the number of pixels in the image. The variance or spread of colorsabout the mean also captures a lot of information about the color distribution.The variance in the red channel �2r (I) is de�ned as�2r (I) = 1M MXi=1(rIi � �r(I))2 (4)The covariance �r�g(I) between the red and green color channels is de�ned as�r�g(I) = 1M MXi=1(rIi � �r(I))(gIi � �g(I)) (5)Similarly, �2g(I), �2b (I), �r�b(I) and �g�b(I) can be de�ned. These variances andcovariances are usually grouped together into a covariance matrix �(I):�(I) = 24 �2r(I) �r�g(I) �r�b(I)�r�g(I) �2g(I) �g�b(I)�r�b(I) �g�b(I) �2b (I) 35 (6a)Suppose we represent an image I as anM�3 matrix, where the ith row containsthe ith rgb triplet. If the mean image color is the zero-vector, �(I) = (0; 0; 0)T ,then Equation (6a) can be rewritten in matrix notation:�(I) = IT IM (6b)where T denotes matrix transpose. The covariance relationship given in Equa-tion (6b) will prove very useful in subsequent discussion.The mean color �(I) is called the �rst-order moment of the distribution ofimage colors and the covariance matrix �(I) is composed of the second or-der moments. Third and higher order moments can be calculated in an ana-logous manner. For example the third order moment of the r color channel is



sr(I) = 1M PMi=1(rIi � �r(I))3. This moment captures the skew of the red re-sponse distribution and is measure of the degree of symmetry about the meanred response. The green and blue skews sg(I) and sb(I) are similarly de�ned. Ingeneral the nth order moments of a color distribution is de�ned as:1M MXi=1(rIi � �r(I))�(gIi � �g(I))�(bIi � �b(I))
 (7)where �; �; 
 > 0 and �+ � + 
 = n.Roughly speaking low-order moments give a coarse description of the dis-tribution. More and more distribution details are unveiled as one progressesthrough the higher moments[11]. Two observations stem from this. First, forcolor-based object recognition low-order moments capture the most useful in-formation. For example, low-order moments are less e�ected by confoundingprocesses such as image noise or highlights.Stricker and Orengo[12], have presented experimental evidence that colordistributions can be represented by low-order moments. They show that thefeatures �(I), �2r(I), �2g(I), �2b (I), sr(I), sg(I) and sb(I) provide an e�ectiveindex into a large image database. Unfortunately these low-order moments ofcolor distributions are suitable for recognition only if objects are always viewedunder the same colored light. A white piece of paper viewed under reddish andbluish lights have predominantly red and blue color distributions respectively.What we really need is descriptors of the low-order information that do notdepend on the illuminant in this way.2.4 Finite Dimensional ModelsBoth illuminant spectral power distribution functions and surface spectral re-
ectance functions are described well by �nite-dimensional models of low dimen-sion. A surface re
ectance vector S(�) can be approximated as:S(�) � dSXi=1 Si(�)�i (8)where Si(�) is a basis function and � is a dS-component column vector of weights.Similarly each illuminant can be written as:E(�) � dEXj=1Ej(�)�j (9)where Ej(�) is a basis function and � is a dE dimensional vector of weights.Given a �nite-dimensional approximations to surface re
ectance and illu-mination, the color response eqn. (1) can be rewritten as a matrix equation.A Lighting Matrix �(�)[7] maps re
ectances, de�ned by the � vector, onto acorresponding response vector: p = �(�)� (10)



where �(�)ij = R! Ri(�)E(�)Sj (�)d�. The lighting matrix depends on the illu-minant weighting vector � to specify E(�) via eqn. (9). If surface re
ectances are3-dimensional then every �(�) is a 3� 3 matrix. It follows that response triplesobtained under one light can be mapped to those of another by a 3� 3 matrix.p1 = �(�1)� ; p2 = �(�2)� ) p2 = �(�2)[�(�1)]�1p1 (11)Studies[6, 8] have shown that a 3-dimensional model is quite reasonable.Thus it follows that the color distributions of the same surfaces viewed undertwo illuminants are linearly related to a good approximation.2.5 Illuminant Invariant MomentsTaubin and Cooper [14] have recently developed e�cient algorithms for the com-putation of vectors of a�ne moment (or algebraic) invariants of functions. Thesevectors are invariant to a�ne transformations of the function which, as Healeyand Slater observed, may make them a suitable illuminant-invariant representa-tion for color distributions.There are two steps in calculating Taubin and Cooper's invariants. Firstthe distribution is manipulated such that its statistics are standardized in somesense. Second, features which are independent of the position of the standardizeddistribution are extracted.Standardizing the distribution's statistics is best understood by example. LetI1 and I2 be M � 3 matrices denoting the color images of some scene viewedunder a pair of illuminants (the M rgb triplets in each image are placed in therows of the matrices) where �rst the mean image color has been subtracted inboth cases. Thus, �(I1) = (0; 0; 0)T and �(I2) = (0; 0; 0)T . So long as re
ectancesare approximately 3-dimensional the two images are related by a 3 � 3 matrixM I2 � I1M (12)I1 and I2 are standardized by transforming them by the matrices O1 and O2such that their column spaces are orthonormal,OT1 IT1 I1O1 = OT2 IT2 I2O2 = I (13)Since I1O1 and I2O2 are orthonormal they di�er only by a rotation and representthe same color distributions with respect to di�erent coordinate axes. Thus thebasic shape of the distributions is the same.The second step in Taubin and Cooper's method is to extract features fromthe standardized distributions I1O1 and I2O2 which are independent of thecoordinate frame. The precise details of their method do not concern us|itsu�ces that the invariants exist. However, we must ask whether these invariantsare expressive; that is, do they convey useful information?To explore this question let us examine the matrices in equation (13) moreclosely. From Equation (6b) it follows that:



�(I1O1) = OT1 IT1 I1O1M = IM (14)where I denotes the identity matrix. That is the covariance matrix of all stand-ardized images is equal to the scaled identity matrix. This is always the caseregardless of the starting image statistics. Thus all the low-order statistics|those which convey the most useful information about the distribution|havebeen lost through the need to discount the e�ect of the illuminant. It followsthat only high order moments can be extracted from I1O1 and I2O2. As dis-cussed above, we expect that these will not su�ce for reliable recognition andthis prediction is borne out by experiment in section 4.3 Distributions anglesWhile �nite-dimensional models are a useful tool for investigating colors undera changing illuminant they do not tell the whole story. Indeed it turns out thata restricted subset of the possible linear transforms correspond to plausible illu-minant changes. This observation allows us to extract useful illuminant-invariantstatistics from color distributions.Suppose that the sensor sensitivities of the color camera are delta functions,Rk(�) = �(�� �k). In this case, the camera responses pk and qk generated byan arbitrary surface Sj(�) viewed under illuminants E1(�) and E2(�) are:pk = Sj(�k)E1(�k) ; qk = Sj(�k)E2(�k) (15)It is immediate that qk = E2(�k)E1(�k)pk (16)Since (16) no longer involves the re
ectance function Sj(�) the camera re-sponses induced by any surface are related by the same scaling factor E2(�k)E1(�k) .Combining the scalings for each sensor class into a diagonal matrix, (16) can beexpressed as: q = Dp (Dkk = E2(�k)E1(�k) k = 1; 2; 3) (17)Thus for narrow-band sensors illuminant change is exactly modelled by adiagonal matrix and the full generality of a 3� 3 linear model is not required.Let us consider the problem of extracting invariant features from a colordistribution under a diagonal model of illuminant change. We follow the basicapproach of Taubin and Cooper in that we �rst standardize the statistics of thecolor distribution and then extract the statistical features. Under the diagonalmodel Equation (17), the relationship between a pair of images can be rewrittenas:



I2 = I1D (18)where D is a diagonal matrix. By (18) the corresponding columns of I1 and I2are vectors in the same direction but of di�erent length so the distributions canbe standardized by normalizing the lengths of the columns of I1 and I2. Wede�ne a function N() for carrying out the column normalization:N(I1) = I1DN (19)where the ith diagonal entry of the diagonal matrixDN is equal to the reciporicalof the length of the ith column of I1.[DN ]ii = 1j[I1]ij (20)[]i and []ij denote the ith column and ijth element of a matrix respectively. Thenormalized distributions of I1 and I2 are equal:N(I1) = N(I2) (21)The covariance matrix of N(I1) equals:�(N(I1)) = [N(I1)]TN(I1)M = 1M 24 1 M�r�g M�r�bM�r�g 1 M�g�bM�r�b M�g�b 1 35 (22)Note the o�-diagonal terms are non-zero, so under a diagonal model of illu-minant change the color distributions can be standardized while preserving 3 ofthe 6 second-order moments, namely the covariances �r�g , �r�b and �g�b. Thiscontrasts favourably with standardization under a linear model of illuminantwhere all second-order moments are lost. Note the covariances will not be thesame as those de�ned for the pre-standardized distribution i.e. the covarianceterms in (22) are not equal to those in (6a).Consider the geometric meaning of the covariance terms. The ijth entry inM�(N(I1)) equals the dot-product of the i and jth th columns ofN(I1). Becauseeach column of N(I1) is unit length it follows that each dot-product equals thecosine of the angle between the i and jth columns. The cosine function is non-linear which is inappropriate for indexing. Thus we calculate the inverse cosineof the covariance terms in (24) e�ectively linearizing the feature giving us theangles of a color distribution.�ij(N(I1)) = cos�1([M�(N(I1)]ij) (i 6= j) (23)A distribution is represented by its three angles �12(N(I1)), �13(N(I1)) and�23(N(I1)). The 3-tuple of the 3 distribution angles for a color distribution I isdenoted �(I). The distance between distributions I and J is calculated by:jj�(I)� �(J)jjF (24)where F denotes the Frobenius norm; that is, the distance between distributionsis calculated as the root-mean square error between the respective vectors ofcolor angles.



3.1 Relaxing the Narrow-band assumptionIf the camera sensors are not narrow-band then the analysis (15) through (17)does not hold and a single diagonal matrix will not relate sensor responses acrossa change in illumination. However, Finlayson et al.[2, 1] have shown that in thiscase a generalized diagonal matrix can be used instead. A generalized diagonalmatrix is de�ned as T DT �1, where T is �xed and D varies with illumination.Under the generalized scheme, images under di�erent illuminants are related byI1 � I2T DT �1 (25)The relationship in (25) holds exactly if illumination and re
ectances arewell described by 2- and 3-dimensional linear models[2]. Because 2{3 conditionsroughly hold in practice the generalized diagonal relationship describes illumin-ant change for all sensor sets. Equation (25) can be rewritten making the role ofthe diagonal matrix explicit: I1T � I2T D (26)It follows that the angles �(N(I1T )) are approximately illuminant-invariantfeatures of color distributions. Since the cameras used in the experiments repor-ted later do in fact have quite narrow-band sensor sensor sensitivities, T is setto the identity matrix.3.2 Color-edge distribution anglesLet us de�ne a color edge map as an image convolved with a Laplacian of Gaus-sian �lter in which the usual two-dimensional �lter is replicated for each of thethree image bands. Denoting the convolution �lter r2G the edge map of theimage I is written as r2G ? I where ? represents convolution. Where, as beforer2G ? I can be thought of as an M � 3 matrix. Because convolution is a lin-ear operator the edge maps of the same scene viewed under two illuminants arerelated by a diagonal matrix:r2G ? I2 = r2G ? I1D (27)It follows that the angles �(N(r2G?I)) encode second-order moment inform-ation about the color-edge distribution and are illuminant invariant. If color andcolor-edge distribution angles encode distinct information then we can expectthat used together they will out perform recognition using either alone.3.3 Properties of distribution anglesDistribution angles (either of colors or color edges) do not depend on the spa-tial characteristics of an image. In particular they do not depend on the orderof the rows in I1 or r2G ? I1. That this is so is clear from the de�nition ofa moment in Equation (7) since a moment is a sum of terms, with each termcalculated on a per-pixel basis. Distribution angles are also independent of scale



since N(I1) = N(I1k) for any non-zero k. Because distribution angles are inde-pendent of image spatial characteristics and image scale, we can expect angularindexing to recognize an object in di�erent contexts such as when it is placed atdi�erent viewing distances or is rotated about the optical axis.4 ResultsThe invariants described in section 3 were used as cues for object recognition.They were tested on two published sets of color images[5, 13]. Results are presen-ted for color angle invariants, color-edge angle invariants and their combina-tion. Three existing distribution-based techniques|color indexing, color con-stant color indexing and Healey and Slater's moment approach|are applied tothe same data sets for comparison.4.1 Swain's DatabaseSwain's model database consists of 66 images of objects. However, because ratioinvariants are ill-de�ned for images containing saturated pixels, eleven of theimages with saturated pixels were pruned from the data set leaving 55 images.The same whitish illumination was used for all objects. A set of an additional 24images of the same objects but viewed in di�erent poses and with small amountsof deformation (e.g. a rumpled T-shirt) is then used to test the recognitionalgorithm. The test images are shown (in black and white) in Figure 1. Therecognition rankings for color indexing, color constant color indexing (denotedCCCI in Tables 1 and 2), and Healey and Slater's moment-based method aretabulated along with that of color angular indexing in Table 1. Rank is de�nedto be the position of the correct match in the sorted list of match values. Thus, amatch rank of 1 indicates correct recognition, a rank of 2 means that the correctanswer was the second best and so on.

Fig. 1. 24 of Swain's images. Fig. 2. Healey's texture images.



Algorithm Rankings1 2 3 > 3Color angles 16 5 2 1Edge angles 17 3 3 1Color and edge angles 21 2 1 0Color Indexing 23 1 0 0CCCI 22 2 0 0Healey's moments 7 7 3 7
Algorithm Rankings1 2 3 > 3Color angles 124 45 29 32Edge angles 222 8 0 0Color and edge angles 224 6 0 0Color indexing 74 21 27 108CCCI 120 37 21 52Healey's moments 121 40 20 49Table 1. Object database performance. Table 2. Texture database performance.It is evident that Healey and Slater's higher-order moments based approachdelivers poor performance. Note that 7 objects are matched with a greater than3 rank. The color distribution angles and edge angles, used independently, givereasonable performance with 16 and 17 objects recognized correctly in eachcase. The combination of both, however, performs very well, comparable withthe almost 
awless recognition provided by color indexing and color constantcolor indexing. However, the latter two methods represent objects using a 4096element feature vector (histogram bin counts).4.2 Healey and Wang's texture databaseWill color angular indexing successfully recognize the colored textures in Healeyand Wang's texture data set[5]? This model data set contains ten images ofnatural textures viewed under white light; they are shown in (black and white)Figure 2. In addition to the model base set of 10 images, 30 other images weretaken of the same textures but through 3 separate colored �lters placed in frontof the camera. This is equivalent to placing the �lters in front of the illuminantso it models illumination change. The �lters used had narrow pass bands inthe blue, green and red regions of the spectrum. Such �lters represent quiteextreme illuminants and provide a stringent test for the illuminant invariance ofthe angular index.Each of the 40 images (10 model and 30 test) was then rotated by 30�, 45�,60�, 90� and 110� resulting in 240 images in total. Note the angle invariantsof rotated textures are not trivially invariant because they are calculated withrespect to a square image window so there is a windowing e�ect. The total testdatabase consists of 230 images: the 30 test images in all 6 orientations and themodel base in 5 orientations (all orientations except 0�). Results for the variousalgorithms are shown in Table 2.Once again, recognition rates for color angle distributions alone are poorwith almost half the textures not being recognized. Color angular indexing withthe color and edge angle distributions yields the best results, with all but sixof the textures being correctly identi�ed. Note also that, color edge angles bythemselves deliver excellent recognition. All the other methods, color indexing,color constant color indexing and Healey and Slater's moment based method,perform very poorly.
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