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Abstract

The development of solid tumors is associated with ac-
quisition of complex genetic alterations, indicating that fail-
ures in the mechanisms that maintain the integrity of the
genome contribute to tumor evolution. Thus, one expects
that the particular types of genomic derangement seen in
tumors reflect underlying failures in maintenance of ge-
netic stability, as well as selection for changes that provide
growth advantage. In order to investigate genomic alter-
ations we are using microarray-based comparative genomic
hybridization (array CGH). The computational task is to
map and characterize the number and types of copy num-
ber alterations present in the tumors, and so define copy
number phenotypes as well as to associate them with known
biological markers.

To utilize the spatial coherence between nearby clones,
we use unsupervised Hidden Markov Models approach. The
clones are partitioned into the states which represent un-
derlying copy number of the group of clones. The method is
demonstrated on the two cell line datasets with known copy
number alterations for one of them. The biological conclu-
sions drawn from the analyses are discussed.

1. Introduction

In this article we present an automated method for iden-
tifying and characterizing copy number changes in a given
tumor. We distinguish 4 types of genomic changes: tran-
sitions, whole chromosomal gains and losses, focal aber-
rations and high-level focal amplifications. While this tax-
onomy is not novel, the manual process is time-consuming,
prone to human error and non-reproducible.

1.1. Array CGH

Microarray-based comparative genomic hybridizations
(aCGH) provides a means to qualitatively measure DNA
copy-number aberrations and to map them directly onto ge-
nomic sequence. The arrays comprised of large-insert ge-
nomic clones such as BACs provide reliable copy number
measurements on individual clones and have shown to be
useful for for research and clinical applications in medi-
cal genetics and cancer. The relative copy number of these
spotted DNA sequences is measured by monitoring the dif-
ferential hybridization of the two samples to the sequences
on the array.

2. Methods

For a given genomic profile, the goal is to partition the
clones into sets with equal copy number. The biological
model underlying this approach is that genomic rearrange-
ments lead to gains or losses of sizable contiguous parts of
the genome, possibly spanning entire chromosomes, or, al-
ternatively, to focal high-level amplifications. In particular,
it is desirable to make use of the physical dependence of the
nearby clones.

2.1. Unsupervised HMM partitioning

The observed ���
�

ratio for a given clone, �, is deter-
mined by the true copy number of the clone in a tumor cell,
�� , ploidy of the sample, �� , normal cell admixture, ��
and fraction of the tumor cells which have not acquired a
given aberration, �� . Then, proportion of the cells with a
given aberration is ����� � ��� �� ���� �� � and

� � ���
�

�� ����� � �� ��� ������

��
� �� � is ���� ���	

The HMM approach is a natural framework for the task at
hand as the hidden states represent underlying copy number
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of the clones and there exist probabilistic transitions among
different states. We fit HMM to individual chromosomes
for each sample. For each chromosome we need to deter-
mine the number of states and allocate the clones to the
derived states.

Algorithm:

� For � � � � � �� states:

1. Specify initial state parameters (mean and vari-
ance) and state emission probabilities and the
transition probabilities between the states.

2. Fit k-state HMM

3. Assign observations to the states

4. Calculate penalized negative log-likelihood ����

� Choose the model corresponding to the � with the
smallest ����, ��

� For models with more than one state, merge the states
those median are within a ������	
� of each other.

The parameters are the maximum size of an HMM
model, the model selection criteria and the threshold for
the state merge. We use � � � and AIC criterion. The
threshold to merge the states is dependent on the problem at
hand. We have allowed the threshold to be as low as 0.15
for the tumor data and as high as 0.35 for particularly pure
cell lines.

2.2. Characterizing genomic aberrations

We characterize the genomic profiles using 4 types of
genomic changes: transitions, whole chromosomal gains
and losses, focal aberrations and high-level focal ampli-
fications. Figure 1 gives examples of transition and focal
aberrations.
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Figure 1. Example of the method application
to 4 different Coriel chromosomes. The solid
black line indicate the start of the region and
the dotted light line shows the end of region.
Light dots indicate focal aberrations. Dotted
light line shows centromere.

3. Data

We demonstrate our approach on the two publicly avail-
able datasets. The first dataset was was featured in [2].
and consisted of single experiments on 15 fibroplast cell
lines containing cytogenetically mapped partial or whole-
chromosome aneuploidi. The second dataset was presented
in [1] and consisted of aCGH profiles of 10 MMR defi-
cient and 10 proficient cell lines. Cytogenetic analyses have
shown that tumors with defects in MMR have fewer chro-
mosomal changes than most solid tumors.

4. Results

4.1. Coriel Cell Lines

To assess the performance of our algorithm on the known
aberrations of the Coriel cell lines we used the table of the
agreement between known karyotypes and manual segmen-
tation of the aCGH profiles published in [2]. There were
15 chromosomes with partial changes and 8 whole chromo-
somal monosomies and trisomies. We were able to detect
all of the known aberrations. In addition, we have found
several single clone aberrations (average of � per sample)
which may be real or may be due to mismapped clones.

We counted the number of gains or losses of whole chro-
mosomes, which might be expected to occur following fail-
ures of karyokinesis or cytokinesis, and the number of copy
number transitions within a chromosome, which are likely
to reflect DNA strand breakage that led to non-reciprocal
translocations. We found that MMR deficient cells showed
significantly fewer aberrations than MMR proficient cells
in accord with earlier observations, although we observed a
substantial number of aberrations in some MMR deficient
lines. We also found a dependency of aberration type on the
specific MMR defect. Cells deficient in MLH1 had a higher
frequency of transitions and focal aberrations than MSH2
deficient cells.
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